51
|
Ma R, Sun ED, Donoho D, Zou J. Principled and interpretable alignability testing and integration of single-cell data. Proc Natl Acad Sci U S A 2024; 121:e2313719121. [PMID: 38416677 DOI: 10.1073/pnas.2313719121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/23/2024] [Indexed: 03/01/2024] Open
Abstract
Single-cell data integration can provide a comprehensive molecular view of cells, and many algorithms have been developed to remove unwanted technical or biological variations and integrate heterogeneous single-cell datasets. Despite their wide usage, existing methods suffer from several fundamental limitations. In particular, we lack a rigorous statistical test for whether two high-dimensional single-cell datasets are alignable (and therefore should even be aligned). Moreover, popular methods can substantially distort the data during alignment, making the aligned data and downstream analysis difficult to interpret. To overcome these limitations, we present a spectral manifold alignment and inference (SMAI) framework, which enables principled and interpretable alignability testing and structure-preserving integration of single-cell data with the same type of features. SMAI provides a statistical test to robustly assess the alignability between datasets to avoid misleading inference and is justified by high-dimensional statistical theory. On a diverse range of real and simulated benchmark datasets, it outperforms commonly used alignment methods. Moreover, we show that SMAI improves various downstream analyses such as identification of differentially expressed genes and imputation of single-cell spatial transcriptomics, providing further biological insights. SMAI's interpretability also enables quantification and a deeper understanding of the sources of technical confounders in single-cell data.
Collapse
Affiliation(s)
- Rong Ma
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Eric D Sun
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305
| | - David Donoho
- Department of Statistics, Stanford University, Stanford, CA 94305
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305
| |
Collapse
|
52
|
Zhu C, Takemoto H, Higuchi Y, Yamashita F. Programmed immobilization of living cells using independent click pairs. Biochem Biophys Res Commun 2024; 699:149556. [PMID: 38277727 DOI: 10.1016/j.bbrc.2024.149556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Therapeutic devices incorporating living cells or tissues have been intensively investigated for applications in tissue engineering and regenerative medicine. Because many biological processes are governed by spatially dependent signals, programmable immobilization of materials is crucial for manipulating multiple types of cells. In this study, click chemistry substrates were introduced onto the surfaces of cells and cover glass, and the cells were fixed on the cover glass via covalent bonds for selective cell deposition. Azide group (Az)-labeled living cells were prepared by metabolic labeling with azido sugars. Following the introduction of Az, TCO (trans-cyclooctene) was metabolically labeled into the living cells by reacting with TCO-DBCO (dibenzocyclooctyne). Az and TCO in the cells were detected using DBCO-FAM (fluorescein)and tetrazine-Cy3, respectively. The mixture of Az-labeled green fluorescent protein HeLa cells and TCO-labeled red fluorescent protein HeLa cells was reacted in a culture dish in which three different cover glasses, DBCO-, tetrazine-, or methyl-coated, were added. Az- or TCO-labeled cells could be immobilized in a functional group-dependent manner. Next, tetrazine-labeled cells were incubated on TCO- or Az-labeled cell layers instead of cover glass. Functional group-dependent immobilization was also achieved in the cell layer. Introducing substrates for the click reaction could achieve cell-selective immobilization on different patterned glass surfaces, as well as cell-cell immobilization.
Collapse
Affiliation(s)
- Chengyuan Zhu
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroyasu Takemoto
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 606-0823, Japan
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan; Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
53
|
Xu L, Barrett JG, Peng J, Li S, Messadi D, Hu S. ITGAV Promotes the Progression of Head and Neck Squamous Cell Carcinoma. Curr Oncol 2024; 31:1311-1322. [PMID: 38534932 PMCID: PMC10969037 DOI: 10.3390/curroncol31030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 05/26/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) refers to the malignancy of squamous cells in the head and neck region. Ranked as the seventh most common cancer worldwide, HNSCC has a very low survival rate, highlighting the importance of finding therapeutic targets for the disease. Integrins are cell surface receptors that play a crucial role in mediating cellular interactions with the extracellular matrix (ECM). Within this protein family, Integrin αV (ITGAV) has received attention for its important functional role in cancer progression. In this study, we first demonstrated the upregulation of ITGAV expression in HNSCC, with higher ITGAV expression levels correlating with significantly lower overall survival, based on TCGA (the Cancer Genome Atlas) and GEO datasets. Subsequent in vitro analyses revealed an overexpression of ITGAV in highly invasive HNSCC cell lines UM1 and UMSCC-5 in comparison to low invasive HNSCC cell lines UM2 and UMSCC-6. In addition, knockdown of ITGAV significantly inhibited the migration, invasion, viability, and colony formation of HNSCC cells. In addition, chromatin immunoprecipitation (ChIP) assays indicated that SOX11 bound to the promoter of ITGAV gene, and SOX11 knockdown resulted in decreased ITGAV expression in HNSCC cells. In conclusion, our studies suggest that ITGAV promotes the progression of HNSCC cells and may be regulated by SOX11 in HNSCC cells.
Collapse
Affiliation(s)
- Lingyi Xu
- School of Dentistry, University of California, Los Angeles, CA 90095, USA; (L.X.); (J.G.B.); (J.P.); (D.M.)
| | - Jeremy G Barrett
- School of Dentistry, University of California, Los Angeles, CA 90095, USA; (L.X.); (J.G.B.); (J.P.); (D.M.)
| | - Jiayi Peng
- School of Dentistry, University of California, Los Angeles, CA 90095, USA; (L.X.); (J.G.B.); (J.P.); (D.M.)
| | - Suk Li
- School of Dentistry, University of California, Los Angeles, CA 90095, USA; (L.X.); (J.G.B.); (J.P.); (D.M.)
| | - Diana Messadi
- School of Dentistry, University of California, Los Angeles, CA 90095, USA; (L.X.); (J.G.B.); (J.P.); (D.M.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90024, USA
| | - Shen Hu
- School of Dentistry, University of California, Los Angeles, CA 90095, USA; (L.X.); (J.G.B.); (J.P.); (D.M.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
54
|
Wang J, Platz-Baudin E, Noetzel E, Offenhäusser A, Maybeck V. Expressing Optogenetic Actuators Fused to N-terminal Mucin Motifs Delivers Targets to Specific Subcellular Compartments in Polarized Cells. Adv Biol (Weinh) 2024; 8:e2300428. [PMID: 38015104 DOI: 10.1002/adbi.202300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Optogenetics is a powerful approach in neuroscience research. However, other tissues of the body may benefit from controlled ion currents and neuroscience may benefit from more precise optogenetic expression. The present work constructs three subcellularly-targeted optogenetic actuators based on the channelrhodopsin ChR2-XXL, utilizing 5, 10, or 15 tandem repeats (TR) from mucin as N-terminal targeting motifs and evaluates expression in several polarized and non-polarized cell types. The modified channelrhodopsin maintains its electrophysiological properties, which can be used to produce continuous membrane depolarization, despite the expected size of the repeats. This work then shows that these actuators are subcellularly localized in polarized cells. In polarized epithelial cells, all three actuators localize to just the lateral membrane. The TR-tagged constructs also express subcellularly in cortical neurons, where TR5-ChR2XXL and TR10-ChR2XXL mainly target the somatodendrites. Moreover, the transfection efficiencies are shown to be dependent on cell type and tandem repeat length. Overall, this work verifies that the targeting motifs from epithelial cells can be used to localize optogenetic actuators in both epithelia and neurons, opening epithelia processes to optogenetic manipulation and providing new possibilities to target optogenetic tools.
Collapse
Affiliation(s)
- Jiali Wang
- Institute of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062, Aachen, Germany
| | - Eric Platz-Baudin
- Institute of Biological Information Processing IBI-2, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Erik Noetzel
- Institute of Biological Information Processing IBI-2, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062, Aachen, Germany
| | - Vanessa Maybeck
- Institute of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| |
Collapse
|
55
|
Jones RA, Trejo B, Sil P, Little KA, Pasolli HA, Joyce B, Posfai E, Devenport D. An mTurq2-Col4a1 mouse model allows for live visualization of mammalian basement membrane development. J Cell Biol 2024; 223:e202309074. [PMID: 38051393 PMCID: PMC10697824 DOI: 10.1083/jcb.202309074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate the traffic of cells and molecules between compartments, and participate in signaling, cell migration, and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labeled. Here, we describe the mTurquoise2-Col4a1 mouse in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative planar-sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.
Collapse
Affiliation(s)
- Rebecca A. Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brandon Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
56
|
Chang YJ, Prince GMSH, Wei PL, Batzorig U, Huang CY, Hung CS, Chang TC. The role of thrombomodulin in modulating ITGB3 expression and its implications for triple-negative breast cancer progression. Cell Biol Int 2024; 48:216-228. [PMID: 38081783 DOI: 10.1002/cbin.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC) compared to other BC subtypes in clinical settings. Currently, there are no effective therapeutic strategies for TNBC treatment. Therefore, there is an urgent need to identify suitable biomarkers or therapeutic targets for TNBC patients. Thrombomodulin (TM) plays a role in cancer progression and metastasis in many different cancers. However, the role of TM in TNBC is not yet fully understood. First, silenced-TM in MDA-MB-231 cells caused an increase in proliferative and metastatic activity. In contrast, overexpression of TM in Hs578T cells caused a reduction in proliferation, invasion, and migration rate. Using RNA-seq analysis, we found that Integrin beta 3 (ITGB3) expression may be a downstream target of TM. Furthermore, we found an increase in ITGB3 levels in TM-KD cells by QPCR and western blot analysis but a decrease in ITGB3 levels in TM-overexpressing cells. We found phospho-smad2/3 levels were increased in TM-KD cells but decreased in TM-overexpressing cells. This implies that TM negatively regulates ITGB3 levels through the activation of the smad2/3 pathway. Silencing ITGB3 in TM-KD cells caused a decrease in proliferation and migration. Finally, we found that higher ITGB3 levels were correlated with poor overall survival and relapse-free survival in patients with TNBC. Our results indicated a novel regulatory relationship between TM and ITGB3 in TNBC.
Collapse
Affiliation(s)
- Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Cancer Research Center and Translational Laboratory, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | | | - Po-Li Wei
- Department of Medical Research, Cancer Research Center and Translational Laboratory, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of Colorectal Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Uyanga Batzorig
- Department of Dermatology, University of California, San Diego, La Jolla, California, USA
| | - Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chin-Sheng Hung
- Department of Surgery, Division of Colorectal Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tung-Cheng Chang
- Department of Surgery, Division of Colorectal Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Shuang-Ho Hospital, New Taipei City, Taiwan
- Division of Colorectal Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
57
|
Rodrigues DB, Reis RL, Pirraco RP. Modelling the complex nature of the tumor microenvironment: 3D tumor spheroids as an evolving tool. J Biomed Sci 2024; 31:13. [PMID: 38254117 PMCID: PMC10804490 DOI: 10.1186/s12929-024-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer remains a serious burden in society and while the pace in the development of novel and more effective therapeutics is increasing, testing platforms that faithfully mimic the tumor microenvironment are lacking. With a clear shift from animal models to more complex in vitro 3D systems, spheroids emerge as strong options in this regard. Years of development have allowed spheroid-based models to better reproduce the biomechanical cues that are observed in the tumor-associated extracellular matrix (ECM) and cellular interactions that occur in both a cell-cell and cell-ECM manner. Here, we summarize some of the key cellular interactions that drive tumor development, progression and invasion, and how successfully are these interactions recapitulated in 3D spheroid models currently in use in the field. We finish by speculating on future advancements in the field and on how these can shape the relevance of spherical 3D models for tumor modelling.
Collapse
Affiliation(s)
- Daniel B Rodrigues
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal.
| |
Collapse
|
58
|
Asakura T, Naito A. Bombyx mori Silk Fibroin and Model Peptides Incorporating Arg-Gly-Asp Motifs and Their Application in Wound Dressings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18594-18604. [PMID: 38060376 DOI: 10.1021/acs.langmuir.3c02963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Skin plays an important role in protecting the human body from the environment, dehydration, and infection. Burns, wounds, and disease cause the skin to lose its role, but tissue-engineered skin substitutes offer the opportunity to restore skin loss. Silk fibroin from Bombyx mori (SF) has proven to be an excellent wound dressing material. In this study, we aim to develop an excellent wound dressing material by introducing three-residue sequence Arg-Gly-Asp (RGD), which is the most well-known adhesion site of fibronectin, in the films of SF and the model peptide. Its usefulness as a wound dressing material was evaluated both in vitro and in vivo. First, we showed that the flexible structures of the RGD sequence are still maintained in SF with a rigid antiparallel β-sheet structure using NMR in association with excellent wound dressings of SF containing RGD. Then, in in vitro experiments, two types of normal cells derived from human skin, normal human neonatal epidermal keratinocytes and normal human neonatal dermal fibroblasts, were used to evaluate the cell adhesion. On the other hand, in in vivo experiments, the study was conducted using a rat model of a whole skin layer defect wound. The results showed that the high-functionalized SF developed here has the potential to play a significant role in the field of wound dressings.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
59
|
Golz AC, Bergemann C, Hildebrandt F, Emmert S, Nebe B, Rebl H. Selective adhesion inhibition and hyaluronan envelope reduction of dermal tumor cells by cold plasma-activated medium. Cell Adh Migr 2023; 17:1-19. [PMID: 37743639 PMCID: PMC10521339 DOI: 10.1080/19336918.2023.2260642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/06/2023] [Indexed: 09/26/2023] Open
Abstract
The sensitivity to cold plasma is specific to tumor cells while leaving normal tissue cells unaffected. This is the desired challenge in cancer therapy. Therefore, the focus of this work was a comparative study concerning the plasma sensitivity of dermal tumor cells (A-431) versus non-tumorigenic dermal cells (HaCaT) regarding their adhesion capacity. We found a selective inhibiting effect of plasma-activated medium on the adhesion of tumor cells while hardly affecting normal cells. We attributed this to a lower basal gene expression for the adhesion-relevant components CD44, hyaluronan synthase 2 (HAS2), HAS3, and the hyaluronidases in A431. Noteworthy, after plasma exposure, we revealed a significantly higher expression and synthesis of the hyaluronan envelope, the HAS3 gene, and the transmembrane adhesion receptors in non-tumorigenic HaCaTs.
Collapse
Affiliation(s)
- Anna-Christin Golz
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Claudia Bergemann
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Finja Hildebrandt
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Steffen Emmert
- Clinic and Polyclinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany
| | - Barbara Nebe
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
60
|
Halder SK, Sapkota A, Milner R. The importance of laminin at the blood-brain barrier. Neural Regen Res 2023; 18:2557-2563. [PMID: 37449589 DOI: 10.4103/1673-5374.373677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The blood-brain barrier is a unique property of central nervous system blood vessels that protects sensitive central nervous system cells from potentially harmful blood components. The mechanistic basis of this barrier is found at multiple levels, including the adherens and tight junction proteins that tightly bind adjacent endothelial cells and the influence of neighboring pericytes, microglia, and astrocyte endfeet. In addition, extracellular matrix components of the vascular basement membrane play a critical role in establishing and maintaining blood-brain barrier integrity, not only by providing an adhesive substrate for blood-brain barrier cells to adhere to, but also by providing guidance cues that strongly influence vascular cell behavior. The extracellular matrix protein laminin is one of the most abundant components of the basement membrane, and several lines of evidence suggest that it plays a key role in directing blood-brain barrier behavior. In this review, we describe the basic structure of laminin and its receptors, the expression patterns of these molecules in central nervous system blood vessels and how they are altered in disease states, and most importantly, how genetic deletion of different laminin isoforms or their receptors reveals the contribution of these molecules to blood-brain barrier function and integrity. Finally, we discuss some of the important unanswered questions in the field and provide a "to-do" list of some of the critical outstanding experiments.
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Arjun Sapkota
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, USA
| |
Collapse
|
61
|
Li R, Chen B, Kubota A, Hanna A, Humeres C, Hernandez SC, Liu Y, Ma R, Tuleta I, Huang S, Venugopal H, Zhu F, Su K, Li J, Zhang J, Zheng D, Frangogiannis NG. Protective effects of macrophage-specific integrin α5 in myocardial infarction are associated with accentuated angiogenesis. Nat Commun 2023; 14:7555. [PMID: 37985764 PMCID: PMC10662477 DOI: 10.1038/s41467-023-43369-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
Macrophages sense changes in the extracellular matrix environment through the integrins and play a central role in regulation of the reparative response after myocardial infarction. Here we show that macrophage integrin α5 protects the infarcted heart from adverse remodeling and that the protective actions are associated with acquisition of an angiogenic macrophage phenotype. We demonstrate that myeloid cell- and macrophage-specific integrin α5 knockout mice have accentuated adverse post-infarction remodeling, accompanied by reduced angiogenesis in the infarct and border zone. Single cell RNA-sequencing identifies an angiogenic infarct macrophage population with high Itga5 expression. The angiogenic effects of integrin α5 in macrophages involve upregulation of Vascular Endothelial Growth Factor A. RNA-sequencing of the macrophage transcriptome in vivo and in vitro followed by bioinformatic analysis identifies several intracellular kinases as potential downstream targets of integrin α5. Neutralization assays demonstrate that the angiogenic actions of integrin α5-stimulated macrophages involve activation of Focal Adhesion Kinase and Phosphoinositide 3 Kinase cascades.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bijun Chen
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Akihiko Kubota
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Silvia C Hernandez
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Richard Ma
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shuaibo Huang
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Harikrishnan Venugopal
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fenglan Zhu
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Su
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jun Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
62
|
Wu Y, Du L, Xu X, Hu Y, Liu J, Zhang J, Lei L, He W, Sheng Z, Ni Y, Qu J, Li X, Jiang J. Nano Self-Assemblies of Caffeic Acid-Fibronectin Mimic a Peptide Conjugate for the Treatment of Corneal Epithelial Injury. Mol Pharm 2023; 20:5937-5946. [PMID: 37871179 DOI: 10.1021/acs.molpharmaceut.3c00861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Rapid corneal re-epithelialization is important for corneal wound healing. Corneal epithelial cell motility and oxidative stress are important targets for therapeutic intervention. In this study, we covalently conjugated the antioxidant caffeic acid (CA) with a bioactive peptide sequence (PHSRN) to generate a CA-PHSRN amphiphile, which was formulated into nanoparticular eye drops with an average size of 43.21 ± 16 nm. CA-PHSRN caused minimal cytotoxicity against human corneal epithelial cells (HCECs) and RAW264.7 cells, exhibited an excellent free radical scavenging ability, and remarkably attenuated reactive oxygen species (ROS) levels in H2O2-stimulated HCECs. The antioxidant and anti-inflammatory activities of CA-PHSRN were assessed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The results show that CA-PHSRN treatment effectively prevented LPS-induced DNA damage and significantly reduced the levels of LPS-induced pro-inflammatory cytochemokines (i.e., iNOS, NO, TNF-α, IL-6, and COX-2) in a dose-dependent manner. Moreover, using a rabbit corneal epithelial ex vivo migration assay, we demonstrated that the proposed CA-PHSRN accelerated corneal epithelial cell migration and exhibited high ocular tolerance and ocular bioavailability after topical instillation. Taken together, the proposed CA-PHSRN nanoparticular eye drops are a promising therapeutic formulation for the treatment of corneal epithelial injury.
Collapse
Affiliation(s)
- Yiping Wu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Lulu Du
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Xiaoning Xu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Yuhan Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Jia Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Jingwei Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Lei Lei
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Wenfang He
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Zihao Sheng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Yuanao Ni
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Jia Qu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Xingyi Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Jun Jiang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| |
Collapse
|
63
|
Hou X, Chen Y, Zhou B, Tang W, Ding Z, Chen L, Wu Y, Yang H, Du C, Yang D, Ma G, Cao H. Talin-1 inhibits Smurf1-mediated Stat3 degradation to modulate β-cell proliferation and mass in mice. Cell Death Dis 2023; 14:709. [PMID: 37903776 PMCID: PMC10616178 DOI: 10.1038/s41419-023-06235-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023]
Abstract
Insufficient pancreatic β-cell mass and reduced insulin expression are key events in the pathogenesis of diabetes mellitus (DM). Here we demonstrate the high expression of Talin-1 in β-cells and that deficiency of Talin-1 reduces β-cell proliferation, which leads to reduced β-cell mass and insulin expression, thus causing glucose intolerance without affecting peripheral insulin sensitivity in mice. High-fat diet fed exerbates these phenotypes. Mechanistically, Talin-1 interacts with the E3 ligase smad ubiquitination regulatory factor 1 (Smurf1), which prohibits ubiquitination of the signal transducer and activator of transcription 3 (Stat3) mediated by Smurf1, and ablation of Talin-1 enhances Smurf1-mediated ubiquitination of Stat3, leading to decreased β-cell proliferation and mass. Furthermore, haploinsufficiency of Talin-1 and Stat3 genes, but not that of either gene, in β-cell in mice significantly impairs glucose tolerance and insulin expression, indicating that both factors indeed function in the same genetic pathway. Finally, inducible deletion Talin-1 in β-cell causes glucose intolerance in adult mice. Collectively, our findings reveal that Talin-1 functions as a crucial regulator of β-cell mass, and highlight its potential as a therapeutic target for DM patients.
Collapse
Affiliation(s)
- Xiaoting Hou
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Key University Laboratory of Metabolism and Health of Guangdong, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yangshan Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Key University Laboratory of Metabolism and Health of Guangdong, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bo Zhou
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Key University Laboratory of Metabolism and Health of Guangdong, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wanze Tang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Key University Laboratory of Metabolism and Health of Guangdong, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhen Ding
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Key University Laboratory of Metabolism and Health of Guangdong, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Litong Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Key University Laboratory of Metabolism and Health of Guangdong, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yun Wu
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital; Guangdong Provincial High-level Clinical Key Specialty; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment; The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University; The Hong Kong University of Science and Technology Medical Center, Guangdong, China
| | - Hongyu Yang
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital; Guangdong Provincial High-level Clinical Key Specialty; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment; The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University; The Hong Kong University of Science and Technology Medical Center, Guangdong, China
| | - Changzheng Du
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Key University Laboratory of Metabolism and Health of Guangdong, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dazhi Yang
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Key University Laboratory of Metabolism and Health of Guangdong, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Key University Laboratory of Metabolism and Health of Guangdong, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
64
|
Anderson SM, Kelly M, Odde DJ. Glioblastoma cells use an integrin- and CD44-mediated motor-clutch mode of migration in brain tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563458. [PMID: 37961475 PMCID: PMC10634749 DOI: 10.1101/2023.10.23.563458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glioblastoma (GBM) is an aggressive malignant brain tumor with 2-year survival rates of 6.7% [1], [2]. One key characteristic of the disease is the ability of glioblastoma cells to migrate rapidly and spread throughout healthy brain tissue[3], [4]. To develop treatments that effectively target cell migration, it is important to understand the fundamental mechanism driving cell migration in brain tissue. Here we utilized confocal imaging to measure traction dynamics and migration speeds of glioblastoma cells in mouse organotypic brain slices to identify the mode of cell migration. Through imaging cell-vasculature interactions and utilizing drugs, antibodies, and genetic modifications to target motors and clutches, we find that glioblastoma cell migration is most consistent with a motor-clutch mechanism to migrate through brain tissue ex vivo, and that both integrins and CD44, as well as myosin motors, play an important role in constituting the adhesive clutch.
Collapse
Affiliation(s)
- Sarah M Anderson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marcus Kelly
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
65
|
Larrea A, Elexpe A, Díez-Martín E, Torrecilla M, Astigarraga E, Barreda-Gómez G. Neuroinflammation in the Evolution of Motor Function in Stroke and Trauma Patients: Treatment and Potential Biomarkers. Curr Issues Mol Biol 2023; 45:8552-8585. [PMID: 37998716 PMCID: PMC10670324 DOI: 10.3390/cimb45110539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Neuroinflammation has a significant impact on different pathologies, such as stroke or spinal cord injury, intervening in their pathophysiology: expansion, progression, and resolution. Neuroinflammation involves oxidative stress, damage, and cell death, playing an important role in neuroplasticity and motor dysfunction by affecting the neuronal connection responsible for motor control. The diagnosis of this pathology is performed using neuroimaging techniques and molecular diagnostics based on identifying and measuring signaling molecules or specific markers. In parallel, new therapeutic targets are being investigated via the use of bionanomaterials and electrostimulation to modulate the neuroinflammatory response. These novel diagnostic and therapeutic strategies have the potential to facilitate the development of anticipatory patterns and deliver the most beneficial treatment to improve patients' quality of life and directly impact their motor skills. However, important challenges remain to be solved. Hence, the goal of this study was to review the implication of neuroinflammation in the evolution of motor function in stroke and trauma patients, with a particular focus on novel methods and potential biomarkers to aid clinicians in diagnosis, treatment, and therapy. A specific analysis of the strengths, weaknesses, threats, and opportunities was conducted, highlighting the key challenges to be faced in the coming years.
Collapse
Affiliation(s)
- Ane Larrea
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - Ane Elexpe
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
| | - Eguzkiñe Díez-Martín
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - María Torrecilla
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - Egoitz Astigarraga
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
| | - Gabriel Barreda-Gómez
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
| |
Collapse
|
66
|
Chen J, Yang R, Yin J, Shi B, Huang H. Current insights in the preclinical study of palatal wound healing and oronasal fistula after cleft palate repair. Front Cell Dev Biol 2023; 11:1271014. [PMID: 37900273 PMCID: PMC10601468 DOI: 10.3389/fcell.2023.1271014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Poor palatal wound healing after cleft palate repair could lead to unfavorable prognosis such as oronasal fistula (ONF), which might affect the patient's velopharyngeal function as well as their quality of life. Thus, restoring poor palatal wound healing for avoiding the occurrence of ONF should be considered the key to postoperative care after cleft palate repair. This review provided current insights in the preclinical study of poor palatal wound healing after cleft palate repair. This review comprehensively introduced the animal model establishment for palatal wound healing and related ONF, including the models by mice, rats, piglets, and dogs, and then demonstrated the aspects for investigating poor palatal wound healing and related treatments, including possible signaling pathways that could be involved in the formation of poor palatal wound healing, the related microbiota changes because of the deformity of palatal structure, and the studies for potential therapeutic strategies for palatal wound healing and ONF. The purpose of this review was to show the state of the art in preclinical studies about palatal wound healing after cleft palate repair and to show the promising aspects for better management of palatal wound healing.
Collapse
Affiliation(s)
- Jiali Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Renjie Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Eastern Clinic, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiayi Yin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hanyao Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
67
|
LaGuardia JS, Shariati K, Bedar M, Ren X, Moghadam S, Huang KX, Chen W, Kang Y, Yamaguchi DT, Lee JC. Convergence of Calcium Channel Regulation and Mechanotransduction in Skeletal Regenerative Biomaterial Design. Adv Healthc Mater 2023; 12:e2301081. [PMID: 37380172 PMCID: PMC10615747 DOI: 10.1002/adhm.202301081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Cells are known to perceive their microenvironment through extracellular and intracellular mechanical signals. Upon sensing mechanical stimuli, cells can initiate various downstream signaling pathways that are vital to regulating proliferation, growth, and homeostasis. One such physiologic activity modulated by mechanical stimuli is osteogenic differentiation. The process of osteogenic mechanotransduction is regulated by numerous calcium ion channels-including channels coupled to cilia, mechanosensitive and voltage-sensitive channels, and channels associated with the endoplasmic reticulum. Evidence suggests these channels are implicated in osteogenic pathways such as the YAP/TAZ and canonical Wnt pathways. This review aims to describe the involvement of calcium channels in regulating osteogenic differentiation in response to mechanical loading and characterize the fashion in which those channels directly or indirectly mediate this process. The mechanotransduction pathway is a promising target for the development of regenerative materials for clinical applications due to its independence from exogenous growth factor supplementation. As such, also described are examples of osteogenic biomaterial strategies that involve the discussed calcium ion channels, calcium-dependent cellular structures, or calcium ion-regulating cellular features. Understanding the distinct ways calcium channels and signaling regulate these processes may uncover potential targets for advancing biomaterials with regenerative osteogenic capabilities.
Collapse
Affiliation(s)
- Jonnby S. LaGuardia
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kaavian Shariati
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Meiwand Bedar
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Xiaoyan Ren
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Shahrzad Moghadam
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kelly X. Huang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Youngnam Kang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Dean T. Yamaguchi
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Justine C. Lee
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
- Department of Orthopaedic Surgery, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
68
|
Jones RA, Trejo B, Sil P, Little KA, Pasolli HA, Joyce B, Posfai E, Devenport D. A Window into Mammalian Basement Membrane Development: Insights from the mTurq2-Col4a1 Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559396. [PMID: 37808687 PMCID: PMC10557719 DOI: 10.1101/2023.09.27.559396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate traffic of cells and molecules between compartments, and participate in signaling, cell migration and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labelled. Here, we describe the mTurquoise2-Col4a1 mouse, in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative Planar-Sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.
Collapse
Affiliation(s)
- Rebecca A Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Brandon Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Katherine A Little
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, 1230 York Ave., New York, NY 10065
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
69
|
Ruiz-Trillo I, Kin K, Casacuberta E. The Origin of Metazoan Multicellularity: A Potential Microbial Black Swan Event. Annu Rev Microbiol 2023; 77:499-516. [PMID: 37406343 DOI: 10.1146/annurev-micro-032421-120023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The emergence of animals from their unicellular ancestors is a major evolutionary event. Thanks to the study of diverse close unicellular relatives of animals, we now have a better grasp of what the unicellular ancestor of animals was like. However, it is unclear how that unicellular ancestor of animals became the first animals. To explain this transition, two popular theories, the choanoblastaea and the synzoospore, have been proposed. We will revise and expose the flaws in these two theories while showing that, due to the limits of our current knowledge, the origin of animals is a biological black swan event. As such, the origin of animals defies retrospective explanations. Therefore, we should be extra careful not to fall for confirmation biases based on few data and, instead, embrace this uncertainty and be open to alternative scenarios. With the aim to broaden the potential explanations on how animals emerged, we here propose two novel and alternative scenarios. In any case, to find the answer to how animals evolved, additional data will be required, as will the hunt for microscopic creatures that are closely related to animals but have not yet been sampled and studied.
Collapse
Affiliation(s)
- Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
- ICREA, Barcelona, Spain
| | - Koryu Kin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
| | - Elena Casacuberta
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
| |
Collapse
|
70
|
Huang Y, Zhao H, Shi X, Liu J, Lin JM, Ma Q, Jiang S, Pu W, Ma Y, Liu J, Wu W, Wang J, Liu Q. GRB2 serves as a viable target against skin fibrosis in systemic sclerosis by regulating endothelial cell apoptosis. J Dermatol Sci 2023; 111:109-119. [PMID: 37661474 DOI: 10.1016/j.jdermsci.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/30/2023] [Accepted: 07/02/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Systemic Sclerosis (SSc) is an autoimmune disease characterized by vascular and immune system dysfunction, along with tissue fibrosis. Our previous study found GRB2 was downregulated by salvianolic acid B, a small molecule drug that attenuated skin fibrosis of SSc. OBJECTIVES Here we aim to investigate the role of GRB2 in SSc. METHODS The microarray data of SSc skin biopsies in Caucasians were obtained from the Gene Expression Omnibus (GEO) database. The expression of GRB2 was further detected in Chinese SSc and healthy controls. Bleomycin (BLM)-induced skin fibrosis mice were used to explore how GRB2 downregulation affected fibrosis. The apoptosis of EA.hy926 endothelial cells was induced by H2O2 and apoptosis ratio was measured by flow cytometric. Transcriptome and phosphoproteomic analyses were performed to explore the regulated pathway. RESULTS The expression of GRB2 was significantly enhanced in SSc patient skin, 1.51-fold in Caucasians and 1.40-fold in Chinese. Double immunofluorescence staining showed the endothelial cells of SSc patient's skin highly expressed GRB2. The in vivo study revealed that GRB2 knockdown alleviated skin fibrosis and apoptosis of endothelial cells in BLM mouse skin. The in vitro study showed that GRB2 downregulation inhibited the apoptosis of EA.hy926 and protected them from H2O2-induced hyperpermeability. Moreover, transcriptome and phosphoproteomic analysis suggested the focal adhesion pathway was enriched in GRB2 siRNA transfected endothelial cells. CONCLUSIONS Our results demonstrated GRB2 highly expressed in endothelial cells of SSc skin, and inhibiting GRB2 could effectively attenuate BLM-induced skin fibrosis and endothelial cell apoptosis. GRB2 is expected to be a new therapeutic target for SSc.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Han Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Nanjing Intellectual Property Protection Center, Nanjing, China
| | - Xiangguang Shi
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Jing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jui-Ming Lin
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Qianqian Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Weilin Pu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanyun Ma
- Institute for Six-sector Economy, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianlan Liu
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Wenyu Wu
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China; Department of Dermatology, Jing' an District Central Hospital, Shanghai, China.
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, China.
| | - Qingmei Liu
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
71
|
Pilátová MB, Solárová Z, Mezencev R, Solár P. Ceramides and their roles in programmed cell death. Adv Med Sci 2023; 68:417-425. [PMID: 37866204 DOI: 10.1016/j.advms.2023.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Programmed cell death plays a crucial role in maintaining the homeostasis and integrity of multicellular organisms, and its dysregulation contributes to the pathogenesis of many diseases. Programmed cell death is regulated by a range of macromolecules and low-molecular messengers, including ceramides. Endogenous ceramides have different functions, that are influenced by their localization and the presence of their target molecules. This article provides an overview of the current understanding of ceramides and their impact on various types of programmed cell death, including apoptosis, anoikis, macroautophagy and mitophagy, and necroptosis. Moreover, it highlights the emergence of dihydroceramides as a new class of bioactive sphingolipids and their downstream targets as well as their future roles in cancer cell growth, drug resistance and tumor metastasis.
Collapse
Affiliation(s)
- Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic
| | - Zuzana Solárová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic
| | - Roman Mezencev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic.
| |
Collapse
|
72
|
Gao K, Gao Z, Xia M, Li H, Di J. Role of plectin and its interacting molecules in cancer. Med Oncol 2023; 40:280. [PMID: 37632650 DOI: 10.1007/s12032-023-02132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/20/2023] [Indexed: 08/28/2023]
Abstract
Plectin, as the cytolinker and scaffolding protein, are widely expressed and abundant in many tissues, and has involved in various cellular activities contributing to tumorigenesis, such as cell adhesion, migration, and signal transduction. Due to the specific expression and differential localization of plectin in cancer, most researchers focus on the role of plectin in cancer, and it has emerged as a potent driver of malignant hallmarks in many human cancers, which provides the possibility for plectin to be widely used as a biomarker and therapeutic target in the early diagnosis and targeted drug delivery of the disease. However, there is still a lack of systematic review on the interaction molecules and mechanism of plectin. Herein, we summarized the structure, expression and function of plectin, and mainly focused on recent studies on the functional and physical interactions between plectin and its interacting molecules, shedding light on the potential of targeting plectin for cancer therapy.
Collapse
Affiliation(s)
- Keyu Gao
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Zhimin Gao
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Mingyi Xia
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Hailong Li
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
73
|
Amiryaghoubi N, Fathi M. Bioscaffolds of graphene based-polymeric hybrid materials for myocardial tissue engineering. BIOIMPACTS : BI 2023; 14:27684. [PMID: 38327630 PMCID: PMC10844587 DOI: 10.34172/bi.2023.27684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/20/2023] [Accepted: 07/03/2023] [Indexed: 02/09/2024]
Abstract
Introduction Biomaterials currently utilized for the regeneration of myocardial tissue seem to associate with certain restrictions, including deficiency of electrical conductivity and sufficient mechanical strength. These two factors play an important role in cardiac tissue engineering and regeneration. The contractile property of cardiomyocytes depends on directed signal transmission over the electroconductive systems that happen inside the innate myocardium. Because of their distinctive electrical behavior, electroactive materials such as graphene might be used for the regeneration of cardiac tissue. Methods In this review, we aim to provide deep insight into the applications of graphene and graphene derivative-based hybrid polymeric scaffolds in cardiomyogenic differentiation and cardiac tissue regeneration. Results Synthetic biodegradable polymers are considered as a platform because their degradation can be controlled over time and easily functionalized. Therefore, graphene-polymeric hybrid scaffolds with anisotropic electrical behavior can be utilized to produce organizational and efficient constructs for macroscopic cardiac tissue engineering. In cardiac tissue regeneration, natural polymer based-scaffolds such as chitosan, gelatin, and cellulose can provide a permissive setting significantly supporting the differentiation and growth of the human induced pluripotent stem cells -derived cardiomyocytes, in large part due to their negligible immunogenicity and suitable biodegradability. Conclusion Cardiac tissue regeneration characteristically utilizes an extracellular matrix (scaffold), cells, and growth factors that enhance cell adhesion, growth, and cardiogenic differentiation. From the various evaluated electroactive polymeric scaffolds for cardiac tissue regeneration in the past decade, graphene and its derivatives-based materials can be utilized efficiently for cardiac tissue engineering.
Collapse
Affiliation(s)
- Nazanin Amiryaghoubi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
74
|
Yoshida H, Shiokawa M, Kuwada T, Muramoto Y, Ota S, Nishikawa Y, Maeda H, Kakiuchi N, Okamoto K, Yamazaki H, Yokode M, Nakamura T, Matsumoto S, Hirano T, Okada H, Marui S, Sogabe Y, Matsumori T, Mima A, Uza N, Eso Y, Takai A, Takahashi K, Ueda Y, Kodama Y, Chiba T, Seno H. Anti-integrin αvβ6 autoantibodies in patients with primary sclerosing cholangitis. J Gastroenterol 2023; 58:778-789. [PMID: 37310456 PMCID: PMC10366314 DOI: 10.1007/s00535-023-02006-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Patients with primary sclerosing cholangitis (PSC) possess autoantibodies against biliary epithelial cells. However, the target molecules remain unknown. METHODS The sera of patients with PSC and controls were subjected to enzyme-linked immunosorbent assays to detect autoantibodies using recombinant integrin proteins. Integrin αvβ6 expression in the bile duct tissues was examined using immunofluorescence. The blocking activity of the autoantibodies was examined using solid-phase binding assays. RESULTS Anti-integrin αvβ6 antibodies were detected in 49/55 (89.1%) patients with PSC and 5/150 (3.3%) controls (P < 0.001), with a sensitivity and specificity of 89.1% and 96.7%, respectively, for PSC diagnosis. When focusing on the presence or absence of IBD, the proportion of the positive antibodies in PSC with IBD was 97.2% (35/36) and that in PSC alone was 73.7% (14/19) (P = 0.008). Integrin αvβ6 was expressed in bile duct epithelial cells. Immunoglobulin (Ig)G from 15/33 patients with PSC blocked integrin αvβ6-fibronectin binding through an RGD (Arg-Gly-Asp) tripeptide motif. CONCLUSIONS Autoantibodies against integrin αvβ6 were detected in most patients with PSC; anti-integrin αvβ6 antibody may serve as a potential diagnostic biomarker for PSC.
Collapse
Affiliation(s)
- Hiroyuki Yoshida
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuya Muramoto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sakiko Ota
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihiro Nishikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirona Maeda
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Kanako Okamoto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hajime Yamazaki
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masataka Yokode
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeharu Nakamura
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shimpei Matsumoto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Hirano
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirokazu Okada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuko Sogabe
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoaki Matsumori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Mima
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuji Eso
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Takahashi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihide Ueda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Kansai Electric Power Hospital, Osaka, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
75
|
Anderson SM, Odde DJ. Identifying the Mechanism of Glioblastoma Cell Migration in Mouse Brain Slices. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1066-1067. [PMID: 37613227 DOI: 10.1093/micmic/ozad067.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Sarah M Anderson
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, USA
| | - David J Odde
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, USA
| |
Collapse
|
76
|
Koukouritaki SB, Thinn AMM, Ashworth KJ, Fang J, Slater HS, Du LM, Nguyen HTT, Pillois X, Nurden AT, Ng CJ, Di Paola J, Zhu J, Wilcox DA. A single F153Sβ3 mutation causes constitutive integrin αIIbβ3 activation in a variant form of Glanzmann thrombasthenia. Blood Adv 2023; 7:3180-3191. [PMID: 36884296 PMCID: PMC10338211 DOI: 10.1182/bloodadvances.2022009495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
This report identifies a novel variant form of the inherited bleeding disorder Glanzmann thrombasthenia, exhibiting only mild bleeding in a physically active individual. The platelets cannot aggregate ex vivo with physiologic agonists of activation, although microfluidic analysis with whole blood displays moderate ex vivo platelet adhesion and aggregation consistent with mild bleeding. Immunocytometry shows reduced expression of αIIbβ3 on quiescent platelets that spontaneously bind/store fibrinogen, and activation-dependent antibodies (ligand-induced binding site-319.4 and PAC-1) report β3 extension suggesting an intrinsic activation phenotype. Genetic analysis reveals a single F153Sβ3 substitution within the βI-domain from a heterozygous T556C nucleotide substitution of ITGB3 exon 4 in conjunction with a previously reported IVS5(+1)G>A splice site mutation with undetectable platelet messenger RNA accounting for hemizygous expression of S153β3. F153 is completely conserved among β3 of several species and all human β-integrin subunits suggesting that it may play a vital role in integrin structure/function. Mutagenesis of αIIb-F153Sβ3 also displays reduced levels of a constitutively activated αIIb-S153β3 on HEK293T cells. The overall structural analysis suggests that a bulky aromatic, nonpolar amino acid (F,W)153β3 is critical for maintaining the resting conformation of α2- and α1-helices of the βI-domain because small amino acid substitutions (S,A) facilitate an unhindered inward movement of the α2- and α1-helices of the βI-domain toward the constitutively active αIIbβ3 conformation, while a bulky aromatic, polar amino acid (Y) hinders such movements and restrains αIIbβ3 activation. The data collectively demonstrate that disruption of F153β3 can significantly alter normal integrin/platelet function, although reduced expression of αIIb-S153β3 may be compensated by a hyperactive conformation that promotes viable hemostasis.
Collapse
Affiliation(s)
- Sevasti B. Koukouritaki
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI
| | - Aye Myat M. Thinn
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Katrina J. Ashworth
- Department of Pediatrics, Division of Hematology & Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI
| | - Haley S. Slater
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI
| | - Lily M. Du
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI
| | | | - Xavier Pillois
- Xavier Arnozan Hôpital, Institut de Rythmologie et de Modélisation Cardiaque, Pessac, France
| | - Alan T. Nurden
- Xavier Arnozan Hôpital, Institut de Rythmologie et de Modélisation Cardiaque, Pessac, France
| | - Christopher J. Ng
- Department of Pediatrics, Section of Hematology/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jorge Di Paola
- Department of Pediatrics, Division of Hematology & Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Jieqing Zhu
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - David A. Wilcox
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Milwaukee, WI
| |
Collapse
|
77
|
Gerencer M, McGuffin LJ. Are the integrin binding motifs within SARS CoV-2 spike protein and MHC class II alleles playing the key role in COVID-19? Front Immunol 2023; 14:1177691. [PMID: 37492575 PMCID: PMC10364474 DOI: 10.3389/fimmu.2023.1177691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/22/2023] [Indexed: 07/27/2023] Open
Abstract
The previous studies on the RGD motif (aa403-405) within the SARS CoV-2 spike (S) protein receptor binding domain (RBD) suggest that the RGD motif binding integrin(s) may play an important role in infection of the host cells. We also discussed the possible role of two other integrin binding motifs that are present in S protein: LDI (aa585-587) and ECD (661-663), the motifs used by some other viruses in the course of infection. The MultiFOLD models for protein structure analysis have shown that the ECD motif is clearly accessible in the S protein, whereas the RGD and LDI motifs are partially accessible. Furthermore, the amino acids that are present in Epstein-Barr virus protein (EBV) gp42 playing very important role in binding to the HLA-DRB1 molecule and in the subsequent immune response evasion, are also present in the S protein heptad repeat-2. Our MultiFOLD model analyses have shown that these amino acids are clearly accessible on the surface in each S protein chain as monomers and in the homotrimer complex and bind to HLA-DRB1 β chain. Therefore, they may have the identical role in SARS CoV-2 immune evasion as in EBV infection. The prediction analyses of the MHC class II binding peptides within the S protein have shown that the RGD motif is present in the core 9-mer peptide IRGDEVRQI within the two HLA-DRB1*03:01 and HLA-DRB3*01.01 strong binding 15-mer peptides suggesting that RGD motif may be the potential immune epitope. Accordingly, infected HLA-DRB1*03:01 or HLA-DRB3*01.01 positive individuals may develop high affinity anti-RGD motif antibodies that react with the RGD motif in the host proteins, like fibrinogen, thrombin or von Willebrand factor, affecting haemostasis or participating in autoimmune disorders.
Collapse
Affiliation(s)
| | - Liam J. McGuffin
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
78
|
Khademi R, Malekzadeh H, Bahrami S, Saki N, Khademi R, Villa-Diaz LG. Regulation and Functions of α6-Integrin (CD49f) in Cancer Biology. Cancers (Basel) 2023; 15:3466. [PMID: 37444576 DOI: 10.3390/cancers15133466] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Over the past decades, our knowledge of integrins has evolved from being understood as simple cell surface adhesion molecules to receptors that have a complex range of intracellular and extracellular functions, such as delivering chemical and mechanical signals to cells. Consequently, they actively control cellular proliferation, differentiation, and apoptosis. Dysregulation of integrin signaling is a major factor in the development and progression of many tumors. Many reviews have covered the broader integrin family in molecular and cellular studies and its roles in diseases. Nevertheless, further understanding of the mechanisms specific to an individual subunit of different heterodimers is more useful. Thus, we describe the current understanding of and exploratory investigations on the α6-integrin subunit (CD49f, VLA6; encoded by the gene itga6) in normal and cancer cells. The roles of ITGA6 in cell adhesion, stemness, metastasis, angiogenesis, and drug resistance, and as a diagnosis biomarker, are discussed. The role of ITGA6 differs based on several features, such as cell background, cancer type, and post-transcriptional alterations. In addition, exosomal ITGA6 also implies metastatic organotropism. The importance of ITGA6 in the progression of a number of cancers, including hematological malignancies, suggests its potential usage as a novel prognostic or diagnostic marker and useful therapeutic target for better clinical outcomes.
Collapse
Affiliation(s)
- Rahele Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Hossein Malekzadeh
- Department of Oral Medicine, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Sara Bahrami
- Resident of Restorative Dentistry, Qazvin University of Medical Sciences, Qazvin 3419759811, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Reyhane Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Medical Laboratory Sciences, School of Para-Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Luis G Villa-Diaz
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
79
|
Li Z, Jiang D, Yao Y. Experimental Design of Vertical Distraction Osteogenesis Using Simple 3 Screws. J Craniofac Surg 2023; 34:1599-1604. [PMID: 36775875 PMCID: PMC10292568 DOI: 10.1097/scs.0000000000009198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/11/2022] [Indexed: 02/14/2023] Open
Abstract
Distraction osteogenesis devices are complicated. To simplify these devices, we used 3 simple screws and 1 rubber band to realize the idea and analyzed histologic changes induced by mechanical forces. Ten female New Zealand white rabbits were studied. A left or right side of the mandible was randomly selected as the experimental side (ES). The unilateral mandible was distracted, and 2 fixation screws and 1 traction screw were implanted. When the traction screw was rotated downward, the opposite force made the osteotomy block move in opposite directions to increase the bone height. The control side (CS) was not processed. The results were assessed after 20 days of traction. Bone height in the ES increased by 5 mm. Toluidine blue staining showed that the number of osteoblasts per unit area on the ES was higher than that of the CS ( P <0.01). PerkinElmer showed that the expressions of proliferating cell nuclear antigen ( P =0.016) and collagen-I ( P =0.000) on the ES were higher than those on the CS. Transmission electron microscopy showed that the number of mitochondria, endoplasmic reticulum, and Golgi apparatus on the ES was significantly greater than the CS. The results confirmed that the 3 screws vertically increase the bone height. Mechanical force signals stimulate tissue activity and lead to significant cell proliferation and differentiation in the traction zone. Collagen-I may induce osteogenesis in the early stage of traction.
Collapse
Affiliation(s)
- Zeyu Li
- Department of Stomatology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Dongbo Jiang
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yusheng Yao
- Department of Stomatology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
80
|
Volkov DV, Stepanova VM, Rubtsov YP, Stepanov AV, Gabibov AG. Protein Tyrosine Phosphatase CD45 As an Immunity Regulator and a Potential Effector of CAR-T therapy. Acta Naturae 2023; 15:17-26. [PMID: 37908772 PMCID: PMC10615191 DOI: 10.32607/actanaturae.25438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023] Open
Abstract
The leukocyte common antigen CD45 is a receptor tyrosine phosphatase and one of the most prevalent antigens found on the surface of blood cells. CD45 plays a crucial role in the initial stages of signal transmission from receptors of various immune cell types. Immunodeficiency, autoimmune disorders, and oncological diseases are frequently caused by gene expression disorders and imbalances in CD45 isoforms. Despite extensive research into the structure and functions of CD45, the molecular mechanisms behind its role in transmitting signals from T-cell receptors and chimeric antigen receptors remain not fully understood. It is of utmost importance to comprehend the structural features of CD45 and its function in regulating immune system cell activation to study oncological diseases and the impact of CD45 on lymphocytes and T cells modified by chimeric antigen receptors.
Collapse
Affiliation(s)
- D. V. Volkov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - V. M. Stepanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - Y. P. Rubtsov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. V. Stepanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. G. Gabibov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| |
Collapse
|
81
|
Liu Y, Chen Y, Fukui K. Oxidative stress induces tau hyperphosphorylation via MARK activation in neuroblastoma N1E-115 cells. J Clin Biochem Nutr 2023; 73:24-33. [PMID: 37534088 PMCID: PMC10390814 DOI: 10.3164/jcbn.22-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/28/2022] [Indexed: 08/04/2023] Open
Abstract
Reactive oxygen species are considered a cause of neuronal cell death in Alzheimer's disease (AD). Abnormal tau phosphorylation is a proven pathological hallmark of AD. Microtubule affinity-regulating kinases (MARKs) regulate tau-microtubule binding and play a crucial role in neuronal survival. In this study, we hypothesized that oxidative stress increases the phosphorylation of Ser262 of tau protein through activation of MARKs, which is the main reason for the development of AD. We investigated the relationship between tau hyperphosphorylation on Ser262 and MARKs in N1E-115 cells subjected to oxidative stress by exposure to a low concentration of hydrogen peroxide. This work builds on the observation that hyperphosphorylation of tau is significantly increased by oxidative stress. MARKs activation correlated with tau hyperphosphorylation at Ser262, a site that is essential to maintain microtubule stability and is the initial phosphorylation site in AD. These results indicated that MARKs inhibitors might serve a role as therapeutic tools for the treatment of AD.
Collapse
Affiliation(s)
- Yuhong Liu
- Molecular Cell Biology Laboratory, Department of Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| | - Yunxi Chen
- Molecular Cell Biology Laboratory, Department of Systems Engineering and Science, School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| | - Koji Fukui
- Molecular Cell Biology Laboratory, Department of Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
- Molecular Cell Biology Laboratory, Department of Systems Engineering and Science, School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| |
Collapse
|
82
|
Yamamura Y, Sakai N, Iwata Y, Lagares D, Hara A, Kitajima S, Toyama T, Miyagawa T, Ogura H, Sato K, Oshima M, Nakagawa S, Tamai A, Horikoshi K, Matsuno T, Yamamoto N, Hayashi D, Toyota Y, Kaikoi D, Shimizu M, Tager AM, Wada T. Myocardin-related transcription factor contributes to renal fibrosis through the regulation of extracellular microenvironment surrounding fibroblasts. FASEB J 2023; 37:e23005. [PMID: 37289107 DOI: 10.1096/fj.202201870r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Fibroblast accumulation and extracellular matrix (ECM) deposition are common critical steps for the progression of organ fibrosis, but the precise molecular mechanisms remain to be fully investigated. We have previously demonstrated that lysophosphatidic acid contributes to organ fibrosis through the production of connective tissue growth factor (CTGF) via actin cytoskeleton-dependent signaling, myocardin-related transcription factor family (MRTF) consisting of MRTF-A and MRTF-B-serum response factor (SRF) pathway. In this study, we investigated the role of the MRTF-SRF pathway in the development of renal fibrosis, focusing on the regulation of ECM-focal adhesions (FA) in renal fibroblasts. Here we showed that both MRTF-A and -B were required for the expressions of ECM-related molecules such as lysyl oxidase family members, type I procollagen and fibronectin in response to transforming growth factor (TGF)-β1 . TGF-β1 -MRTF-SRF pathway induced the expressions of various components of FA such as integrin α subunits (αv , α2 , α11 ) and β subunits (β1 , β3 , β5 ) as well as integrin-linked kinase (ILK). On the other hand, the blockade of ILK suppressed TGF-β1 -induced MRTF-SRF transcriptional activity, indicating a mutual relationship between MRTF-SRF and FA. Myofibroblast differentiation along with CTGF expression was also dependent on MRTF-SRF and FA components. Finally, global MRTF-A deficient and inducible fibroblast-specific MRTF-B deficient mice (MRTF-AKO BiFBKO mice) are protected from renal fibrosis with adenine administration. Renal expressions of ECM-FA components and CTGF as well as myofibroblast accumulation were suppressed in MRTF-AKO BiFBKO mice. These results suggest that the MRTF-SRF pathway might be a therapeutic target for renal fibrosis through the regulation of components forming ECM-FA in fibroblasts.
Collapse
Affiliation(s)
- Yuta Yamamura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sakai
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Division of Blood Purification, Kanazawa University Hospital, Kanazawa, Japan
| | - Yasunori Iwata
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan
| | - David Lagares
- Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Akinori Hara
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Kitajima
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan
| | - Tadashi Toyama
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Taro Miyagawa
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hisayuki Ogura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Koichi Sato
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Megumi Oshima
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shiori Nakagawa
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Akira Tamai
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Keisuke Horikoshi
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takahiro Matsuno
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoki Yamamoto
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Daiki Hayashi
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshitada Toyota
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Daichi Kaikoi
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Miho Shimizu
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Andrew M Tager
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
83
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
84
|
Tang Q, Yu R, Wang Y, Xie F, Zhang H, Wu C, Fang M. Varied hypoxia adaptation patterns of embryonic brain at different development stages between Tibetan and Dwarf laying chickens. BMC Genomics 2023; 24:342. [PMID: 37344809 PMCID: PMC10286358 DOI: 10.1186/s12864-023-09457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Tibetan chickens (Gallus gallus; TBCs), an indigenous breed distributed in the Qinghai-Tibet Plateau, are well adapted to the hypoxic environment. Currently, the molecular genetic basis of hypoxia adaptation in TBCs remains unclear. This study investigated hypoxia adaptation patterns of embryonic brain at different development stages by integrating analysis of the transcriptome with our previously published metabolome data in TBCs and Dwarf Laying Chickens (DLCs), a lowland chicken breed. RESULTS During hypoxia, the results revealed that 1334, 578, and 417 differentially expressed genes (DEGs) (|log2 fold change|>1, p-value < 0.05) on days 8, 12, and 18 of development, respectively between TBCs and DLCs. Gene Ontology (GO) and pathway analyses revealed that DEGs are mainly related to metabolic pathways, vessel development, and immune response under hypoxia. This is consistent with our metabolome data that TBCs have higher energy metabolism than DLCs during hypoxia. Some vital DEGs between TBCs and DLCs, such as EPAS1, VEGFD, FBP1, FBLN5, LDHA, and IL-6 which are involved in the HIF pathway and hypoxia regulation. CONCLUSION These results suggest varied adaptation patterns between TBCs and DLCs under hypoxia. Our study provides a basis for uncovering the molecular regulation mechanism of hypoxia adaptation in TBCs and a potential application of hypoxia adaptation research for other animals living on the Qinghai-Tibet Plateau, and may even contribute to the study of brain diseases caused by hypoxia.
Collapse
Affiliation(s)
- Qiguo Tang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Runjie Yu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yubei Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Fuyin Xie
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Hao Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Changxin Wu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
85
|
Ma SR, Liu JF, Jia R, Deng WW, Jia J. Identification of a Favorable Prognostic Subgroup in Oral Squamous Cell Carcinoma: Characterization of ITGB4/PD-L1 high with CD8/PD-1 high. Biomolecules 2023; 13:1014. [PMID: 37371594 DOI: 10.3390/biom13061014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Integrin β4 (ITGB4) is a member of the integrin family, which plays a crucial role in mediating cell adhesion to the extracellular matrix. Recent studies have demonstrated that ITGB4 is involved in tumorigenesis and metastasis during the development of cancer. However, the role of ITGB4 in oral squamous cell carcinoma (OSCC) remains unclear. A Multiplex immunohistochemistry (OPAL™, mIHC) assay was employed to stain ITGB4, ALDH1, PD-L1, cytokeratin (CK), CD8 and PD-1 in a human OSCC tissue microarray, containing 26 normal oral epithelium samples, 21 oral epithelium dysplasia samples and 76 OSCC samples. The expression pattern and clinicopathological characteristics of ITGB4 were analyzed and compared with those of PD-1, PD-L1, ALDH1 and CD8. The correlation between subgroups of tumor cells, including ITGB4+PD-L1+ and ITGB4+ALDH1+, and subgroups of T cells, including CD8+ and CD8+PD-1+, was evaluated using two-tailed Pearson's statistics. A Kaplan-Meier curve was built, and a log-rank test was performed to analyze the survival rate of different subgroups. The mIHC staining results show that ITGB4 was mostly expressed in the tumor cells, with a significant increase in the OSCC specimens compared with normal oral epithelium and oral epithelium dysplasia. The paired analysis, conducted between the OSCC tumor tissue and normal paracancer mucosa, confirmed the results. The study further revealed that ITGB4+PD-L1+ cancer cells, but not ITGB4+ALDH1+ cancer cells, were significantly associated with the infiltration of CD8+ T cells (positivity p = 0.005, positive number p = 0.03). Additionally, ITGB4+PD-L1+ tumor cells were positively correlated with CD8+PD-1+ T cells (positivity p = 0.02, positive number p = 0.03). Most intriguingly, the subgroup of ITGB4/PD-L1high with CD8/PD-1high displayed the best prognosis compared with the other considered subgroups. The results show that the expression of ITGB4 was increased in OSCC compared with normal oral mucosa. Furthermore, a specific subgroup with high levels of expression of ITGB4/PD-L1 and CD8/PD-1 was found to have a relatively better prognosis compared with the other subgroups. Ultimately, this study sheds light on the potential role of ITGB4 in OSCC and provides a basis for further investigation.
Collapse
Affiliation(s)
- Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jian-Feng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jun Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
86
|
Chu PY, Hsieh HY, Chung PS, Wang PW, Wu MC, Chen YQ, Kuo JC, Fan YJ. Development of vessel mimicking microfluidic device for studying mechano-response of endothelial cells. iScience 2023; 26:106927. [PMID: 37305698 PMCID: PMC10251125 DOI: 10.1016/j.isci.2023.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/24/2022] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
The objective of this study is to develop a device to mimic a microfluidic system of human arterial blood vessels. The device combines fluid shear stress (FSS) and cyclic stretch (CS), which are resulting from blood flow and blood pressure, respectively. The device can reveal real-time observation of dynamic morphological change of cells in different flow fields (continuous flow, reciprocating flow and pulsatile flow) and stretch. We observe the effects of FSS and CS on endothelial cells (ECs), including ECs align their cytoskeleton proteins with the fluid flow direction and paxillin redistribution to the cell periphery or the end of stress fibers. Thus, understanding the morphological and functional changes of endothelial cells on physical stimuli can help us to prevent and improve the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Pei-Yu Chu
- College of Biomedical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Han-Yun Hsieh
- College of Biomedical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Pei-Shan Chung
- Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Pai-Wen Wang
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ming-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan
| | - Yin-Quan Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan
| | - Yu-Jui Fan
- College of Biomedical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
87
|
Mia MS, Hossain D, Woodbury E, Kelleher S, Palamuttam RJ, Rao R, Steen P, Jarajapu YP, Mathew S. Integrin β1 is a key determinant of the expression of angiotensin-converting enzyme 2 (ACE2) in the kidney epithelial cells. Eur J Cell Biol 2023; 102:151316. [PMID: 37084657 PMCID: PMC11086052 DOI: 10.1016/j.ejcb.2023.151316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
The expression of the angiotensin-converting enzyme 2 (ACE2) is altered in multiple chronic kidney diseases like hypertension and renal fibrosis, where the signaling from the basal membrane proteins is critical for the development and progression of the various pathologies. Integrins are heterodimeric cell surface receptors that have important roles in the progression of these chronic kidney diseases by altering various cell signaling pathways in response to changes in the basement membrane proteins. It is unclear whether integrin or integrin-mediated signaling affects the ACE2 expression in the kidney. The current study tests the hypothesis that integrin β1 regulates the expression of ACE2 in kidney epithelial cells. The role of integrin β1 in ACE2 expression in renal epithelial cells was investigated by shRNA-mediated knockdown and pharmacological inhibition. In vivo studies were carried out using epithelial cell-specific deletion of integrin β1 in the kidneys. Deletion of integrin β1 from the mouse renal epithelial cells reduced the expression of ACE2 in the kidney. Furthermore, the downregulation of integrin β1 using shRNA decreased ACE2 expression in human renal epithelial cells. ACE2 expression levels were also decreased in renal epithelial cells and cancer cells when treated with an integrin α2β1 antagonist, BTT 3033. SARS-CoV-2 viral entry to human renal epithelial cells and cancer cells was also inhibited by BTT 3033. This study demonstrates that integrin β1 positively regulates the expression of ACE2, which is required for the entry of SARS-CoV-2 into kidney cells.
Collapse
Affiliation(s)
- Md Saimon Mia
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Delowar Hossain
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Emerson Woodbury
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Sean Kelleher
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | | | - Reena Rao
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Preston Steen
- Sanford Health Roger Maris Cancer Center, Fargo, ND, USA
| | - Yagna Pr Jarajapu
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Sijo Mathew
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA; Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
88
|
Szydlak R, Øvreeide IH, Luty M, Zieliński T, Prot VE, Zemła J, Stokke BT, Lekka M. Bladder Cancer Cells Interaction with Lectin-Coated Surfaces under Static and Flow Conditions. Int J Mol Sci 2023; 24:ijms24098213. [PMID: 37175920 PMCID: PMC10179195 DOI: 10.3390/ijms24098213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Aberrant expression of glycans, i.e., oligosaccharide moiety covalently attached to proteins or lipids, is characteristic of various cancers, including urothelial ones. The binding of lectins to glycans is classified as molecular recognition, which makes lectins a strong tool for understanding their role in developing diseases. Here, we present a quantitative approach to tracing glycan-lectin interactions in cells, from the initial to the steady phase of adhesion. The cell adhesion was measured between urothelial cell lines (non-malignant HCV29 and carcinoma HT1376 and T24 cells) and lectin-coated surfaces. Depending on the timescale, single-cell force spectroscopy, and adhesion assays conducted in static and flow conditions were applied. The obtained results reveal that the adhesion of urothelial cells to two specific lectins, i.e., phytohemagglutinin-L and wheat germ agglutinin, was specific and selective. Thus, these lectins can be applied to selectively capture, identify, and differentiate between cancer types in a label-free manner. These results open up the possibility of designing lectin-based biosensors for diagnostic or prognostic purposes and developing strategies for drug delivery that could target cancer-associated glycans.
Collapse
Affiliation(s)
- Renata Szydlak
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Ingrid H Øvreeide
- Biophysics and Medical Technology, Department of Physics, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Marcin Luty
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Tomasz Zieliński
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Victorien E Prot
- Biomechanics, Department of Structural Engineering, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Joanna Zemła
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Bjørn T Stokke
- Biophysics and Medical Technology, Department of Physics, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| |
Collapse
|
89
|
Gall CM, Le AA, Lynch G. Sex differences in synaptic plasticity underlying learning. J Neurosci Res 2023; 101:764-782. [PMID: 33847004 PMCID: PMC10337639 DOI: 10.1002/jnr.24844] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022]
Abstract
Although sex differences in learning behaviors are well documented, sexual dimorphism in the synaptic processes of encoding is only recently appreciated. Studies in male rodents have built upon the discovery of long-term potentiation (LTP), and acceptance of this activity-dependent increase in synaptic strength as a mechanism of encoding, to identify synaptic receptors and signaling activities that coordinate the activity-dependent remodeling of the subsynaptic actin cytoskeleton that is critical for enduring potentiation and memory. These molecular substrates together with other features of LTP, as characterized in males, have provided an explanation for a range of memory phenomena including multiple stages of consolidation, the efficacy of spaced training, and the location of engrams at the level of individual synapses. In the present report, we summarize these findings and describe more recent results from our laboratories showing that in females the same actin regulatory mechanisms are required for hippocampal LTP and memory but, in females only, the engagement of both modulatory receptors such as TrkB and synaptic signaling intermediaries including Src and ERK1/2 requires neuron-derived estrogen and signaling through membrane-associated estrogen receptor α (ERα). Moreover, in association with the additional ERα involvement, females exhibit a higher threshold for hippocampal LTP and spatial learning. We propose that the distinct LTP threshold in females contributes to as yet unappreciated sex differences in information processing and features of learning and memory.
Collapse
Affiliation(s)
- Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Aliza A. Le
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
90
|
Ma X, Liang J, Zhu G, Bhoria P, Shoara AA, MacKeigan DT, Khoury CJ, Slavkovic S, Lin L, Karakas D, Chen Z, Prifti V, Liu Z, Shen C, Li Y, Zhang C, Dou J, Rousseau Z, Zhang J, Ni T, Lei X, Chen P, Wu X, Shaykhalishahi H, Mubareka S, Connelly KA, Zhang H, Rotstein O, Ni H. SARS-CoV-2 RBD and Its Variants Can Induce Platelet Activation and Clearance: Implications for Antibody Therapy and Vaccinations against COVID-19. RESEARCH (WASHINGTON, D.C.) 2023; 6:0124. [PMID: 37223472 PMCID: PMC10202384 DOI: 10.34133/research.0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 10/10/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 virus is an ongoing global health burden. Severe cases of COVID-19 and the rare cases of COVID-19 vaccine-induced-thrombotic-thrombocytopenia (VITT) are both associated with thrombosis and thrombocytopenia; however, the underlying mechanisms remain inadequately understood. Both infection and vaccination utilize the spike protein receptor-binding domain (RBD) of SARS-CoV-2. We found that intravenous injection of recombinant RBD caused significant platelet clearance in mice. Further investigation revealed the RBD could bind platelets, cause platelet activation, and potentiate platelet aggregation, which was exacerbated in the Delta and Kappa variants. The RBD-platelet interaction was partially dependent on the β3 integrin as binding was significantly reduced in β3-/- mice. Furthermore, RBD binding to human and mouse platelets was significantly reduced with related αIIbβ3 antagonists and mutation of the RGD (arginine-glycine-aspartate) integrin binding motif to RGE (arginine-glycine-glutamate). We developed anti-RBD polyclonal and several monoclonal antibodies (mAbs) and identified 4F2 and 4H12 for their potent dual inhibition of RBD-induced platelet activation, aggregation, and clearance in vivo, and SARS-CoV-2 infection and replication in Vero E6 cells. Our data show that the RBD can bind platelets partially though αIIbβ3 and induce platelet activation and clearance, which may contribute to thrombosis and thrombocytopenia observed in COVID-19 and VITT. Our newly developed mAbs 4F2 and 4H12 have potential not only for diagnosis of SARS-CoV-2 virus antigen but also importantly for therapy against COVID-19.
Collapse
Affiliation(s)
- Xiaoying Ma
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Jady Liang
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
| | - Guangheng Zhu
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
| | - Preeti Bhoria
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
| | - Aron A. Shoara
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
| | - Daniel T. MacKeigan
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
| | - Christopher J. Khoury
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Sladjana Slavkovic
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Lisha Lin
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Danielle Karakas
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Ziyan Chen
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Viktor Prifti
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Zhenze Liu
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Yuchong Li
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease,
The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cheng Zhang
- CCOA Therapeutics Inc., Toronto, ON, Canada
- Department of Laboratory Medicine,
The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayu Dou
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Zack Rousseau
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Jiamin Zhang
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Tiffany Ni
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Xi Lei
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
| | - Pingguo Chen
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Xiaoyu Wu
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy,
University of Toronto, Toronto, ON, Canada
| | - Hamed Shaykhalishahi
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
| | - Samira Mubareka
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Medical Microbiology and Infectious Disease,
Sunnybrook Health Science Centre, Toronto, ON, Canada
| | - Kim A. Connelly
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
- Division of Cardiology,
St. Michael's Hospital, Toronto, ON, Canada
| | - Haibo Zhang
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease,
The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Medical Microbiology and Infectious Disease,
Sunnybrook Health Science Centre, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine and Division of Critical Care Medicine,
University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine,
University of Toronto, Toronto, ON, Canada
| | - Ori Rotstein
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery,
University of Toronto, Toronto, ON, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
| |
Collapse
|
91
|
Maffulli N, Cuozzo F, Migliorini F, Oliva F. The tendon unit: biochemical, biomechanical, hormonal influences. J Orthop Surg Res 2023; 18:311. [PMID: 37085854 PMCID: PMC10120196 DOI: 10.1186/s13018-023-03796-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023] Open
Abstract
The current literature has mainly focused on the biology of tendons and on the characterization of the biological properties of tenocytes and tenoblasts. It is still not understood how these cells can work together in homeostatic equilibrium. We put forward the concept of the "tendon unit" as a morpho-functional unit that can be influenced by a variety of external stimuli such as mechanical stimuli, hormonal influence, or pathological states. We describe how this unit can modify itself to respond to such stimuli. We evidence the capability of the tendon unit of healing itself through the production of collagen following different mechanical stimuli and hypothesize that restoration of the homeostatic balance of the tendon unit should be a therapeutic target.
Collapse
Affiliation(s)
- Nicola Maffulli
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London, E1 4DG, England
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke On Trent, England
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Francesco Cuozzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
- Department of Orthopaedic and Trauma Surgery, Eifelklinik St. Brigida, 52152, Simmerath, Germany.
| | - Francesco Oliva
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| |
Collapse
|
92
|
Davis GE, Kemp SS. Extracellular Matrix Regulation of Vascular Morphogenesis, Maturation, and Stabilization. Cold Spring Harb Perspect Med 2023; 13:a041156. [PMID: 35817544 PMCID: PMC10578078 DOI: 10.1101/cshperspect.a041156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The extracellular matrix represents a critical regulator of tissue vascularization during embryonic development and postnatal life. In this perspective, we present key information and concepts that focus on how the extracellular matrix controls capillary assembly, maturation, and stabilization, and, in addition, contributes to tissue stability and health. In particular, we present and discuss mechanistic details underlying (1) the role of the extracellular matrix in controlling different steps of vascular morphogenesis, (2) the ability of endothelial cells (ECs) and pericytes to coassemble into elongated and narrow capillary EC-lined tubes with associated pericytes and basement membrane matrices, and (3) the identification of specific growth factor combinations ("factors") and peptides as well as coordinated "factor" and extracellular matrix receptor signaling pathways that are required to form stabilized capillary networks.
Collapse
Affiliation(s)
- George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA
| |
Collapse
|
93
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
94
|
Klaus T, Wilson A, Fichter M, Bros M, Bopp T, Grabbe S. The Role of LFA-1 for the Differentiation and Function of Regulatory T Cells-Lessons Learned from Different Transgenic Mouse Models. Int J Mol Sci 2023; 24:6331. [PMID: 37047302 PMCID: PMC10094578 DOI: 10.3390/ijms24076331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Regulatory T cells (Treg) are essential for the maintenance of peripheral tolerance. Treg dysfunction results in diverse inflammatory and autoimmune diseases with life-threatening consequences. β2-integrins (CD11a-d/CD18) play important roles in the migration of leukocytes into inflamed tissues and cell signaling. Of all β2-integrins, T cells, including Treg, only express CD11a/CD18, termed lymphocyte function-associated antigen 1 (LFA-1), on their surface. In humans, loss-of-function mutations in the common subunit CD18 result in leukocyte adhesion deficiency type-1 (LAD-1). Clinical symptoms vary depending on the extent of residual β2-integrin function, and patients may experience leukocytosis and recurrent infections. Some patients can develop autoimmune diseases, but the immune processes underlying the paradoxical situation of immune deficiency and autoimmunity have been scarcely investigated. To understand this complex phenotype, different transgenic mouse strains with a constitutive knockout of β2-integrins have been established. However, since a constitutive knockout affects all leukocytes and may limit the validity of studies focusing on their cell type-specific role, we established a Treg-specific CD18-floxed mouse strain. This mini-review aims to delineate the role of LFA-1 for the induction, maintenance, and regulatory function of Treg in vitro and in vivo as deduced from observations using the various β2-integrin-deficient mouse models.
Collapse
Affiliation(s)
- Tanja Klaus
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Alicia Wilson
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Michael Fichter
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
95
|
Bialves TS, Bastos Junior CLQ, Cordeiro MF, Boyle RT. Snake venom, a potential treatment for melanoma. A systematic review. Int J Biol Macromol 2023; 231:123367. [PMID: 36690229 DOI: 10.1016/j.ijbiomac.2023.123367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Despite advances in treating patients with melanoma, there are still many treatment challenges to overcome. Studies with snake venom-derived proteins/peptides describe their binding potential, and inhibition of some proliferative mechanisms in melanoma. The combined use of these compounds with current therapies could be the strategic gap that will help us discover more effective treatments for melanoma. The present study aimed to carry out a systematic review identifying snake venom proteins and peptides described in the literature with antitumor, antimetastatic, or antiangiogenic effects on melanoma and determine the mechanisms of action that lead to these anti-tumor effects. Snake venoms contain proteins and peptides which are antiaggregant, antimetastatic, and antiangiogenic. The in vivo results are encouraging, considering the reduction of metastases and tumor size after treatment. In addition to these results, it was reported that these venom compounds could act in combination with chemotherapeutics (Acurhagin-C; Macrovipecetin), sensitizing and preparing tumor cells for treatment. There is a consensus that snake venom is a promising strategy for the improvement of antimelanoma therapies, but it has been little explored in the current context, combined with inhibitors, immunotherapy or tumor microenvironment, for example. We suggest Lebein as a candidate for combination therapy with BRAF inhibitors.
Collapse
Affiliation(s)
- Tatiane Senna Bialves
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil.
| | - Claudio L Q Bastos Junior
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil
| | - Marcos Freitas Cordeiro
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Universidade do Oeste de Santa Catarina - UNOESC, Rua Roberto Trompovski 224, Joaçaba, Santa Catarina, CEP 89600-000, Brazil.
| | - Robert Tew Boyle
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul 96203-900, Brazil
| |
Collapse
|
96
|
Roos D, van Leeuwen K, Madkaikar M, Kambli PM, Gupta M, Mathews V, Rawat A, Kuhns DB, Holland SM, de Boer M, Kanegane H, Parvaneh N, Lorenz M, Schwarz K, Klein C, Sherkat R, Jafari M, Wolach B, den Dunnen JT, Kuijpers TW, Köker MY. Hematologically important mutations: Leukocyte adhesion deficiency (second update). Blood Cells Mol Dis 2023; 99:102726. [PMID: 36696755 DOI: 10.1016/j.bcmd.2023.102726] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Leukocyte adhesion deficiency (LAD) is an immunodeficiency caused by defects in the adhesion of leukocytes (especially neutrophils) to the blood vessel wall. As a result, patients with LAD suffer from severe bacterial infections and impaired wound healing, accompanied by neutrophilia. In LAD-I, characterized directly after birth by delayed separation of the umbilical cord, mutations are found in ITGB2, the gene that encodes the β subunit (CD18) of the β2 integrins. In the rare LAD-II disease, the fucosylation of selectin ligands is disturbed, caused by mutations in SLC35C1, the gene that encodes a GDP-fucose transporter of the Golgi system. LAD-II patients lack the H and Lewis Lea and Leb blood group antigens. Finally, in LAD-III, the conformational activation of the hematopoietically expressed β integrins is disturbed, leading to leukocyte and platelet dysfunction. This last syndrome is caused by mutations in FERMT3, encoding the kindlin-3 protein in all blood cells, involved in the regulation of β integrin conformation. This article contains an update of the mutations that we consider to be relevant for the various forms of LAD.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Karin van Leeuwen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Manisha Madkaikar
- Pediatric Immunology and Leukocyte Biology Lab CMR, National Institute of Immunohaematology, K E M Hospital, Parel, Mumbai, India
| | - Priyanka M Kambli
- Pediatric Immunology and Leukocyte Biology Lab CMR, National Institute of Immunohaematology, K E M Hospital, Parel, Mumbai, India
| | - Maya Gupta
- Pediatric Immunology and Leukocyte Biology Lab CMR, National Institute of Immunohaematology, K E M Hospital, Parel, Mumbai, India
| | - Vikram Mathews
- Dept of Hematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Amit Rawat
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Chandigarh, India
| | - Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Martin de Boer
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nima Parvaneh
- Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University Ulm, Ulm, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, Germany
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahbube Jafari
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Baruch Wolach
- Pediatric Immunology Service, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Johan T den Dunnen
- Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Children's Hospital, Amsterdam University Medical Centre, location AMC, Amsterdam, the Netherlands
| | - M Yavuz Köker
- Department of Immunology, Erciyes Medical School, University of Erciyes, Kayseri, Türkiye
| |
Collapse
|
97
|
Chen CY, Wu PY, Van Scoyk M, Simko SA, Chou CF, Winn RA. KCNF1 promotes lung cancer by modulating ITGB4 expression. Cancer Gene Ther 2023; 30:414-423. [PMID: 36385523 PMCID: PMC10014577 DOI: 10.1038/s41417-022-00560-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
Lung cancer continues to be the leading cause of cancer death in the United States. Despite recent advances, the five-year survival rate for lung cancer compared to other cancers still remains fairly low. The discovery of molecular targets for lung cancer is key to the development of new approaches and therapies. Electrically silent voltage-gated potassium channel (KvS) subfamilies, which are unable to form functional homotetramers, are implicated in cell-cycle progression, cell proliferation and tumorigenesis. Here, we analyzed the expression of KvS subfamilies in human lung tumors and identified that potassium voltage-gated channel subfamily F member 1 (KCNF1) was up-regulated in non-small cell lung cancer (NSCLC). Silencing of KCNF1 in NSCLC cell lines reduced cell proliferation and tumor progression in mouse xenografts, re-established the integrity of the basement membrane, and enhanced cisplatin sensitivity. KCNF1 was predominately localized in the nucleoplasm and likely mediated its functions in an ion-independent manner. We identified integrin β4 subunit (ITGB4) as a downstream target for KCNF1. Our findings suggest that KCNF1 promotes lung cancer by enhancing ITGB4 signaling and implicate KCNF1 as a novel therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Ching-Yi Chen
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Pei-Ying Wu
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Michelle Van Scoyk
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Stephanie A Simko
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Chu-Fang Chou
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Robert A Winn
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
98
|
Koizume S, Kanayama T, Kimura Y, Hirano H, Takahashi T, Ota Y, Miyazaki K, Yoshihara M, Nakamura Y, Yokose T, Kato H, Takenaka K, Sato S, Tadokoro H, Miyagi E, Miyagi Y. Cancer cell-derived CD69 induced under lipid and oxygen starvation promotes ovarian cancer progression through fibronectin. Cancer Sci 2023. [PMID: 36854451 DOI: 10.1111/cas.15774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer tissues generally have molecular oxygen and serum component deficiencies because of poor vascularization. Recently, we revealed that ICAM1 is strongly activated through lipophagy in ovarian clear cell carcinoma (CCC) cells in response to starvation of long-chain fatty acids and oxygen and confers resistance to apoptosis caused by these harsh conditions. CD69 is a glycoprotein that is synthesized in immune cells and is associated with their activation through cellular signaling pathways. However, the expression and function of CD69 in nonhematological cells is unclear. Here, we report that CD69 is induced in CCC cells as in ICAM1. Mass spectrometry analysis of phosphorylated peptides followed by pathway analysis revealed that CD69 augments CCC cell binding to fibronectin (FN) in association with the phosphorylation of multiple cellular signaling molecules including the focal adhesion pathway. Furthermore, CD69 synthesized in CCC cells could facilitate cell survival because the CD69-FN axis can induce epithelial-mesenchymal transition. Experiments with surgically removed tumor samples revealed that CD69 is predominantly expressed in CCC tumor cells compared with other histological subtypes of epithelial ovarian cancer. Overall, our data suggest that cancer cell-derived CD69 can contribute to CCC progression through FN.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Tomohiko Kanayama
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yayoi Kimura
- Advancer Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Hisashi Hirano
- Advancer Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Tomoko Takahashi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yukihide Ota
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Obstetrics, Gynecology and Molecular Reproductive Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kaoru Miyazaki
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Mitsuyo Yoshihara
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yoshiyasu Nakamura
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Hisamori Kato
- Department of Gynecology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Katsuya Takenaka
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shinya Sato
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Hiroko Tadokoro
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Etsuko Miyagi
- Department of Obstetrics, Gynecology and Molecular Reproductive Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| |
Collapse
|
99
|
Autophagy inhibition prevents lymphatic malformation progression to lymphangiosarcoma by decreasing osteopontin and Stat3 signaling. Nat Commun 2023; 14:978. [PMID: 36813768 PMCID: PMC9946935 DOI: 10.1038/s41467-023-36562-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Lymphatic malformation (LM) is a vascular anomaly originating from lymphatic endothelial cells (ECs). While it mostly remains a benign disease, a fraction of LM patients progresses to malignant lymphangiosarcoma (LAS). However, very little is known about underlying mechanisms regulating LM malignant transformation to LAS. Here, we investigate the role of autophagy in LAS development by generating EC-specific conditional knockout of an essential autophagy gene Rb1cc1/FIP200 in Tsc1iΔEC mouse model for human LAS. We find that Fip200 deletion blocked LM progression to LAS without affecting LM development. We further show that inhibiting autophagy by genetical ablation of FIP200, Atg5 or Atg7, significantly inhibited LAS tumor cell proliferation in vitro and tumorigenicity in vivo. Transcriptional profiling of autophagy-deficient tumor cells and additional mechanistic analysis determine that autophagy plays a role in regulating Osteopontin expression and its down-stream Jak/Stat3 signaling in tumor cell proliferation and tumorigenicity. Lastly, we show that specifically disrupting FIP200 canonical autophagy function by knocking-in FIP200-4A mutant allele in Tsc1iΔEC mice blocked LM progression to LAS. These results demonstrate a role for autophagy in LAS development, suggesting new strategies for preventing and treating LAS.
Collapse
|
100
|
Wolfmeier H, Heindl S, Platzl C, Kaser-Eichberger A, Nematian-Ardestani E, Strohmaier C, Pruszak J, Schroedl F. Targeted surface marker screening on neuronal structures in the human choroid. Exp Eye Res 2023; 227:109368. [PMID: 36586549 DOI: 10.1016/j.exer.2022.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
While choroidal neuronal control is known to be essential for retinal and ocular health, its mechanisms are not understood. Especially, the local choroidal innervation mediated by intrinsic choroidal neurons (ICN) remains enigmatic. Neuronal functionality depends on the synaptic neurotransmitters and neuroregulatory peptides involved as well as from membrane components presented on the cell surface. Since the neuronal surface molecular expression patterns in the choroid are currently unknown, we sought to determine the presence of various cluster-of-differentiation (CD) antigens in choroidal neuronal structures with a particular focus on ICN. Human choroids were prepared for immunohistochemistry and the pan-neuronal marker PGP9.5 was combined with CD15, CD24, CD29, CD34, CD46, CD49b, CD49e, CD56, CD58, CD59, CD71, CD81, CD90, CD146, CD147, CD151, CD165, CD171, CD184, CD200, CD271 and fluorescence- and confocal laser scanning-microscopy was used for documentation. The following antigens were found to be co-localized in PGP.9.5+ nerve fibers and ICN perikarya: CD29, CD34, CD56, CD81, CD90, CD146, CD147, CD151, CD171, CD200 and CD271, while all other CD markers where not detectable. Whereas CD24- and CD59- immunoreactivity was clearly absent in ICN perikarya, some neural processes of the choroidal stroma displayed CD24 and CD59 immunopositivity. While a multitude of the aforementioned CD-markers were indeed detected in nervous structures of the choroid, the CD24+ and CD59+ nerve fibers most likely have extrinsic origin from cranial ganglia since ICN cell bodies were found to lack both markers. These findings illustrate how the detailed analysis of CD molecules described here opens novel avenues for future functional studies on choroidal innervation and its control.
Collapse
Affiliation(s)
- H Wolfmeier
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - S Heindl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - C Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - A Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - E Nematian-Ardestani
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - C Strohmaier
- Department of Ophthalmology and Optometry, Johannes Kepler University, Linz, Austria
| | - J Pruszak
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - F Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|