51
|
Premature ovarian insufficiency: pathogenesis and therapeutic potential of mesenchymal stem cell. J Mol Med (Berl) 2021; 99:637-650. [PMID: 33641066 DOI: 10.1007/s00109-021-02055-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/29/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
Primary ovarian insufficiency (POI) is defined as a reduction in ovarian function before the expected age of menopause. POI is known to increase the risk of cardiovascular disorders, osteoporosis, cognitive decline, and mood disorders, resulting in a reduced quality of life. Appropriate hormone replacement for premenopausal women decreases these adverse health risks and improves quality of life for women with POI, but does not prolong life expectancy. The potential etiologies of POI include chromosomal abnormalities and genetic mutations, autoimmune factors, and iatrogenic causes, including surgery, chemotherapy, and radiation therapy. A major association is suggested to exist between reproductive longevity and the DNA damage pathway response genes. DNA damage and repair in ovarian granulosa cells is strongly associated with POI. Depletion of oocytes with damaged DNA occurs through different cell death mechanisms, such as apoptosis, autophagy, and necroptosis, mediated by the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/forkhead transcription factors 3 (FOXO3) pathway. Mesenchymal stem cells (MSCs) are characterized by the ability of self-renewal and differentiation and play an important role in the regeneration of injured tissues. Transplantation of MSCs has been shown to functionally restore ovarian reserve in a POI mouse model. Recent advances in stem cell therapy are likely to be translated to new therapeutic options bringing new hope to patients with POI. The aim of this review is to summarize the pathogenic mechanisms that involve cell death and DNA damage and repair pathways and to discuss the stem cell-based therapies as potential therapeutic options for this gynecologic pathology.
Collapse
|
52
|
Kornilov NV, Pavlova MN, Yakovlev PP. The live birth in a woman with resistant ovary syndrome after in vitro oocyte maturation and preimplantation genetic testing for aneuploidy. J Assist Reprod Genet 2021; 38:1303-1309. [PMID: 33495936 DOI: 10.1007/s10815-021-02085-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/20/2021] [Indexed: 11/25/2022] Open
Abstract
We report the pregnancy and live birth achieved after in vitro maturation (IVM) of oocytes and PGT-A in a 23-year-old patient suffering from ovarian gonadotropin resistance. A woman with resistant ovary syndrome (ROS) had secondary amenorrhea, high FSH levels (25.34 mIU/mL) and LH (29.6 mIU/mL), low estradiol levels (15.2 pg/mL), and high serum AMH levels (38.0 ng/mL), associated with an increased antral follicle count (AFC) of 45. Without gonadotropin priming and HCG trigger, ultrasound-guided transvaginal oocyte retrieval was performed. Aspiration of antral-stage follicles allowed the retrieval of 15 immature oocytes. After oocyte collection, immature oocytes were cultured in the IVM medium. Following IVM, six of them reached metaphase II stage. Resultant matured oocytes were fertilized by intracytoplasmic sperm injection (ICSI). Embryos obtained were cultured to the blastocyst stage. On day 5, three embryos reached blastocyst stage. Trophectoderm biopsy and PGT-A were performed on two better quality embryos on day 5 after fertilization. Two biopsied embryos were reported to be euploid. PGT-A was performed utilizing next-generation sequencing (NGS\MPS). One embryo was transferred in an artificial thaw cycle and resulted in a viable intrauterine pregnancy and live birth. Our experience indicates that there is no requirement for gonadotropin stimulation and use of b-hCG trigger prior to IVM in patients with ROS. The results suggest that oocytes obtained with IVM in patients with ROS are capable of meiotic and mitotic division, fertilization, and generation of euploid embryos. IVM appears to be a valuable approach in patients with ROS, allowing them to have genetically connected offspring.
Collapse
Affiliation(s)
- Nikolay Valerievich Kornilov
- Centre for Reproductive Medicine, Co.Ltd. "Next Generation Clinic", St. Petersburg, Russia, 197110.,Centre for Reproductive Medicine, Co.Ltd. "Next Generation Clinic", Moscow, Russia, 107140
| | | | | |
Collapse
|
53
|
Wang HY, Li SW, Wu TH, Wu ZH, Guo JX. The effect of androgen on wool follicles and keratin production in Hetian sheep. BRAZ J BIOL 2021; 81:526-536. [PMID: 33470295 DOI: 10.1590/1519-6984.224056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
To investigate the optimal androgen concentration for culturing Hetian sheep wool follicle and to detect effects of androgen concentration on wool follicle cell proliferation and apoptosis using immunofluorescence labeling and real-time quantitative fluorescence determinations of wool keratin-associated protein gene expression levels. Wool follicles were isolated by microdissection and wool follicles and skin pieces were cultured in various concentrations of dihydrotestosterone (DHT) in culture medium. Next, daily lengthwise growth measurements of wool follicles were obtained using a microscopic micrometer. Cultured Hetian wool follicles were stained using the SACPIC method to reveal wool follicle structure, while sheep skin slices were used to observe cell proliferation by immunostaining and cell apoptosis using the TUNEL method. At the molecular biological level, keratin-associated protein (Kap) gene expression was studied using wool follicles cultured for various numbers of days in vitro. Effects of androgen concentrations on Hetian wool follicle growth and development were experimentally studied. EdU proliferation assays revealed that androgen promoted cell proliferation within wool follicle dermal papillae. TUNEL apoptosis detection demonstrated that androgen treatment could delay cell apoptosis. Quantitative reverse transcription polymerase chain reaction (qPCR) results demonstrated that gene expression level patterns of Hetian mountain sheep super-high sulfur protein. Kap1.1, KIF1.2, Kap2.12 and Kap4.2 gene expression level of the mountainous experimental group was significantly higher than plains Hetian sheep. An androgen concentration of 100 nM can promote the growth of Hetian wool follicle cells in vitro, resulting in overexpression of some genes of the Kap family.
Collapse
Affiliation(s)
- H Y Wang
- Tarim University, College of Life Sciences, Key Laboratory of Protection e Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang, China
| | - S W Li
- Tarim University, College of Life Sciences, Key Laboratory of Protection e Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang, China
| | - T H Wu
- Tarim University, College of Life Sciences, Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang, China
| | - Z H Wu
- Tarim University, College of Life Sciences, Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang, China
| | - J X Guo
- Tarim University, College of Life Sciences, Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang, China
| |
Collapse
|
54
|
Rossetti R, Moleri S, Guizzardi F, Gentilini D, Libera L, Marozzi A, Moretti C, Brancati F, Bonomi M, Persani L. Targeted Next-Generation Sequencing Indicates a Frequent Oligogenic Involvement in Primary Ovarian Insufficiency Onset. Front Endocrinol (Lausanne) 2021; 12:664645. [PMID: 34803902 PMCID: PMC8600266 DOI: 10.3389/fendo.2021.664645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is one of the major causes of female infertility associated with the premature loss of ovarian function in about 3.7% of women before the age of 40. This disorder is highly heterogeneous and can manifest with a wide range of clinical phenotypes, ranging from ovarian dysgenesis and primary amenorrhea to post-pubertal secondary amenorrhea, with elevated serum gonadotropins and hypoestrogenism. The ovarian defect still remains idiopathic in some cases; however, a strong genetic component has been demonstrated by the next-generation sequencing (NGS) approach of familiar and sporadic POI cases. As recent evidence suggested an oligogenic architecture for POI, we developed a target NGS panel with 295 genes including known candidates and novel genetic determinants potentially involved in POI pathogenesis. Sixty-four patients with early onset POI (range: 10-25 years) of our cohort have been screened with 90% of target coverage at 50×. Here, we report 48 analyzed patients with at least one genetic variant (75%) in the selected candidate genes. In particular, we found the following: 11/64 patients (17%) with two variants, 9/64 (14%) with three variants, 9/64 (14%) with four variants, 3/64 (5%) with five variants, and 2/64 (3%) with six variants. The most severe phenotypes were associated with either the major number of variations or a worse prediction in pathogenicity of variants. Bioinformatic gene ontology analysis identified the following major pathways likely affected by gene variants: 1) cell cycle, meiosis, and DNA repair; 2) extracellular matrix remodeling; 3) reproduction; 4) cell metabolism; 5) cell proliferation; 6) calcium homeostasis; 7) NOTCH signaling; 8) signal transduction; 9) WNT signaling; 10) cell death; and 11) ubiquitin modifications. Consistently, the identified pathways have been described in other studies dissecting the mechanisms of folliculogenesis in animal models of altered fertility. In conclusion, our results contribute to define POI as an oligogenic disease and suggest novel candidates to be investigated in patients with POI.
Collapse
Affiliation(s)
- Raffaella Rossetti
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- *Correspondence: Raffaella Rossetti, ; Luca Persani,
| | - Silvia Moleri
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Fabiana Guizzardi
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- Molecular Biology Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Laura Libera
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Anna Marozzi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Costanzo Moretti
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Francesco Brancati
- Medical Genetics, Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Human Functional Genomics, IRCCS San Raffaele Pisana, Rome, Italy
| | - Marco Bonomi
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Luca Persani
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- *Correspondence: Raffaella Rossetti, ; Luca Persani,
| |
Collapse
|
55
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2021; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
56
|
Yang LK, Hou ZS, Tao YX. Biased signaling in naturally occurring mutations of G protein-coupled receptors associated with diverse human diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165973. [PMID: 32949766 PMCID: PMC7722056 DOI: 10.1016/j.bbadis.2020.165973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) play critical roles in transmitting a variety of extracellular signals into the cells and regulate diverse physiological functions. Naturally occurring mutations that result in dysfunctions of GPCRs have been known as the causes of numerous diseases. Significant progresses have been made in elucidating the pathophysiology of diseases caused by mutations. The multiple intracellular signaling pathways, such as G protein-dependent and β-arrestin-dependent signaling, in conjunction with recent advances on biased agonism, have broadened the view on the molecular mechanism of disease pathogenesis. This review aims to briefly discuss biased agonism of GPCRs (biased ligands and biased receptors), summarize the naturally occurring GPCR mutations that cause biased signaling, and propose the potential pathophysiological relevance of biased mutant GPCRs associated with various endocrine diseases.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
57
|
Ishizuka B. Current Understanding of the Etiology, Symptomatology, and Treatment Options in Premature Ovarian Insufficiency (POI). Front Endocrinol (Lausanne) 2021; 12:626924. [PMID: 33716979 PMCID: PMC7949002 DOI: 10.3389/fendo.2021.626924] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Premature ovarian insufficiency (POI) occurs in at least 1% of all women and causes life-long health problems and psychological stress. Infertility caused by POI used to be considered absolute, with infertility treatment having little or no value. Generally, it has been thought that medicine can provide little service to these patients. The etiology of POI has been found to be genetic, chromosomal, and autoimmune. In addition, the increasing numbers of cancer survivors are candidates for iatrogenic POI, along with patients who have undergone ovarian surgery, especially laparoscopic surgery. Over 50 genes are known to be causally related to POI, and the disease course of some cases has been clarified, but in most cases, the genetic background remains unexplained, suggesting that more genes associated with the etiology of POI need to be discovered. Thus, in most cases, the genetic background of POI has not been clarified. Monosomy X is well known to manifest as Turner's syndrome and is associated with primary amenorrhea, but recent studies have shown that some women with numerical abnormalities of the X chromosome can have spontaneous menstruation up to their twenties and thirties, and some even conceive. Hormone replacement therapy (HRT) is recommended for women with POI from many perspectives. It alleviates vasomotor and genitourinary symptoms and prevents bone loss and cardiovascular disease. POI has been reported to reduce quality of life and life expectancy, and HRT may help improve both. Most of the problems that may occur with HRT in postmenopausal women do not apply to women with POI; thus, in POI, HRT should be considered physiological replacement of estrogen (+progesterone). This review describes some new approaches to infertility treatment in POI patients that may lead to new treatments for POI, along with the development of more sensitive markers of secondary/preantral follicles and genetic diagnosis.
Collapse
Affiliation(s)
- Bunpei Ishizuka
- Rose Ladies Clinic, Tokyo, Japan
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kanagawa, Japan
- *Correspondence: Bunpei Ishizuka,
| |
Collapse
|
58
|
Banerjee AA, Joseph S, Mahale SD. From cell surface to signalling and back: the life of the mammalian FSH receptor. FEBS J 2020; 288:2673-2696. [DOI: 10.1111/febs.15649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Antara A. Banerjee
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Shaini Joseph
- Genetic Research Center National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Smita D. Mahale
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
- ICMR Biomedical Informatics Centre National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| |
Collapse
|
59
|
Yahaya TO, Liman UU, Abdullahi H, Koko YS, Ribah SS, Adamu Z, Abubakar S. Genes predisposing to syndromic and nonsyndromic infertility: a narrative review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020; 21:46. [DOI: 10.1186/s43042-020-00088-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023] Open
Abstract
AbstractBackgroundAdvanced biological techniques have helped produce more insightful findings on the genetic etiology of infertility that may lead to better management of the condition. This review provides an update on genes predisposing to syndromic and nonsyndromic infertility.Main bodyThe review identified 65 genes linked with infertility and infertility-related disorders. These genes regulate fertility. However, mutational loss of the functions of the genes predisposes to infertility. Twenty-three (23) genes representing 35% were linked with syndromic infertility, while 42 genes (65%) cause nonsyndromic infertility. Of the 42 nonsyndromic genes, 26 predispose to spermatogenic failure and sperm morphological abnormalities, 11 cause ovarian failures, and 5 cause sex reversal and puberty delay. Overall, 31 genes (48%) predispose to male infertility, 15 genes (23%) cause female infertility, and 19 genes (29%) predispose to both. The common feature of male infertility was spermatogenic failure and sperm morphology abnormalities, while ovarian failure has been the most frequently reported among infertile females. The mechanisms leading to these pathologies are gene-specific, which, if targeted in the affected, may lead to improved treatment.ConclusionsMutational loss of the functions of some genes involved in the development and maintenance of fertility may predispose to syndromic or nonsyndromic infertility via gene-specific mechanisms. A treatment procedure that targets the affected gene(s) in individuals expressing infertility may lead to improved treatment.
Collapse
|
60
|
Gohil A, Eugster EA. Delayed and Precocious Puberty: Genetic Underpinnings and Treatments. Endocrinol Metab Clin North Am 2020; 49:741-757. [PMID: 33153677 PMCID: PMC7705597 DOI: 10.1016/j.ecl.2020.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Delayed puberty may signify a common variation of normal development, or indicate the presence of a pathologic process. Constitutional delay of growth and puberty is a strongly familial type of developmental pattern and accounts for the vast majority of children who are "late bloomers." Individuals with sex chromosomal abnormalities frequently have hypergonadotropic hypogonadism. There are currently 4 known monogenic causes of central precocious puberty. The primary treatment goal in children with hypogonadism is to mimic normal pubertal progression, while the primary aims for the management of precocious puberty are preservation of height potential and prevention of further pubertal development.
Collapse
Affiliation(s)
- Anisha Gohil
- Division of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children at IU Health, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202, USA.
| | - Erica A Eugster
- Division of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children at IU Health, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202, USA
| |
Collapse
|
61
|
Genetische Grundlagen bei Varianten der Geschlechtsentwicklung. GYNAKOLOGISCHE ENDOKRINOLOGIE 2020. [DOI: 10.1007/s10304-020-00359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
62
|
Jiao SY, Yang YH, Chen SR. Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Hum Reprod Update 2020; 27:154-189. [PMID: 33118031 DOI: 10.1093/humupd/dmaa034] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Infertility is a major issue in human reproductive health, affecting an estimated 15% of couples worldwide. Infertility can result from disorders of sex development (DSD) or from reproductive endocrine disorders (REDs) with onset in infancy, early childhood or adolescence. Male infertility, accounting for roughly half of all infertility cases, generally manifests as decreased sperm count (azoospermia or oligozoospermia), attenuated sperm motility (asthenozoospermia) or a higher proportion of morphologically abnormal sperm (teratozoospermia). Female infertility can be divided into several classical types, including, but not limited to, oocyte maturation arrest, premature ovarian insufficiency (POI), fertilization failure and early embryonic arrest. An estimated one half of infertility cases have a genetic component; however, most genetic causes of human infertility are currently uncharacterized. The advent of high-throughput sequencing technologies has greatly facilitated the identification of infertility-associated gene mutations in patients over the past 20 years. OBJECTIVE AND RATIONALE This review aims to conduct a narrative review of the genetic causes of human infertility. Loss-of-function mutation discoveries related to human infertility are summarized and further illustrated in tables. Corresponding knockout/mutated animal models of causative genes for infertility are also introduced. SEARCH METHODS A search of the PubMed database was performed to identify relevant studies published in English. The term 'mutation' was combined with a range of search terms related to the core focus of the review: infertility, DSD, REDs, azoospermia or oligozoospermia, asthenozoospermia, multiple morphological abnormalities of the sperm flagella (MMAF), primary ciliary dyskinesia (PCD), acephalic spermatozoa syndrome (ASS), globozoospermia, teratozoospermia, acrosome, oocyte maturation arrest, POI, zona pellucida, fertilization defects and early embryonic arrest. OUTCOMES Our search generated ∼2000 records. Overall, 350 articles were included in the final review. For genetic investigation of human infertility, the traditional candidate gene approach is proceeding slowly, whereas high-throughput sequencing technologies in larger cohorts of individuals is identifying an increasing number of causative genes linked to human infertility. This review provides a wide panel of gene mutations in several typical forms of human infertility, including DSD, REDs, male infertility (oligozoospermia, MMAF, PCD, ASS and globozoospermia) and female infertility (oocyte maturation arrest, POI, fertilization failure and early embryonic arrest). The causative genes, their identified mutations, mutation rate, studied population and their corresponding knockout/mutated mice of non-obstructive azoospermia, MMAF, ASS, globozoospermia, oocyte maturation arrest, POI, fertilization failure and early embryonic arrest are further illustrated by tables. In this review, we suggest that (i) our current knowledge of infertility is largely obtained from knockout mouse models; (ii) larger cohorts of clinical cases with distinct clinical characteristics need to be recruited in future studies; (iii) the whole picture of genetic causes of human infertility relies on both the identification of more mutations for distinct types of infertility and the integration of known mutation information; (iv) knockout/mutated animal models are needed to show whether the phenotypes of genetically altered animals are consistent with findings in human infertile patients carrying a deleterious mutation of the homologous gene; and (v) the molecular mechanisms underlying human infertility caused by pathogenic mutations are largely unclear in most current studies. WILDER IMPLICATIONS It is important to use our current understanding to identify avenues and priorities for future research in the field of genetic causes of infertility as well as to apply mutation knowledge to risk prediction, genetic diagnosis and potential treatment for human infertility.
Collapse
Affiliation(s)
- Shi-Ya Jiao
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Yi-Hong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, 610041 Chengdu, China
| | - Su-Ren Chen
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| |
Collapse
|
63
|
Abstract
The diagnosis of primary ovarian insufficiency (POI) has untold effects on women and a better understanding alongside potential treatments are paramount to improve quality of life of these women. Various causes have been linked to the development of POI with genetics playing a key role. A better understanding of the genetics of POI could lead to earlier diagnosis and broaden fertility options. This chapter discusses previously known and more recently discovered genes that have been implicated in the development of POI. It explores the varying phenotypic expressions of some genes in different populations and areas for further research in the genetics of POI.
Collapse
|
64
|
Role of FSH and FSH receptor on HUVECs migration. Gene Ther 2020; 28:155-161. [PMID: 32994568 DOI: 10.1038/s41434-020-00195-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/26/2020] [Accepted: 09/18/2020] [Indexed: 11/08/2022]
Abstract
Follicle-stimulating hormone (FSH) is a pituitary glycoprotein that regulates follicle maturation through its binding to follicle-stimulating hormone receptor (FSHR). Endothelial cells express FSHR, but its exact role in endothelial cells remains unclear. Here we show that FSHR expression was detectable in human umbilical vein endothelial cells (HUVECs). FSH stimulation promoted HUVECs migration but not proliferation. Because FSHR is a GPCR, FSH treatment triggers the activation of cAMP-PKA signaling pathways, and the JAK-STAT, PI3K-AKT, and JNK-MAPK pathways. RNAi of FSHR dramatically attenuated the activation effect of FSH on HUVECs migration, as well as the related signaling pathways. Treatment of FSH in HUVECs also transcriptionally upregulated the expression of VAV3 and LAMA2, suppression either of VAV3 or LAMA2 by RNAi attenuated the FSH's effect on HUVECs migration. All of these results indicated a functional role of FSH in the regulation of endothelial cells.
Collapse
|
65
|
Constitutive Activation and Inactivation of Mutations Inducing Cell Surface Loss of Receptor and Impairing of Signal Transduction of Agonist-Stimulated Eel Follicle-Stimulating Hormone Receptor. Int J Mol Sci 2020; 21:ijms21197075. [PMID: 32992880 PMCID: PMC7583038 DOI: 10.3390/ijms21197075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
In the present study, we investigated the signal transduction of mutants of the eel follicle-stimulating hormone receptor (eelFSHR). Specifically, we examined the constitutively activating mutant D540G in the third intracellular loop, and four inactivating mutants (A193V, N195I, R546C, and A548V). To directly assess functional effects, we conducted site-directed mutagenesis to generate mutant receptors. We measured cyclic adenosine monophosphate (cAMP) accumulation via homogeneous time-resolved fluorescence assays in Chinese hamster ovary (CHO-K1) cells and investigated cell surface receptor loss using an enzyme-linked immunosorbent assay in human embryonic kidney (HEK) 293 cells. The cells expressing eelFSHR-D540G exhibited a 23-fold increase in the basal cAMP response without agonist treatment. The cells expressing A193V, N195I, and A548V mutants had completely impaired signal transduction, whereas those expressing the R546C mutant exhibited little increase in cAMP responsiveness and a small increase in signal transduction. Cell surface receptor loss in the cells expressing inactivating mutants A193V, R546C, and A548V was clearly slower than in the cell expressing the wild-type eelFSHR. However, cell surface receptor loss in the cells expressing inactivating mutant N195I decreased in a similar manner to that of the cells expressing the wild-type eelFSHR or the activating mutant D540G, despite the completely impaired cAMP response. These results provide important information regarding the structure–function relationships of G protein-coupled receptors during signal transduction.
Collapse
|
66
|
Michala L, Stefanaki K, Loutradis D. Premature ovarian insufficiency in adolescence: a chance for early diagnosis? Hormones (Athens) 2020; 19:277-283. [PMID: 31828604 DOI: 10.1007/s42000-019-00141-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
Premature ovarian insufficiency (POI) is typically diagnosed when amenorrhea is combined with high gonadotrophins and hypoestrogenemia in a woman under 40 years of age, although, more rarely, POI can develop in adolescence and present with delayed puberty or amenorrhea, depending on the timing of follicular depletion or insult to the ovary. In a proportion of girls, the diagnosis may be made at an early stage of POI, presenting with abnormal uterine bleeding, when some follicular function is still retained. The natural history of POI in this group of patients is not clear; however, they could represent a subgroup with a unique opportunity for early intervention and thus the provision of fertility preservation options. While the etiology of POI in a large number of girls remains unknown, a growing number will be identified as carriers of genetic mutations, offering clinicians a yet greater opportunity to provide genetic counseling to other female family members. The aim of this review is to provide information regarding the etiology, diagnosis, and treatment of POI in adolescents while detailing the new options for fertility preservation when POI is diagnosed at an early stage.
Collapse
Affiliation(s)
- Lina Michala
- 1st Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vassilissis Sofias Avenue, 115 28, Athens, Greece.
| | - Katerina Stefanaki
- Department of Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Dimitris Loutradis
- 1st Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vassilissis Sofias Avenue, 115 28, Athens, Greece
| |
Collapse
|
67
|
Sassi A, Désir J, Janssens V, Marangoni M, Daneels D, Gheldof A, Bonduelle M, Van Dooren S, Costagliola S, Delbaere A. Novel inactivating follicle-stimulating hormone receptor mutations in a patient with premature ovarian insufficiency identified by next-generation sequencing gene panel analysis. F S Rep 2020; 1:193-201. [PMID: 34223243 PMCID: PMC8244262 DOI: 10.1016/j.xfre.2020.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 01/05/2023] Open
Abstract
Objective To find the genetic etiology of premature ovarian insufficiency (POI) in a patient with primary amenorrhea and hypergonadotropic hypogonadism. Design Case report. Setting University hospital. Patient(s) A Belgian woman aged 32 years with POI at the age of 17, her parents, and her sister whose POI was diagnosed at age 29. Intervention(s) Analysis of a panel of 31 genes implicated in POI (POIGP) using next-generation sequencing (NGS), Sanger sequencing, and in vitro functional study. Main Outcome Measure(s) Gene variants, family mutational segregation, and in vitro functional impact of the mutant proteins. Result(s) The analysis of the gene panel using NGS identified the presence of two novel follicle-stimulating hormone receptor (FSHR) missense mutations at a compound heterozygous state in the affected patient: c.646 G>A, p.Gly216Arg, and c.1313C>T, p.Thr438Ile. Sanger sequencing showed the presence of each mutation at heterozygous state in the patient’s parents and at heterozygous compound state in the affected sister. Both substituted amino acids (Gly216 and Thr438) were conserved in FSHR of several vertebrate species as well as in other glycoproteins receptors (TSHR and LHCGHR), suggesting a potentially important role in glycoprotein receptor function. An in vitro functional study showed similar results for both variants with more than 90% reduction of their cell surface expression and a 55% reduction of their FSH-induced cyclic adenosine 3′:5′ monophosphate (cAMP) production compared with the wild-type FSHR. Conclusion(s) The analysis of a gene panel of 31 genes implicated in POI allowed us to identify two novel partially inactivating mutations of FSHR that are likely responsible for the POI phenotype of the proband and of her affected sister.
Collapse
Affiliation(s)
- Asma Sassi
- Fertility Clinic, Department of Gynecology and Obstetrics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Désir
- Department of Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Janssens
- IRIBHM, Institute of Interdisciplinary Research in Human and Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Martina Marangoni
- Department of Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Dorien Daneels
- Brussels Interuniversity Genomics High Throughput Core (Bright Core), Brussels, Belgium.,Centre for Medical Genetics, Reproduction and Genetics and Regenerative Medicine Research Cluster, Reproduction and Genetics Research Group, Vrije Universiteit Brussel-UZ Brussel, Brussels, Belgium
| | - Alexander Gheldof
- Centre for Medical Genetics, Reproduction and Genetics and Regenerative Medicine Research Cluster, Reproduction and Genetics Research Group, Vrije Universiteit Brussel-UZ Brussel, Brussels, Belgium
| | - Maryse Bonduelle
- Brussels Interuniversity Genomics High Throughput Core (Bright Core), Brussels, Belgium.,Centre for Medical Genetics, Reproduction and Genetics and Regenerative Medicine Research Cluster, Reproduction and Genetics Research Group, Vrije Universiteit Brussel-UZ Brussel, Brussels, Belgium
| | - Sonia Van Dooren
- Brussels Interuniversity Genomics High Throughput Core (Bright Core), Brussels, Belgium.,Centre for Medical Genetics, Reproduction and Genetics and Regenerative Medicine Research Cluster, Reproduction and Genetics Research Group, Vrije Universiteit Brussel-UZ Brussel, Brussels, Belgium
| | - Sabine Costagliola
- IRIBHM, Institute of Interdisciplinary Research in Human and Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Delbaere
- Fertility Clinic, Department of Gynecology and Obstetrics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
68
|
Dor L, Shirak A, Curzon AY, Rosenfeld H, Ashkenazi IM, Nixon O, Seroussi E, Weller JI, Ron M. Preferential Mapping of Sex-Biased Differentially-Expressed Genes of Larvae to the Sex-Determining Region of Flathead Grey Mullet ( Mugil cephalus). Front Genet 2020; 11:839. [PMID: 32973865 PMCID: PMC7472742 DOI: 10.3389/fgene.2020.00839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
Flathead gray mullet (Mugil cephalus) is a cosmopolitan mugilid species popular in fishery and aquaculture with an economic preference for all-female population. However, it displays neither sexual dimorphisms nor heteromorphic sex chromosomes. We have previously presented a microsatellite-based linkage map for this species locating a single sex determination region (SDR) on linkage group 9 (LG9) with evidence for XX/XY sex determination (SD) mechanism. In this work, we refine the critical SDR on LG9, and propose positional- and functional- candidate genes for SD. To elucidate the genetic mechanism of SD, we assembled and compared male and female genomic sequences of 19 syntenic genes within the putative SDR on mullet's LG9, based on orthology to tilapia's LG8 (tLG8) physical map. A total of 25 sequence-based markers in 12 genes were developed. For all markers, we observed association with sex in at least one of the two analyzed M. cephalus full-sib families, but not in the wild-type population. Recombination events were inferred within families thus setting the SDR boundaries to a region orthologous to ∼0.9 Mbp with 27 genes on tLG8. As the sexual phenotype is evident only in adults, larvae were assigned into two putative sex-groups according to their paternal haplotypes, following a model of XY/XX SD-system. A total of 107 sex-biased differentially expressed genes in larvae were observed, of which 51 were mapped to tLG8 (48% enrichment), as compared to 5% in random control. Furthermore, 23 of the 107 genes displayed sex-specific expression; and 22 of these genes were positioned to tLG8, indicating 96% enrichment. Of the 27 SDR genes, BCCIP, DHX32A, DOCK1, and FSHR (GTH-RI) are suggested as positional and functional gene candidates for SD.
Collapse
Affiliation(s)
- Lior Dor
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Andrey Shirak
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Arie Y. Curzon
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hana Rosenfeld
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, Israel
| | - Iris M. Ashkenazi
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, Israel
| | - Oriya Nixon
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, Israel
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, Israel
| | - Joel I. Weller
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, Israel
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, Israel
| |
Collapse
|
69
|
Zhou G, Hu RK, Xia GC, Yan SH, Ren QL, Zhao J, Wang FH, Huang CC, Yao Q, Tan Y, Zhao NW. Tyrosine nitrations impaired intracellular trafficking of FSHR to the cell surface and FSH-induced Akt-FoxO3a signaling in human granulosa cells. Aging (Albany NY) 2020; 11:3094-3116. [PMID: 31097679 PMCID: PMC6555443 DOI: 10.18632/aging.101964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
Many infertile women suffered from poor ovarian response, and increased reactive oxygen species with age might mediate the poor ovarian response to FSH. In this study, we collected follicular fluids and isolated granulosa cells from female patients. Increased levels of peroxynitrite, tyrosine nitrations of FSH receptor (FSHR) and apoptosis were obviously detectable with decreased FSHR protein expressions in granulosa cells of the poor ovarian responders. In KGN (a human ovarian granulosa cell line) cells, exogenous peroxynitrite could sequester FSHR in the cytoplasm, and these dislocated FSHR might suffer from proteasome-mediated degradations. Here, we identified four peroxynitrite-mediated nitrated tyrosine residues of FSHR. Site-directed mutagenesis of FSHR revealed that Y626 was pivotal for intracellular trafficking of FSHR to the cell surface. Akt-induced inactivation of FoxO3a was required for the repression of FSH on granulosa cell apoptosis. However, peroxynitrite impaired FSH-induced Akt-FoxO3a signaling, while FSHR-Y626A mutant took similar effects. In addition, FoxO3a knockdown indeed impaired FSH-mediated cell survival, while FoxO3a-S253A mutant reversed that significantly.
Collapse
Affiliation(s)
- Ge Zhou
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Rong-Kui Hu
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Gui-Cheng Xia
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Shi-Hai Yan
- Laboratory of Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Qing-Ling Ren
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Juan Zhao
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Fei-Hong Wang
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | | | - Qi Yao
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Tan
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Ning-Wei Zhao
- Laboratory of Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,Shimadzu Biomedical Research Laboratory, Shanghai, China
| |
Collapse
|
70
|
Elder P, Sharma G, Gulati M, Michos ED. Identification of female-specific risk enhancers throughout the lifespan of women to improve cardiovascular disease prevention. Am J Prev Cardiol 2020; 2:100028. [PMID: 34327455 PMCID: PMC8315406 DOI: 10.1016/j.ajpc.2020.100028] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death in women in the United States and globally, with heart disease actually on the rise among middle-aged women in the United States. This disease burden can be reduced by prioritizing a preventive approach to cardiovascular health. The 2019 American College of Cardiology (ACC)/American Heart Association (AHA) Guideline on the Primary Prevention of CVD contains important updates for delivery of primary prevention and also highlights early menopause and pre-eclampsia as two female-specific risk factors that enhance CVD risk. Additionally other female-specific risk factors including early menarche, polycystic ovarian syndrome, multi-parity, other adverse pregnancy outcomes, and hormone therapy also influence women's CVD risk throughout their lifespan. It is vital that both women and healthcare clinicians are made aware of this information as it has lifesaving potential. This review aims to (1) Introduce the key points of the 2019 ACC/AHA Guideline (2) Highlight the evidence for the female-specific risk factors for refining CVD risk assessment and (3) Discuss the impact of the female-specific risk enhancing factors on primary prevention interventions such as statin therapy. This approach will be able to more personalize risk assessment in women, with an emphasis on the importance of shared decision making in building authentic partnerships between clinicians and women patients throughout their lifespan.
Collapse
Affiliation(s)
- Petal Elder
- Department of Medicine, University of Massachusetts Medical School, Baystate Health, Springfield, MA, USA
| | - Garima Sharma
- The Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Martha Gulati
- Division of Cardiology, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Erin D. Michos
- The Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
71
|
Grazul-Bilska AT, Dorsam ST, Reyaz A, Valkov V, Bass CS, Kaminski SL, Redmer DA. Follicle-stimulating hormone receptors expression in ovine corpora lutea during luteal phase: effect of nutritional plane and follicle-stimulating hormone treatment. Domest Anim Endocrinol 2020; 71:106391. [PMID: 31731250 DOI: 10.1016/j.domaniend.2019.106391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 11/18/2022]
Abstract
Corpus luteum (CL), a transient endocrine gland critical for reproductive cyclicity and pregnancy maintenance, is controlled by numerous regulatory factors. Although LH is widely recognized as the major regulator, other factors may also affect luteal functions. It has been demonstrated that FSH receptors (FSHR) are expressed not only in ovarian follicles but also in other tissues within the reproductive tract, including the CL. To evaluate FSHR expression in nontreated (nonsuperovulated; experiment 1) or FSH-treated (superovulated; experiment 2) sheep fed a control (C; maintenance), excess (O; 2 × C), or restricted (U; 0.6 × C) diet, CL were collected at the early, mid and/or late luteal phases (n = 5-7 per group). Protein and messenger RNA (mRNA) expression of FSHR were detected in the CL from all groups using immunohistochemistry followed by image analysis and quantitative RT-PCR, respectively. Follicle-stimulating hormone receptor was immunolocalized to steroidogenic small and large and nonsteroidogenic luteal cells. In both experiments, FSHR protein expression was not affected by stage of luteal development or diet. In experiment 1, expression of mRNA for all FSHR variants was greater (P <0.02 to 0.0003) at the late phase than mid or early luteal phase, and in experiment 2, it was greater (P < 0.001) at the mid than early luteal phase. Plane of nutrition did not affect FSHR mRNA expression. Comparison of FSH-treated with nontreated ewes demonstrated that FSH increased FSHR protein expression by 1.5- to 2-fold (P < 0.0001) in all groups, and mRNA expression by 7- to 30-fold (P < 0.001) for (1) FSHR-1 in all groups except U at the early luteal phase, (2) FSHR-2 in C, O, and U at the mid-phase, but not early luteal phase, and (3) FSHR-3 in U at the mid-luteal phase. Our data demonstrate that (1) FSHRs are expressed in ovine CL at several stages of luteal development, (2) FSHR protein expression does not change during the luteal phase and is not affected by diet, (3) FSHR mRNA expression not only depends on the stage of the estrous cycle but also not affected by diet in nonsuperovulated or superovulated ewes, and (4) in vivo FSH treatment enhanced FSHR protein and/or mRNA expression in the CL depending on diet and phase of the estrous cycle. Presence of FSHR in the CL indicates a regulatory role of FSH in luteal function in sheep. As very little is known about the possible role of FSH and FSHR in luteal functions, further studies should be undertaken to elucidate the endocrine, molecular, and cellular mechanisms of FSH effects on the CL.
Collapse
Affiliation(s)
- A T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA.
| | - S T Dorsam
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - A Reyaz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - V Valkov
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - C S Bass
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - S L Kaminski
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - D A Redmer
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
72
|
Zhang YX, He WB, Xiao WJ, Meng LL, Tan C, Du J, Lu GX, Lin G, Tan YQ. Novel loss-of-function mutation in MCM8 causes premature ovarian insufficiency. Mol Genet Genomic Med 2020; 8:e1165. [PMID: 32048466 PMCID: PMC7196458 DOI: 10.1002/mgg3.1165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
Background Premature ovarian insufficiency (POI) is one major cause of female infertility, minichromosome maintenance complex component 8 (MCM8) has been reported to be responsible for POI. Methods Whole‐exome sequencing was performed to identify the genetic variants of women with POI. Sanger sequencing was used to validate the variants in all the family members. Various bioinformatic software was used for the pathogenicity assessment. Reverse transcription polymerase chain reaction (RT‐PCR), real‐time quantitative PCR, and a chromosomal instability study induced by mitomycin C were performed to analyze the functional effects of the variant. Results A novel homozygous frameshift mutation (NM_032485.4:c.351_354delAAAG) of MCM8 gene was identified in the patients, segregated with POI in this family. This mutation is predicted to produce truncated MCM8 protein and to be pathogenic. Reverse transcription polymerase chain reaction revealed that the frameshift mutation led to a remarkably reduced level of MCM8 transcript products, and chromosomal instability study showed that the ability of mutant MCM8 to repair DNA breaks was impaired. Conclusion We identified a novel homozygous frameshift mutation in the MCM8 gene in two affected sisters with POI, and functional analysis revealed that this mutation is pathogenic. Our findings enrich the MCM8 mutation spectrum and might help clinicians to make a precise diagnosis, thereby allowing better family planning and genetic counseling.
Collapse
Affiliation(s)
- Ya-Xin Zhang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, PR China
| | - Wen-Bin He
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, PR China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, PR China
| | - Wen-Juan Xiao
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, PR China
| | - Lan-Lan Meng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, PR China
| | - Chen Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, PR China
| | - Juan Du
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, PR China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, PR China
| | - Guang-Xiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, PR China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, PR China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, PR China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, PR China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, PR China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, PR China
| |
Collapse
|
73
|
França MM, Mendonca BB. Genetics of Primary Ovarian Insufficiency in the Next-Generation Sequencing Era. J Endocr Soc 2020; 4:bvz037. [PMID: 32099950 PMCID: PMC7033037 DOI: 10.1210/jendso/bvz037] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/17/2019] [Indexed: 01/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is characterized by amenorrhea, increased follicle-stimulating hormone (FSH) levels, and hypoestrogenism, leading to infertility before the age of 40 years. Elucidating the cause of POI is a key point for diagnosing and treating affected women. Here, we review the genetic etiology of POI, highlighting new genes identified in the last few years using next-generation sequencing (NGS) approaches. We searched the MEDLINE/PubMed, Cochrane, and Web of Science databases for articles published in or translated to English. Several genes were found to be associated with POI genetic etiology in humans and animal models (SPIDR, BMPR2, MSH4, MSH5, GJA4, FANCM, POLR2C, MRPS22, KHDRBS1, BNC1, WDR62, ATG7/ATG9, BRCA2, NOTCH2, POLR3H, and TP63). The heterogeneity of POI etiology has been revealed to be remarkable in the NGS era, and discoveries have indicated that meiosis and DNA repair play key roles in POI development.
Collapse
Affiliation(s)
- Monica Malheiros França
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
74
|
Xia Y, Wang Q, He XD, Chen Y, JiGe MT, Zi XD. Cloning and expression analysis of the follicle-stimulating hormone receptor (FSHR) gene in the reproductive axis of female yaks (Bos grunniens). Domest Anim Endocrinol 2020; 70:106383. [PMID: 31479928 DOI: 10.1016/j.domaniend.2019.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022]
Abstract
Follicle-stimulating hormone receptor (FSHR) plays a central role in promoting follicle maturation through the follicle-stimulating hormone (FSH)-mediated cAMP pathway in animals. The objectives of the present study were to clone the FSHR gene of yaks (Bos grunniens) and compare differences in FSHR mRNA expression in the reproductive axis between yaks and cattle. Hypothalamus, anterior pituitary, oviduct, ovary, and uterus tissue samples were collected from adult female yaks (n = 5) and cattle (n = 5) during the follicular phase. Using reverse transcriptase-polymerase chain reaction (RT-PCR), we found that the FSHR coding region of the yak is 2088 bp and encodes 695 amino acids. Its amino acid sequence showed 99.38%-72.22% similarity to the homologous genes of cattle, goats, sheep, cats, donkeys, horses, humans, chickens, monkeys, mice, rats, and wild boar. Real-time PCR analysis revealed that the FSHR gene was expressed in all tissues examined. Expression of the FSHR gene in the yak was higher in the uterus than other tissues (P < 0.05) but, in cattle, was higher in the ovary than other tissues (P < 0.05). The FSHR gene expression level in the cattle ovary was significantly higher than that in the yak ovary (P < 0.01). These results indicate that the FSHR gene is relatively conserved in the course of animal evolution. The variation in sequence and expression level of FSHR between the two species might be associated with the difference in their reproduction.
Collapse
Affiliation(s)
- Y Xia
- The Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, PR China
| | - Q Wang
- The Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, PR China
| | - X D He
- Ministry of Education Key Laboratory of Conservation & Utilization of Qinghai-Tibetan Plateau Animal Genetic Resources, Southwest Minzu University, Chengdu 610041, PR China
| | - Y Chen
- Ministry of Education Key Laboratory of Conservation & Utilization of Qinghai-Tibetan Plateau Animal Genetic Resources, Southwest Minzu University, Chengdu 610041, PR China
| | - M T JiGe
- The Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, PR China
| | - X D Zi
- The Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
75
|
Huang J, Zhang W, Liu Y, Liu Y, Wang J, Jiang H. Association between the FMR1 CGG repeat lengths and the severity of idiopathic primary ovarian insufficiency: a meta analysis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3116-3122. [PMID: 31352801 DOI: 10.1080/21691401.2019.1645153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aim: Reports on the association of the CGG repeat length in the FMR1 gene with the severity of idiopathic POI are inconclusive. Therefore, a meta analysis was performed to investigate the relationship between the expansion of repeat CGG and idiopathic POI risk. Methods: Up to January 2019, 18 case-control or cohort studies involving 3394 idiopathic POI patients and 8461 controls were included for meta analysis. Results: Thirteen studies, including 2047 cases and 6912 controls, met our criteria for the assessment of the premutation and intermediate repeat length in patients with overt POI. Compared with controls, FMR1 gene premutation is significantly associated with overt POI (OR = 8.13; 95% CI: 4.35-15.19; p < .00001), whereas there was no significant correlation between intermediate repeat length and overt POI (OR = 0.86; 95% CI: 0.62-1.18; p = .34). Seven studies, representing 1347 patients and 1948 controls, were eligible for evaluation of the premutation and intermediate repeat length in occult POI. The association between premutation and occult POI was significant (p < .00001), with a pooled fixed effects OR of 11.32 (4.45-28.80), and no significant correlation of intermediate size to occult POI was found in the case-control comparison (OR = 1.00; 95% CI: 0.68-1.47; p = .98). Conclusion: There is a close association between premutation of the FMR1 gene and increased susceptibility to idiopathic POI of each stage and no correlation between intermediate repeat length of the FMR1 gene and the severity of idiopathic POI.
Collapse
Affiliation(s)
- Jing Huang
- a Reproductive Medicine Center, Clinical College of People's Liberation Army, Anhui Medical University , Hefei , China.,b Reproductive Medicine Center, the 901th Hospital of the Joint Logistics Support Force of People's Liberation Army , Hefei , China
| | - Wenxiang Zhang
- c Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Yingchun Liu
- b Reproductive Medicine Center, the 901th Hospital of the Joint Logistics Support Force of People's Liberation Army , Hefei , China
| | - Ying Liu
- b Reproductive Medicine Center, the 901th Hospital of the Joint Logistics Support Force of People's Liberation Army , Hefei , China
| | - Jing Wang
- b Reproductive Medicine Center, the 901th Hospital of the Joint Logistics Support Force of People's Liberation Army , Hefei , China
| | - Hong Jiang
- a Reproductive Medicine Center, Clinical College of People's Liberation Army, Anhui Medical University , Hefei , China.,b Reproductive Medicine Center, the 901th Hospital of the Joint Logistics Support Force of People's Liberation Army , Hefei , China
| |
Collapse
|
76
|
Khor S, Lyu Q, Kuang Y, Lu X. Novel FSHR variants causing female resistant ovary syndrome. Mol Genet Genomic Med 2019; 8:e1082. [PMID: 31830376 PMCID: PMC7005632 DOI: 10.1002/mgg3.1082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/16/2019] [Accepted: 11/02/2019] [Indexed: 11/18/2022] Open
Abstract
Background Pathogenic variants of follicle‐stimulating hormone receptor (FSHR) are known to cause amenorrhea and infertility in women. However, only a limited number of pathogenic FSHR variants have been reported, and few reports described detailed characteristics of patients with pathogenic FSHR variants. Methods The affected siblings and both parents were subjected to whole‐genome exon sequencing. Transient transfection of HEK 293T cells was performed with constructed vectors. The cellular localization of the FSHR protein was evaluated using confocal microscopy, and cyclic adenosine monophosphate (cAMP) production was detected with a cAMP ELISA kit. Results A Chinese family with two siblings carrying compound heterozygous pathogenic variants of FSHR: c.182T>A (p.Ile61Asn) and c.2062C>A (p.Pro688Thr). Both siblings had amenorrhea, infertility, and resistance to gonadotropin (Gn) stimulation but showed high anti‐Müllerian hormone levels and early antral follicles. Molecular dynamics simulations of the FSHR variants revealed significant changes in structural characteristics and electrostatic potential. In vitro analysis indicated that the p.Ile61Asn variant lacked cell surface localization and completely abolished the cAMP second messenger response. The p.Pro688Thr variant retained cell surface localization but caused decreased FSH‐induced cAMP production. Conclusion We found two novel pathogenic FSHR variants causing resistant ovarian syndrome. This study expands the genotypic spectrum of pathogenic FSHR variants and our knowledge of phenotype–genotype correlations.
Collapse
Affiliation(s)
- Shuzin Khor
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Lu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
77
|
Sharif K, Watad A, Bridgewood C, Kanduc D, Amital H, Shoenfeld Y. Insights into the autoimmune aspect of premature ovarian insufficiency. Best Pract Res Clin Endocrinol Metab 2019; 33:101323. [PMID: 31606343 DOI: 10.1016/j.beem.2019.101323] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Premature ovarian insufficiency (POI) refers to a continuum of decreasing ovarian function in women before the age of 40. To date, the cause of POI in the majority of cases remain unresolved. Many cases has been linked to genetic, toxic, infections, enzymatic and iatrogenic causes. A key function of the immune system is to identify and differentiate "self" and "non self" i.e. tolerance. Loss of self-tolerance results in an immune response against self-tissues and thus autoimmunity. Various investigations have highlighted the role of autoimmunity and its pertinence to POI. Several potential immune antigenic targets in the ovary have been reported to be involved in autoantibody induced autoimmune attack. The presence of lymphocytic oöphorits in ovarian samples of patients with POI provides histopathological evidence of autoimmune ovarian involvement. Finally, POI is strongly associated with other autoimmune conditions including for instance Addison disease, autoimmune polyglandular syndrome (APS) -1, APS-4, hypothyroidism, and diabetes mellitus among other autoimmune diseases. Taken together, these lines of evidence provide strong basis that support the role of autoimmunity as a potential cause of disease etiopathogenesis. Continuing research is increasingly providing more insight into the complex disease process. The aim of this review is to summarize the current literature related to the autoimmune nature of POI.
Collapse
Affiliation(s)
- Kassem Sharif
- Department of Medicine 'B', Tel-Hashomer, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Leeds Institute of Rheumatic and Musculoskeletal Medicine, Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Abdulla Watad
- Department of Medicine 'B', Tel-Hashomer, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Howard Amital
- Department of Medicine 'B', Tel-Hashomer, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Russia.
| |
Collapse
|
78
|
The transcriptional regulator CBX2 and ovarian function: A whole genome and whole transcriptome approach. Sci Rep 2019; 9:17033. [PMID: 31745224 PMCID: PMC6864077 DOI: 10.1038/s41598-019-53370-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
The chromobox homolog 2 (CBX2) was found to be important for human testis development, but its role in the human ovary remains elusive. We conducted a genome-wide analysis based on DNA adenine methyltransferase identification (DamID) and RNA sequencing strategies to investigate CBX2 in the human granulosa cells. Functional analysis revealed that CBX2 was upstream of genes contributing to ovarian function like folliculogenesis and steroidogenesis (i.e. ESR1, NRG1, AKR1C1, PTGER2, BMP15, BMP2, FSHR and NTRK1/2). We identified CBX2 regulated genes associated with polycystic ovary syndrome (PCOS) such as TGFβ, MAP3K15 and DKK1, as well as genes implicated in premature ovarian failure (POF) (i.e. POF1B, BMP15 and HOXA13) and the pituitary deficiency (i.e. LHX4 and KISS1). Our study provided an excellent opportunity to identify genes surrounding CBX2 in the ovary and might contribute to the understanding of ovarian physiopathology causing infertility in women.
Collapse
|
79
|
Insights into the Pathophysiology of Infertility in Females with Classical Galactosaemia. Int J Mol Sci 2019; 20:ijms20205236. [PMID: 31652573 PMCID: PMC6834160 DOI: 10.3390/ijms20205236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 11/26/2022] Open
Abstract
Classical galactosaemia (CG) (OMIM 230400) is a rare inborn error of galactose metabolism caused by the deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT, EC 2.7.7.12). Primary ovarian insufficiency (POI) is the most common long-term complication experienced by females with CG, presenting with hypergonadotrophic hypoestrogenic infertility affecting at least 80% of females despite new-born screening and lifelong galactose dietary restriction. In this review, we describe the hypothesized pathophysiology of POI from CG, implications of timing of the ovarian dysfunction, and the new horizons and future prospects for treatments and fertility preservation.
Collapse
|
80
|
Matsushima N, Takatsuka S, Miyashita H, Kretsinger RH. Leucine Rich Repeat Proteins: Sequences, Mutations, Structures and Diseases. Protein Pept Lett 2019; 26:108-131. [PMID: 30526451 DOI: 10.2174/0929866526666181208170027] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Mutations in the genes encoding Leucine Rich Repeat (LRR) containing proteins are associated with over sixty human diseases; these include high myopia, mitochondrial encephalomyopathy, and Crohn's disease. These mutations occur frequently within the LRR domains and within the regions that shield the hydrophobic core of the LRR domain. The amino acid sequences of fifty-five LRR proteins have been published. They include Nod-Like Receptors (NLRs) such as NLRP1, NLRP3, NLRP14, and Nod-2, Small Leucine Rich Repeat Proteoglycans (SLRPs) such as keratocan, lumican, fibromodulin, PRELP, biglycan, and nyctalopin, and F-box/LRR-repeat proteins such as FBXL2, FBXL4, and FBXL12. For example, 363 missense mutations have been identified. Replacement of arginine, proline, or cysteine by another amino acid, or the reverse, is frequently observed. The diverse effects of the mutations are discussed based on the known structures of LRR proteins. These mutations influence protein folding, aggregation, oligomerization, stability, protein-ligand interactions, disulfide bond formation, and glycosylation. Most of the mutations cause loss of function and a few, gain of function.
Collapse
Affiliation(s)
- Norio Matsushima
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan.,Institute of Tandem Repeats, Noboribetsu 059-0464, Japan
| | - Shintaro Takatsuka
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hiroki Miyashita
- Institute of Tandem Repeats, Noboribetsu 059-0464, Japan.,Hokubu Rinsho Co., Ltd, Sapporo 060-0061, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
81
|
Luiro K, Aittomäki K, Jousilahti P, Tapanainen JS. Long-term health of women with genetic POI due to FSH-resistant ovaries. Endocr Connect 2019; 8:1354-1362. [PMID: 31505457 PMCID: PMC6790899 DOI: 10.1530/ec-19-0244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To study the use of hormone therapy (HT), morbidity and reproductive outcomes of women with primary ovarian insufficiency (POI) due to FSH-resistant ovaries (FSHRO). DESIGN A prospective follow-up study in a university-based tertiary clinic setting. METHODS Twenty-six women with an inactivating A189V FSH receptor mutation were investigated by means of a health questionnaire and clinical examination. Twenty-two returned the health questionnaire and 14 were clinically examined. Main outcome measures in the health questionnaire were reported as HT, morbidity, medication and infertility treatment outcomes. In the clinical study, risk factors for cardiovascular disease (CVD) and metabolic syndrome (MetS) were compared to age-matched controls from a national population survey (FINRISK). Average number of controls was 326 per FSHRO subject (range 178-430). Bone mineral density and whole-body composition were analyzed with DXA. Psychological and sexual well-being was assessed with Beck Depression Inventory (BDI21), Generalized Anxiety Disorder 7 (GAD-7) and Female Sexual Function Index (FSFI) questionnaires. RESULTS HT was initiated late (median 18 years of age) compared with normal puberty and the median time of use was shorter (20-22 years) than the normal fertile period. Osteopenia was detected in 9/14 of the FSHRO women despite HT. No major risk factors for CVD or diabetes were found. CONCLUSIONS HT of 20 years seems to be associated with a similar cardiovascular and metabolic risk factor profile as in the population control group. However, optimal bone health may require an early-onset and longer period of HT, which would better correspond to the natural fertile period.
Collapse
Affiliation(s)
- Kaisu Luiro
- Department of Obstetrics and Gynecology, Reproductive Medicine Unit, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Medical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Pekka Jousilahti
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, Reproductive Medicine Unit, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, University of Oulu and Oulu University Hospital, Medical Research Center, PEDEGO Research Unit, Oulu, Finland
- Correspondence should be addressed to J S Tapanainen:
| |
Collapse
|
82
|
Howard SR, Dunkel L. Delayed Puberty-Phenotypic Diversity, Molecular Genetic Mechanisms, and Recent Discoveries. Endocr Rev 2019; 40:1285-1317. [PMID: 31220230 PMCID: PMC6736054 DOI: 10.1210/er.2018-00248] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
This review presents a comprehensive discussion of the clinical condition of delayed puberty, a common presentation to the pediatric endocrinologist, which may present both diagnostic and prognostic challenges. Our understanding of the genetic control of pubertal timing has advanced thanks to active investigation in this field over the last two decades, but it remains in large part a fascinating and mysterious conundrum. The phenotype of delayed puberty is associated with adult health risks and common etiologies, and there is evidence for polygenic control of pubertal timing in the general population, sex-specificity, and epigenetic modulation. Moreover, much has been learned from comprehension of monogenic and digenic etiologies of pubertal delay and associated disorders and, in recent years, knowledge of oligogenic inheritance in conditions of GnRH deficiency. Recently there have been several novel discoveries in the field of self-limited delayed puberty, encompassing exciting developments linking this condition to both GnRH neuronal biology and metabolism and body mass. These data together highlight the fascinating heterogeneity of disorders underlying this phenotype and point to areas of future research where impactful developments can be made.
Collapse
Affiliation(s)
- Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
83
|
Ovarian Follicle Depletion Induced by Chemotherapy and the Investigational Stages of Potential Fertility-Protective Treatments-A Review. Int J Mol Sci 2019; 20:ijms20194720. [PMID: 31548505 PMCID: PMC6801789 DOI: 10.3390/ijms20194720] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023] Open
Abstract
Ovarian follicle pool depletion, infertility, and premature menopause are all known sequelae of cancer treatment that negatively impact the quality of life of young cancer survivors. The mechanisms involved in this undesired iatrogenic ovarian damage have been intensively studied, but many of them remain unclear. Several chemotherapeutic drugs have been shown to induce direct and indirect DNA-damage and/or cellular stress, which are often followed by apoptosis and/or autophagy. Damage to the ovarian micro-vessel network induced by chemotherapeutic agents also seems to contribute to ovarian dysfunction. Another proposed mechanism behind ovarian follicle pool depletion is the overactivation of primordial follicles from the quiescent pool; however, current experimental data are inconsistent regarding these effects. There is great interest in characterizing the mechanisms involved in ovarian damage because this might lead to the identification of potentially protective substances as possible future therapeutics. Research in this field is still at an experimental stage, and further investigations are needed to develop effective and individualized treatments for clinical application. This review provides an overview of the current knowledge and the proposed hypothesis behind chemotherapy-induced ovarian damage, as well as current knowledge on possible co-treatments that might protect the ovary and the follicles from such damages.
Collapse
|
84
|
Hsueh AJ, He J. Gonadotropins and their receptors: coevolution, genetic variants, receptor imaging, and functional antagonists. Biol Reprod 2019; 99:3-12. [PMID: 29462242 DOI: 10.1093/biolre/ioy012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/06/2018] [Indexed: 12/29/2022] Open
Abstract
Gonadotropins belong to the family of dimeric glycoprotein hormones and regulate gonadal physiology mediated by G protein-coupled, seven-transmembrane receptors. These glycoprotein hormones are widely used in the clinic to promote ovarian follicle development and for treating some cases of male infertility. We traced the coevolution of dimeric gonadotropin hormones and their receptors, together with thyrotropin and its receptor. We updated recent findings on human genetic variants of these genes and their association with dizygotic twining, polycystic ovarian syndrome, primary ovarian insufficiency, male-limited precocious puberty, and infertility. In addition to the known physiological roles of gonadotropin-receptor signaling in gonadal tissues, we also discussed emerging understanding of extragonadal functions of gonadotropins in bones and adipose tissues, together with recent advances in in vivo imaging of gonadotropin receptors in live animals. Recent development of gonadotropin receptor agonists and antagonists were summarized with an emphasis on the development of functional antagonists for FSH receptors to alleviate osteoporosis and obesity associated with menopause.
Collapse
Affiliation(s)
- Aaron J Hsueh
- Program of Reproductive and Stem Cell Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, USA
| | - Jiahuan He
- Program of Reproductive and Stem Cell Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
85
|
Liu H, Guo T, Gong Z, Yu Y, Zhang Y, Zhao S, Qin Y. Novel FSHR mutations in Han Chinese women with sporadic premature ovarian insufficiency. Mol Cell Endocrinol 2019; 492:110446. [PMID: 31077743 DOI: 10.1016/j.mce.2019.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Premature ovarian insufficiency (POI) is characterized by amenorrhea and elevated levels of follicle-stimulating hormone (FSH, usually > 25 IU/L) before 40 years of age. To identify the relationship between FSHR mutations and sporadic POI patients of Han Chinese descent, we performed Sanger sequencing of FSHR gene in 192 sporadic POI patients and 192 matched controls of Han Chinese descent. Two heterozygous missense variants, c.793A > G (p.M265V) and c.1789C > A (p.L597I), were identified exclusively in POI patients. Functional studies showed that both mutants were expressed on the cell surface, while p.L597I showed decreased membrane localization compared with wild-type FSHR. Moreover, FSH-induced cAMP production and ERK1/2 phosphorylation were reduced in the cells transfected with p.L597I mutant, but not in the cells transfected with p.M265V mutant. In addition, two single-nucleotide polymorphisms (SNPs), rs1394205 (c.-29G > A) and rs140106399 (c.*111 T > C), were identified in both POI group and control group with significantly different genotypic and allelic distributions. These results indicated that dysfunctional FSHR due to mutation or SNPs might explain a fraction of sporadic POI cases in Han Chinese population.
Collapse
Affiliation(s)
- Hongli Liu
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China; Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Ting Guo
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Zheng Gong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Yongze Yu
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Yingxin Zhang
- Department of Obstetrics & Gynecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.
| |
Collapse
|
86
|
Venturella R, De Vivo V, Carlea A, D'Alessandro P, Saccone G, Arduino B, Improda FP, Lico D, Rania E, De Marco C, Viglietto G, Zullo F. The Genetics of Non-Syndromic Primary Ovarian Insufficiency: A Systematic Review. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:161-168. [PMID: 31310068 PMCID: PMC6642427 DOI: 10.22074/ijfs.2019.5599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/15/2019] [Indexed: 01/19/2023]
Abstract
Several causes for primary ovarian insufficiency (POI) have been described, including iatrogenic and environmental
factor, viral infections, chronic disease as well as genetic alterations. The aim of this review was to collect all the ge-
netic mutations associated with non-syndromic POI. All studies, including gene screening, genome-wide study and as-
sessing genetic mutations associated with POI, were included and analyzed in this systematic review. Syndromic POI
and chromosomal abnormalities were not evaluated. Single gene perturbations, including genes on the X chromosome
(such as BMP15, PGRMC1 and FMR1) and genes on autosomal chromosomes (such as GDF9, FIGLA, NOBOX,
ESR1, FSHR and NANOS3) have a positive correlation with non-syndromic POI. Future strategies include linkage
analysis of families with multiple affected members, array comparative genomic hybridization (CGH) for analysis of
copy number variations, next generation sequencing technology and genome-wide data analysis. This review showed
variability of the genetic factors associated with POI. These findings may help future genetic screening studies on
large cohort of women.
Collapse
Affiliation(s)
- Roberta Venturella
- Department of Obstetrics and Gynaecology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Valentino De Vivo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Annunziata Carlea
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Pietro D'Alessandro
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Gabriele Saccone
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy. Electronic Address:
| | - Bruno Arduino
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesco Paolo Improda
- Department of Obstetrics and Gynaecology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Daniela Lico
- Department of Obstetrics and Gynaecology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Erika Rania
- Department of Obstetrics and Gynaecology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Fulvio Zullo
- Department of Obstetrics and Gynaecology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
87
|
Abstract
The term primary gonadal failure encompasses not only testicular insufficiency in 46,XY males and ovarian insufficiency in 46,XX females, but also those disorders of sex development (DSD) which result in gender assignment that is at variance with the genotype and gonadal type. In boys, causes of gonadal failure include Klinefelter and other aneuploidy syndromes, bilateral cryptorchidism, testicular torsion, and forms of 46,XY DSD such as partial androgen insensitivity. Causes in girls include Turner syndrome and other aneuploidies, galactosemia, and autoimmune ovarian failure. Iatrogenic causes in both boys and girls include the late effects of childhood cancer treatment, total body irradiation prior to bone marrow transplantation, and iron overload in transfusion-dependent thalassaemia. In this paper, a brief description of the physiology of testicular and ovarian development is followed by a section on the causes and practical management of gonadal impairment in boys and girls. Protocols for pubertal induction and post-pubertal hormone replacement - intramuscular, oral and transdermal testosterone in boys; oral and transdermal oestrogen in girls - are then given. Finally, current and future strategies for assisted conception and fertility preservation are discussed.
Collapse
Affiliation(s)
- Asmahane Ladjouze
- Faculté de Médecine d'Alger, Service de Pédiatrie, Centre Hospitalo-Universitaire Bad El Oued, 1 Boulevard Said Touati, Algiers, Algeria.
| | - Malcolm Donaldson
- Section of Child Health, School of Medicine, Queen Elizabeth University Hospital, Govan Road, Glasgow, G51 4TF, United Kingdom.
| |
Collapse
|
88
|
The relationship between FSH receptor polymorphism status and IVF cycle outcome: a retrospective observational study. Reprod Biomed Online 2019; 39:231-240. [PMID: 31279715 DOI: 10.1016/j.rbmo.2019.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 01/29/2023]
Abstract
RESEARCH QUESTION What is the association between FSH receptor (FSHR) gene polymorphism at position 680 and live birth in women undergoing IVF and intracytoplasmic sperm injection (ICSI). DESIGN In this retrospective cohort study, data were collected from the Electronic Patient Database of the VU University Medical Centre, Amsterdam, The Netherlands. Women undergoing their first IVF/ICSI cycle between January 2008 and March 2012, of whom the FSHR genotype was determined, were included. The main outcome was live birth rate. Secondary outcomes were ongoing pregnancy, total number of follicles, oocytes and embryos. RESULTS The FSHR genotype distribution was as follows: 334 women in the Asn/Asn group (28.2%), 617 in the Asn/Ser group (52.1%) and 234 in the Ser/Ser group (19.7%). Basal FSH concentration was highest in the Ser/Ser group (P = 0.006). The number of oocytes (P = 0.01) and number of embryos (P = 0.02) were lowest in the Ser/Ser group. The Asn/Asn group showed a significantly lower live birth rate. Live birth rates were 21.9% versus 31.1% and 27.6% (P = 0.009), for Asn/Asn, Asn/Ser and Ser/Ser, respectively. Logistic regression analysis, however, showed no significant difference on cumulative live birth rate between the three genotypes either unadjusted or when adjusted for age. CONCLUSION The homozygous Ser/Ser genotype of FSHR polymorphism at position 680 is associated with a reduced ovarian response to ovarian stimulation in IVF/ICSI. No difference in cumulative live birth rate was found.
Collapse
|
89
|
Misgar RA, Wani AI, Bankura B, Bashir MI, Roy A, Das M. FSH β-subunit mutations in two sisters: the first report from the Indian sub-continent and review of previous cases. Gynecol Endocrinol 2019; 35:290-293. [PMID: 30602350 DOI: 10.1080/09513590.2018.1529159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Isolated FSH deficiency due to mutations in the gene for β-subunit of FSH is an extremely rare autosomal recessive disease of which only eleven cases have been reported so far. The clinical features include absent breast development and primary amenorrhea in females and azoospermia with normal testosterone levels in males. In this study we report two Kashmiri sisters born to native Kashmiri consanguineous parents with failure of onset of puberty. Hormonal evaluation revealed undetectable serum FSH and estradiol and high LH. Genetic analysis of FSH β-gene identified one nonsense mutation (c.343C > T:p. Arg115Stop) in exon 3. The two sisters were homozygous for this nonsense mutation while the parents were heterozygous. Incorporation of a stop codon at 115 codon position is predicted to result in the formation of truncated FSH β protein, lacking 14 amino acid from the carboxy-terminus (p.Arg115Stop). Very recently, this same mutation was reported for the first time in a Chinese male. Ours is the first ever report of any FSH β-subunit mutation from the Indian sub-continent and this particular mutation in any female from anywhere in the world. We conclude and emphasize that this diagnosis should be considered in girls with delayed puberty and selective deficiency of FSH.
Collapse
Affiliation(s)
- Raiz Ahmad Misgar
- a Department of Endocrinology , Sher-i-Kashmir Institute of Medical Sciences , Srinagar , India
| | - Arshad Iqbal Wani
- a Department of Endocrinology , Sher-i-Kashmir Institute of Medical Sciences , Srinagar , India
| | | | - Mir Iftikhar Bashir
- a Department of Endocrinology , Sher-i-Kashmir Institute of Medical Sciences , Srinagar , India
| | | | - Madhusudan Das
- b Department of Zoology , University of Calcutta , Kolkata , India
| |
Collapse
|
90
|
Parivesh A, Barseghyan H, Délot E, Vilain E. Translating genomics to the clinical diagnosis of disorders/differences of sex development. Curr Top Dev Biol 2019; 134:317-375. [PMID: 30999980 PMCID: PMC7382024 DOI: 10.1016/bs.ctdb.2019.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The medical and psychosocial challenges faced by patients living with Disorders/Differences of Sex Development (DSD) and their families can be alleviated by a rapid and accurate diagnostic process. Clinical diagnosis of DSD is limited by a lack of standardization of anatomical and endocrine phenotyping and genetic testing, as well as poor genotype/phenotype correlation. Historically, DSD genes have been identified through positional cloning of disease-associated variants segregating in families and validation of candidates in animal and in vitro modeling of variant pathogenicity. Owing to the complexity of conditions grouped under DSD, genome-wide scanning methods are better suited for identifying disease causing gene variant(s) and providing a clinical diagnosis. Here, we review a number of established genomic tools (karyotyping, chromosomal microarrays and exome sequencing) used in clinic for DSD diagnosis, as well as emerging genomic technologies such as whole-genome (short-read) sequencing, long-read sequencing, and optical mapping used for novel DSD gene discovery. These, together with gene expression and epigenetic studies can potentiate the clinical diagnosis of DSD diagnostic rates and enhance the outcomes for patients and families.
Collapse
Affiliation(s)
- Abhinav Parivesh
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States
| | - Emmanuèle Délot
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
91
|
He WB, Du J, Yang XW, Li W, Tang WL, Dai C, Chen YZ, Zhang YX, Lu GX, Lin G, Gong F, Tan YQ. Novel inactivating mutations in the FSH receptor cause premature ovarian insufficiency with resistant ovary syndrome. Reprod Biomed Online 2019; 38:397-406. [DOI: 10.1016/j.rbmo.2018.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/29/2018] [Accepted: 11/29/2018] [Indexed: 02/05/2023]
|
92
|
Xu X, Zhang Y, Zhao S, Bian Y, Ning Y, Qin Y. Mutational analysis of theFAM175A gene in patients with premature ovarian insufficiency. Reprod Biomed Online 2019; 38:943-950. [PMID: 31000350 DOI: 10.1016/j.rbmo.2019.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/30/2018] [Accepted: 02/01/2019] [Indexed: 01/15/2023]
Abstract
RESEARCH QUESTION The family with sequence similarity 175 member A gene (FAM175A; also known as ABRAXAS1, CCDC98 and ABRA1), a member of the DNA repair family, contributes to the BRCA1 (BRCA1 DNA repair associated)-dependent DNA damage response and is associated with age at natural menopause. However, it remains poorly understood whether sequence variants in FAM175A are causative for premature ovarian insufficiency (POI). The aim of this study was to investigate whether mutations in the gene FAM175A were present in patients with POI. DESIGN A total of 400 women with idiopathic POI and 498 control women with regular menstruation (306 age-matched women and 192 women over 40 years old) were recruited. After Sanger sequencing of FAM175A, functional experiments were carried out to explore the deleterious effects of the identified variation. DNA damage was subsequently induced by mitomycin C (MMC), and DNA repair capacity and G2-M checkpoint activation were evaluated by examining the phosphorylation level of H2AX (H2A histone family, member X) and the percentage of mitotic cells, respectively. RESULTS One rare single-nucleotide polymorphism, rs755187051 in gene FAM175A, c.C727G (p.L243V), was identified in two patients but absent in the 498 controls. The functional experiments demonstrated that overexpression of variant p.L243V in HeLa cells resulted in a similar sensitivity to MMC-induced damage compared with cells transfected with wild-type FAM175A. Moreover, after treatment with MMC, there were no differences in DNA repair capacity and G2-M checkpoint activation between the mutant and wild-type genes. CONCLUSION Our results suggest that the p.L243V variant of FAM175A may not be causative for POI. The contribution of FAM175A to POI needs further exploration.
Collapse
Affiliation(s)
- Xiaofei Xu
- Centre for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yingxin Zhang
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shidou Zhao
- Centre for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Yuehong Bian
- Centre for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Yunna Ning
- Centre for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Yingying Qin
- Centre for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.
| |
Collapse
|
93
|
Yang X, Touraine P, Desai S, Humphreys G, Jiang H, Yatsenko A, Rajkovic A. Gene variants identified by whole-exome sequencing in 33 French women with premature ovarian insufficiency. J Assist Reprod Genet 2019; 36:39-45. [PMID: 30406445 PMCID: PMC6338598 DOI: 10.1007/s10815-018-1349-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/16/2018] [Indexed: 10/27/2022] Open
Abstract
PURPOSE To investigate the potential genetic etiology of premature ovarian insufficiency (POI). METHODS Whole-exome sequencing (WES) was done on DNA samples from women diagnosed with POI. Mutations identified were analyzed by in silico tools and were annotated according to the guidelines of the American College of Medical Genetics and Genomics. Plausible variants were confirmed by Sanger sequencing. RESULTS Four of the 33 individuals (12%) carried pathogenic or likely pathogenic variants, and 6 individuals carried variants of unknown significance. The genes identified with pathogenic or likely pathogenic variants included PMM2, MCM9, and PSMC3IP. CONCLUSIONS WES is an efficient tool for identifying gene variants in POI women; however, interpretation of variants is hampered by few exome studies involving ovarian disorders and the need for trio sequencing to determine inheritance and to detect de novo variants.
Collapse
Affiliation(s)
- Xiang Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA USA
- The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Centre des Pathologies Gynécologiques Rares, Paris, France
- Pitie Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Swapna Desai
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA USA
| | | | - Huaiyang Jiang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA USA
| | - Alexander Yatsenko
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA USA
| | - Aleksandar Rajkovic
- Department of Pathology, University of California, San Francisco, CA 94143-0794 USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA USA
| |
Collapse
|
94
|
Schubert M, Pérez Lanuza L, Gromoll J. Pharmacogenetics of FSH Action in the Male. Front Endocrinol (Lausanne) 2019; 10:47. [PMID: 30873114 PMCID: PMC6403134 DOI: 10.3389/fendo.2019.00047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/21/2019] [Indexed: 11/28/2022] Open
Abstract
Male infertility is a major contributor to couple infertility, however in most cases it remains "idiopathic" and putative treatment regimens are lacking. This leads to a scenario in which intra-cytoplasmic spermatozoa injection (ICSI) is widely used in idiopathic male infertility, though the treatment burden is high for the couple and it entails considerable costs and risks. Given the crucial role of the Follicle-stimulating hormone (FSH) for spermatogenesis, FSH has been used empirically to improve semen parameters, but the response to FSH varied strongly among treated infertile men. Single nucleotide polymorphisms (SNPs) within FSH ligand/receptor genes (FSHB/FSHR), significantly influencing reproductive parameters in men, represent promising candidates to serve as pharmacogenetic markers to improve prediction of response to FSH. Consequently, several FSH-based pharmacogenetic studies have been conducted within the last years with unfortunately wide divergence concerning selection criteria, treatment and primary endpoints. In this review we therefore outline the current knowledge on single nucleotide polymorphisms (SNPs) in the FSH and FSH receptor genes and their putative functional effects. We compile and critically assess the previously performed pharmacogenetic studies in the male and propose a putative strategy that might allow identifying patients who could benefit from FSH treatment.
Collapse
Affiliation(s)
- Maria Schubert
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Lina Pérez Lanuza
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Jörg Gromoll
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
- *Correspondence: Jörg Gromoll
| |
Collapse
|
95
|
Landomiel F, De Pascali F, Raynaud P, Jean-Alphonse F, Yvinec R, Pellissier LP, Bozon V, Bruneau G, Crépieux P, Poupon A, Reiter E. Biased Signaling and Allosteric Modulation at the FSHR. Front Endocrinol (Lausanne) 2019; 10:148. [PMID: 30930853 PMCID: PMC6425863 DOI: 10.3389/fendo.2019.00148] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Knowledge on G protein-coupled receptor (GPCRs) structure and mechanism of activation has profoundly evolved over the past years. The way drugs targeting this family of receptors are discovered and used has also changed. Ligands appear to bind a growing number of GPCRs in a competitive or allosteric manner to elicit balanced signaling or biased signaling (i.e., differential efficacy in activating or inhibiting selective signaling pathway(s) compared to the reference ligand). These novel concepts and developments transform our understanding of the follicle-stimulating hormone (FSH) receptor (FSHR) biology and the way it could be pharmacologically modulated in the future. The FSHR is expressed in somatic cells of the gonads and plays a major role in reproduction. When compared to classical GPCRs, the FSHR exhibits intrinsic peculiarities, such as a very large NH2-terminal extracellular domain that binds a naturally heterogeneous, large heterodimeric glycoprotein, namely FSH. Once activated, the FSHR couples to Gαs and, in some instances, to other Gα subunits. G protein-coupled receptor kinases and β-arrestins are also recruited to this receptor and account for its desensitization, trafficking, and intracellular signaling. Different classes of pharmacological tools capable of biasing FSHR signaling have been reported and open promising prospects both in basic research and for therapeutic applications. Here we provide an updated review of the most salient peculiarities of FSHR signaling and its selective modulation.
Collapse
|
96
|
Dean DD, Agarwal S, Tripathi P. Connecting links between genetic factors defining ovarian reserve and recurrent miscarriages. J Assist Reprod Genet 2018; 35:2121-2128. [PMID: 30219969 PMCID: PMC6289926 DOI: 10.1007/s10815-018-1305-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Approximately 1-2% of the women faces three or more successive spontaneous miscarriages termed as recurrent miscarriage (RM). Many clinical factors have been attributed so far to be the potential risk factors in RM, including uterine anomalies, antiphospholipid syndrome, endocrinological abnormalities, chromosomal abnormalities, and infections. However, in spite of extensive studies, reviews, and array of causes known to be associated with RM, about 50% cases encountered by treating physicians remains unknown. The aims of this study were to evaluate recent publications and to explore oocyte-specific genetic factors that may have role in incidence of recurrent miscarriages. METHOD Recent studies have identified common molecular factors contributing both in establishment of ovarian reserve and in early embryonic development. Also, studies have pointed out the relationship between the age-associated depletion of OR and increase in the risk of miscarriages, thus suggestive of an interacting biology. Here, we have gathered literature evidences in establishing connecting links between genetic factors associated with age induced or pathological OR depletion and idiopathic RM, which are the two extreme ends of female reproductive pathology. CONCLUSION In light of connecting etiological link between infertility and RM as reviewed in this study, interrogating the oocyte-specific genes with suspected roles in reproductive biology, in cases of unexplained RM, may open new possibilities in widening our understanding of RM pathophysiology.
Collapse
Affiliation(s)
- Deepika Delsa Dean
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, U.P. 226014 India
| | - Sarita Agarwal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, U.P. 226014 India
| | - Poonam Tripathi
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, U.P. 226014 India
| |
Collapse
|
97
|
Abstract
The genetic control of pubertal timing has been a field of active investigation for the last decade, but remains a fascinating and mysterious conundrum. Self-limited delayed puberty (DP), also known as constitutional delay of growth and puberty, represents the extreme end of normal pubertal timing, and is the commonest cause of DP in both boys and girls. Familial self-limited DP has a clear genetic basis. It is a highly heritable condition, which often segregates in an autosomal dominant pattern (with or without complete penetrance) in the majority of families. However, the underlying neuroendocrine pathophysiology and genetic regulation has been largely unknown. Very recently novel gene discoveries from next generation sequencing studies have provided insights into the genetic mutations that lead to familial DP. Further understanding has come from sequencing genes known to cause GnRH deficiency, next generation sequencing studies in patients with early puberty, and from large-scale genome wide association studies in the general population. Results of these studies suggest that the genetic basis of DP is likely to be highly heterogeneous. Abnormalities of GnRH neuronal development, function, and its downstream pathways, metabolic and energy homeostatic derangements, and transcriptional regulation of the hypothalamic-pituitary-gonadal axis may all lead to DP. This variety of different pathogenic mechanisms affecting the release of the puberty 'brake' may take place in several age windows between fetal life and puberty.
Collapse
Affiliation(s)
- S R Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
98
|
Mancuso F, Calvitti M, Milardi D, Grande G, Falabella G, Arato I, Giovagnoli S, Vincenzoni F, Mancini F, Nastruzzi C, Bodo M, Baroni T, Castagnola M, Marana R, Pontecorvi A, Calafiore R, Luca G. Testosterone and FSH modulate Sertoli cell extracellular secretion: Proteomic analysis. Mol Cell Endocrinol 2018; 476:1-7. [PMID: 29704537 DOI: 10.1016/j.mce.2018.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 12/24/2022]
Abstract
Spermatogenesis is a highly complicated biological process that occurs in the epithelium of the seminiferous tubules. It is regulated by a complex network of endocrine and paracrine factors and by juxtacrine testicular cross-talk. Sertoli cells (SC) play a key role in spermatogenesis due to their production of trophic, differentiation and immune-modulating factors, but many of the molecular pathways of SC action remain controversial and unclear. Over the last two decades, research has focused on extracellular vesicles as an important mechanism of intercellular communication. The aim of this study was to investigate the presence of extracellular vesicles (EVs) in SC and the modulation of their content in SC after FSH and testosterone stimulation. Highly purified porcine pre-pubertal Sertoli cells were isolated according to previously established methods. After 48 h of culture with FSH or FSH + testosterone stimulation, we identified sertolian EVs containing specific mRNAs. Proteomic analysis of EVs content identified 29 proteins under non-stimulatory conditions, most of which were related to receptor binding activity. FSH stimulation induced increases in inhibin-alpha, inhibin-beta, plakoglobin, haptoglobin, D-3-phosphoglycerate dehydrogenase and sodium/potassium-transporting ATPase in sertolian EVs. Testosterone stimulation enhanced the abundance of inhibin-alpha, inhibin-beta, tissue-type plasminogen activator, epidermal growth factor-like protein 8, elongating factor 1-gamma and D-3-phosphoglycerate dehydrogenase. These results are likely to help determine the unknown molecular secretion of Sertoli cells.
Collapse
Affiliation(s)
- Francesca Mancuso
- Department of Experimental Medicine, University of Perugia, Perugia, 06100, Italy.
| | - Mario Calvitti
- Department of Experimental Medicine, University of Perugia, Perugia, 06100, Italy.
| | - Domenico Milardi
- International Scientific Institute "Paul VI", Rome, 00168, Italy; Division of Endocrinology, Fondazione Policlinico "A. Gemelli", 00168 Rome, Italy.
| | - Giuseppe Grande
- International Scientific Institute "Paul VI", Rome, 00168, Italy.
| | - Giulia Falabella
- Department of Experimental Medicine, University of Perugia, Perugia, 06100, Italy.
| | - Iva Arato
- Department of Experimental Medicine, University of Perugia, Perugia, 06100, Italy.
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, 06100, Italy.
| | - Federica Vincenzoni
- Institute of Chemistry and Clinical Biochemistry, Catholic University, 00168 Rome, Italy.
| | | | - Claudio Nastruzzi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy.
| | - Maria Bodo
- Department of Experimental Medicine, University of Perugia, Perugia, 06100, Italy.
| | - Tiziano Baroni
- Department of Experimental Medicine, University of Perugia, Perugia, 06100, Italy.
| | - Massimo Castagnola
- Institute of Chemistry and Clinical Biochemistry, Catholic University, 00168 Rome, Italy.
| | - Riccardo Marana
- International Scientific Institute "Paul VI", Rome, 00168, Italy.
| | - Alfredo Pontecorvi
- International Scientific Institute "Paul VI", Rome, 00168, Italy; Division of Endocrinology, Fondazione Policlinico "A. Gemelli", 00168 Rome, Italy.
| | - Riccardo Calafiore
- Division of Medical Andrology and Endocrinology of Reproduction, University of Perugia and Saint Mary Hospital, Terni, 05100, Italy; Department of Medicine, University of Perugia, Perugia, 06100, Italy.
| | - Giovanni Luca
- Department of Experimental Medicine, University of Perugia, Perugia, 06100, Italy; Division of Medical Andrology and Endocrinology of Reproduction, University of Perugia and Saint Mary Hospital, Terni, 05100, Italy.
| |
Collapse
|
99
|
Jiao X, Ke H, Qin Y, Chen ZJ. Molecular Genetics of Premature Ovarian Insufficiency. Trends Endocrinol Metab 2018; 29:795-807. [PMID: 30078697 DOI: 10.1016/j.tem.2018.07.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022]
Abstract
Premature ovarian insufficiency (POI) is highly heterogeneous in genetic etiology. Yet identifying causative genes has been challenging with candidate gene approaches. Recent approaches using next generation sequencing (NGS), especially whole exome sequencing (WES), in large POI pedigrees have identified new causatives and proposed relevant candidates, mainly enriched in DNA damage repair, homologous recombination, and meiosis. In the near future, NGS or whole genome sequencing will help better define genes involved in intricate regulatory networks. The research into miRNA and age at menopause represents an emerging field that will help unveil the molecular mechanisms underlying pathogenesis of POI. Shedding light on the genetic architecture is important in interpreting pathogenesis of POI, and will facilitate risk prediction for POI.
Collapse
Affiliation(s)
- Xue Jiao
- Center for Reproductive Medicine, Shandong University, Jinan 250021, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, Shandong, China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, Shandong, China; Suzhou Institute of Shandong University, Suzhou 215123, Jiangsu, China
| | - Hanni Ke
- Center for Reproductive Medicine, Shandong University, Jinan 250021, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, Shandong, China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, Shandong, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan 250021, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, Shandong, China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, Shandong, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan 250021, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, Shandong, China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, Shandong, China; Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200127, China.
| |
Collapse
|
100
|
The Role of Gene Therapy in Premature Ovarian Insufficiency Management. Biomedicines 2018; 6:biomedicines6040102. [PMID: 30388808 PMCID: PMC6316312 DOI: 10.3390/biomedicines6040102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a highly prevalent disorder, characterized by the development of menopause before the age of 40. Most cases are idiopathic; however, in some women the cause of this condition (e.g.; anticancer treatment, genetic disorders, and enzymatic defects) could be identified. Although hormone-replacement therapy, the principal therapeutic approach for POI, helps alleviate the related symptoms, this does not effectively solve the issue of fertility. Assisted reproductive techniques also lack efficacy in these women. Thus, an effective approach to manage patients with POI is highly warranted. Several mechanisms associated with POI have been identified, including the lack of function of the follicle-stimulating hormone (FSH) receptor, alterations in apoptosis control, mutations in Sal-like 4 genes, and thymulin or basonuclin-1 deficiency. The above mentioned may be good targets for gene therapy in order to correct defects leading to POI. The goal of this review is to summarize current experiences on POI studies that employed gene therapy, and to discuss possible future directions in this field.
Collapse
|