51
|
Matsuda K, Nakamura S, Nonaka M, Mochizuki A, Nakayama K, Iijima T, Yokoyama A, Funahashi M, Inoue T. Premotoneuronal inputs to early developing trigeminal motoneurons. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
52
|
Yoshimi T, Koga Y, Nakamura A, Fujishita A, Kohara H, Moriuchi E, Yoshimi K, Tsai CY, Yoshida N. Mechanism of motor coordination of masseter and temporalis muscles for increased masticatory efficiency in mice. J Oral Rehabil 2017; 44:363-374. [PMID: 28181679 DOI: 10.1111/joor.12491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2017] [Indexed: 11/28/2022]
Abstract
The demand for the use of mice as animal models for elucidating the pathophysiologies and pathogeneses of oral motor disorders has been increasing in recent years, as more and more kinds of genetically modified mice that express functional disorders of the stomatognathic system become available. However, the fundamental characteristics of mouse jaw movements during mastication have yet to be fully elucidated. The purpose of this study was to investigate the roles of the masseter and temporalis muscles, and the mechanisms of motor coordination of these muscles for increasing masticatory efficiency in the closing phase in mice. Twenty-two male Jcl:ICR mice were divided into control (n = 8), masseter-hypofunction (n = 7) and temporalis-hypofunction groups (n = 7). Botulinum neurotoxin type A (BoNT⁄A) was used to induce muscle hypofunction. The masticatory movement path in the horizontal direction during the occlusal phase became unstable after BoNT⁄A injection into the masseter muscle. BoNT⁄A injection into the temporalis muscle decreased antero-posterior excursion of the late-closing phase corresponding to the power phase of the chewing cycle. These results suggest that the masseter plays an important role in stabilizing the grinding path, where the food bolus is ground by sliding the posterior teeth from back to front during the occlusal phase. The temporalis plays a major role in retracting the mandible more posteriorly in the early phase of closing, extending the grinding path. Masticatory efficiency is thus increased based on the coordination of activities by the masseter and temporalis muscles.
Collapse
Affiliation(s)
- T Yoshimi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Y Koga
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - A Nakamura
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - A Fujishita
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - H Kohara
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - E Moriuchi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - K Yoshimi
- Yoshimi Skin Clinic, Nagasaki, Japan
| | - C Y Tsai
- Division of Orthodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - N Yoshida
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
53
|
Heikkinen T, Rusanen J, Sato K, Pesonen P, Harila V, Alvesalo L. Childhood intelligence and early tooth wear patterns. Cranio 2017; 36:128-136. [PMID: 28219251 DOI: 10.1080/08869634.2017.1287551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of this study is to explore the relationships between early dental wear patterns and preschool IQ (Intelligence Quotient, by Stanford-Binet) of the child to illuminate the historic relationship of mental queries and bruxism. METHODS The dental study participants were 864 Euro-American preschool and school children whose IQs were tested for school maturity purposes at the age of 4 years, followed by dental data in a cross-sectional manner at the mean age of 7.8 years. Worn dentitions were classified as "symmetric" or "right-" and "left-sided," based on the faceting of the teeth. RESULTS In general, the relationships of tooth wear and intelligence were scarce, reflecting social background factors. Statistically significant results between asymmetric wear and gender groups suggest that direction of jaw function has a role in the regulation of processes responsible for individual mental performance in childhood. DISCUSSION Increased left-side tooth wear and early advantage in the intelligence test in girls is intriguing due to the fact that they reach maturity earlier than boys in verbal articulation, controlled in most cases by the limited area on the left side of the brain.
Collapse
Affiliation(s)
- Tuomo Heikkinen
- a Department of Oral Development and Orthodontics, Unit of Oral Health Sciences , Medical Research Center, University of Oulu, Oulu University Hospital , Oulu , Finland
| | - Jaana Rusanen
- a Department of Oral Development and Orthodontics, Unit of Oral Health Sciences , Medical Research Center, University of Oulu, Oulu University Hospital , Oulu , Finland
| | - Koshi Sato
- b Graduate School of Dentistry , Tohoku University , Sendai , Japan
| | - Paula Pesonen
- a Department of Oral Development and Orthodontics, Unit of Oral Health Sciences , Medical Research Center, University of Oulu, Oulu University Hospital , Oulu , Finland
| | - Virpi Harila
- a Department of Oral Development and Orthodontics, Unit of Oral Health Sciences , Medical Research Center, University of Oulu, Oulu University Hospital , Oulu , Finland
| | - Lassi Alvesalo
- a Department of Oral Development and Orthodontics, Unit of Oral Health Sciences , Medical Research Center, University of Oulu, Oulu University Hospital , Oulu , Finland
| |
Collapse
|
54
|
Nakamura Y, Yanagawa Y, Morrison SF, Nakamura K. Medullary Reticular Neurons Mediate Neuropeptide Y-Induced Metabolic Inhibition and Mastication. Cell Metab 2017; 25:322-334. [PMID: 28065829 PMCID: PMC5299028 DOI: 10.1016/j.cmet.2016.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/16/2016] [Accepted: 12/05/2016] [Indexed: 02/01/2023]
Abstract
Hypothalamic neuropeptide Y (NPY) elicits hunger responses to increase the chances of surviving starvation: an inhibition of metabolism and an increase in feeding. Here we elucidate a key central circuit mechanism through which hypothalamic NPY signals drive these hunger responses. GABAergic neurons in the intermediate and parvicellular reticular nuclei (IRt/PCRt) of the medulla oblongata, which are activated by NPY-triggered neural signaling from the hypothalamus, potentially through the nucleus tractus solitarius, mediate the NPY-induced inhibition of metabolic thermogenesis in brown adipose tissue (BAT) via their innervation of BAT sympathetic premotor neurons. Intriguingly, the GABAergic IRt/PCRt neurons innervating the BAT sympathetic premotor region also innervate the masticatory motor region, and stimulation of the IRt/PCRt elicits mastication and increases feeding as well as inhibits BAT thermogenesis. These results indicate that GABAergic IRt/PCRt neurons mediate hypothalamus-derived hunger signaling by coordinating both autonomic and feeding motor systems to reduce energy expenditure and to promote feeding.
Collapse
Affiliation(s)
- Yoshiko Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
55
|
Schimmel M, Voegeli G, Duvernay E, Leemann B, Müller F. Oral tactile sensitivity and masticatory performance are impaired in stroke patients. J Oral Rehabil 2017; 44:163-171. [PMID: 28075495 DOI: 10.1111/joor.12482] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2017] [Indexed: 11/29/2022]
Abstract
Oro-facial impairment following stroke frequently involves reduced chewing performance, that is oral phase dysphagia. The aim was to investigate the sensitivity of oral tissues following stroke and its potential impact on masticatory function. Therefore, hospitalised post-stroke patients were recruited and compared to healthy controls. Outcome measures comprised masticatory performance employing a colour-mixing ability, that is a bolus-kneading test, maximum lip- and bite force and the one-point and two-point tactile thresholds. Food hoarding and prevalence of dry mouth were evaluated with ordinal scales. Twenty-seven stroke patients (age 64·3 ± 14·1 years) and 27 healthy controls (age 60·8 ± 14·3 years, P = 0·254) participated in this study. The groups had similar numbers of occluding units. Stroke patients reported more frequently dry mouth sensations and food hoarding. The intra-oral tactile sensitivity on the contra-lesional side was significantly lower in stroke patients compared to controls (0·0001 < P < 0·0002), and significant intra-group side differences were found only in the stroke group (0·0001 < P < 0·0010). For the lip, both sides were less sensitive in the stroke group compared with controls. The experiments confirmed lower masticatory performance and lip force in the stroke group, but the bite force was similar compared to healthy controls. Oral sensitivity was correlated with masticatory performance when a global correlation model was applied. A stroke may affect the sensitivity of the intra-oral tissues contra-lesionally, thus potentially affecting chewing function. Rehabilitation should therefore not only focus on motor impairment, but equally stimulate the sensitivity of the oral tissues, employing dry ice application or similar specific treatments.
Collapse
Affiliation(s)
- M Schimmel
- Division of Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Division of Gerodontology and Removable Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - G Voegeli
- Division of Gerodontology and Removable Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - E Duvernay
- Division of Gerodontology and Removable Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - B Leemann
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospitals and University of Geneva, Geneva, Switzerland
| | - F Müller
- Division of Gerodontology and Removable Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland.,Department of Internal Medicine, Rehabilitation and Geriatrics, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
56
|
Yokoyama T, Sato M, Natsui S, Kuboyama N, Suzuki K, Inaba H, Shibuya K. Effect of Gum Chewing Frequency on Oxygenation of the Prefrontal Cortex. Percept Mot Skills 2016; 124:58-71. [PMID: 30208779 DOI: 10.1177/0031512516683074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Since increased cerebral oxygenation reflects cerebral activation, this study investigated the effect of mastication frequency on prefrontal cortex oxygenation. Eleven young volunteers (nine women, two men; M age = 20.9 years, SD = 0.9) carried out three trials in which they were asked to chew a tasteless gum for 3 min at varying (rates of mastication frequency: 30, 70, and 110). Breaks of 2 min each were interleaved between trials. The oxygenation of the left prefrontal cortex was monitored by near-infrared spectroscopy. We found a significant increase in cortical oxygenation during gum chewing in all three conditions ( p < .05), compared with a resting level; we also found a significant difference between the Fast and Slow chewing conditions, and between the Fast and Normal (70 rpm) conditions, both findings seemingly related to activation of a motor command in frontal brain regions. To our knowledge, this is the first report on the effect of mastication frequency on cerebral oxygenation. Possible implications of this finding are discussed.
Collapse
Affiliation(s)
- Tomomi Yokoyama
- 1 Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan
| | - Megumi Sato
- 1 Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan
| | - Saya Natsui
- 1 Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan
| | - Naomi Kuboyama
- 2 Faculty of Business Administration, Osaka University of Commerce, Higashi-Osaka, Japan
| | - Kasumi Suzuki
- 1 Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan
| | - Hiromi Inaba
- 1 Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan
| | - Kenichi Shibuya
- 1 Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
57
|
Häggman-Henrikson B, Nordh E, Zafar H, Eriksson PO. Head Immobilization can Impair Jaw Function. J Dent Res 2016; 85:1001-5. [PMID: 17062739 DOI: 10.1177/154405910608501105] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Findings that jaw-opening/-closing relies on both mandibular and head movements suggest that jaw and neck muscles are jointly activated in jaw function. This study tested the hypothesis that rhythmic jaw activities involve an active repositioning of the head, and that head fixation can impair jaw function. Concomitant mandibular and head-neck movements were recorded during rhythmic jaw activities in 12 healthy adults, with and without fixation of the head. In four participants, the movement recording was combined with simultaneous registration of myoelectric activity in jaw and neck muscles. The results showed neck muscle activity during jaw opening with and without head fixation. Notably, head fixation led to reduced mandibular movements and shorter duration of jaw-opening/-closing cycles. The findings suggest recruitment of neck muscles in jaw activities, and that head fixation can impair jaw function. The results underline the jaw and neck neuromuscular relationship in jaw function.
Collapse
Affiliation(s)
- B Häggman-Henrikson
- Department of Odontology, Clinical Oral Physiology, Umeå University, S-901 87, Umeå, Sweden
| | | | | | | |
Collapse
|
58
|
Nakata H, Aoki M, Sakamoto K. Effects of mastication on human somatosensory processing: A study using somatosensory-evoked potentials. Neurosci Res 2016; 117:28-34. [PMID: 27939912 DOI: 10.1016/j.neures.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/16/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
The aim of the present study was to investigate the effects of mastication on somatosensory processing using somatosensory-evoked potentials (SEPs). Fourteen healthy subjects received a median nerve stimulation at the right wrist under two conditions: Mastication and Control. SEPs were recorded in five sessions for approximately seven minutes: Pre, Post 1, 2, 3, and 4. Subjects were asked to chew gum for five minutes after one session in Mastication. Control included the same five sessions. The amplitudes and latencies of P14, N20, P25, N35, P45, and N60 components at C3', frontal N30 component at Fz, and P100 and N140 components at Pz were analyzed. The amplitude of P45-N60 was significantly smaller at Post 1, 2, 3, and 4 than at Pre in Control, but not in Mastication. The latency of P25 was significantly longer at Post 2, 3, and 4 than at Pre in Control, but not in Mastication. The latency of P100 was significantly longer at Post 2 than at Pre in Control, but not in Mastication. These results suggest the significant effects of mastication on the neural activity of human somatosensory processing.
Collapse
Affiliation(s)
- Hiroki Nakata
- Faculty of Human Life and Environment, Nara Women's University, Nara City, Japan.
| | - Mai Aoki
- Faculty of Human Life and Environment, Nara Women's University, Nara City, Japan
| | - Kiwako Sakamoto
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
59
|
Makiguchi M, Funaki Y, Kato C, Okihara H, Ishida T, Yabushita T, Kokai S, Ono T. Effects of increased occlusal vertical dimension on the jaw-opening reflex in adult rats. Arch Oral Biol 2016; 72:39-46. [PMID: 27529306 DOI: 10.1016/j.archoralbio.2016.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 07/26/2016] [Accepted: 08/06/2016] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Malocclusion with deep overbite and facial esthetics improve when facial height is intentionally increased during orthodontic extrusion of the posterior teeth. Thus, a better understanding of post-treatment stability of increased occlusal vertical dimension (iOVD) in adult patients is important. We focused on the jaw-opening reflex (JOR), which plays an important role in the control of jaw movements during mastication, and investigated the effects of iOVD on the JOR in rats with an electrophysiological technique. DESIGN One hundred and twenty 13-week-old male Wistar rats were randomly divided into control and experimental groups. Rats in the experimental group received a 2-mm buildup of composite resin on the maxillary molars at 13 weeks of age. The JOR was induced by low-intensity electrical stimulation of the left inferior alveolar nerve. The electromyographic responses were recorded from the digastric muscle at 13, 14, 15, 17, 19, and 23 weeks of age. JOR properties including latency, duration, and peak-to-peak amplitude were measured and compared between the groups. RESULTS The latency of the JOR was significantly longer and the peak-to-peak amplitude was significantly smaller in the experimental group than in the control group from 14 to 19 weeks of age, while the reflex duration was not significantly different. Intra-group comparisons of the latency and peak-to-peak amplitudes among rats 14-19 weeks of age were significantly different between the experimental group and the control group. CONCLUSIONS iOVD affected the latency and amplitude of the JOR but not the duration. The JOR adapted after 10 weeks of iOVD.
Collapse
Affiliation(s)
- Mio Makiguchi
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Yukiha Funaki
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Chiho Kato
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Hidemasa Okihara
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Takayoshi Ishida
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Tadachika Yabushita
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Satoshi Kokai
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Takashi Ono
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
60
|
Endo H, Ino S, Fujisaki W. The effect of a crunchy pseudo-chewing sound on perceived texture of softened foods. Physiol Behav 2016; 167:324-331. [PMID: 27720736 DOI: 10.1016/j.physbeh.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/21/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
Elderly individuals whose ability to chew and swallow has declined are often restricted to unpleasant diets of very soft food, leading to a poor appetite. To address this problem, we aimed to investigate the influence of altered auditory input of chewing sounds on the perception of food texture. The modified chewing sound was reported to influence the perception of food texture in normal foods. We investigated whether the perceived sensations of nursing care foods could be altered by providing altered auditory feedback of chewing sounds, even if the actual food texture is dull. Chewing sounds were generated using electromyogram (EMG) of the masseter. When the frequency properties of the EMG signal are modified and it is heard as a sound, it resembles a "crunchy" sound, much like that emitted by chewing, for example, root vegetables (EMG chewing sound). Thirty healthy adults took part in the experiment. In two conditions (with/without the EMG chewing sound), participants rated the taste, texture and evoked feelings of five kinds of nursing care foods using two questionnaires. When the "crunchy" EMG chewing sound was present, participants were more likely to evaluate food as having the property of stiffness. Moreover, foods were perceived as rougher and to have a greater number of ingredients in the condition with the EMG chewing sound, and satisfaction and pleasantness were also greater. In conclusion, the "crunchy" pseudo-chewing sound could influence the perception of food texture, even if the actual "crunchy" oral sensation is lacking. Considering the effect of altered auditory feedback while chewing, we can suppose that such a tool would be a useful technique to help people on texture-modified diets to enjoy their food.
Collapse
Affiliation(s)
- Hiroshi Endo
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan.
| | - Shuichi Ino
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
| | - Waka Fujisaki
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
| |
Collapse
|
61
|
Kageyama I, Yoshimura K, Satoh Y, Nanayakkara CD, Pallegama RW, Iwasaki SI. Proposal for research and education: joint lectures and practicals on central nervous system anatomy and physiology. J Physiol Sci 2016; 66:283-92. [PMID: 26621026 PMCID: PMC10718038 DOI: 10.1007/s12576-015-0428-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/05/2015] [Indexed: 01/01/2023]
Abstract
We coordinated anatomy and physiology lectures and practicals to facilitate an integrated understanding of morphology and function in a basic medical science program for dental students and to reduce the time spent on basic science education. This method is a means to provide the essential information and skills in less time. The overall impression was that the practice of joint central nervous system lectures and practicals was an efficient method for students, which suggests that joint lectures might also be useful for clinical subjects. About two-thirds of students felt that the joint anatomy and physiology lecture on the central nervous system was useful and necessary in understanding the relationship between morphology and function, at least for this subject. One-third of students were neutral on the effectiveness of this method. However, the survey results suggest that improvements are needed in the method and timing of joint lectures and practicals. The present teaching approach can be further improved by conducting combined lectures in which the form and function of anatomic structures are presented by the relevant departments during the same lecture. Finally, joint lecturers and practicals offer an opportunity to increase student understanding of the importance of new research findings by the present authors and other researchers.
Collapse
Affiliation(s)
- Ikuo Kageyama
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-Cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Ken Yoshimura
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-Cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Yoshihide Satoh
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-Cho, Chuo-Ku, Niigata, 951-8580, Japan
| | - Chinthani D Nanayakkara
- Department of Basic Sciences, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Ranjith W Pallegama
- Division of Physiology, Department of Basic Sciences, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Shin-Ichi Iwasaki
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-Cho, Chuo-Ku, Niigata, 951-8580, Japan.
| |
Collapse
|
62
|
Luhmann HJ, Sinning A, Yang JW, Reyes-Puerta V, Stüttgen MC, Kirischuk S, Kilb W. Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions. Front Neural Circuits 2016; 10:40. [PMID: 27252626 PMCID: PMC4877528 DOI: 10.3389/fncir.2016.00040] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/06/2016] [Indexed: 11/13/2022] Open
Abstract
Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity patterns become more complex, involve larger networks and propagate over several neocortical areas. The developmental shift from local to large-scale network activity is accompanied by a gradual shift from electrical to chemical synaptic transmission with an initial excitatory action of chloride-gated channels activated by GABA, glycine and taurine. Transient neuronal populations in the subplate (SP) support temporary circuits that play an important role in tuning early neocortical activity and the formation of mature neuronal networks. Thus, early spontaneous activity patterns control the formation of developing networks in sensory cortices, and disturbances of these activity patterns may lead to long-lasting neuronal deficits.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Vicente Reyes-Puerta
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Maik C Stüttgen
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| |
Collapse
|
63
|
Spencer RM, Blitz DM. Network feedback regulates motor output across a range of modulatory neuron activity. J Neurophysiol 2016; 115:3249-63. [PMID: 27030739 DOI: 10.1152/jn.01112.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/24/2016] [Indexed: 11/22/2022] Open
Abstract
Modulatory projection neurons alter network neuron synaptic and intrinsic properties to elicit multiple different outputs. Sensory and other inputs elicit a range of modulatory neuron activity that is further shaped by network feedback, yet little is known regarding how the impact of network feedback on modulatory neurons regulates network output across a physiological range of modulatory neuron activity. Identified network neurons, a fully described connectome, and a well-characterized, identified modulatory projection neuron enabled us to address this issue in the crab (Cancer borealis) stomatogastric nervous system. The modulatory neuron modulatory commissural neuron 1 (MCN1) activates and modulates two networks that generate rhythms via different cellular mechanisms and at distinct frequencies. MCN1 is activated at rates of 5-35 Hz in vivo and in vitro. Additionally, network feedback elicits MCN1 activity time-locked to motor activity. We asked how network activation, rhythm speed, and neuron activity levels are regulated by the presence or absence of network feedback across a physiological range of MCN1 activity rates. There were both similarities and differences in responses of the two networks to MCN1 activity. Many parameters in both networks were sensitive to network feedback effects on MCN1 activity. However, for most parameters, MCN1 activity rate did not determine the extent to which network output was altered by the addition of network feedback. These data demonstrate that the influence of network feedback on modulatory neuron activity is an important determinant of network output and feedback can be effective in shaping network output regardless of the extent of network modulation.
Collapse
Affiliation(s)
| | - Dawn M Blitz
- Department of Biology, Miami University, Oxford, Ohio
| |
Collapse
|
64
|
Matsuda S, Yamaguchi T, Mikami S, Okada K, Gotouda A, Sano K. Rhythm and amplitude of rhythmic masticatory muscle activity during sleep in bruxers – comparison with gum chewing. Cranio 2016; 34:234-41. [DOI: 10.1080/08869634.2015.1106807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
65
|
Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity. PLoS Comput Biol 2016; 12:e1004702. [PMID: 26824331 PMCID: PMC4732667 DOI: 10.1371/journal.pcbi.1004702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/11/2015] [Indexed: 11/19/2022] Open
Abstract
What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition.
Collapse
|
66
|
Belanger K, Dinis TM, Taourirt S, Vidal G, Kaplan DL, Egles C. Recent Strategies in Tissue Engineering for Guided Peripheral Nerve Regeneration. Macromol Biosci 2016; 16:472-81. [PMID: 26748820 DOI: 10.1002/mabi.201500367] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/19/2015] [Indexed: 11/10/2022]
Abstract
The repair of large crushed or sectioned segments of peripheral nerves remains a challenge in regenerative medicine due to the complexity of the biological environment and the lack of proper biomaterials and architecture to foster reconstruction. Traditionally such reconstruction is only achieved by using fresh human tissue as a surrogate for the absence of the nerve. However, recent focus in the field has been on new polymer structures and specific biofunctionalization to achieve the goal of peripheral nerve regeneration by developing artificial nerve prostheses. This review presents various tested approaches as well their effectiveness for nerve regrowth and functional recovery.
Collapse
Affiliation(s)
- Kayla Belanger
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - Tony M Dinis
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - Sami Taourirt
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - Guillaume Vidal
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Christopher Egles
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France.,Department of Oral and Maxillofacial Pathology, Tufts University, School of Dental Medicine, 55 Kneeland Street, Boston, MA, 02111, USA
| |
Collapse
|
67
|
Faunes M, Oñate-Ponce A, Fernández-Collemann S, Henny P. Excitatory and inhibitory innervation of the mouse orofacial motor nuclei: A stereological study. J Comp Neurol 2015. [DOI: 10.1002/cne.23862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Macarena Faunes
- Laboratorio de Neuroanatomía, Departamento de Anatomía Normal, Escuela de Medicina; Pontificia Universidad Católica de Chile; Santiago Chile
- Centro Interdisciplinario de Neurociencias; Pontificia Universidad Católica de Chile; Santiago Chile
- Sensory and Motor Systems Group, Department of Anatomy with Radiology, Faculty of Medical and Health Sciences; University of Auckland; Private Bag 92019, Grafton 1023 Auckland New Zealand
| | - Alejandro Oñate-Ponce
- Laboratorio de Neuroanatomía, Departamento de Anatomía Normal, Escuela de Medicina; Pontificia Universidad Católica de Chile; Santiago Chile
- Centro Interdisciplinario de Neurociencias; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Sara Fernández-Collemann
- Laboratorio de Neuroanatomía, Departamento de Anatomía Normal, Escuela de Medicina; Pontificia Universidad Católica de Chile; Santiago Chile
- Centro Interdisciplinario de Neurociencias; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Pablo Henny
- Laboratorio de Neuroanatomía, Departamento de Anatomía Normal, Escuela de Medicina; Pontificia Universidad Católica de Chile; Santiago Chile
- Centro Interdisciplinario de Neurociencias; Pontificia Universidad Católica de Chile; Santiago Chile
| |
Collapse
|
68
|
Hayashi H, Hori K, Taniguchi H, Nakamura Y, Tsujimura T, Ono T, Inoue M. Biomechanics of human tongue movement during bolus compression and swallowing. J Oral Sci 2015; 55:191-8. [PMID: 24042584 DOI: 10.2334/josnusd.55.191] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
We evaluated the effects of gel consistency and bolus volume on ingestion in humans. Eight healthy men were asked to ingest liquids, and sample foods of different gel consistencies and volumes, as usual. Tongue pressure against the hard palate was recorded at five points, and bolus flow was recorded using videoendoscopic images. The number of squeezes increased as gel consistency and volume increased. The integrated magnitude of tongue pressure during squeezing increased with increasing gel consistency. Bolus propulsion into the pharynx was affected by bolus characteristics, and location of the bolus head at the onset of pharyngeal swallowing was not related to squeezing behavior. The trigger point at which pharyngeal swallowing began was subject-dependent. During swallowing, the magnitude of tongue pressure moderately increased with increasing gel consistency, as compared with squeezing. Tongue pressure was not related to bolus volume. The current results suggest that patterns of tongue pressure during squeezing and swallowing are differentially affected by bolus conditions. However, healthy subjects differed in the techniques used for squeezing and swallowing.
Collapse
Affiliation(s)
- Hirokazu Hayashi
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences
| | | | | | | | | | | | | |
Collapse
|
69
|
Peck CC. Biomechanics of occlusion - implications for oral rehabilitation. J Oral Rehabil 2015; 43:205-14. [DOI: 10.1111/joor.12345] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2015] [Indexed: 11/26/2022]
Affiliation(s)
- C. C. Peck
- Faculty of Dentistry; The University of Sydney; Sydney NSW Australia
| |
Collapse
|
70
|
Investigating complex basal ganglia circuitry in the regulation of motor behaviour, with particular focus on orofacial movement. Behav Pharmacol 2015; 26:18-32. [PMID: 25485640 DOI: 10.1097/fbp.0000000000000118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Current concepts of basal ganglia function have evolved from the essentially motoric, to include a range of extramotoric functions that involve not only dopaminergic but also cholinergic, γ-aminobutyric acid (GABA)ergic and glutamatergic mechanisms. We consider these mechanisms and their efferent systems, including spiralling, feed-forward striato-nigro-striatal circuitry, involving the dorsal and ventral striatum and the nucleus accumbens (NAc) core and shell. These processes are illustrated using three behavioural models: turning-pivoting, orofacial movements in rats and orofacial movements in genetically modified mice. Turning-pivoting indicates that dopamine-dependent behaviour elicited from the NAc shell is funnelled through the NAc-nigro-striato-nigro-pedunculopontine pathway, whereas acetylcholine-dependent behaviour elicited from the NAc shell is funnelled through the NAc-ventral pallidum-mediodorsal thalamus pathway. Cooperative/synergistic interactions between striatal D1-like and D2-like dopamine receptors regulate individual topographies of orofacial movements that are funnelled through striatal projection pathways and involve interactions with GABAergic and glutamatergic receptor subtypes. This application of concerted behavioural, neurochemical and neurophysiological techniques implicates a network that is yet broader and interacts with other neurotransmitters and neuropeptides within subcortical, cortical and brainstem regions to 'sculpt' aspects of behaviour into its topographical collective.
Collapse
|
71
|
Cho C, Louie K, Maawadh A, Gerstner GE. Comparisons of chewing rhythm, craniomandibular morphology, body mass and height between mothers and their biological daughters. Arch Oral Biol 2015; 60:1667-74. [PMID: 26363460 DOI: 10.1016/j.archoralbio.2015.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 07/27/2015] [Accepted: 08/08/2015] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study and compare the relationships between mean chewing cycle duration, selected cephalometric variables representing mandibular length, face height, etc., measured in women and in their teenage or young-adult biological daughters. DESIGN Daughters were recruited from local high schools and the University of Michigan School of Dentistry. Selection criteria included healthy females with full dentition, 1st molar occlusion, no active orthodontics, no medical conditions nor medication use that could interfere with normal masticatory motor function. Mothers had to be biologically related to their daughters. All data were obtained in the School of Dentistry. Measurements obtained from lateral cephalograms included: two "jaw length" measures, condylion-gnathion and gonion-gnathion, and four measures of facial profile including lower anterior face height, and angles sella-nasion-A point (SNA), sella-nasion-B point (SNB) and A point-nasion-B point (ANB). Mean cycle duration was calculated from 60 continuous chewing cycles, where a cycle was defined as the time between two successive maximum jaw openings in the vertical dimension. Other variables included subject height and weight. Linear and logistic regression analyses were used to evaluate the mother-daughter relationships and to study the relationships between cephalometric variables and chewing cycle duration. RESULTS Height, weight, Co-Gn and Go-Gn were significantly correlated between mother-daughter pairs; however, mean cycle duration was not (r(2)=0.015). Mean cycle duration was positively correlated with ANB and height in mothers, but negatively correlated with Co-Gn in daughters. CONCLUSIONS Chewing rate is not correlated between mothers and daughters in humans.
Collapse
Affiliation(s)
- Catherine Cho
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Ke'ale Louie
- Oral Health Sciences PhD Program School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Ahmed Maawadh
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Geoffrey E Gerstner
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA.
| |
Collapse
|
72
|
Gemba C, Nakayama K, Nakamura S, Mochizuki A, Inoue M, Inoue T. Involvement of histaminergic inputs in the jaw-closing reflex arc. J Neurophysiol 2015; 113:3720-35. [PMID: 25904711 DOI: 10.1152/jn.00515.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 04/20/2015] [Indexed: 11/22/2022] Open
Abstract
Histamine receptors are densely expressed in the mesencephalic trigeminal nucleus (MesV) and trigeminal motor nucleus. However, little is known about the functional roles of neuronal histamine in controlling oral-motor activity. Thus, using the whole-cell recording technique in brainstem slice preparations from Wistar rats aged between postnatal days 7 and 13, we investigated the effects of histamine on the MesV neurons innervating the masseter muscle spindles and masseter motoneurons (MMNs) that form a reflex arc for the jaw-closing reflex. Bath application of histamine (100 μM) induced membrane depolarization in both MesV neurons and MMNs in the presence of tetrodotoxin, whereas histamine decreased and increased the input resistance in MesV neurons and MMNs, respectively. The effects of histamine on MesV neurons and MMNs were mimicked by an H1 receptor agonist, 2-pyridylethylamine (100 μM). The effects of an H2 receptor agonist, dimaprit (100 μM), on MesV neurons were inconsistent, whereas MMNs were depolarized without changes in the input resistance. An H3 receptor agonist, immethridine (100 μM), also depolarized both MesV neurons and MMNs without changing the input resistance. Histamine reduced the peak amplitude of postsynaptic currents (PSCs) in MMNs evoked by stimulation of the trigeminal motor nerve (5N), which was mimicked by 2-pyridylethylamine but not by dimaprit or immethridine. Moreover, 2-pyridylethylamine increased the failure rate of PSCs evoked by minimal stimulation and the paired-pulse ratio. These results suggest that histaminergic inputs to MesV neurons through H1 receptors are involved in the suppression of the jaw-closing reflex although histamine depolarizes MesV neurons and/or MMNs.
Collapse
Affiliation(s)
- Chikako Gemba
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan; Department of Pediatric Dentistry, Showa University School of Dentistry, Oota-ku, Tokyo, Japan
| | - Kiyomi Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | - Mitsuko Inoue
- Department of Pediatric Dentistry, Showa University School of Dentistry, Oota-ku, Tokyo, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
73
|
Fuentes AD, Miralles R, Santander H, Gutiérrez MF, Bull R, Martin C. Effect of natural mediotrusive contact on electromyographic activity of jaw and cervical muscles during chewing. Acta Odontol Scand 2015; 73:626-32. [PMID: 25891182 DOI: 10.3109/00016357.2015.1030767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study evaluated the effect of a natural mediotrusive contact on the electromyographic (EMG) activity of the anterior temporalis and sternocleidomastoid muscles during chewing in healthy subjects. MATERIALS AND METHODS The study sample included two groups of 15 subjects each (Group 1: with natural mediotrusive contact; Group 2: without natural mediotrusive contact). Bilateral surface EMG activity was recorded on anterior temporalis and sternocleidomastoid muscles during unilateral chewing of a half cookie and unilateral chewing of a piece of apple. Anterior temporalis and sternocleidomastoid muscle activity was normalized against activity recorded during maximal voluntary clenching in intercuspal position and maximal intentional isometric head-neck rotation to each side, respectively. The partial and total asymmetry indexes were also calculated. Data were analyzed using Mann-Whitney, Wilcoxon and unpaired t-test. RESULTS EMG activity of anterior temporalis and sternocleidomastoid muscles showed no significant difference between the groups. EMG activity of anterior temporalis was similar between working and non-working sides during chewing in both groups. EMG activity of sternocleidomastoid muscle was higher in the working side than in the non-working side in Group 2 subjects. Asymmetry indexes were not significantly different between groups. CONCLUSIONS The similar EMG pattern and asymmetry indexes observed suggest the predominance of central nervous control over peripheral inputs on anterior temporalis and sternocleidomastoid motor neuron pools.
Collapse
Affiliation(s)
- Aler Daniel Fuentes
- Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile , Santiago , Chile
| | | | | | | | | | | |
Collapse
|
74
|
Mastication accelerates Go/No-go decisional processing: An event-related potential study. Clin Neurophysiol 2015; 126:2099-107. [PMID: 25725969 DOI: 10.1016/j.clinph.2014.12.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 11/14/2014] [Accepted: 12/28/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The purpose of the present study was to investigate the effect of mastication on Go/No-go decisional processing using event-related potentials (ERPs). METHOD Thirteen normal subjects underwent seven sessions of a somatosensory Go/No-go paradigm for approximately 4min; Pre, and Post 1, 2, 3, 4, 5, and 6. The Control condition included the same seven sessions. The RT and standard deviation were recorded, and the peak amplitude and latency of the N140 and P300 components were analyzed. RESULTS The RT was significantly shorter in Mastication than in Control at Post 1-3 and 4-6. The peak latency of N140 was earlier in Mastication than in Control at Post 4-6. The latency of N140 was shortened by repeated sessions in Mastication, but not by those in Control. The peak latency of P300 was significantly shorter in Mastication than in Control at Post 4-6. The peak latency of P300 was significantly longer in Control with repeated sessions, but not in Mastication. CONCLUSIONS These results suggest that mastication may influence response execution processing in Go trials, as well as response inhibition processing in No-go trials. SIGNIFICANCE Mastication accelerated Go/No-go decisional processing in the human brain.
Collapse
|
75
|
Hori K, Hayashi H, Yokoyama S, Ono T, Ishihara S, Magara J, Taniguchi H, Funami T, Maeda Y, Inoue M. Comparison of mechanical analyses and tongue pressure analyses during squeezing and swallowing of gels. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.09.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
76
|
Fujishita A, Koga Y, Utsumi D, Nakamura A, Yoshimi T, Yoshida N. Effects of feeding a soft diet and subsequent rehabilitation on the development of the masticatory function. J Oral Rehabil 2014; 42:266-74. [DOI: 10.1111/joor.12248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2014] [Indexed: 11/30/2022]
Affiliation(s)
- A. Fujishita
- Department of Orthodontics and Dentofacial Orthopedics; Graduate school of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Y. Koga
- Department of Orthodontics and Dentofacial Orthopedics; Graduate school of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - D. Utsumi
- Department of Orthodontics and Dentofacial Orthopedics; Graduate school of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - A. Nakamura
- Department of Orthodontics and Dentofacial Orthopedics; Graduate school of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - T. Yoshimi
- Department of Orthodontics and Dentofacial Orthopedics; Graduate school of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - N. Yoshida
- Department of Orthodontics and Dentofacial Orthopedics; Graduate school of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| |
Collapse
|
77
|
Oda M, Yoshino K, Tanaka T, Shiiba S, Makihara E, Miyamoto I, Nogami S, Kito S, Wakasugi-Sato N, Matsumoto-Takeda S, Nishimura S, Murakami K, Koga M, Kawagishi S, Yoshioka I, Masumi SI, Kimura M, Morimoto Y. Identification and adjustment of experimental occlusal interference using functional magnetic resonance imaging. BMC Oral Health 2014; 14:124. [PMID: 25304016 PMCID: PMC4200220 DOI: 10.1186/1472-6831-14-124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The purpose of this study was to use functional magnetic resonance imaging (fMRI) to quantify changes in brain activity during experimental occlusal interference. METHODS Fourteen healthy volunteers performed a rhythmical tapping occlusion task with experimental occlusal interference of the right molar tooth at 0 mm (no occlusion), 0.5 mm, and 0.75 mm. The blood-oxygen-level dependent (BOLD) signal was quantified using statistical parametric mapping and compared between rest periods and task periods. RESULTS In tapping tasks with experimental occlusal interference of 0.75 mm or 0.5 mm, there was clear activation of the contralateral teeth-related primary sensory cortex and Brodmann's area 46. At 0 and 30 minutes after removal of the experimental occlusal interference, the activation clearly appeared in the bilateral teeth-related primary sensory cortices and Brodmann's area 46. At 60 minutes after the removal of the experimental occlusal interference, the activation of Brodmann's area 46 had disappeared, and only the bilateral teeth-related primary sensory cortices were active. CONCLUSIONS The present results suggest that adjustments for experimental occlusal interference can be objectively evaluated using fMRI. We expect that this method of evaluating adjustments in occlusal interference, combined with fMRI and the tapping task, could be applied clinically in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yasuhiro Morimoto
- Division of Oral and Maxillofacial Radiology, Kyushu Dental University, Kitakyushu, Japan.
| |
Collapse
|
78
|
Johansson AS, Pruszynski JA, Edin BB, Westberg KG. Biting intentions modulate digastric reflex responses to sudden unloading of the jaw. J Neurophysiol 2014; 112:1067-73. [PMID: 24899675 DOI: 10.1152/jn.00133.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reflex responses in jaw-opening muscles can be evoked when a brittle object cracks between the teeth and suddenly unloads the jaw. We hypothesized that this reflex response is flexible and, as such, is modulated according to the instructed goal of biting through an object. Study participants performed two different biting tasks when holding a peanut half stacked on a chocolate piece between their incisors. In one task, they were asked to split the peanut half only (single-split task), and in the other task, they were asked to split both the peanut and the chocolate in one action (double-split task). In both tasks, the peanut split evoked a jaw-opening muscle response, quantified from electromyogram (EMG) recordings of the digastric muscle in a window 20-60 ms following peanut split. Consistent with our hypothesis, we found that the jaw-opening muscle response in the single-split trials was about twice the size of the jaw-opening muscle response in the double-split trials. A linear model that predicted the jaw-opening muscle response on a single-trial basis indicated that task settings played a significant role in this modulation but also that the presplit digastric muscle activity contributed to the modulation. These findings demonstrate that, like reflex responses to mechanical perturbations in limb muscles, reflex responses in jaw muscles not only show gain-scaling but also are modulated by subject intent.
Collapse
Affiliation(s)
- Anders S Johansson
- Department of Integrative Medical Biology, Physiology Section, Umeå University, Umeå, Sweden
| | - J Andrew Pruszynski
- Department of Integrative Medical Biology, Physiology Section, Umeå University, Umeå, Sweden
| | - Benoni B Edin
- Department of Integrative Medical Biology, Physiology Section, Umeå University, Umeå, Sweden
| | - Karl-Gunnar Westberg
- Department of Integrative Medical Biology, Physiology Section, Umeå University, Umeå, Sweden
| |
Collapse
|
79
|
Automated monitoring and quantitative analysis of feeding behaviour in Drosophila. Nat Commun 2014; 5:4560. [PMID: 25087594 PMCID: PMC4143931 DOI: 10.1038/ncomms5560] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/30/2014] [Indexed: 11/08/2022] Open
Abstract
Food ingestion is one of the defining behaviours of all animals, but its quantification and analysis remain challenging. This is especially the case for feeding behaviour in small, genetically tractable animals such as Drosophila melanogaster. Here, we present a method based on capacitive measurements, which allows the detailed, automated and high-throughput quantification of feeding behaviour. Using this method, we were able to measure the volume ingested in single sips of an individual, and monitor the absorption of food with high temporal resolution. We demonstrate that flies ingest food by rhythmically extending their proboscis with a frequency that is not modulated by the internal state of the animal. Instead, hunger and satiety homeostatically modulate the microstructure of feeding. These results highlight similarities of food intake regulation between insects, rodents, and humans, pointing to a common strategy in how the nervous systems of different animals control food intake. Feeding is an important behaviour, but its quantification remains challenging, particularly in small animal models like Drosophila melanogaster. Here the authors describe a method which uses capacitive sensing for automated high-resolution measuring of feeding behaviour in individual flies.
Collapse
|
80
|
Moore JD, Kleinfeld D, Wang F. How the brainstem controls orofacial behaviors comprised of rhythmic actions. Trends Neurosci 2014; 37:370-80. [PMID: 24890196 DOI: 10.1016/j.tins.2014.05.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 01/23/2023]
Abstract
Mammals perform a multitude of well-coordinated orofacial behaviors such as breathing, sniffing, chewing, licking, swallowing, vocalizing, and in rodents, whisking. The coordination of these actions must occur without fault to prevent fatal blockages of the airway. Deciphering the neuronal circuitry that controls even a single action requires understanding the integration of sensory feedback and executive commands. A far greater challenge is to understand the coordination of multiple actions. Here, we focus on brainstem circuits that drive rhythmic orofacial actions. We discuss three neural computational mechanisms that may enable circuits for different actions to operate without interfering with each other. We conclude with proposed experimental programs for delineating the neural control principles that have evolved to coordinate orofacial behaviors.
Collapse
Affiliation(s)
- Jeffrey D Moore
- Graduate Program in Neurosciences, UC San Diego, La Jolla, CA 92093, USA; Department of Physics, UC San Diego, La Jolla, CA 92093, USA.
| | - David Kleinfeld
- Graduate Program in Neurosciences, UC San Diego, La Jolla, CA 92093, USA; Department of Physics, UC San Diego, La Jolla, CA 92093, USA; Section on Neurobiology, UC San Diego, La Jolla, CA 92093, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
81
|
Chaudhuri PNK. Bruxism in patients of moderate to severe traumatic brain injury: Management results suggesting an etiological mechanism. INDIAN JOURNAL OF NEUROTRAUMA 2014. [DOI: 10.1016/j.ijnt.2014.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
82
|
Kleinfeld D, Deschênes M, Wang F, Moore JD. More than a rhythm of life: breathing as a binder of orofacial sensation. Nat Neurosci 2014; 17:647-51. [PMID: 24762718 PMCID: PMC4140942 DOI: 10.1038/nn.3693] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/11/2014] [Indexed: 12/15/2022]
Abstract
When rodents engage in the exploration of novel stimuli, breathing occurs at an accelerated rate that is synchronous with whisking. We review the recently observed relationships between breathing and the sensations of smell and vibrissa-based touch. We consider the hypothesis that the breathing rhythm serves not only as a motor drive signal, but also as a common clock that binds these two senses into a common percept. This possibility may be extended to include taste through the coordination of licking with breathing. Here we evaluate the status of experimental evidence that pertains to this hypothesis.
Collapse
Affiliation(s)
- David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA 92093 USA
- Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093 USA
| | - Martin Deschênes
- Department of Psychiatry and Neuroscience, Centre de Recherche Université Laval Robert-Giffard, Québec City, Québec G1J 2R3, Canada
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey D. Moore
- Department of Physics, University of California, San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
83
|
Stanek E, Cheng S, Takatoh J, Han BX, Wang F. Monosynaptic premotor circuit tracing reveals neural substrates for oro-motor coordination. eLife 2014; 3:e02511. [PMID: 24843003 PMCID: PMC4041139 DOI: 10.7554/elife.02511] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/24/2014] [Indexed: 11/21/2022] Open
Abstract
Feeding behaviors require intricately coordinated activation among the muscles of the jaw, tongue, and face, but the neural anatomical substrates underlying such coordination remain unclear. In this study, we investigate whether the premotor circuitry of jaw and tongue motoneurons contain elements for coordination. Using a modified monosynaptic rabies virus-based transsynaptic tracing strategy, we systematically mapped premotor neurons for the jaw-closing masseter muscle and the tongue-protruding genioglossus muscle. The maps revealed that the two groups of premotor neurons are distributed in regions implicated in rhythmogenesis, descending motor control, and sensory feedback. Importantly, we discovered several premotor connection configurations that are ideally suited for coordinating bilaterally symmetric jaw movements, and for enabling co-activation of specific jaw, tongue, and facial muscles. Our findings suggest that shared premotor neurons that form specific multi-target connections with selected motoneurons are a simple and general solution to the problem of orofacial coordination.DOI: http://dx.doi.org/10.7554/eLife.02511.001.
Collapse
Affiliation(s)
- Edward Stanek
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Steven Cheng
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Jun Takatoh
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, United States Department of Cell Biology, Duke University Medical Center, Durham, United States
| |
Collapse
|
84
|
Nakamura S, Nakayama K, Mochizuki A, Sato F, Haque T, Yoshida A, Inoue T. Electrophysiological and morphological properties of rat supratrigeminal premotor neurons targeting the trigeminal motor nucleus. J Neurophysiol 2014; 111:1770-82. [PMID: 24501266 DOI: 10.1152/jn.00276.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The electrophysiological and morphological characteristics of premotor neurons in the supratrigeminal region (SupV) targeting the trigeminal motor nucleus (MoV) were examined in neonatal rat brain stem slice preparations with Ca(2+) imaging, whole cell recordings, and intracellular biocytin labeling. First, we screened SupV neurons that showed a rapid rise in intracellular free Ca(2+) concentration ([Ca(2+)]i) after single-pulse electrical stimulation of the ipsilateral MoV. Subsequent whole cell recordings were generated from the screened SupV neurons, and their antidromic responses to MoV stimulation were confirmed. We divided the antidromically activated premotor neurons into two groups according to their discharge patterns during the steady state in response to 1-s depolarizing current pulses: those firing at a frequency higher (HF neurons, n = 19) or lower (LF neurons, n = 17) than 33 Hz. In addition, HF neurons had a narrower action potential and a larger afterhyperpolarization than LF neurons. Intracellular labeling revealed that the axons of all HF neurons (6/6) and half of the LF neurons (4/9) entered the MoV from its dorsomedial aspect, whereas the axons of the remaining LF neurons (5/9) entered the MoV from its dorsolateral aspect. Furthermore, the dendrites of three HF neurons penetrated into the principal sensory trigeminal nucleus (Vp), whereas the dendrites of all LF neurons were confined within the SupV. These results suggest that the types of SupV premotor neurons targeting the MoV with different firing properties have different dendritic and axonal morphologies, and these SupV neuron classes may play unique roles in diverse oral motor behaviors, such as suckling and mastication.
Collapse
Affiliation(s)
- Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan; and
| | | | | | | | | | | | | |
Collapse
|
85
|
Bracco P, Anastasi G, Piancino MG, Frongia G, Milardi D, Favaloro A, Bramanti P. Hemispheric Prevalence During Chewing In Normal Right-Handed and Left-Handed Subjects: A Functional Magnetic Resonance Imaging Preliminary Study. Cranio 2014; 28:114-21. [DOI: 10.1179/crn.2010.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
86
|
Furuya J, Hara A, Nomura T, Kondo H. Volitional chewing with a conscious effort alters and facilitates swallowing during feeding sequence. J Oral Rehabil 2014; 41:191-8. [PMID: 24447287 DOI: 10.1111/joor.12140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2013] [Indexed: 11/29/2022]
Abstract
The key objective of mastication is to form a food bolus suitable for smooth swallowing. However, chewing is usually performed without a conscious effort. Poor bolus formation can cause pharyngeal residue and suffocation in elderly individuals with reduced swallowing function. Therefore, chewing with a conscious effort may help the bolus to more easily pass the pharynx. This study aimed to clarify the impact of mastication with a conscious effort on the feeding sequence. Subjects included 25 dentulous volunteers who were informed and provided written consent. Lateral videofluoroscopy was performed during the feeding of solid agar jelly under two conditions: chewing naturally in their usual manner (without volition) and chewing with a conscious effort (with volition). Temporal evaluation was performed for mastication, stage II transport (STII), swallow onset and oropharyngeal transit time. Moreover, bolus volume at swallow onset and subjective evaluation of swallowing easiness were measured. Volitional chewing with a conscious effort lengthened the duration of the chewing sequence before and after STII and delayed the swallow onset despite the fact that the bolus volume in the vallecula and hypopharynx (HYP) had significantly increased. Furthermore, with volition, the bolus transit time from swallow onset in the oral cavity, upper oropharynx and HYP was reduced, and subjective evaluation of swallowing easiness demonstrated significant improvement. These results suggest that volitional chewing with a conscious effort can alter bolus transport and swallowing, resulting in easier swallowing.
Collapse
Affiliation(s)
- J Furuya
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, Morioka, Japan
| | | | | | | |
Collapse
|
87
|
Higaki N, Goto T, Ishida Y, Watanabe M, Tomotake Y, Ichikawa T. Do sensation differences exist between dental implants and natural teeth?: a meta-analysis. Clin Oral Implants Res 2013; 25:1307-1310. [DOI: 10.1111/clr.12271] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Nobuaki Higaki
- Department of Oral and Maxillofacial Prosthodontics and Oral Implantology; Institute of Health Biosciences; The University of Tokushima; Tokushima Japan
| | - Takaharu Goto
- Department of Oral and Maxillofacial Prosthodontics and Oral Implantology; Institute of Health Biosciences; The University of Tokushima; Tokushima Japan
| | - Yuichi Ishida
- Department of Oral and Maxillofacial Prosthodontics and Oral Implantology; Institute of Health Biosciences; The University of Tokushima; Tokushima Japan
| | - Megumi Watanabe
- Department of Oral and Maxillofacial Prosthodontics and Oral Implantology; Institute of Health Biosciences; The University of Tokushima; Tokushima Japan
| | - Yoritoki Tomotake
- Department of Oral and Maxillofacial Prosthodontics and Oral Implantology; Institute of Health Biosciences; The University of Tokushima; Tokushima Japan
| | - Tetsuo Ichikawa
- Department of Oral and Maxillofacial Prosthodontics and Oral Implantology; Institute of Health Biosciences; The University of Tokushima; Tokushima Japan
| |
Collapse
|
88
|
Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature 2013; 497:205-10. [PMID: 23624373 DOI: 10.1038/nature12076] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 03/14/2013] [Indexed: 11/08/2022]
Abstract
Whisking and sniffing are predominant aspects of exploratory behaviour in rodents. Yet the neural mechanisms that generate and coordinate these and other orofacial motor patterns remain largely uncharacterized. Here we use anatomical, behavioural, electrophysiological and pharmacological tools to show that whisking and sniffing are coordinated by respiratory centres in the ventral medulla. We delineate a distinct region in the ventral medulla that provides rhythmic input to the facial motor neurons that drive protraction of the vibrissae. Neuronal output from this region is reset at each inspiration by direct input from the pre-Bötzinger complex, such that high-frequency sniffing has a one-to-one relationship with whisking, whereas basal respiration is accompanied by intervening whisks that occur between breaths. We conjecture that the respiratory nuclei, which project to other premotor regions for oral and facial control, function as a master clock for behaviours that coordinate with breathing.
Collapse
|
89
|
Yao D, Lavigne GJ, Lee JC, Adachi K, Sessle BJ. Jaw-opening reflex and corticobulbar motor excitability changes during quiet sleep in non-human primates. Sleep 2013; 36:269-80. [PMID: 23372275 PMCID: PMC3543051 DOI: 10.5665/sleep.2388] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVE To test the hypothesis that the reflex and corticobulbar motor excitability of jaw muscles is reduced during sleep. DESIGN Polysomnographic recordings in the electrophysiological study. SETTING University sleep research laboratories. PARTICIPANTS AND INTERVENTIONS The reflex and corticobulbar motor excitability of jaw muscles was determined during the quiet awake state (QW) and quiet sleep (QS) in monkeys (n = 4). MEASUREMENTS AND RESULTS During QS sleep, compared to QW periods, both tongue stimulation-evoked jaw-opening reflex peak and root mean square amplitudes were significantly decreased with stimulations at 2-3.5 × thresholds (P < 0.001). The jaw-opening reflex latency during sleep was also significantly longer than during QW. Intracortical microstimulation (ICMS) within the cortical masticatory area induced rhythmic jaw movements at a stable threshold (≤ 60 μA) during QW; but during QS, ICMS failed to induce any rhythmic jaw movements at the maximum ICMS intensity used, although sustained jaw-opening movements were evoked at significantly increased threshold (P < 0.001) in one of the monkeys. Similarly, during QW, ICMS within face primary motor cortex induced orofacial twitches at a stable threshold (≤ 35 μA), but the ICMS thresholds were elevated during QS. Soon after the animal awoke, rhythmic jaw movements and orofacial twitches could be evoked at thresholds similar to those before QS. CONCLUSIONS The results suggest that the excitability of reflex and corticobulbar-evoked activity in the jaw motor system is depressed during QS.
Collapse
Affiliation(s)
- Dongyuan Yao
- Centre for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Gilles J. Lavigne
- Faculty of Dental Medicine, Université de Montréal, Québec, Canada
- Sleep Research Center and Surgery Department, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| | - Jye-Chang Lee
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Kazunori Adachi
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan
| | - Barry J. Sessle
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
90
|
Yamada A, Kajii Y, Sakai S, Tsujimura T, Nakamura Y, Ariyasinghe S, Magara J, Inoue M. Effects of chewing and swallowing behavior on jaw opening reflex responses in freely feeding rabbits. Neurosci Lett 2013; 535:73-7. [PMID: 23313598 DOI: 10.1016/j.neulet.2012.12.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/26/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
Abstract
It has been reported that the jaw opening reflex (JOR) evoked by intra-oral innocuous stimulation was suppressed during a reflex swallow in anesthetized animals only. However, the mechanism of JOR inhibition during swallowing has not yet been elucidated. The aim of the present study was to investigate the effects of peripheral nerve stimulation on masticatory behaviors, as well as the modulation of low threshold afferent evoked JOR responses during chewing and swallowing in freely feeding animals. The JOR in the digastric muscle was evoked by low threshold electrical stimulation of the inferior alveolar nerve (IAN). Changes in the peak-to-peak amplitude of digastric electromyographic responses were compared among the phases of chewing and swallowing. IAN stimulation did not produce any differences in cycle duration, gape of the jaw in one cycle, or swallowing interval, suggesting a minimal effect on feeding behaviors. The JOR amplitude during the fast-closing, slow-closing, and slow-opening phases of chewing was significantly smaller than that of the control (recorded when the animal was at rest) and fast-opening phase. During swallowing, the JOR amplitude was significantly less than the control. Inhibition of the JOR during swallowing is assumed to prevent unnecessary opposing jaw opening motion.
Collapse
Affiliation(s)
- Aki Yamada
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Modulation of respiratory sinus arrhythmia in rats with central pattern generator hardware. J Neurosci Methods 2013; 212:124-32. [DOI: 10.1016/j.jneumeth.2012.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 11/17/2022]
|
92
|
Kato T, Nakamura N, Masuda Y, Yoshida A, Morimoto T, Yamamura K, Yamashita S, Sato F. Phasic bursts of the antagonistic jaw muscles during REM sleep mimic a coordinated motor pattern during mastication. J Appl Physiol (1985) 2012. [PMID: 23195628 DOI: 10.1152/japplphysiol.00895.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Sleep-related movement disorders are characterized by the specific phenotypes of muscle activities and movements during sleep. However, the state-specific characteristics of muscle bursts and movement during sleep are poorly understood. In this study, jaw-closing and -opening muscle electromyographic (EMG) activities and jaw movements were quantified to characterize phenotypes of motor patterns during sleep in freely moving and head-restrained guinea pigs. During non-rapid eye movement (NREM) sleep, both muscles were irregularly activated in terms of duration, activity, and intervals. During rapid eye movement (REM) sleep, clusters of phasic bursts occurred in the two muscles. Compared with NREM sleep, burst duration, activity, and intervals were less variable during REM sleep for both muscles. Although burst activity was lower during the two sleep states than during chewing, burst duration and intervals during REM sleep were distributed within a similar range to those during chewing. A trigger-averaged analysis of muscle bursts revealed that the temporal association between the bursts of the jaw-closing and -opening muscles during REM sleep was analogous to the temporal association during natural chewing. The burst characteristics of the two muscles reflected irregular patterns of jaw movements during NREM sleep and repetitive alternating bilateral movements during REM sleep. The distinct patterns of jaw muscle bursts and movements reflect state-specific regulations of the jaw motor system during sleep states. Phasic activations in the antagonistic jaw muscles during REM sleep are regulated, at least in part, by the neural networks involving masticatory pattern generation, demonstrating that waking jaw motor patterns are replayed during sleep periods.
Collapse
Affiliation(s)
- T Kato
- Osaka University Graduate School of Dentistry, Department of Oral Anatomy and Neurobiology, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Quintero A, Ichesco E, Myers C, Schutt R, Gerstner GE. Brain activity and human unilateral chewing: an FMRI study. J Dent Res 2012; 92:136-42. [PMID: 23103631 DOI: 10.1177/0022034512466265] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Brain mechanisms underlying mastication have been studied in non-human mammals but less so in humans. We used functional magnetic resonance imaging (fMRI) to evaluate brain activity in humans during gum chewing. Chewing was associated with activations in the cerebellum, motor cortex and caudate, cingulate, and brainstem. We also divided the 25-second chew-blocks into 5 segments of equal 5-second durations and evaluated activations within and between each of the 5 segments. This analysis revealed activation clusters unique to the initial segment, which may indicate brain regions involved with initiating chewing. Several clusters were uniquely activated during the last segment as well, which may represent brain regions involved with anticipatory or motor events associated with the end of the chew-block. In conclusion, this study provided evidence for specific brain areas associated with chewing in humans and demonstrated that brain activation patterns may dynamically change over the course of chewing sequences.
Collapse
Affiliation(s)
- A Quintero
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | |
Collapse
|
94
|
Tsujimura T, Tsuji K, Ariyasinghe S, Fukuhara T, Yamada A, Hayashi H, Nakamura Y, Iwata K, Inoue M. Differential involvement of two cortical masticatory areas in modulation of the swallowing reflex in rats. Neurosci Lett 2012; 528:159-64. [DOI: 10.1016/j.neulet.2012.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/13/2012] [Accepted: 09/06/2012] [Indexed: 11/25/2022]
|
95
|
Changsiripun C, Yabushita T, Soma K. Differences in maturation of the jaw-opening reflex between rats that received early-and late-masticatory stimulation. J Oral Rehabil 2012; 39:879-87. [DOI: 10.1111/joor.12000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2012] [Indexed: 11/30/2022]
Affiliation(s)
- C. Changsiripun
- Department of Orthodontics; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
| | - T. Yabushita
- Orthodontic Science; Department of Orofacial Development and Function; Division of Oral Health Sciences; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| | - K. Soma
- Orthodontic Science; Department of Orofacial Development and Function; Division of Oral Health Sciences; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
96
|
De Cicco V. Cerebro-afferent vessel and pupillary basal diameter variation induced by stomatognathic trigeminal proprioception: a case report. J Med Case Rep 2012; 6:275. [PMID: 22943461 PMCID: PMC3477066 DOI: 10.1186/1752-1947-6-275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 03/07/2012] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION A patient affected by asymmetric hemodynamics of cerebro-afferent vessels underwent duplex color scanner investigations in occlusal proprioceptive un- and rebalance conditions. Pupillometric video-oculographic examinations were performed in order to spot connected trigeminal proprioceptive motor patterns able to interfere on sympathetic autonomic activity. The aim of this case report is to verify if involuntary jaw closing during swallowing, executed in unbalance and rebalance myoelectric activity, would be able to modify cerebral hemodynamics. CASE PRESENTATION A 56-year-old Caucasian Italian woman affected by asymmetric blood flow of cerebro-afferent vessels underwent an electromyographic investigation of her occlusal muscles in order to assess their occlusal functional balance. The extreme asymmetry of myoelectric activity in dental occlusion evidenced by electromyographic values suggested the rebalancing of the functions of occlusal muscles through concurrent transcutaneous stimulation of the trigeminal nerve supra- and submandibular motor branches. The above-mentioned method allowed the detection of a symmetric craniomandibular muscular relation that can be kept constant through the use of a cusp bite modeled on the inferior dental arch: called orthotic-syntropic bite for its peculiar use of electrostimulation. A few days later, the patient underwent a duplex color scanner investigation and pupillometric video-oculographic examinations in occlusal unbalance and rebalance conditions. CONCLUSIONS A comparative data analysis showed that an unbalanced dental occlusal function may represent an interferential pattern on cerebral hemodynamics velocity and pupillometric evaluations have proved useful both in the analysis of locus coeruleus functional modalities and as a diagnostic tool in the assessment of pathologies involving locus coeruleus and autonomic systems. The inclusion of myoelectric masseter examinations can be useful in patients with asymmetric hemodynamics of cerebro-afferent vessels and dental occlusal proprioceptive rebalance can integrate the complex therapy of patients with increased chronic sympathetic activity.
Collapse
Affiliation(s)
- Vincenzo De Cicco
- Department of Oral Science, University "G, d'Annunzio", via dei Vestini 31, Chieti, 66100, Italy.
| |
Collapse
|
97
|
Ono T. Tongue and upper airway function in subjects with and without obstructive sleep apnea. JAPANESE DENTAL SCIENCE REVIEW 2012. [DOI: 10.1016/j.jdsr.2011.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
98
|
Nonaka M, Nishimura A, Nakamura S, Nakayama K, Mochizuki A, Iijima T, Inoue T. Convergent Pre-motoneuronal Inputs to Single Trigeminal Motoneurons. J Dent Res 2012; 91:888-93. [DOI: 10.1177/0022034512453724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Because pre-motor neurons targeting trigeminal motoneurons are located in various regions, including the supratrigeminal (SupV) and intertrigeminal (IntV) regions, the principal sensory trigeminal nucleus (PrV), and the region dorsal to the PrV (dRt), a single trigeminal motoneuron may receive differential convergent inputs from these regions. We thus examined the properties of synaptic inputs from these regions to masseter motoneurons (MMNs) and digastric motoneurons (DMNs) in brainstem slice preparations obtained from P1-5 neonatal rats, using whole-cell recordings and laser photolysis of caged glutamate. Photostimulation of multiple regions within the SupV, IntV, PrV, and dRt induced post-synaptic currents (PSCs) in 14 of 19 MMNs and 18 of 26 DMNs. Furthermore, the stimulation of the lateral SupV significantly induced burst PSCs in MMNs more often than low-frequency PSCs in MMNs or burst PSCs in DMNs. Similar results were obtained in the presence of the GABAA receptor antagonist SR95531 and the glycine receptor antagonist strychnine. These results suggest that both neonatal MMNs and DMNs receive convergent glutamatergic inputs from the SupV, IntV, PrV, and dRt, and that the lateral SupV sends burst inputs predominantly to the MMNs. Such convergent pre-motoneuronal inputs to trigeminal motoneurons may contribute to the proper execution of neonatal oro-motor functions.
Collapse
Affiliation(s)
- M. Nonaka
- Department of Oral Anesthesia, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - A. Nishimura
- Department of Oral Anesthesia, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - S. Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - K. Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - A. Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - T. Iijima
- Department of Oral Anesthesia, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - T. Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
99
|
Chen Z, Travers SP, Travers JB. Activation of NPY receptors suppresses excitatory synaptic transmission in a taste-feeding network in the lower brain stem. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1401-10. [PMID: 22513746 DOI: 10.1152/ajpregu.00536.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Consummatory responses to taste stimuli are modulated by visceral signals processed in the caudal nucleus of the solitary tract (cNST) and ventrolateral medulla. On the basis of decerebrate preparations, this modulation can occur through local brain stem pathways. Among the large number of neuropeptides and neuromodulators implicated in these visceral pathways is neuropeptide Y (NPY), which is oftentimes colocalized in catecholaminergic neurons themselves implicated in glucoprivic-induced feeding and satiety. In addition to the cNST and ventrolateral medulla, noradrenergic and NPY receptors are found in circumscribed regions of the medullary reticular formation rich in preoromotor neurons. To test the hypothesis that NPY may act as a neuromodulator on preoromotor neurons, we recorded the effects of bath application of NPY and specific Y1 and Y2 agonists on currents elicited from electrical stimulation of the rostral (taste) NST in prehypoglossal neurons in a brain stem slice preparation. A high proportion of NST-driven responses were suppressed by NPY, as well as Y1 and Y2 agonists. On the basis of paired pulse ratios and changes in membrane resistance, we concluded that Y1 receptors influence these neurons both presynaptically and postsynaptically and that Y2 receptors have a presynaptic locus. To test the hypothesis that NPY may act in concert with norepinephrine (NE), we examined neurons showing suppressed responses in the presence of a Y2 agonist and demonstrated a greater degree of suppression to a Y2 agonist/NE cocktail. These suppressive effects on preoromotoneurons may reflect a satiety pathway originating from A2 neurons in the caudal brain stem.
Collapse
Affiliation(s)
- Zhixiong Chen
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
100
|
Boughter JD, Mulligan MK, St John SJ, Tokita K, Lu L, Heck DH, Williams RW. Genetic control of a central pattern generator: rhythmic oromotor movement in mice is controlled by a major locus near Atp1a2. PLoS One 2012; 7:e38169. [PMID: 22675444 PMCID: PMC3364982 DOI: 10.1371/journal.pone.0038169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/04/2012] [Indexed: 12/21/2022] Open
Abstract
Fluid licking in mice is a rhythmic behavior that is controlled by a central pattern generator (CPG) located in a complex of brainstem nuclei. C57BL/6J (B6) and DBA/2J (D2) strains differ significantly in water-restricted licking, with a highly heritable difference in rates (h(2)≥0.62) and a corresponding 20% difference in interlick interval (mean ± SEM = 116.3±1 vs 95.4±1.1 ms). We systematically quantified motor output in these strains, their F(1) hybrids, and a set of 64 BXD progeny strains. The mean primary interlick interval (MPI) varied continuously among progeny strains. We detected a significant quantitative trait locus (QTL) for a CPG controlling lick rate on Chr 1 (Lick1), and a suggestive locus on Chr 10 (Lick10). Linkage was verified by testing of B6.D2-1D congenic stock in which a segment of Chr 1 of the D2 strain was introgressed onto the B6 parent. The Lick1 interval on distal Chr 1 contains several strong candidate genes. One of these is a sodium/potassium pump subunit (Atp1a2) with widespread expression in astrocytes, as well as in a restricted population of neurons. Both this subunit and the entire Na(+)/K(+)-ATPase molecule have been implicated in rhythmogenesis for respiration and locomotion. Sequence variants in or near Apt1a2 strongly modulate expression of the cognate mRNA in multiple brain regions. This gene region has recently been sequenced exhaustively and we have cataloged over 300 non-coding and synonymous mutations segregating among BXD strains, one or more of which is likely to contribute to differences in central pattern generator tempo.
Collapse
Affiliation(s)
- John D Boughter
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
| | | | | | | | | | | | | |
Collapse
|