51
|
Preparation and characterization of porous and nonporous polymeric microspheres by the phase inversion process. ADVANCES IN POLYMER TECHNOLOGY 2012. [DOI: 10.1002/adv.21281] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
52
|
Nasr M, Awad GAS, Mansour S, Al Shamy A, Mortada ND. Hydrophilic versus hydrophobic porogens for engineering of poly(lactide-co-glycolide) microparticles containing risedronate sodium. Pharm Dev Technol 2012; 18:1078-88. [DOI: 10.3109/10837450.2012.693507] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
53
|
Fabregat G, Alemán C, Casas MT, Armelin E. Controlling the Morphology of Poly(N-cyanoethylpyrrole). J Phys Chem B 2012; 116:5064-70. [DOI: 10.1021/jp3008688] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Georgina Fabregat
- Departament
d’Enginyeria
Química, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028, Barcelona, Spain
- Center for Research
in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual
i Vila s/n, Barcelona E-08028, Spain
| | - Carlos Alemán
- Departament
d’Enginyeria
Química, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028, Barcelona, Spain
- Center for Research
in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual
i Vila s/n, Barcelona E-08028, Spain
| | - Maria T. Casas
- Departament
d’Enginyeria
Química, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028, Barcelona, Spain
| | - Elaine Armelin
- Departament
d’Enginyeria
Química, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028, Barcelona, Spain
- Center for Research
in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual
i Vila s/n, Barcelona E-08028, Spain
| |
Collapse
|
54
|
Bai MY, Moran CH, Zhang L, Liu C, Zhang Y, Wang LV, Xia Y. A Facile and General Method for the Encapsulation of Different Types of Imaging Contrast Agents Within Micrometer-Sized Polymer Beads. ADVANCED FUNCTIONAL MATERIALS 2012; 22:764-770. [PMID: 31866803 PMCID: PMC6924621 DOI: 10.1002/adfm.201102582] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Polystyrene (PS) hollow beads with holes on the surfaces are employed as containers for quick loading and encapsulation of a variety of contrast enhancement agents: saline solutions for thermoacoustic tomography, iodinated organic compounds for micro-computed tomography, and perfluorooctane for magnetic resonance. Because of the hole on the surface of the PS hollow bead, the contrast agent to be encapsulated could quickly enter the hollow interior via direct flow rather than slow diffusion through the wall. After loading, the hole on the surface is conveniently sealed by annealing the sample at a temperature (e.g., 95 °C) slightly above the glass-transition temperature of PS. In vitro methods are also used to investigate the effectiveness of encapsulation by quantifying the contrast enhancement enabled by the contrast agents.
Collapse
Affiliation(s)
- Meng-Yi Bai
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Christine H Moran
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Lei Zhang
- Department of Medicine, Washington University Medical School, Saint Louis, MO 63110, USA
| | - Changjun Liu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yu Zhang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Lihong V Wang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Younan Xia
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| |
Collapse
|
55
|
Preparation and characterization of hollow hydroxyapatite microspheres by the centrifugal spray drying method. POWDER TECHNOL 2012. [DOI: 10.1016/j.powtec.2011.11.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
56
|
Lin YS, Yang CH, Wang CY, Chang FR, Huang KS, Hsieh WC. An aluminum microfluidic chip fabrication using a convenient micromilling process for fluorescent poly(DL-lactide-co-glycolide) microparticle generation. SENSORS 2012; 12:1455-67. [PMID: 22438719 PMCID: PMC3304121 DOI: 10.3390/s120201455] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 01/19/2012] [Accepted: 01/31/2012] [Indexed: 11/16/2022]
Abstract
This study presents the development of a robust aluminum-based microfluidic chip fabricated by conventional mechanical micromachining (computer numerical control-based micro-milling process). It applied the aluminum-based microfluidic chip to form poly(lactic-co-glycolic acid) (PLGA) microparticles encapsulating CdSe/ZnS quantum dots (QDs). A cross-flow design and flow-focusing system were employed to control the oil-in-water (o/w) emulsification to ensure the generation of uniformly-sized droplets. The size of the droplets could be tuned by adjusting the flow rates of the water and oil phases. The proposed microfluidic platform is easy to fabricate, set up, organize as well as program, and is valuable for further applications under harsh reaction conditions (high temperature and/or strong organic solvent systems). The proposed method has the advantages of actively controlling the droplet diameter, with a narrow size distribution, good sphericity, as well as being a simple process with a high throughput. In addition to the fluorescent PLGA microparticles in this study, this approach can also be applied to many applications in the pharmaceutical and biomedical area.
Collapse
Affiliation(s)
- Yung-Sheng Lin
- Department of Biological Science & Technology, I-Shou University, Kaohsiung 84001, Taiwan; E-Mails: (Y.-S.L.); (C.-H.Y.); (W.-C.H.)
- Department of Applied Cosmetology and Master Program of Cosmetic Science, Hung-Kuang University, Taichung 43302, Taiwan
| | - Chih-Hui Yang
- Department of Biological Science & Technology, I-Shou University, Kaohsiung 84001, Taiwan; E-Mails: (Y.-S.L.); (C.-H.Y.); (W.-C.H.)
| | - Chih-Yu Wang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 82445, Taiwan; E-Mail:
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; E-Mail:
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
- Author to whom correspondence should be addressed; E-Mail:
| | - Wan-Chen Hsieh
- Department of Biological Science & Technology, I-Shou University, Kaohsiung 84001, Taiwan; E-Mails: (Y.-S.L.); (C.-H.Y.); (W.-C.H.)
| |
Collapse
|
57
|
Nelson DM, Ma Z, Leeson CE, Wagner WR. Extended and sequential delivery of protein from injectable thermoresponsive hydrogels. J Biomed Mater Res A 2012; 100:776-85. [PMID: 22237975 DOI: 10.1002/jbm.a.34015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/12/2011] [Accepted: 10/25/2011] [Indexed: 11/10/2022]
Abstract
Thermoresponsive hydrogels are attractive for their injectability and retention in tissue sites where they may serve as a mechanical support and as a scaffold to guide tissue remodeling. Our objective in this report was to develop a thermoresponsive, biodegradable hydrogel system that would be capable of protein release from two distinct reservoirs--one where protein was attached to the hydrogel backbone, and one where protein was loaded into biodegradable microparticles mixed into the network. Thermoresponsive hydrogels consisting of N-isopropylacrylamide (NIPAAm), 2-hydroxyethyl methacrylate (HEMA), and biodegradable methacrylate polylactide were synthesized along with modified copolymers incorporating 1 mol % protein-reactive methacryloxy N-hydroxysuccinimide (MANHS), hydrophilic acrylic acid (AAc), or both. In vitro bovine serum albumin (BSA) release was studied from hydrogels, poly(lactide-co-glycolide) microparticles, or microparticles mixed into the hydrogels. The synthesized copolymers were able to gel below 37°C and release protein in excess of 3 months. The presence of MANHS and AAc in the copolymers was associated with higher loaded protein retention during thermal transition (45% vs. 22%) and faster release (2 months), respectively. Microspheres entrapped in the hydrogel released protein in a delayed fashion relative to microspheres in saline. The combination of a protein-reactive hydrogel mixed with protein-loaded microspheres demonstrated a sequential release of specific BSA populations. Overall the described drug delivery system combines the advantages of injectability, degradability, extended release, and sequential release, which may be useful in tissue engineering applications.
Collapse
Affiliation(s)
- Devin M Nelson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | |
Collapse
|
58
|
Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 2011; 112:2373-433. [PMID: 22204603 DOI: 10.1021/cr100449n] [Citation(s) in RCA: 1612] [Impact Index Per Article: 115.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rajib Ghosh Chaudhuri
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769 008, Orissa, India
| | | |
Collapse
|
59
|
Moodley K, Pillay V, Choonara YE, du Toit LC, Ndesendo VMK, Kumar P, Cooppan S, Bawa P. Oral drug delivery systems comprising altered geometric configurations for controlled drug delivery. Int J Mol Sci 2011; 13:18-43. [PMID: 22312236 PMCID: PMC3269670 DOI: 10.3390/ijms13010018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 11/16/2022] Open
Abstract
Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix(®) multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise(®), which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix(®) as well as "release modules assemblage", which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments.
Collapse
Affiliation(s)
- Kovanya Moodley
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; E-Mails: (K.M.); (Y.E.C.); (L.C.T.); (P.K.); (V.M.K.N.); (S.C.); (P.B.)
| | - Viness Pillay
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; E-Mails: (K.M.); (Y.E.C.); (L.C.T.); (P.K.); (V.M.K.N.); (S.C.); (P.B.)
| | - Yahya E. Choonara
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; E-Mails: (K.M.); (Y.E.C.); (L.C.T.); (P.K.); (V.M.K.N.); (S.C.); (P.B.)
| | - Lisa C. du Toit
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; E-Mails: (K.M.); (Y.E.C.); (L.C.T.); (P.K.); (V.M.K.N.); (S.C.); (P.B.)
| | - Valence M. K. Ndesendo
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; E-Mails: (K.M.); (Y.E.C.); (L.C.T.); (P.K.); (V.M.K.N.); (S.C.); (P.B.)
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; E-Mails: (K.M.); (Y.E.C.); (L.C.T.); (P.K.); (V.M.K.N.); (S.C.); (P.B.)
| | - Shivaan Cooppan
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; E-Mails: (K.M.); (Y.E.C.); (L.C.T.); (P.K.); (V.M.K.N.); (S.C.); (P.B.)
| | - Priya Bawa
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; E-Mails: (K.M.); (Y.E.C.); (L.C.T.); (P.K.); (V.M.K.N.); (S.C.); (P.B.)
| |
Collapse
|
60
|
Li J, Wang S, Liu H, You L. Preparation of Polycarbonate Hollow Microspheres by Microencapsulation Method. INT J POLYM MATER PO 2011. [DOI: 10.1080/00914037.2010.551358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
61
|
Xi J, Zhou L, Fei Y. Preparation of chondroitin sulfate nanocapsules for use as carries by the interfacial polymerization method. Int J Biol Macromol 2011; 50:157-63. [PMID: 22033115 DOI: 10.1016/j.ijbiomac.2011.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 11/18/2022]
Abstract
In this paper, the method of interfacial polymerization in emulsion was employed to fabricate chondroitin sulfate-methacrylate (ChSMA) nanocapsules, in which poor water-soluble drug of indomethacin (IND) could be effectively encapsulated. The morphology and the size distribution of synthesized nanocapsules were characterized by field emission scanning electron microscopy (FESEM) and dynamic light scattering (DLS) techniques. The quantitative drug loading was investigated. The IND/ChSMA noodle-like self-assemblies were observed with the increase of IND feed concentration, and the interactions between IND and ChSMA were illuminated by FT-IR and XRD measurements. The in vitro drug release of IND-loaded nanocapsules and IND/ChSMA self-assemblies were also carried out in simulated body fluid pH 7.4 at 37°C.
Collapse
Affiliation(s)
- Juqun Xi
- Department of Pharmacology, Medical School of Yangzhou University, Yangzhou, People's Republic of China.
| | | | | |
Collapse
|
62
|
Synthesis, porous structure, and underwater acoustic properties of macroporous cross-linked copolymer beads. Colloid Polym Sci 2011. [DOI: 10.1007/s00396-011-2522-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
63
|
|
64
|
Jang J, Sah H. Nonhalogenated solvent-based solvent evaporation process useful in preparation of PLGA microspheres. J Microencapsul 2011; 28:490-8. [DOI: 10.3109/02652048.2011.586066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
65
|
Azarbayjani AF, Khu JV, Chan YW, Chan SY. Development and characterization of skin permeation retardants and enhancers: A comparative study of levothyroxine-loaded PNIPAM, PLA, PLGA and EC microparticles. Biopharm Drug Dispos 2011; 32:380-8. [DOI: 10.1002/bdd.766] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 05/26/2011] [Accepted: 06/23/2011] [Indexed: 11/10/2022]
Affiliation(s)
| | - Jia Vu Khu
- Department of Pharmacy; National University of Singapore; Block S4, Level 2, Science Drive 4; 117543; Singapore
| | - Yew Weng Chan
- Department of Anaesthesiology; Singapore General Hospital; 169608; Singapore
| | - Sui Yung Chan
- Department of Pharmacy; National University of Singapore; Block S4, Level 2, Science Drive 4; 117543; Singapore
| |
Collapse
|
66
|
Doan T, Couet W, Olivier J. Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery. Int J Pharm 2011; 414:112-7. [DOI: 10.1016/j.ijpharm.2011.05.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/22/2011] [Accepted: 05/02/2011] [Indexed: 01/29/2023]
|
67
|
Chaisri W, Ghassemi AH, Hennink WE, Okonogi S. Enhanced gentamicin loading and release of PLGA and PLHMGA microspheres by varying the formulation parameters. Colloids Surf B Biointerfaces 2011; 84:508-14. [DOI: 10.1016/j.colsurfb.2011.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/04/2010] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
|
68
|
Stromal-derived factor-1 alpha-loaded PLGA microspheres for stem cell recruitment. Pharm Res 2011; 28:2477-89. [PMID: 21614634 DOI: 10.1007/s11095-011-0474-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/03/2011] [Indexed: 01/27/2023]
Abstract
PURPOSE Stromal-derived factor-1 alpha (SDF-1α) is a chemoattractant that has been investigated for treating various diseases, with the goal of recruiting endogenous stem cells to the site of injury. Biodegradable PLGA microspheres were investigated as a means to deliver SDF-1α in a sustained-release manner. METHODS We encapsulated SDF-1α into biodegradable poly(lactide-co-glycolide) (PLGA) microspheres using a double-emulsion solvent extraction/evaporation technique. We varied several formulation parameters, characterized the in vitro release profile of SDF-1α and the size and morphology of microspheres, and determined the bioactivity of the released SDF-1α of stimulating migration of mesenchymal stem cells (MSCs). RESULTS We found that microspheres fabricated using end-capped PLGA, BSA as an excipient, and low solvent volumes yielded a high encapsulation efficiency (>64%) and released SDF-1α over a >50-day timeframe. The released SDF-1α was bioactive and caused significant migration of MSCs throughout the duration of release from the microspheres. CONCLUSIONS We have identified several variables that led to successful encapsulation of SDF-1α into PLGA microspheres. We envision that SDF-lα-loaded microspheres may serve as injectable sources of sustained-release chemokine for promoting the recruitment of endogenous stem cells to the site of injury.
Collapse
|
69
|
Nasr M, Awad GA, Mansour S, Al Shamy A, Mortada ND. A Reliable Predictive Factorial Model for Entrapment Optimization of a Sodium Bisphosphonate into Biodegradable Microspheres. J Pharm Sci 2011; 100:612-21. [DOI: 10.1002/jps.22297] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/02/2010] [Accepted: 06/21/2010] [Indexed: 11/09/2022]
|
70
|
Liu G, Wu C, Fan W, Miao X, Sin DC, Crawford R, Xiao Y. The effects of bioactive akermanite on physiochemical, drug-delivery, and biological properties of poly(lactide-co-glycolide) beads. J Biomed Mater Res B Appl Biomater 2011; 96:360-8. [DOI: 10.1002/jbm.b.31779] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
71
|
Liu W, Huang X, Wei H, Chen K, Gao J, Tang X. Facile preparation of hollow crosslinked polyphosphazene submicrospheres with mesoporous shells. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11802a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
72
|
Key techniques to control porous microsphere morphology in S/O/W emulsion system. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2010.10.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
73
|
Intra J, Salem AK. Fabrication, characterization and in vitro evaluation of poly(D,L-lactide-co-glycolide) microparticles loaded with polyamidoamine-plasmid DNA dendriplexes for applications in nonviral gene delivery. J Pharm Sci 2010; 99:368-84. [PMID: 19670295 DOI: 10.1002/jps.21840] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report, for the first time, on the preparation, characterization and in vitro testing of poly(D,L-lactide-co-glycolide) (PLGA) microparticles loaded with polyamidoamine (PAMAM)-plasmid DNA (pDNA) dendriplexes. Loading of pDNA into the PLGA microparticles increased by 150% when pDNA was first complexed with PAMAM dendrimers relative to loading of pDNA alone. Scanning electron microscopy (SEM) showed that the presence of PAMAM dendrimers in the PLGA microparticles created porous features and indentations on the surface of the microparticles. Loading PLGA microparticles with PAMAM-pDNA dendriplexes lowered the average PLGA microparticle size and changed the surface charge of the microparticles from negative to positive when compared to PLGA microparticles loaded with pDNA alone. The zetapotential and buffering capacity of the microparticles increased as the generation of the PAMAM dendrimer loaded in the PLGA microparticles increased. Gel electrophoresis assays showed that all the PLGA microparticle formulations were able to entrap the pDNA within the PLGA matrix. There was no significant difference in the cytotoxicity of PLGA microparticles loaded with PAMAM-pDNA dendriplexes when compared to PLGA microparticles loaded with pDNA alone. Furthermore, and in contrast to PAMAM dendrimers alone, the generation of the PAMAM dendrimer loaded in the PLGA microparticles had no significant impact on cytotoxicity or transfection efficiencies in human embryonic kidney (HEK293) or Monkey African green kidney fibroblast-like (COS7) cells. The transfection efficiency of PLGA microparticles loaded with generation 3 (G3) PAMAM-pDNA dendriplexes was significantly higher than PLGA microparticles loaded with pDNA alone in HEK293 and COS7 cells. PLGA microparticles loaded with G3 PAMAM-pDNA dendriplexes generated equivalent transfection efficiencies as (G3 to G6) PAMAM-pDNA dendriplexes alone in COS7 cells when the transfection was carried out in serum containing media. The delivery system developed in this report has low toxicity, high pDNA loading efficiencies and high transfection efficiencies that are not reduced in the presence of serum. A delivery system with these characteristics is expected to have significant potential for translational applications.
Collapse
Affiliation(s)
- Janjira Intra
- Division of Pharmaceutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
74
|
Foster T, Dorfman KD, Ted Davis H. Giant biocompatible and biodegradable PEG–PMCL vesicles and microcapsules by solvent evaporation from double emulsion droplets. J Colloid Interface Sci 2010; 351:140-50. [DOI: 10.1016/j.jcis.2010.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
|
75
|
Foong KS, Patel R, Forbes A, Day RM. Anti-Tumor Necrosis Factor-Alpha–Loaded Microspheres as a Prospective Novel Treatment for Crohn's Disease Fistulae. Tissue Eng Part C Methods 2010; 16:855-64. [DOI: 10.1089/ten.tec.2009.0599] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Keen Shawn Foong
- Biomaterials and Tissue Engineering Group, Centre for Gastroenterology and Nutrition, Windeyer Institute, University College London, London, United Kingdom
| | - Rishni Patel
- Biomaterials and Tissue Engineering Group, Centre for Gastroenterology and Nutrition, Windeyer Institute, University College London, London, United Kingdom
| | - Alastair Forbes
- Biomaterials and Tissue Engineering Group, Centre for Gastroenterology and Nutrition, Windeyer Institute, University College London, London, United Kingdom
| | - Richard M. Day
- Biomaterials and Tissue Engineering Group, Centre for Gastroenterology and Nutrition, Windeyer Institute, University College London, London, United Kingdom
| |
Collapse
|
76
|
Chaudhari KR, Shah N, Patel H, Murthy R. Preparation of porous PLGA microspheres with thermoreversible gel to modulate drug release profile of water-soluble drug: bleomycin sulphate. J Microencapsul 2010; 27:303-13. [PMID: 20128747 DOI: 10.3109/02652040903191818] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bleomycin sulphate-loaded porous microspheres were prepared using modified solvent evaporation method (w/o/w) using PLGA50:50 as a polymeric system. The prepared microspheres were incorporated in pluronic (F127) based thermoreversible gel to develop a depot formulation. Various process parameters as solvent evaporation temperature and formulation parameters such as surfactant concentration, volume of internal and external phase and drug-to-polymer ratio were optimized for enhancing percentage drug entrapment, percentage drug loading and desired release profile by controlling size and porosity of the microspheres. Microspheres were characterized for particle size, zeta potential, surface morphology, percentage drug loading and in vitro drug release study after incorporated in gel. The formulated microspheres were porous in nature and showed biphasic in vitro drug release profile. The microspheres incorporated in pluronic (F127) gel showed sustained release up to 1 week and may be useful for treatment of squamous cell carcinoma with better therapeutic effect.
Collapse
Affiliation(s)
- Kiran R Chaudhari
- Maharaja Sayajirao University of Baroda, Drug Delivery Research Laboratory, Ctr Relevance and Excellence NDDS, Department of Pharmaceutics, Baroda, India
| | | | | | | |
Collapse
|
77
|
Particle Size Influences the Immune Response Produced by Hepatitis B Vaccine Formulated in Inhalable Particles. Pharm Res 2010; 27:905-19. [DOI: 10.1007/s11095-010-0094-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 02/15/2010] [Indexed: 12/17/2022]
|
78
|
Shi X, Sun L, Jiang J, Zhang X, Ding W, Gan Z. Biodegradable Polymeric Microcarriers with Controllable Porous Structure for Tissue Engineering. Macromol Biosci 2009; 9:1211-8. [DOI: 10.1002/mabi.200900224] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
79
|
Porous microspheres of methoxy poly(ethylene glycol)-b-poly(ɛ-caprolactone-co-d,l-lactide) prepared by a melt dispersion method. POLYMER 2009. [DOI: 10.1016/j.polymer.2009.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
80
|
Kanchan V, Katare YK, Panda AK. Memory antibody response from antigen loaded polymer particles and the effect of antigen release kinetics. Biomaterials 2009; 30:4763-76. [DOI: 10.1016/j.biomaterials.2009.05.075] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/15/2009] [Indexed: 11/25/2022]
|
81
|
Takai C, Hotta T, Shiozaki S, Boonsongrit Y, Abe H. Unique porous microspheres with dense core and a porous layer prepared by a novel S/O/W emulsion technique. Chem Commun (Camb) 2009:5533-5. [PMID: 19753347 DOI: 10.1039/b907786c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous polymeric microspheres with unique core-shell structures (similar to Kusudama--Japanese paper balls) have been fabricated via a new solid-in-oil-in-water (S/O/W) emulsion technique.
Collapse
|
82
|
Ditto AJ, Shah PN, Gump LR, Yun YH. Nanospheres formulated from L-tyrosine polyphosphate exhibiting sustained release of polyplexes and in vitro controlled transfection properties. Mol Pharm 2009; 6:986-95. [PMID: 19341289 DOI: 10.1021/mp9000316] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Currently, viruses are utilized as vectors for gene therapy, since they transport across cellular membranes, escape endosomes, and effectively deliver genes to the nucleus. The disadvantage of using viruses for gene therapy is their immune response. Therefore, nanospheres have been formulated as a nonviral gene vector by blending l-tyrosine-polyphosphate (LTP) with polyethylene glycol grafted to chitosan (PEG-g-CHN) and linear polyethylenimine (LPEI) conjugated to plasmid DNA (pDNA). PEG-g-CHN stabilizes the emulsion and prevents nanosphere coalescence. LPEI protects pDNA degradation during nanosphere formation, provides endosomal escape, and enhances gene expression. Previous studies show that LTP degrades within seven days and is appropriate for intracellular gene delivery. These nanospheres prepared by water-oil emulsion by sonication and solvent evaporation show diameters between 100 and 600 nm. Also, dynamic laser light scattering shows that nanospheres completely degrade after seven days. The sustained release of pDNA and pDNA-LPEI polyplexes is confirmed through electrophoresis and PicoGreen assay. A LIVE/DEAD cell viability assay shows that nanosphere viability is comparable to that of buffers. X-Gal staining shows a sustained transfection for 11 days using human fibroblasts. This result is sustained longer than pDNA-LPEI and pDNA-FuGENE 6 complexes. Therefore, LTP-pDNA nanospheres exhibit controlled transfection and can be used as a nonviral gene delivery vector.
Collapse
Affiliation(s)
- Andrew J Ditto
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, Akron, Ohio 44325, USA
| | | | | | | |
Collapse
|
83
|
Sun L, Zhou S, Wang W, Li X, Wang J, Weng J. Preparation and characterization of porous biodegradable microspheres used for controlled protein delivery. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2009.04.053] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
84
|
Wu J, Wu L, Xu X, Xu X, Yin X, Chen Y, Hu Y. Microspheres made by w/o/o emulsion method with reduced initial burst for long-term delivery of endostar, a novel recombinant human endostatin. J Pharm Sci 2009; 98:2051-8. [PMID: 18823006 DOI: 10.1002/jps.21589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The purpose of this work is to design biodegradable Poly(lactide-co-glycolide) (PLGA) microspheres with low initial burst for sustained delivery of Endostar (a novel recombinant human endostatin) and investigate effects of PLGA molecular weight and composition on the release behavior of Endostar microspheres. Endostar microspheres were prepared by using novel w/o/o multiple emulsification-evaporation technique. Effects of polymer molecular weight and copolymer composition on particle properties and release behavior (in vitro and in vivo) have been reported. Drug release in vitro decreased with increase in molecular weight and lactide content of PLGA. Zero order release and low initial burst were obtained with all microsphere formulations. The in vivo performance of Endostar microspheres were also found to be dependent on the polymer molecular weight and copolymer composition. Together, these results suggest that the initial burst release can be reduced by w/o/o emulsion method and the release of Endostar can be changed significantly by varying the polymer molecular weight and copolymer composition.
Collapse
Affiliation(s)
- Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | |
Collapse
|
85
|
Emami J, Hamishehkar H, Najafabadi AR, Gilani K, Minaiyan M, Mahdavi H, Nokhodchi A. A Novel Approach to Prepare Insulin-Loaded Poly (Lactic-Co-Glycolic Acid) Microcapsules and the Protein Stability Study. J Pharm Sci 2009; 98:1712-31. [DOI: 10.1002/jps.21544] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
86
|
Balmayor E, Tuzlakoglu K, Azevedo H, Reis R. Preparation and characterization of starch-poly-epsilon-caprolactone microparticles incorporating bioactive agents for drug delivery and tissue engineering applications. Acta Biomater 2009; 5:1035-45. [PMID: 19095509 DOI: 10.1016/j.actbio.2008.11.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/02/2008] [Accepted: 11/13/2008] [Indexed: 12/11/2022]
Abstract
One limitation associated with the delivery of bioactive agents concerns the short half-life of these molecules when administered intravenously, which results in their loss from the desired site. Incorporation of bioactive agents into depot vehicles provides a means to increase their persistence at the disease site. Major issues are involved in the development of a proper carrier system able to deliver the correct drug, at the desired dose, place and time. In this work, starch-poly-epsilon-caprolactone (SPCL) microparticles were developed for use in drug delivery and tissue engineering (TE) applications. SPCL microparticles were prepared by using an emulsion solvent extraction/evaporation technique, which was demonstrated to be a successful procedure to obtain particles with a spherical shape (particle size between 5 and 900 microm) and exhibiting different surface morphologies. Their chemical structure was confirmed by Fourier transform infrared spectroscopy. To evaluate the potential of the developed microparticles as a drug delivery system, dexamethasone (DEX) was used as model drug. DEX, a well-known component of osteogenic differentiation media, was entrapped into SPCL microparticles at different percentages up to 93%. The encapsulation efficiency was found to be dependent on the polymer concentration and drug-to-polymer ratio. The initial DEX release seems to be governed mainly by diffusion, and it is expected that the remaining DEX will be released when the polymeric matrix starts to degrade. In this work it was demonstrated that SPCL microparticles containing DEX can be successfully prepared and that these microparticular systems seem to be quite promising for controlled release applications, namely as carriers of important differentiation agents in TE.
Collapse
|
87
|
|
88
|
Pai SS, Tilton RD, Przybycien TM. Poly(ethylene glycol)-modified proteins: implications for poly(lactide-co-glycolide)-based microsphere delivery. AAPS JOURNAL 2009; 11:88-98. [PMID: 19199044 DOI: 10.1208/s12248-009-9081-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 12/24/2008] [Indexed: 11/30/2022]
Abstract
The reduced injection frequency and more nearly constant serum concentrations afforded by sustained release devices have been exploited for the chronic delivery of several therapeutic peptides via poly(lactide-co-glycolide) (PLG) microspheres. The clinical success of these formulations has motivated the exploration of similar depot systems for chronic protein delivery; however, this application has not been fully realized in practice. Problems with the delivery of unmodified proteins in PLG depot systems include high initial "burst" release and irreversible adsorption of protein to the biodegradable polymer. Further, protein activity may be lost due to the damaging effects of protein-interface and protein-surface interactions that occur during both microsphere formation and release. Several techniques are discussed in this review that may improve the performance of PLG depot delivery systems for proteins. One promising approach is the covalent attachment of poly(ethylene glycol) (PEG) to the protein prior to encapsulation in the PLG microspheres. The combination of the extended circulation time of PEGylated proteins and the shielding and potential stabilizing effects of the attached PEG may lead to improved release kinetics from PLG microsphere system and more complete release of the active conjugate.
Collapse
Affiliation(s)
- Sheetal S Pai
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
89
|
Ditto AJ, Shah PN, Lopina ST, Yun YH. Nanospheres formulated from l-tyrosine polyphosphate as a potential intracellular delivery device. Int J Pharm 2009; 368:199-206. [DOI: 10.1016/j.ijpharm.2008.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/20/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
|
90
|
|
91
|
Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. J Control Release 2009; 133:37-43. [DOI: 10.1016/j.jconrel.2008.09.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/27/2008] [Accepted: 09/15/2008] [Indexed: 11/27/2022]
|
92
|
Wu J, Ding D, Ren G, Xu X, Yin X, Hu Y. Sustained delivery of endostatin improves the efficacy of therapy in Lewis lung cancer model. J Control Release 2008; 134:91-7. [PMID: 19084038 DOI: 10.1016/j.jconrel.2008.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/04/2008] [Accepted: 11/09/2008] [Indexed: 11/26/2022]
Abstract
The purpose of this work was to develop an effective delivery system for antiangiogenic therapy. Endostatin was microencapsulated into poly(lactic-co-glycolic acid) (PLGA) microspheres by using a w/o/o multiple emulsification-evaporation technique. Endostatin microspheres showed the encapsulation efficiency 100% with mean particle size about 25 microm. Endostatin released in vitro from PLGA microspheres were biologically active and significantly inhibited the migration of endothelial cells. In rats, endostatin microspheres produced a sustained release process in which the steady-state concentration was reached from day 5 to day 27 with the steady-state levels of endostatin between 174.8+/-33.3 and 351.3+/-126.3 ng/ml. In Lewis lung cancer model, a dose of 10 mg/kg endostatin microspheres was just as effective in suppressing tumor growth as a dose of 2 mg/kg/day free endostatin for 35 days (total dose 70 mg/kg). These results indicated PLGA microspheres further reduced the amount of endostatin needed to achieve significant tumor inhibition in mice when compared with systemic administration.
Collapse
Affiliation(s)
- Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
93
|
Junyaprasert VB, Pornsuwannapha S. Floating properties and release characteristics of hollow microspheres of acyclovir. Drug Deliv 2008; 15:331-41. [PMID: 18763164 DOI: 10.1080/10717540802035335] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Acyclovir, a selective antiherpes virus agent, was loaded in the hollow microspheres to improve bioavailability and patient compliance by prolonging the residence time in the gastrointestinal tract. The hollow microspheres of acyclovir were prepared by solvent evaporation diffusion method using Eudragit S 100 as a controlled polymer. We found that the process conditions that provided the high % yield of the hollow microspheres were the use of 5:8:2 of dichloromethane: ethanol: isopropanol as a solvent system and stirring at 300 rpm for 60 min. The size of the microspheres prepared from different ratios of acyclovir and Eudragit S 100 was 159-218 microm. When the drug-to-polymer ratio was increased, the size and percent drug content increased. The highest percent drug entrapment was obtained at the ratio of 600 mg acyclovir: 1 g Eudragit S 100. The hollow microspheres tended to float over 0.1 M hydrochloric acid containing 0.02% Tween 20 solution for 24 hr. The rate of acyclovir released from the microspheres was generally low in simulated gastric fluid without enzyme due to the low permeability of the polymer. However, in phosphate buffer pH 6.8, the drug release increased as the drug load increased due to the swelling property of the polymer. In simulated intestinal fluids without enzymes, the polymer completely dissolved resulting in instant release of the drug in this medium.
Collapse
|
94
|
Cai C, Mao S, Germershaus O, Schaper A, Rytting E, Chen D, Kissel T. Influence of morphology and drug distribution on the release process of FITC-dextran-loaded microspheres prepared with different types of PLGA. J Microencapsul 2008; 26:334-45. [DOI: 10.1080/02652040802354707] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
95
|
Naha PC, Kanchan V, Manna PK, Panda AK. Improved bioavailability of orally delivered insulin using Eudragit-L30D coated PLGA microparticles. J Microencapsul 2008; 25:248-56. [DOI: 10.1080/02652040801903843] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
96
|
Gaskell EE, Hobbs G, Rostron C, Hutcheon GA. Encapsulation and release ofα-chymotrypsin from poly(glycerol adipate-co-ω-pentadecalactone) microparticles. J Microencapsul 2008; 25:187-95. [DOI: 10.1080/02652040701848775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
97
|
Zhao C, Liu XD, Nomizu M, Nishi N. Preparation of polysulfone hollow microspheres encapsulating DNA and their functional utilization. J Microencapsul 2008; 21:283-91. [PMID: 15204595 DOI: 10.1080/02652040310001637884] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polysulfone hollow microspheres encapsulating DNA were prepared using a liquid-liquid phase separation technique. The microspheres were then used to absorb a DNA-binding intercalating material--ethidium bromide. The amount of DNA encapsulated in the microspheres depended on the concentration of the DNA solution used to prepare the microspheres, and the microsphere morphology depended on both the polymer concentration and the preparation conditions. The amount of ethidium bromide in the microspheres depended mainly on the amount of encapsulated DNA, and the microsphere morphology also affected the removal of the ethidium bromide. The new method of DNA encapsulation is proposed, and the microspheres encapsulating the DNA have the potential to be used in environmental applications.
Collapse
Affiliation(s)
- C Zhao
- Division of Bioscience, Graduate School of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
98
|
Dinarvand R, Moghadam SH, Sheikhi A, Atyabi F. Effect of surfactant HLB and different formulation variables on the properties of poly-D,L-lactide microspheres of naltrexone prepared by double emulsion technique. J Microencapsul 2008; 22:139-51. [PMID: 16019900 DOI: 10.1080/02652040400026392] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this work was to investigate the role of HLB of emulsifier as well as volume of the internal aqueous phase (W(1)) and presence of salt in the external aqueous phase (W(2)) on the morphology, size and encapsulation efficiency of poly(D,L-lactide) microspheres containing naltrexone HCl. PLA microparticles containing naltrexone HCl, an effective opiate antagonist, were prepared by a water-in-oil-in-water emulsification-solvent evaporation procedure. One of the five different emulsifiers: span 80, span 20, tween 85, tween 80 and tween 20, with HLB values from 4-17 were added to W(1). Presence of emulsifier in W(1) resulted in smaller particles with a more dense and uniform internal structure. Incorporation of span 80 (HLB 4.3, suitable for W/O emulsions) yield the highest encapsulation efficiency. Increasing the HLB value to 8 or 11 (span 20 or tween 85) decreased the efficiency of naltrexone HCl-loading. HLB values higher than 15 (tween 80 or tween 20) increased encapsulation efficiency unexpectedly, which could be attributed to migration of these emulsifiers to the O/W(2) interface and modifying the surface properties of microparticles. Increasing the internal water phase volume from 0.2-1.8 ml resulted in larger particle size with poor encapsulation efficiency. Addition of 10% w/w NaCl to the W(2) changed the surface morphology of microspheres from a porous form to a smooth surface. It was shown that, by selecting the appropriate HLB value of emulsifier in W(1), addition of salt to W(2) and controlling the volume of W(1), one can control the encapsulation efficiency, size and morphology of microspheres.
Collapse
Affiliation(s)
- R Dinarvand
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran.
| | | | | | | |
Collapse
|
99
|
Ho J, Wang H, Forde GM. Process considerations related to the microencapsulation of plasmid DNA via ultrasonic atomization. Biotechnol Bioeng 2008; 101:172-81. [PMID: 18646229 DOI: 10.1002/bit.21876] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An effective means of facilitating DNA vaccine delivery to antigen presenting cells is through biodegradable microspheres. Microspheres offer distinct advantages over other delivery technologies by providing release of DNA vaccine in its bioactive form in a controlled fashion. In this study, biodegradable poly(D,L-lactide-co-glycolide) (PLGA) microspheres containing polyethylenimine (PEI) condensed plasmid DNA (pDNA) were prepared using a 40 kHz ultrasonic atomization system. Process synthesis parameters, which are important to the scale-up of microspheres that are suitable for nasal delivery (i.e., less than 20 microm), were studied. These parameters include polymer concentration; feed flowrate; volumetric ratio of polymer and pDNA-PEI (plasmid DNA-polyethylenimine) complexes; and nitrogen to phosphorous (N/P) ratio. PDNA encapsulation efficiencies were predominantly in the range 82-96%, and the mean sizes of the particle were between 6 and 15 microm. The ultrasonic synthesis method was shown to have excellent reproducibility. PEI affected morphology of the microspheres, as it induced the formation of porous particles that accelerate the release rate of pDNA. The PLGA microspheres displayed an in vitro release of pDNA of 95-99% within 30 days and demonstrated zero order release kinetics without an initial spike of pDNA. Agarose electrophoresis confirmed conservation of the supercoiled form of pDNA throughout the synthesis and in vitro release stages. It was concluded that ultrasonic atomization is an efficient technique to overcome the key obstacles in scaling-up the manufacture of encapsulated vaccine for clinical trials and ultimately, commercial applications.
Collapse
Affiliation(s)
- Jenny Ho
- Department of Chemical Engineering, Monash University, Clayton, 3800 VIC, Australia.
| | | | | |
Collapse
|
100
|
Whateley TL. Literature Alerts. Drug Deliv 2008. [DOI: 10.3109/10717549609031381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|