51
|
Huang XF, Li JJ, Tao YG, Wang XQ, Zhang RL, Zhang JL, Su ZQ, Huang QH, Deng YH. Geniposide attenuates Aβ25–35-induced neurotoxicity via the TLR4/NF-κB pathway in HT22 cells. RSC Adv 2018; 8:18926-18937. [PMID: 35539637 PMCID: PMC9080630 DOI: 10.1039/c8ra01038b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/16/2018] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is marked by the accumulation of amyloid-β (Aβ) and neuroinflammation which promote the development of AD. Geniposide, the main ingredient isolated from Chinese herbal medicine Gardenia jasminoides Ellis, has a variety of pharmacological functions such as anti-apoptosis and anti-inflammatory activity. Hence, we estimated the inflammatory cytotoxicity caused by Aβ25–35 and the neuroprotective effects of geniposide in HT22 cells. In this research, following incubation with Aβ25–35 (40 μM, 24 h) in HT22 cells, the methylthiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) release assays showed that the cell survival rate was significantly decreased. In contrast, the reactive oxygen species (ROS) assay indicated that Aβ25–35 enhanced ROS accumulation and apoptosis showed in both hoechst 33342 staining and annexin V-FITC/PI double staining. And then, immunofluorescence test revealed that Aβ25–35 promoted p65 to transfer into the nucleus indicating p65 was activated by Aβ25–35. Moreover, western blot analysis proved that Aβ25–35 increased the expression of nitric oxide species (iNOS), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2) and interleukin-1β (IL-1β). Simultaneously, Aβ25–35 also promoted the expression of toll-like receptor 4 (TLR4), p-p65 and p-IκB-α accompanied with the increase in the level of beta-secretase 1 (BACE1) and caspase-3 which further supported Aβ25–35 induced apoptosis and inflammation. Fortunately, this up-regulation was reversed by geniposide. In conclusion, our data suggest that geniposide can alleviate Aβ25–35-induced inflammatory response to protect neurons, which is possibly involved with the inhibition of the TLR4/NF-κB pathway in HT22 cells. Geniposide may be the latent treatment for AD induced by neuroinflammation and apoptosis. Alzheimer's disease (AD), a neurodegenerative disorder, is marked by the accumulation of amyloid-β (Aβ) and neuroinflammation which promote the development of AD.![]()
Collapse
Affiliation(s)
- Xiu-Fang Huang
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Jian-Jun Li
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Yan-Gu Tao
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Xie-Qi Wang
- Dermatology Hospital of Southern Medical University
- Dermatology Hospital of Guangdong Province
- Guangzhou
- China
| | - Ru-Lan Zhang
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Jia-Lin Zhang
- Dermatology Hospital of Southern Medical University
- Dermatology Hospital of Guangdong Province
- Guangzhou
- China
| | - Zu-Qing Su
- Guangdong Provincial Hospital of Traditional Chinese Medicine
- Guangzhou
- China
| | - Qi-Hui Huang
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Yuan-Hui Deng
- Guangdong Provincial Hospital of Traditional Chinese Medicine
- Guangzhou
- China
| |
Collapse
|
52
|
Taipa R, Ferreira V, Brochado P, Robinson A, Reis I, Marques F, Mann DM, Melo-Pires M, Sousa N. Inflammatory pathology markers (activated microglia and reactive astrocytes) in early and late onset Alzheimer disease: a post mortem study. Neuropathol Appl Neurobiol 2017; 44:298-313. [PMID: 29044639 DOI: 10.1111/nan.12445] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/22/2017] [Indexed: 01/03/2023]
Abstract
AIMS The association between the pathological features of AD and dementia is stronger in younger old persons than in older old persons suggesting that additional factors are involved in the clinical expression of dementia in the oldest old. Cumulative data suggests that neuroinflammation plays a prominent role in Alzheimer's disease (AD) and different studies reported an age-associated dysregulation of the neuroimmune system. Consequently, we sought to characterize the pattern of microglial cell activation and astrogliosis in brain post mortem tissue of pathologically confirmed cases of early and late onset AD (EOAD and LOAD) and determine their relation to age. METHODS Immunohistochemistry (CD68 and glial fibrillary acidic protein) with morphometric analysis of astroglial profiles in 36 cases of AD and 28 similarly aged controls. RESULTS Both EOAD and LOAD groups had higher microglial scores in CA1, entorhinal and temporal cortices, and higher astroglial response in CA1, dentate gyrus, entorhinal and temporal cortices, compared to aged matched controls. Additionally, EOAD had higher microglial scores in subiculum, entorhinal and temporal subcortical white matter, and LOAD higher astrogliosis in CA2 region. CONCLUSIONS Overall, we found that the neuroinflammatory pathological markers in late stage AD human tissue to have a similar pattern in both EOAD and LOAD, though the severity of the pathological markers in the younger group was higher. Understanding the age effect in AD will be important when testing modifying agents that act on the neuroinflammation.
Collapse
Affiliation(s)
- R Taipa
- Neuropathology Unit, Department of Neurosciences, Centro Hospitalar do Porto, Porto, Portugal.,Life and Health Sciences Research Institute, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - V Ferreira
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - P Brochado
- Neuropathology Unit, Department of Neurosciences, Centro Hospitalar do Porto, Porto, Portugal
| | - A Robinson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Salford Royal Hospital Foundation NHS Trust, University of Manchester, Salford, UK
| | - I Reis
- Neuropathology Unit, Department of Neurosciences, Centro Hospitalar do Porto, Porto, Portugal
| | - F Marques
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - D M Mann
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Salford Royal Hospital Foundation NHS Trust, University of Manchester, Salford, UK
| | - M Melo-Pires
- Neuropathology Unit, Department of Neurosciences, Centro Hospitalar do Porto, Porto, Portugal
| | - N Sousa
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| |
Collapse
|
53
|
Sinagra G, Fabris E. Inflammation in cardiac amyloidosis: prognostic marker or therapeutic target? Eur J Heart Fail 2017; 20:758-759. [PMID: 29148151 DOI: 10.1002/ejhf.1062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/01/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gianfranco Sinagra
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.,Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
| | - Enrico Fabris
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.,Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
| |
Collapse
|
54
|
Mastroeni D, Nolz J, Sekar S, Delvaux E, Serrano G, Cuyugan L, Liang WS, Beach TG, Rogers J, Coleman PD. Laser-captured microglia in the Alzheimer's and Parkinson's brain reveal unique regional expression profiles and suggest a potential role for hepatitis B in the Alzheimer's brain. Neurobiol Aging 2017; 63:12-21. [PMID: 29207277 DOI: 10.1016/j.neurobiolaging.2017.10.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/02/2017] [Accepted: 10/22/2017] [Indexed: 01/24/2023]
Abstract
Expression array data from dozens of laboratories, including our own, show significant changes in expression of many genes in Alzheimer's disease (AD) patients compared with normal controls. These data typically rely on brain homogenates, and information about transcripts specific to microglia and other central nervous system (CNS) cell types, which far outnumber microglia-specific transcripts, is lost. We therefore used single-cell laser capture methods to assess the full range of microglia-specific expression changes that occur in different brain regions (substantia nigra and hippocampus CA1) and disease states (AD, Parkinson's disease, and normal controls). Two novel pathways, neuronal repair and viral processing were identified. Based on KEGG analysis (Kyoto Encyclopedia of Genes and Genomes, a collection of biological pathways), one of the most significant viruses was hepatitis B virus (HBV) (false discovery rate < 0.00000001). Immunohistochemical analysis using HBV-core antibody in HBV-positive control, amnestic mild cognitive impairment, and HBV-positive AD cases show increased HBV immunoreactivity as disease pathology increases. These results are the first, to our knowledge, to show regional differences in human microglia. In addition, these data reveal new functions for microglia and suggest a novel risk factor for AD.
Collapse
Affiliation(s)
- Diego Mastroeni
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA.
| | - Jennifer Nolz
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Shobana Sekar
- Translational Genomics Institute, Phoenix, Arizona, USA
| | - Elaine Delvaux
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Geidy Serrano
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Lori Cuyugan
- Translational Genomics Institute, Phoenix, Arizona, USA
| | | | | | | | - Paul D Coleman
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA
| |
Collapse
|
55
|
Sathyan S, Barzilai N, Atzmon G, Milman S, Ayers E, Verghese J. Association of anti-inflammatory cytokine IL10 polymorphisms with motoric cognitive risk syndrome in an Ashkenazi Jewish population. Neurobiol Aging 2017; 58:238.e1-238.e8. [PMID: 28705468 PMCID: PMC5581722 DOI: 10.1016/j.neurobiolaging.2017.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 05/17/2017] [Accepted: 06/11/2017] [Indexed: 01/06/2023]
Abstract
Motoric cognitive risk (MCR) syndrome is a newly described predementia syndrome characterized by the presence of cognitive complaints and slow gait, which is associated with increased risk of conversion to dementia. The underlying biological mechanisms for MCR have not yet been established. Neuroinflammation mediated through cytokines plays a pivotal role in the pathogenesis of dementia. Hence, our objective was to prospectively examine whether variations in cytokine genes (CRP, IFNG, IL1A, IL1B, IL4, IL6, IL10, IL18, TNF, and IL12A) play a role in MCR incidence in 530 community-dwelling Ashkenazi Jewish adults aged 65 years and older without MCR or dementia at baseline enrolled in the LonGenity study. Over a median follow-up of 2.99 years, 70 participants developed MCR. Single nucleotide polymorphisms (SNPs) in the transcriptional regulatory regions of cytokine IL10, rs1800896 (hazard ratio adjusted for age, gender, and education, aHR: 1.667; 95% CI: 1.198-2.321) and rs3024498 (aHR: 1.926; 95% CI: 1.315-2.822), were associated with incident MCR. Functional analysis using in silico approaches indicated associated SNP rs3024498 "C" allele being the local expression quantitative trait locus. Associated alleles of both the SNPs, rs1800896 and rs3024498, were implicated with overexpression of IL10 gene. None of the variants in the neuroinflammatory pathway studied were associated with incident mild cognitive impairment syndrome. These observations support a role for the IL10 gene in dementia pathogenesis by increasing risk of developing MCR in older adults.
Collapse
Affiliation(s)
- Sanish Sathyan
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gil Atzmon
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Sofiya Milman
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emmeline Ayers
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joe Verghese
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
56
|
Krzysztoforska K, Mirowska-Guzel D, Widy-Tyszkiewicz E. Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: Review on the basis of in vitro and in vivo studies in rodents and humans. Nutr Neurosci 2017; 22:72-82. [PMID: 28745142 DOI: 10.1080/1028415x.2017.1354543] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protocatechuic acid has very promising properties potentially useful in the inhibition of neurodegenerative diseases progression. It is the main metabolite of the complex polyphenolic compounds and is believed to be responsible for beneficial effects associated with consumption of the food products rich in polyphenols. Protocatechuic acid is present in the circulation significantly longer and at higher concentrations than parent compounds and easily crosses the blood brain barrier. The aim of the following paper is to provide an extensive and actual report on protocatechuic acid and its pharmacological potential in prevention and/or treatment of neurodegenerative diseases in humans based on existing data from both in vitro and in vivo studies. Experimental studies strongly support the role of protocatechuic acid in the prevention of neurodegenerative processes, including Alzheimer's and Parkinson's diseases, due to its favorable influence on processes underlying cognitive and behavioral impairment, namely accumulation of the β-amyloid plaques in brain tissues, hyperphosphorylation of tau protein in neurons, excessive formation of reactive oxygen species and neuroinflammation. There is a growing evidence that protocatechuic acid may become in the future efficacious and safe substance that protects against neurodegenerative disorders.
Collapse
Affiliation(s)
- Kinga Krzysztoforska
- a Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| | - Dagmara Mirowska-Guzel
- a Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| | - Ewa Widy-Tyszkiewicz
- a Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
57
|
Mastroeni D, Sekar S, Nolz J, Delvaux E, Lunnon K, Mill J, Liang WS, Coleman PD. ANK1 is up-regulated in laser captured microglia in Alzheimer's brain; the importance of addressing cellular heterogeneity. PLoS One 2017; 12:e0177814. [PMID: 28700589 PMCID: PMC5507536 DOI: 10.1371/journal.pone.0177814] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/03/2017] [Indexed: 01/19/2023] Open
Abstract
Recent epigenetic association studies have identified a new gene, ANK1, in the pathogenesis of Alzheimer’s disease (AD). Although strong associations were observed, brain homogenates were used to generate the data, introducing complications because of the range of cell types analyzed. In order to address the issue of cellular heterogeneity in homogenate samples we isolated microglial, astrocytes and neurons by laser capture microdissection from CA1 of hippocampus in the same individuals with a clinical and pathological diagnosis of AD and matched control cases. Using this unique RNAseq data set, we show that in the hippocampus, ANK1 is significantly (p<0.0001) up-regulated 4-fold in AD microglia, but not in neurons or astrocytes from the same individuals. These data provide evidence that microglia are the source of ANK1 differential expression previously identified in homogenate samples in AD.
Collapse
Affiliation(s)
- Diego Mastroeni
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Banner Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ, United States of America
- * E-mail:
| | - Shobana Sekar
- Translational Genomics Institute, 445 North Fifth Street, Phoenix, AZ, United States of America
| | - Jennifer Nolz
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Elaine Delvaux
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Katie Lunnon
- University of Exeter Medical School, RILD, University of Exeter, Devon, United Kingdom
| | - Jonathan Mill
- University of Exeter Medical School, RILD, University of Exeter, Devon, United Kingdom
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, United Kingdom
| | - Winnie S. Liang
- Translational Genomics Institute, 445 North Fifth Street, Phoenix, AZ, United States of America
| | - Paul D. Coleman
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Banner Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ, United States of America
| |
Collapse
|
58
|
Chan CK, Tan LTH, Andy SN, Kamarudin MNA, Goh BH, Kadir HA. Anti-neuroinflammatory Activity of Elephantopus scaber L. via Activation of Nrf2/HO-1 Signaling and Inhibition of p38 MAPK Pathway in LPS-Induced Microglia BV-2 Cells. Front Pharmacol 2017; 8:397. [PMID: 28680404 PMCID: PMC5478732 DOI: 10.3389/fphar.2017.00397] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
Elephantopus scaber L. (family: Asteraceae) has been traditionally utilized as a folkloric medicine and scientifically shown to exhibit anti-inflammatory activities in various in vivo inflammatory models. Given the lack of study on the effect of E. scaber in neuroinflammation, this study aimed to investigate the anti-neuroinflammatory effect and the underlying mechanisms of ethyl acetate fraction from the leaves of E. scaber (ESEAF) on the release of pro-inflammatory mediators in lipopolysaccharide (LPS)-induced microglia cells (BV-2). Present findings showed that ESEAF markedly attenuated the translocation of NF-κB to nucleus concomitantly with the significant mitigation on the LPS-induced production of NO, iNOS, COX-2, PGE2, IL-1β, and TNF-α. These inflammatory responses were reduced via the inhibition of p38. Besides, ESEAF was shown to possess antioxidant activities evident by the DPPH and SOD scavenging activities. The intracellular catalase enzyme activity was enhanced by ESEAF in the LPS-stimulated BV-2 cells. Furthermore, the formation of ROS induced by LPS in BV-2 cells was reduced upon the exposure to ESEAF. Intriguingly, the reduction of ROS was found in concerted with the activation of Nrf2 and HO-1. It is conceivable that the activation promotes the scavenging power of antioxidant enzymes as well as to ameliorate the inflammatory response in LPS-stimulated BV-2 cells. Finally, the safety profile analysis through oral administration of ESEAF at 2000 mg/kg did not result in any mortalities, adverse effects nor histopathologic abnormalities of organs in mice. Taken altogether, the cumulative findings suggested that ESEAF holds the potential to develop as nutraceutical for the intervention of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Chim-Kei Chan
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaSubang Jaya, Malaysia
| | - Shathiswaran N Andy
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaSubang Jaya, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Habsah Abdul Kadir
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| |
Collapse
|
59
|
Sawikr Y, Yarla NS, Peluso I, Kamal MA, Aliev G, Bishayee A. Neuroinflammation in Alzheimer's Disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 108:33-57. [PMID: 28427563 DOI: 10.1016/bs.apcsb.2017.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
60
|
Abstract
Alzheimer’s disease (AD) is characterised by a progressive loss of cognitive functions. Histopathologically, AD is defined by the presence of extracellular amyloid plaques containing Aβ and intracellular neurofibrillary tangles composed of hyperphosphorylated tau proteins. According to the now well-accepted amyloid cascade hypothesis is the Aβ pathology the primary driving force of AD pathogenesis, which then induces changes in tau protein leading to a neurodegenerative cascade during the progression of disease. Since many earlier drug trials aiming at preventing Aβ pathology failed to demonstrate efficacy, tau and microtubules have come into focus as prominent downstream targets. The article aims to develop the current concept of the involvement of tau in the neurodegenerative triad of synaptic loss, cell death and dendritic simplification. The function of tau as a microtubule-associated protein and versatile interaction partner will then be introduced and the rationale and progress of current tau-directed therapy will be discussed in the biological context.
Collapse
Affiliation(s)
- Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany.
| |
Collapse
|
61
|
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal lobar dementia are among the most pressing problems of developed societies with aging populations. Neurons carry out essential functions such as signal transmission and network integration in the central nervous system and are the main targets of neurodegenerative disease. In this Review, I address how the neuron's environment also contributes to neurodegeneration. Maintaining an optimal milieu for neuronal function rests with supportive cells termed glia and the blood-brain barrier. Accumulating evidence suggests that neurodegeneration occurs in part because the environment is affected during disease in a cascade of processes collectively termed neuroinflammation. These observations indicate that therapies targeting glial cells might provide benefit for those afflicted by neurodegenerative disorders.
Collapse
|
62
|
Unzeta M, Esteban G, Bolea I, Fogel WA, Ramsay RR, Youdim MBH, Tipton KF, Marco-Contelles J. Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease. Front Neurosci 2016; 10:205. [PMID: 27252617 PMCID: PMC4879129 DOI: 10.3389/fnins.2016.00205] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022] Open
Abstract
HIGHLIGHTS ASS234 is a MTDL compound containing a moiety from Donepezil and the propargyl group from the PF 9601N, a potent and selective MAO B inhibitor. This compound is the most advanced anti-Alzheimer agent for preclinical studies identified in our laboratory.Derived from ASS234 both multipotent donepezil-indolyl (MTDL-1) and donepezil-pyridyl hybrids (MTDL-2) were designed and evaluated as inhibitors of AChE/BuChE and both MAO isoforms. MTDL-2 showed more high affinity toward the four enzymes than MTDL-1.MTDL-3 and MTDL-4, were designed containing the N-benzylpiperidinium moiety from Donepezil, a metal- chelating 8-hydroxyquinoline group and linked to a N-propargyl core and they were pharmacologically evaluated.The presence of the cyano group in MTDL-3, enhanced binding to AChE, BuChE and MAO A. It showed antioxidant behavior and it was able to strongly complex Cu(II), Zn(II) and Fe(III).MTDL-4 showed higher affinity toward AChE, BuChE.MTDL-3 exhibited good brain penetration capacity (ADMET) and less toxicity than Donepezil. Memory deficits in scopolamine-lesioned animals were restored by MTDL-3.MTDL-3 particularly emerged as a ligand showing remarkable potential benefits for its use in AD therapy. Alzheimer's disease (AD), the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills, and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, β-amyloid deposits, τ-protein phosphorylation, oxidative stress, and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept®) but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands (MTDL) based on the "one molecule, multiple targets" paradigm. Thus, in this context, different series of novel multifunctional molecules with antioxidant, anti-amyloid, anti-inflammatory, and metal-chelating properties able to interact with multiple enzymes of therapeutic interest in AD pathology including acetylcholinesterase, butyrylcholinesterase, and monoamine oxidases A and B have been designed and assessed biologically. This review describes the multiple targets, the design rationale and an in-house MTDL library, bearing the N-benzylpiperidine motif present in donepezil, linked to different heterocyclic ring systems (indole, pyridine, or 8-hydroxyquinoline) with special emphasis on compound ASS234, an N-propargylindole derivative. The description of the in vitro biological properties of the compounds and discussion of the corresponding structure-activity-relationships allows us to highlight new issues for the identification of more efficient MTDL for use in AD therapy.
Collapse
Affiliation(s)
- Mercedes Unzeta
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Gerard Esteban
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - Irene Bolea
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Rona R. Ramsay
- Biomolecular Sciences, Biomedical Sciences Research Complex, University of St AndrewsSt. Andrews, UK
| | - Moussa B. H. Youdim
- Department of Pharmacology, Ruth and Bruce Rappaport Faculty of Medicine, Eve Topf and National Parkinson Foundation Center for Neurodegenerative Diseases ResearchHaifa, Israel
| | - Keith F. Tipton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry, Spanish National Research CouncilMadrid, Spain
| |
Collapse
|
63
|
Quintana-Quezada RA, Yusuf SW, Banchs J. Use of Noninvasive Imaging in Cardiac Amyloidosis. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2016; 18:46. [PMID: 27181401 DOI: 10.1007/s11936-016-0469-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OPINION STATEMENT Cardiac involvement in amyloidosis is associated with poor outcomes. The standard test for the diagnosis of cardiac amyloidosis is endomyocardial biopsy but given current advances in noninvasive imaging, the diagnosis is frequently obtained or strongly suspected without biopsy. Echocardiography is the most utilized cardiac imaging modality, particularly myocardial strain measures with this modality have been found to be a predictor of clinical outcomes, superior to traditional parameters. Other known imaging modalities with new, useful protocols for this pathology include nuclear imaging and cardiac magnetic resonance (CMR). In particular, CMR has excellent sensitivity and specificity.
Collapse
Affiliation(s)
- Raymundo Alain Quintana-Quezada
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 1451, Houston, TX, 77030, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 1451, Houston, TX, 77030, USA
| | - Jose Banchs
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 1451, Houston, TX, 77030, USA.
| |
Collapse
|
64
|
Choi EK, Ko MH, Park SH, Ha KC, Baek HI, Kim YJ, Lee JY, Chae HJ, Cho KP, Won YH, Chae SW. Eriobotrya japonica Improves Cognitive Function in Healthy Adolescents: A 12-week, Randomized Double-blind, Placebo-controlled Clinical Trial. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.370.378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
65
|
Miklossy J, McGeer PL. Common mechanisms involved in Alzheimer's disease and type 2 diabetes: a key role of chronic bacterial infection and inflammation. Aging (Albany NY) 2016; 8:575-88. [PMID: 26961231 PMCID: PMC4925815 DOI: 10.18632/aging.100921] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/20/2016] [Indexed: 12/30/2022]
Abstract
Strong epidemiologic evidence and common molecular mechanisms support an association between Alzheimer's disease (AD) and type 2-diabetes. Local inflammation and amyloidosis occur in both diseases and are associated with periodontitis and various infectious agents. This article reviews the evidence for the presence of local inflammation and bacteria in type 2 diabetes and discusses host pathogen interactions in chronic inflammatory disorders. Chlamydophyla pneumoniae, Helicobacter pylori and spirochetes are demonstrated in association with dementia and brain lesions in AD and islet lesions in type 2 diabetes. The presence of pathogens in host tissues activates immune responses through Toll-like receptor signaling pathways. Evasion of pathogens from complement-mediated attack results in persistent infection, inflammation and amyloidosis. Amyloid beta and the pancreatic amyloid called amylin bind to lipid bilayers and produce Ca(2+) influx and bacteriolysis. Similarly to AD, accumulation of amylin deposits in type 2 diabetes may result from an innate immune response to chronic bacterial infections, which are known to be associated with amyloidosis. Further research based on an infectious origin of both AD and type 2 diabetes may lead to novel treatment strategies.
Collapse
Affiliation(s)
- Judith Miklossy
- International Alzheimer Research Centre, Prevention Alzheimer International Foundation, Martigny-Croix, Switzerland
| | - Patrick L. McGeer
- Kinsmen Laboratory of Neurological Research, The University of British Columbia, Vancouver, B.C, Canada
| |
Collapse
|
66
|
Awasthi M, Singh S, Pandey VP, Dwivedi UN. Alzheimer's disease: An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. J Neurol Sci 2016; 361:256-71. [DOI: 10.1016/j.jns.2016.01.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 01/09/2023]
|
67
|
McCaulley ME, Grush KA. Alzheimer's Disease: Exploring the Role of Inflammation and Implications for Treatment. Int J Alzheimers Dis 2015; 2015:515248. [PMID: 26664821 PMCID: PMC4664815 DOI: 10.1155/2015/515248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/21/2015] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by both structural abnormalities and inflammation in the brain. While recent research has chiefly focused on the structural changes involved in AD, understanding the pathophysiology and associated inflammation of the AD brain helps to elucidate potential therapeutic and preventative options. By exploring the data supporting an inflammatory etiology of AD, we present a case for the use of existing evidence-based treatments addressing inflammation as promising options for treating and preventing AD. We present data demonstrating tumor necrosis factor alpha association with the inflammation of AD. We also discuss data supporting TNF alpha associated inflammation in traumatic brain injury, stroke, and spinal disc associated radiculopathy. We augment this previously unarticulated concept of a unifying pathophysiology of central nervous system disease, with reports of benefits of TNF alpha inhibition in many hundreds of patients with those diseases, including AD. We also assess the pathophysiologic and clinical trial evidence supporting the role of other inflammation resolving treatments in AD. In aggregate, the data from the several potentially effective therapeutic and preventative options contained within this report presents a clearer picture of next steps needed in research of treatment alternatives.
Collapse
Affiliation(s)
- Mark E. McCaulley
- Yampa Valley Medical Associates, 940 Central Park Drive, Steamboat Springs, CO 80487, USA
| | - Kira A. Grush
- Yampa Valley Medical Associates, 940 Central Park Drive, Steamboat Springs, CO 80487, USA
| |
Collapse
|
68
|
Chen JM, Jiang GX, Li QW, Zhou ZM, Cheng Q. Increased serum levels of interleukin-18, -23 and -17 in Chinese patients with Alzheimer's disease. Dement Geriatr Cogn Disord 2015; 38:321-9. [PMID: 25138786 DOI: 10.1159/000360606] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2014] [Indexed: 11/19/2022] Open
Abstract
AIMS To evaluate the serum levels of interleukin (IL)-18, IL-23 and IL-17 in Chinese patients with Alzheimer's disease (AD), and explore correlations between the three cytokines and relevant parameters. METHODS Serum concentrations of IL-18, IL-23 and IL-17 were measured by ELISA for 53 AD patients and 53 sex- and age-matched healthy controls in a community of elderly individuals in a Shanghai suburb. RESULTS Serum concentrations of IL-18, IL-23 and IL-17 were significantly higher in AD patients than controls. The serum level of IL-23 was observed to be significantly higher (p = 0.049) in female AD patients than male AD patients. In addition, a significantly inverse correlation was found between IL-18 and MMSE score (rs = -0.356, p = 0.011) for all AD patients. CONCLUSION Elevated IL-18, IL-23 and IL-17 levels are observed in AD patients and differences may exist between males and females. Besides, IL-18 may correlate with the severity of AD.
Collapse
Affiliation(s)
- Jin-Mei Chen
- Department of Neurology, Ruijin Hospital affiliated with the School of Medicine, Shanghai Jiao Tong University,, Shanghai, China
| | | | | | | | | |
Collapse
|
69
|
|
70
|
Barage SH, Sonawane KD. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease. Neuropeptides 2015; 52:1-18. [PMID: 26149638 DOI: 10.1016/j.npep.2015.06.008] [Citation(s) in RCA: 388] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease is an irreversible, progressive neurodegenerative disorder. Various therapeutic approaches are being used to improve the cholinergic neurotransmission, but their role in AD pathogenesis is still unknown. Although, an increase in tau protein concentration in CSF has been described in AD, but several issues remains unclear. Extensive and accurate analysis of CSF could be helpful to define presence of tau proteins in physiological conditions, or released during the progression of neurodegenerative disease. The amyloid cascade hypothesis postulates that the neurodegeneration in AD caused by abnormal accumulation of amyloid beta (Aβ) plaques in various areas of the brain. The amyloid hypothesis has continued to gain support over the last two decades, particularly from genetic studies. Therefore, current research progress in several areas of therapies shall provide an effective treatment to cure this devastating disease. This review critically evaluates general biochemical and physiological functions of Aβ directed therapeutics and their relevance.
Collapse
Affiliation(s)
- Sagar H Barage
- Department of Biotechnology, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India
| | - Kailas D Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India; Department of Microbiology, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India.
| |
Collapse
|
71
|
Esfandiary E, Karimipour M, Mardani M, Ghanadian M, Alaei HA, Mohammadnejad D, Esmaeili A. Neuroprotective effects of Rosa damascena extract on learning and memory in a rat model of amyloid-β-induced Alzheimer's disease. Adv Biomed Res 2015; 4:131. [PMID: 26322279 PMCID: PMC4544115 DOI: 10.4103/2277-9175.161512] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/12/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-related progressive neurodegenerative disease, which is characterized clinically by serious impairment in memory and cognition. Current medications only slow down the dementia progression and the present treatment one-drug one-target paradigm for anti-AD treatment appears to be clinically unsuccessful. Therefore, alternative therapeutic strategies are urgently needed. With respect to multifunctional and multitargeted characteristics of Rosa damascena via its effective flavonoids, we investigated the effects of R. damascena extract on behavioral functions in a rat model of amyloid-β (A-β)-induced Alzheimer's disease. MATERIALS AND METHODS After preparation of the methanolic extract of the R. damascena, HPLC analysis and toxicity studies, median lethal dose (LD50) and dose levels were determined. For evaluation of baseline training behavioral performance, Morris water maze and passive avoidance tests were used. A-β was injected bilaterally into CA1 area of the hippocampus. Twenty-one days after injection of A-β, the first probe trial of the behavioral tests were used to confirm learning and memory impairment. To examine the potential effects of the extract on behavioral tasks, the second probe trials were performed after one month administration of R. damasena extract. RESULTS Results showed that the R. damascena extract significantly improved the spatial and long-term memories in the extract- treated groups in a dose-dependent manner, as in the middle and high doses it had significant effect. CONCLUSION According to these results, we concluded that R. damascena can reverse behavioral deficits caused by A-β, and may provide a new potential option for prevention and treatment of the cognitive dysfunction in Alzheimer's disease.
Collapse
Affiliation(s)
- Ebrahim Esfandiary
- Department of Anatomical Sciences and Molecular Biology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences and Molecular Biology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mardani
- Department of Anatomical Sciences and Molecular Biology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Physiology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjat Allah Alaei
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Abolghasem Esmaeili
- Department of Biology, Cells, Molecular Biology and Biochemistry Division, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
72
|
|
73
|
Bishnoi RJ, Palmer RF, Royall DR. Serum interleukin (IL)-15 as a biomarker of Alzheimer's disease. PLoS One 2015; 10:e0117282. [PMID: 25710473 PMCID: PMC4339977 DOI: 10.1371/journal.pone.0117282] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/19/2014] [Indexed: 01/02/2023] Open
Abstract
Interleukin (IL-15), a pro-inflammatory cytokine has been studied as a possible marker of Alzheimer’s disease (AD); however its exact role in neuro-inflammation or the pathogenesis AD is not well understood yet. A Multiple Indicators Multiple Causes (MIMIC) approach was used to examine the relationship between serum IL-15 levels and AD in a well characterized AD cohort, the Texas Alzheimer's Research and Care Consortium (TARCC). Instead of categorical diagnoses, we used two latent construct d (for dementia) and g’ (for cognitive impairments not contributing to functional impairments) in our analysis. The results showed that the serum IL-15 level has significant effects on cognition, exclusively mediated by latent construct d and g’. Contrasting directions of association lead us to speculate that IL-15’s effects in AD are mediated through functional networks as d scores have been previously found to be specifically related to default mode network (DMN). Our finding warrants the need for further research to determine the changes in structural and functional networks corresponding to serum based biomarkers levels.
Collapse
Affiliation(s)
- Ram J. Bishnoi
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, Texas, United States of America
- * E-mail:
| | - Raymond F. Palmer
- Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Donald R. Royall
- Department of Psychiatry, Family and Community Medicine, and Medicine, University of Texas Health Science Center, South Texas Veterans’ Health System Audie L. Murphy Division, Geriatric Research Education and Clinical Centers, San Antonio, Texas, United States of America
| |
Collapse
|
74
|
Babiloni C, Del Percio C, Boccardi M, Lizio R, Lopez S, Carducci F, Marzano N, Soricelli A, Ferri R, Triggiani AI, Prestia A, Salinari S, Rasser PE, Basar E, Famà F, Nobili F, Yener G, Emek-Savaş DD, Gesualdo L, Mundi C, Thompson PM, Rossini PM, Frisoni GB. Occipital sources of resting-state alpha rhythms are related to local gray matter density in subjects with amnesic mild cognitive impairment and Alzheimer's disease. Neurobiol Aging 2015; 36:556-70. [PMID: 25442118 PMCID: PMC4315728 DOI: 10.1016/j.neurobiolaging.2014.09.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 01/18/2023]
Abstract
Occipital sources of resting-state electroencephalographic (EEG) alpha rhythms are abnormal, at the group level, in patients with amnesic mild cognitive impairment (MCI) and Alzheimer's disease (AD). Here, we evaluated the hypothesis that amplitude of these occipital sources is related to neurodegeneration in occipital lobe as measured by magnetic resonance imaging. Resting-state eyes-closed EEG rhythms were recorded in 45 healthy elderly (Nold), 100 MCI, and 90 AD subjects. Neurodegeneration of occipital lobe was indexed by weighted averages of gray matter density, estimated from structural MRIs. EEG rhythms of interest were alpha 1 (8-10.5 Hz) and alpha 2 (10.5-13 Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography. Results showed a positive correlation between occipital gray matter density and amplitude of occipital alpha 1 sources in Nold, MCI, and AD subjects as a whole group (r = 0.3, p = 0.000004, N = 235). Furthermore, there was a positive correlation between the amplitude of occipital alpha 1 sources and cognitive status as revealed by Mini Mental State Examination score across all subjects (r = 0.38, p = 0.000001, N = 235). Finally, amplitude of occipital alpha 1 sources allowed a moderate classification of individual Nold and AD subjects (sensitivity: 87.8%; specificity: 66.7%; area under the receiver operating characteristic curve: 0.81). These results suggest that the amplitude of occipital sources of resting-state alpha rhythms is related to AD neurodegeneration in occipital lobe along pathologic aging.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy; Department of Neuroscience, IRCCS San Raffaele Pisana, Rome, Italy.
| | | | - Marina Boccardi
- LENITEM (Laboratory of Epidemiology, Neuroimaging and Telemedicine), IRCCS Centro "S. Giovanni di Dio-F.B.F.", Brescia, Italy
| | - Roberta Lizio
- Department of Neuroscience, IRCCS San Raffaele Pisana, Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy
| | - Filippo Carducci
- Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy
| | - Nicola Marzano
- Department of Integrated Imaging, IRCCS SDN, Napoli, Italy
| | - Andrea Soricelli
- Department of Integrated Imaging, IRCCS SDN, Napoli, Italy; Department of Studies of Institutions and Territorial Systems, University of Naples Parthenope, Naples, Italy
| | - Raffaele Ferri
- Department of Neurology, IRCCS Oasi Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy
| | | | - Annapaola Prestia
- LENITEM (Laboratory of Epidemiology, Neuroimaging and Telemedicine), IRCCS Centro "S. Giovanni di Dio-F.B.F.", Brescia, Italy
| | - Serenella Salinari
- Department of Informatics and Systems "Antonio Ruberti", University of Rome "La Sapienza", Rome, Italy
| | - Paul E Rasser
- Centre for Translational Neuroscience & Mental Health Research, The University of Newcastle, Newcastle, New South Wales, Australia; Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
| | - Erol Basar
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul, Turkey
| | - Francesco Famà
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, Italy
| | - Flavio Nobili
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, Italy
| | - Görsev Yener
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul, Turkey; Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey; Brain Dynamics Multidisciplinary Research Center, Dokuz Eylül University, Izmir, Turkey; Department of Neurology, Dokuz Eylül University Medical School, Izmir, Turkey
| | - Derya Durusu Emek-Savaş
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul, Turkey; Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Loreto Gesualdo
- Dipartimento Emergenza e Trapianti d'Organi (D.E.T.O), University of Bari, Bari, Italy
| | - Ciro Mundi
- Department of Neurology, Ospedali Riuniti, Foggia, Italy
| | - Paul M Thompson
- Department of Neurology & Psychiatry, Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA, USA
| | - Paolo M Rossini
- Department of Neuroscience, IRCCS San Raffaele Pisana, Rome, Italy; Department of Geriatrics, Neuroscience & Orthopedics, Institute of Neurology, Catholic University, Rome, Italy
| | - Giovanni B Frisoni
- LENITEM (Laboratory of Epidemiology, Neuroimaging and Telemedicine), IRCCS Centro "S. Giovanni di Dio-F.B.F.", Brescia, Italy
| |
Collapse
|
75
|
Al-Jumeily D, Iram S, Vialatte FB, Fergus P, Hussain A. A novel method of early diagnosis of Alzheimer's disease based on EEG signals. ScientificWorldJournal 2015; 2015:931387. [PMID: 25688379 PMCID: PMC4320850 DOI: 10.1155/2015/931387] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 11/21/2022] Open
Abstract
Studies have reported that electroencephalogram signals in Alzheimer's disease patients usually have less synchronization than those of healthy subjects. Changes in electroencephalogram signals start at early stage but, clinically, these changes are not easily detected. To detect this perturbation, three neural synchrony measurement techniques: phase synchrony, magnitude squared coherence, and cross correlation are applied to three different databases of mild Alzheimer's disease patients and healthy subjects. We have compared the right and left temporal lobes of the brain with the rest of the brain areas (frontal, central, and occipital) as temporal regions are relatively the first ones to be affected by Alzheimer's disease. Moreover, electroencephalogram signals are further classified into five different frequency bands (delta, theta, alpha beta, and gamma) because each frequency band has its own physiological significance in terms of signal evaluation. A new approach using principal component analysis before applying neural synchrony measurement techniques has been presented and compared with Average technique. The simulation results indicated that applying principal component analysis before synchrony measurement techniques shows significantly better results as compared to the lateral one. At the end, all the aforementioned techniques are assessed by a statistical test (Mann-Whitney U test) to compare the results.
Collapse
Affiliation(s)
- Dhiya Al-Jumeily
- Applied Computing Research Group, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Shamaila Iram
- Applied Computing Research Group, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Francois-Benois Vialatte
- Laboratoire SIGMA, ESPCI ParisTech, 14 boulevard des Frères Voisin, 92130 Issy-les-Moulineaux, France
| | - Paul Fergus
- Applied Computing Research Group, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Abir Hussain
- Applied Computing Research Group, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
76
|
Thatipamula S, Al Rahim M, Zhang J, Hossain MA. Genetic deletion of neuronal pentraxin 1 expression prevents brain injury in a neonatal mouse model of cerebral hypoxia-ischemia. Neurobiol Dis 2014; 75:15-30. [PMID: 25554688 DOI: 10.1016/j.nbd.2014.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/01/2014] [Accepted: 12/18/2014] [Indexed: 12/23/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) brain injury is a leading cause of mortality and morbidity in infants and children for which there is no promising therapy at present. Previously, we reported induction of neuronal pentraxin 1 (NP1), a novel neuronal protein of the long-pentraxin family, following HI injury in neonatal brain. Here, we report that genetic deletion of NP1 expression prevents HI injury in neonatal brain. Elevated expression of NP1 was observed in neurons, not in astrocytes, of the ipsilateral cortical layers (I-IV) and in the hippocampal CA1 and CA3 areas of WT brains following hypoxia-ischemia; brain areas that developed infarcts (at 24-48 h), showed significantly increased numbers of TUNEL-(+) cells and tissue loss (at 7 days). In contrast, NP1-KO mice showed no evidence of brain infarction and tissue loss after HI. The immunofluorescence staining of brain sections with mitochondrial protein COX IV and subcellular fractionation analysis showed increased accumulation of NP1 in mitochondria, pro-death protein Bax activation and NP1 co-localization with activated caspase-3 in WT, but not in the NP1-KO brains; corroborating NP1 interactions with the mitochondria-derived pro-death pathways. Disruption of NP1 translocation to mitochondria by NP1-siRNA in primary cortical cultures significantly reduced ischemic neuronal death. NP1 was immunoprecipitated with activated Bax [6A7] proteins; HI caused increased interactions of NP1 with Bax, thereby, facilitating Bax translocation to mitochondrial and neuronal death. To further delineate the specificity of NPs, we found that NP1 but not the NP2 induction is specifically involved in brain injury mechanisms and that knockdown of NP1 only results in neuroprotection. Furthermore, live in vivo T2-weighted magnetic resonance imaging (MRI) including fractional anisotropy (FA) mapping showed no sign of delayed brain injury or tissue loss in the NP1-KO mice as compared to the WT at different post-HI periods (4-24 weeks) examined; indicating a long-term neuroprotective efficacy of NP1 gene deletion. Collectively, our results demonstrate a novel mechanism of neuronal death and predict that inhibition of NP1 expression is a promising strategy to prevent hypoxic-ischemic injury in immature brain.
Collapse
Affiliation(s)
| | - Md Al Rahim
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiangyang Zhang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mir Ahamed Hossain
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
77
|
Chamniansawat S, Chongthammakun S. Inhibition of hippocampal estrogen synthesis by reactive microglia leads to down-regulation of synaptic protein expression. Neurotoxicology 2014; 46:25-34. [PMID: 25447322 DOI: 10.1016/j.neuro.2014.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 12/31/2022]
Abstract
Activation of microglia may facilitate age-related impairment in cognitive functions including hippocampal-dependent memory. Considerable evidence indicates that hippocampal-derived estrogen improves hippocampal-dependent learning and memory. We hypothesize that activated microglia may inhibit de novo hippocampal estrogen synthesis and in turn suppress hippocampal synaptic protein expression. The present study aimed to elucidate the role of lipopolysaccharide (LPS)-activated microglial HAPI cells on estrogen synthesis and expression of synaptic proteins using H19-7 hippocampal neurons with a neuron-microglia co-culture system. LPS induced expression of the microglial activation markers major histocompatibility complex II (MHC II), CD11b, and ionized calcium-binding adapter molecule 1 (Iba1). Prolonged LPS exposure also enhanced the secretion of interleukin (IL)-6 and nitric oxide (NO) from microglial HAPI cells. Exposure to either LPS-activated microglia or IL-6, significantly suppressed the expression of synaptic proteins and the secretion of de novo hippocampal estrogen in H19-7 hippocampal neurons. In addition, LPS-activated microglia also decreased the expression of estrogen receptors (ERα and ERβ) in H19-7 hippocampal neurons. Our findings demonstrate a potential mechanism of microglia activation underlying the reduction in estrogen-mediated signaling on synaptic proteins in hippocampal neurons, which may be involved in hippocampal-dependent memory formation.
Collapse
Affiliation(s)
- Siriporn Chamniansawat
- Division of Anatomy, Department of Biomedical Sciences, Faculty of Allied Health Sciences, Burapha University, 169 Long-Hard Bangsaen Road, SaenSook Sub-district, Mueang District, Chonburi 20131, Thailand.
| | - Sukumal Chongthammakun
- Department of Anatomy and Center for Neuroscience, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi District, Bangkok 10400, Thailand
| |
Collapse
|
78
|
Abstract
PURPOSE OF REVIEW Trouble falling or staying asleep, poor sleep quality, and short or long sleep duration are gaining attention as potential risk factors for cognitive decline and dementia, including Alzheimer's disease. Sleep-disordered breathing has also been linked to these outcomes. Here, we review recent observational and experimental studies investigating the effect of poor sleep on cognitive outcomes and Alzheimer's disease, and discuss possible mechanisms. RECENT FINDINGS Observational studies with self-report and objective sleep measures (e.g. wrist actigraphy, polysomnography) support links between disturbed sleep and cognitive decline. Several recently published studies demonstrate associations between sleep variables and measures of Alzheimer's disease pathology, including cerebrospinal fluid measures of Aβ and PET measures of Aβ deposition. In addition, experimental studies suggest that sleep loss alters cerebrospinal fluid Aβ dynamics, decrements in slow-wave sleep may decrease the clearance of Aβ from the brain, and hypoxemia characteristic of sleep-disordered breathing increases Aβ production. SUMMARY Findings indicate that poor sleep is a risk factor for cognitive decline and Alzheimer's disease. Although mechanisms underlying these associations are not yet clear, healthy sleep appears to play an important role in maintaining brain health with age, and may play a key role in Alzheimer's disease prevention.
Collapse
Affiliation(s)
- Adam P. Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Lenis P. Chen-Edinboro
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Mark N. Wu
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California, San Francisco and San Francisco VA Medical Center, San Francisco, CA
| |
Collapse
|
79
|
Thambisetty M, Ferrucci L. Soluble interleukin-6 receptor levels and risk of dementia: one more signpost on a long road ahead. J Am Geriatr Soc 2014; 62:772-4. [PMID: 24731027 DOI: 10.1111/jgs.12737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Madhav Thambisetty
- Clinical and Translational Neuroscience Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | | |
Collapse
|
80
|
Pimplikar SW. Neuroinflammation in Alzheimer's disease: from pathogenesis to a therapeutic target. J Clin Immunol 2014; 34 Suppl 1:S64-9. [PMID: 24711006 DOI: 10.1007/s10875-014-0032-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
The top-down, reductionist approach of the past three decades has resulted in remarkable progress in identifying genes and proteins involved in Alzheimer's disease (AD), including β-amyloid (Aβ) peptides and tau protein. Recently, a number of genes of the innate immune pathway have been identified as AD risk factors and several microglial proteins have been shown to be chronically activated in AD brains. Together, these observations suggest a crucial role for neuroinflammation in AD pathogenesis and emerging evidence suggests that neuroinflammation is both a cause and a consequence of AD. Epidemiological studies show that long-term users of anti-inflammatory drugs are protected from AD but anti-inflammatory treatment in mild AD patients has not been successful. These observations suggest that anti-inflammatory treatment is likely to be successful if initiated prior to the onset of neurological symptoms. Finally, after the remarkable success of the reductionist approach, a complimentary bottom-up systems approach is necessary to gain a better understanding of the highly complex, multifactorial nature of AD pathogenesis.
Collapse
Affiliation(s)
- Sanjay W Pimplikar
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA,
| |
Collapse
|
81
|
Perry G, Castellani R. Plaques and tangles: Birthmarks of the aging soul. Biochem Pharmacol 2014; 88:423-5. [DOI: 10.1016/j.bcp.2014.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 12/29/2022]
|
82
|
Wuest DM, Lee KH. Amyloid-β concentration and structure influences the transport and immunomodulatory effects of IVIG. J Neurochem 2014; 130:136-44. [DOI: 10.1111/jnc.12678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/25/2014] [Accepted: 01/28/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Diane M. Wuest
- Department of Chemical and Biomolecular Engineering and Delaware Biotechnology Institute; University of Delaware; Newark Delaware USA
| | - Kelvin H. Lee
- Department of Chemical and Biomolecular Engineering and Delaware Biotechnology Institute; University of Delaware; Newark Delaware USA
| |
Collapse
|
83
|
Wan Z, Mah D, Simtchouk S, Klegeris A, Little JP. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells. Biochem Biophys Res Commun 2014; 446:37-42. [PMID: 24582565 DOI: 10.1016/j.bbrc.2014.02.077] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 12/18/2022]
Abstract
Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer's disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.
Collapse
Affiliation(s)
- Zhongxiao Wan
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Dorrian Mah
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Svetlana Simtchouk
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada.
| |
Collapse
|
84
|
T. Vollert C, L. Eriksen J. Microglia in the Alzheimers brain: a help or a hindrance? AIMS Neurosci 2014. [DOI: 10.3934/neuroscience.2014.3.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
85
|
Phytochemical compositions, and antioxidant and anti-inflammatory properties of twenty-two red rice samples grown in Zhejiang. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2013.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
86
|
Richardson C, Gard PR, Klugman A, Isaac M, Tabet N. Blood pro-inflammatory cytokines in Alzheimer's disease in relation to the use of acetylcholinesterase inhibitors. Int J Geriatr Psychiatry 2013; 28:1312-7. [PMID: 23585364 DOI: 10.1002/gps.3966] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/06/2013] [Indexed: 11/09/2022]
Abstract
OBJECTIVE A potential anti-inflammatory role for acetylcholinesterase inhibitors (AChEIs) has been supported by animal studies. As very limited data exist from individuals with Alzheimer's disease (AD), the aim of this study was to assess the potential influence of AChEIs on blood pro-inflammatory cytokines. We hypothesized that pro-inflammatory cytokine concentrations were lower in individuals with AD stabilized on AChEIs. METHODS Blood interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha concentrations were assessed using specific enzyme-linked immunosorbent assays in three groups of participants: patients with AD stabilized on a therapeutic dose of an AChEI (n = 42); AChEIs drug naïve patients (n = 24); and a cognitively unimpaired control group (n = 35). Patients in the AChEIs group had received medication for an average of one year. RESULTS Patients stabilized on an AChEI did not differ significantly from drug naïve patients in relation to the concentrations of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha (p = 0.874, 0.225, and 0.978, respectively). Within the group taking AChEIs, the levels of cytokines did not differ between those taking donepezil, rivastigmine, or galantamine (p = 0.368, 0.851, and 0.299, respectively). CONCLUSIONS Results from animal studies suggesting a modulatory anti-inflammatory role for AChEIs was not advanced in this study. In individuals with AD, very limited evidence currently exists to support the hypothesis that AChEIs may influence inflammatory blood markers and function beyond the enhancement of neuronal transmission. However, further studies assessing a wider range of inflammatory markers and processes are still needed before this hypothesis can be ruled out.
Collapse
|
87
|
Bin Sayeed MS, Asaduzzaman M, Morshed H, Hossain MM, Kadir MF, Rahman MR. The effect of Nigella sativa Linn. seed on memory, attention and cognition in healthy human volunteers. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:780-786. [PMID: 23707331 DOI: 10.1016/j.jep.2013.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 04/24/2013] [Accepted: 05/04/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Experimental evidences have demonstrated that Nigella sativa Linn. seed (NS) has positive modulation effects on aged rats with memory impairments, prevents against hippocampal pyramidal cell loss and enhances consolidation of recall capability of stored information and spatial memory in rats. NS has neuroprotective, nephroprotective, lung protective, cardioprotective, hepatoprotective activities as established by previous studies on animals. Several clinical trials with NS on human have also demonstrated beneficial effect. AIM OF THE STUDY The present study was designed to investigate the effects of NS on memory, attention and cognition in healthy elderly volunteers. Furthermore, safety profile of NS was assessed during the nine-week study period. METHODS Forty elderly volunteers were recruited and divided randomly into group A and group B--each consisting of 20 volunteers. The treatment procedure for group A was 500 mg NS capsule twice daily for nine weeks and Group B received placebo instead of NS in the similar manner. All the volunteers were assessed for neuropsychological state and safety profile twice before treatment and after nine weeks. The neuropsychological tests were logical memory test, digit span test, Rey-Osterrieth complex figure test, letter cancellation test, trail making test and stroop test. Safety profile was assessed by measuring biochemical markers of Cardiac (total cholesterol, triglycerides and high density lipoprotein cholesterol, very low density lipoprotein, low density lipoprotein cholesterol, creatine kinase-MB); Liver (aspartate aminotransferase, alanin aminotransferase, alkaline phosphatase, total protein, albumin, bilirubin) and Kidney (creatinine and blood urea nitrogen) through using commercial kits. RESULTS There was significant difference (p<0.05) in the score of logical memory test-I and II, total score of digit span, 30 min delayed-recall, percent score in Rey-Osterrieth complex figure test, time taken to complete letter cancellation test, time taken in trail making test-A and test-B, score in part C of stroop test due to ingestion of NS for nine weeks. There were not statistically significant changes (p>0.05) in any of the biochemical markers of cardiac, liver, kidney function during this nine-week study period. CONCLUSIONS The current study demonstrates the role of NS in enhancing memory, attention and cognition. Therefore, whether NS could be considered as potential food supplement for preventing or slow progressing of Alzheimer disease needs further investigations. However, study with Alzheimer's patients with large population size for longer period of time is recommended before using NS daily and extensive phytochemical investigations are recommended for novel drug discovery from NS for treating cognitive disorders.
Collapse
|
88
|
Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2013; 2:a006346. [PMID: 22315714 DOI: 10.1101/cshperspect.a006346] [Citation(s) in RCA: 692] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biochemical and neuropathological studies of brains from individuals with Alzheimer disease (AD) provide clear evidence for an activation of inflammatory pathways, and long-term use of anti-inflammatory drugs is linked with reduced risk to develop the disease. As cause and effect relationships between inflammation and AD are being worked out, there is a realization that some components of this complex molecular and cellular machinery are most likely promoting pathological processes leading to AD, whereas other components serve to do the opposite. The challenge will be to find ways of fine tuning inflammation to delay, prevent, or treat AD.
Collapse
Affiliation(s)
- Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305-5235, USA; Geriatric Research Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | |
Collapse
|
89
|
Rohn TT. The triggering receptor expressed on myeloid cells 2: "TREM-ming" the inflammatory component associated with Alzheimer's disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:860959. [PMID: 23533697 PMCID: PMC3606781 DOI: 10.1155/2013/860959] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/07/2013] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by a progressive loss of memory and cognitive skills. Although much attention has been devoted concerning the contribution of the microscopic lesions, senile plaques, and neurofibrillary tangles to the disease process, inflammation has long been suspected to play a major role in the etiology of AD. Recently, a novel variant in the gene encoding the triggering receptor expressed on myeloid cells 2 (TREM2) has been identified that has refocused the spotlight back onto inflammation as a major contributing factor in AD. Variants in TREM2 triple one's risk of developing late-onset AD. TREM2 is expressed on microglial cells, the resident macrophages in the CNS, and functions to stimulate phagocytosis on one hand and to suppress cytokine production and inflammation on the other hand. The purpose of this paper is to discuss these recent developments including the potential role that TREM2 normally plays and how loss of function may contribute to AD pathogenesis by enhancing oxidative stress and inflammation within the CNS. In this context, an overview of the pathways linking beta-amyloid, neurofibrillary tangles (NFTs), oxidative stress, and inflammation will be discussed.
Collapse
Affiliation(s)
- Troy T Rohn
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
90
|
Hebron ML, Algarzae NK, Lonskaya I, Moussa C. Fractalkine signaling and Tau hyper-phosphorylation are associated with autophagic alterations in lentiviral Tau and Aβ1-42 gene transfer models. Exp Neurol 2013; 251:127-38. [PMID: 23333589 DOI: 10.1016/j.expneurol.2013.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/03/2013] [Accepted: 01/09/2013] [Indexed: 12/17/2022]
Abstract
Tau hyper-phosphorylation (p-Tau) and neuro-inflammation are hallmarks of neurodegeneration. Previous findings suggest that microglial activation via CX3CL1 promotes p-Tau. We examined inflammation and autophagic p-Tau clearance in lentiviral Tau and mutant P301L expressing rats and used lentiviral Aβ1-42 to induce p-Tau. Lentiviral Tau or P301L expression significantly increased caspase-3 activity and TNF-α, but CX3CL1 was significantly higher in animals expressing Tau compared to P301L. Lentiviral Aβ1-42 induced p-Tau 4 weeks post-injection, and increased caspase-3 activation (8-fold) and TNF-α levels. Increased levels of ADAM-10/17 were also detected with p-Tau. IL-6 levels were increased but CX3CL1 did not change in the absence of p-Tau (2 weeks); however, p-Tau reversed these effects, which were associated with increased microglial activity. We observed changes in autophagic markers, including accumulation of autophagic vacuoles (AVs) and p-Tau accumulation in autophagosomes but not lysosomes, suggesting alteration of autophagy. Taken together, microglial activation may promote p-Tau independent of total Tau levels via CX3CL1 signaling, which seems to depend on interaction with inflammatory markers, mainly IL-6. The simultaneous change in autophagy and CX3CL1 signaling suggests communication between microglia and neurons, raising the possibility that accumulation of intraneuronal amyloid, due to lack of autophagic clearance, may lead microglia activation to promote p-Tau as a tag for phagocytic degradation.
Collapse
Affiliation(s)
- Michaeline L Hebron
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C. 20007, USA; Department of Biochemistry and Cell Biology, Georgetown University Medical Center, Washington D.C. 20007, USA
| | - Norah K Algarzae
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C. 20007, USA; Department of Biochemistry and Cell Biology, Georgetown University Medical Center, Washington D.C. 20007, USA
| | - Irina Lonskaya
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C. 20007, USA
| | - Charbel Moussa
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C. 20007, USA.
| |
Collapse
|
91
|
Drug pipeline in neurodegeneration based on transgenic mice models of Alzheimer's disease. Ageing Res Rev 2013; 12:116-40. [PMID: 22982398 DOI: 10.1016/j.arr.2012.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is one of the most important neurodegenerative disorders, bringing about huge medical and social burden in the elderly worldwide. Many aspects of its pathogenesis have remained unclear and no effective treatment exists for it. Within the past 20 years, various mice models harboring AD-related human mutations have been produced. These models imitate diverse AD-related pathologies and have been used for basic and therapeutic investigations in AD. In this regard, there are a wide variety of preclinical trials of potential therapeutic modalities using AD mice models which are of paramount importance for future clinical trials and applications. This review summarizes more than 140 substances and treatment modalities being used in transgenic AD mice models from 2001 to 2011. We also discuss advantages and disadvantages of each model to be used in therapeutic development for AD.
Collapse
|
92
|
Simen AA, Bordner KA, Martin MP, Moy LA, Barry LC. Cognitive dysfunction with aging and the role of inflammation. Ther Adv Chronic Dis 2012; 2:175-95. [PMID: 23251749 DOI: 10.1177/2040622311399145] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As the average lifespan continues to climb because of advances in medical care, there is a greater need to understand the factors that contribute to quality of life in the elderly. The capacity to live independently is highly significant in this regard, but is compromised by cognitive dysfunction. Aging is associated with decreases in cognitive function, including impairments in episodic memory and executive functioning. The prefrontal cortex appears to be particularly vulnerable to the effects of advancing age. Although the mechanism of age-related cognitive decline is not yet known, age-related inflammatory changes are likely to play a role. New insights from preclinical and clinical research may give rise to novel therapeutics which may have efficacy in slowing or preventing cognitive decline with advancing age.
Collapse
Affiliation(s)
- Arthur A Simen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
93
|
Kiyota T, Gendelman HE, Weir RA, Higgins EE, Zhang G, Jain M. CCL2 affects β-amyloidosis and progressive neurocognitive dysfunction in a mouse model of Alzheimer's disease. Neurobiol Aging 2012; 34:1060-8. [PMID: 23040664 DOI: 10.1016/j.neurobiolaging.2012.08.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/05/2012] [Accepted: 08/17/2012] [Indexed: 12/11/2022]
Abstract
Neuroinflammation affects the pathobiology of Alzheimer's disease (AD). Notably, β-amyloid (Aβ) deposition induces microglial activation and the subsequent production of proinflammatory neurotoxic factors. In maintaining brain homeostasis, microglial plasticity also enables phenotypic transition between toxic and trophic activation states. One important control for such cell activation is through the CC-chemokine ligand 2 (CCL2) and its receptor, the CC-chemokine receptor 2. Both affect microglia and peripheral macrophage immune responses and for the latter, cell ingress across the blood-brain barrier. However, how CCL2-CC-chemokine receptor 2 signaling contributes to AD pathogenesis is not well understood. To this end, we now report that CCL2 deficiency influences behavioral abnormalities and disease progression in Aβ precursor protein/presenilin-1 double-transgenic mice. Here, increased cortical and hippocampal Aβ deposition is coincident with the formulation of Aβ oligomers. Deficits in peripheral Aβ clearance and in scavenger, neuroprogenitor, and microglial cell functions are linked to deficient Aβ uptake. All serve to accelerate memory dysfunction. Taken together, these data support a role of CCL2 in innate immune functions relevant to AD pathogenesis.
Collapse
Affiliation(s)
- Tomomi Kiyota
- Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 5930, USA.
| | | | | | | | | | | |
Collapse
|
94
|
Abstract
There is increasing evidence that a chronic inflammatory response in the brain in Alzheimer's disease (AD) ultimately leads to neuronal injury and cognitive decline. Microglia, the primary immune effector cells of the brain, are thought to be key to this process. This paper discusses the evidence for inflammation in AD, and describes the mechanism whereby microglia generate neurotoxic cytokines, reactive oxygen species, and nitric oxide. Evidence that the cytokine macrophage colony-stimulating factor (M-CSF) is an important cofactor in microglial activation in AD is presented. Ongoing work using organotypic hippocampal expiant cultures to model the inflammatory process in the AD brain is also discussed. Potential avenues for therapeutic intervention are outlined.
Collapse
Affiliation(s)
- M M Greer
- Neuroscience Research Laboratories, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif, USA
| |
Collapse
|
95
|
Desforges NM, Hebron ML, Algarzae NK, Lonskaya I, Moussa CEH. Fractalkine Mediates Communication between Pathogenic Proteins and Microglia: Implications of Anti-Inflammatory Treatments in Different Stages of Neurodegenerative Diseases. Int J Alzheimers Dis 2012; 2012:345472. [PMID: 22919540 PMCID: PMC3420133 DOI: 10.1155/2012/345472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 01/22/2023] Open
Abstract
The role of inflammation in neurodegenerative diseases has been widely demonstrated. Intraneuronal protein accumulation may regulate microglial activity via the fractalkine (CX3CL1) signaling pathway that provides a mechanism through which neurons communicate with microglia. CX3CL1 levels fluctuate in different stages of neurodegenerative diseases and in various animal models, warranting further investigation of the mechanisms underlying microglial response to pathogenic proteins, including Tau, β-amyloid (Aβ), and α-synuclein. The temporal relationship between microglial activity and localization of pathogenic proteins (intra- versus extracellular) likely determines whether neuroinflammation mitigates or exacerbates disease progression. Evidence in transgenic models suggests a beneficial effect of microglial activity on clearance of proteins like Aβ and a detrimental effect on Tau modification, but the role of CX3CL1 signaling in α-synucleinopathies is less clear. Here we review the nature of fractalkine-mediated neuronmicroglia interaction, which has significant implications for the efficacy of anti-inflammatory treatments during different stages of neurodegenerative pathology. Specifically, it is likely that anti-inflammatory treatment in early stages of disease during intraneuronal accumulation of proteins could be beneficial, while anti-inflammatory treatment in later stages when proteins are secreted to the extracellular space could exacerbate disease progression.
Collapse
Affiliation(s)
- Nicole M. Desforges
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Michaeline L. Hebron
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Norah K. Algarzae
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Irina Lonskaya
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Charbel E.-H. Moussa
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
96
|
Li BH, Zhang LL, Yin YW, Pi Y, Guo L, Yang QW, Gao CY, Fang CQ, Wang JZ, Xiang J, Li JC. Association between interleukin-1α C(-889)T polymorphism and Alzheimer's disease: a meta-analysis including 12,817 subjects. J Neural Transm (Vienna) 2012; 120:497-506. [PMID: 23322030 DOI: 10.1007/s00702-012-0867-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 07/09/2012] [Indexed: 02/06/2023]
Abstract
Epidemiological studies have evaluated the association between interleukin-1 (IL-1)α C(-889)T polymorphism and Alzheimer's disease (AD), but the results remain inconclusive. This meta-analysis was, therefore, designed to clarify these controversies. Systematic searches of electronic databases Embase, PubMed, and Web of Science as well as hand searching of the references of identified articles and the meeting abstracts were performed. Statistical analyses were performed using software Review Manager (Version 5.1.2) and Stata (Version 11.0). The pooled odds ratios (ORs) with 95 % confidence intervals (95 % CIs) were calculated. A total of 28 publications including 29 studies were involved. There was a significant association between IL-1α C(-889)T polymorphism and AD (for T allele vs. C allele: OR = 1.14, 95 % CI = 1.07-1.21; for T/T vs. C/C: OR = 1.39, 95 % CI = 1.18-1.63; for dominant model: OR = 1.13, 95 % CI = 1.04-1.22; and for recessive model: OR = 1.39, 95 % CI = 1.20-1.60). Significant association was found for Asians, Caucasians, and early-onset Alzheimer's disease (EOAD) but for late-onset Alzheimer's disease (LOAD). This meta-analysis indicates that there is a significant association between IL-1α C(-889)T polymorphism and AD as well as EOAD.
Collapse
Affiliation(s)
- Bing-Hu Li
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Cribbs DH, Berchtold NC, Perreau V, Coleman PD, Rogers J, Tenner AJ, Cotman CW. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation 2012; 9:179. [PMID: 22824372 PMCID: PMC3419089 DOI: 10.1186/1742-2094-9-179] [Citation(s) in RCA: 370] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/23/2012] [Indexed: 12/16/2022] Open
Abstract
Background This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD). Methods In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Results Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. Conclusions Unexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife.
Collapse
Affiliation(s)
- David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 1226 Gillespie NRF, Irvine, CA 92697, USA.
| | | | | | | | | | | | | |
Collapse
|
98
|
Neuronal Calcium Signaling and Alzheimer’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1193-217. [DOI: 10.1007/978-94-007-2888-2_54] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
99
|
Bi BT, Lin HB, Cheng YF, Zhou H, Lin T, Zhang MZ, Li TJ, Xu JP. Promotion of β-amyloid production by C-reactive protein and its implications in the early pathogenesis of Alzheimer's disease. Neurochem Int 2011; 60:257-66. [PMID: 22202667 DOI: 10.1016/j.neuint.2011.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 12/06/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
Abstract
C-reactive protein (CRP) and β-amyloid protein (Aβ) are involved in the development of Alzheimer's disease (AD). However, the relationship between CRP and Aβ production is unclear. In vitro and in vivo experiments were performed to investigate the association of CRP with Aβ production. Using the rat adrenal pheochromocytoma cell line (PC12 cells) to mimic neurons, cytotoxicity was evaluated by cell viability and supernatant lactate dehydrogenase (LDH) activity. The levels of amyloid precursor protein (APP), beta-site APP cleaving enzyme (BACE-1), and presenilins (PS-1 and PS-2) were investigated using real-time polymerase chain reaction and Western blotting analysis. Aβ1-42 was measured by enzyme-linked immunosorbent assay. The relevance of CRP and Aβ as well as potential mechanisms were studied using APP/PS1 transgenic (Tg) mice. Treatment with 0.5-4.0 μM CRP for 48 h decreased cell viability and increased LDH leakage in PC12 cells. Incubation with CRP at a sub-toxic concentration of 0.2 μM increased the mRNA levels of APP, BACE-1, PS-1, and PS-2, as well as Aβ1-42 production. CRP inhibitor reversed the CRP-induced upregulations of the mRNA levels of APP, BACE-1, PS-1, and PS-2, and the protein levels of APP, BACE-1, PS-1, and Aβ1-42, but did not reversed Aβ1-42 cytotoxicity. The cerebral levels of CRP and Aβ1-42 in APP/PS1 Tg mice were positively correlated, accompanied with the elevated mRNA expressions of serum amyloid P component (SAP), complement component 1q (C1q), and tumor necrosis factor-α (TNF-α). These results suggest that CRP cytotoxicity is associated with Aβ formation and Aβ-related markers expressions; CRP and Aβ were relevant in early-stage AD; CRP may be an important trigger in AD pathogenesis.
Collapse
Affiliation(s)
- Bing-Tian Bi
- Department of Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Cho SH, Sun B, Zhou Y, Kauppinen TM, Halabisky B, Wes P, Ransohoff RM, Gan L. CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J Biol Chem 2011; 286:32713-22. [PMID: 21771791 DOI: 10.1074/jbc.m111.254268] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aberrant microglial activation has been proposed to contribute to the cognitive decline in Alzheimer disease (AD), but the underlying molecular mechanisms remain enigmatic. Fractalkine signaling, a pathway mediating the communication between microglia and neurons, is deficient in AD brains and down-regulated by amyloid-β. Although fractalkine receptor (CX3CR1) on microglia was found to regulate plaque load, no functional effects have been reported. Our study demonstrates that CX3CR1 deficiency worsens the AD-related neuronal and behavioral deficits. The effects were associated with cytokine production but not with plaque deposition. Ablation of CX3CR1 in mice overexpressing human amyloid precursor protein enhanced Tau pathology and exacerbated the depletion of calbindin in the dentate gyrus. The levels of calbindin in the dentate gyrus correlated negatively with those of tumor necrosis factor α and interleukin 6, suggesting neurotoxic effects of inflammatory factors. Functionally, removing CX3CR1 in human amyloid precursor protein mice worsened the memory retention in passive avoidance and novel object recognition tests, and their memory loss in the novel object recognition test is associated with high levels of interleukin 6. Our findings identify CX3CR1 as a key microglial pathway in protecting against AD-related cognitive deficits that are associated with aberrant microglial activation and elevated inflammatory cytokines.
Collapse
Affiliation(s)
- Seo-Hyun Cho
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | |
Collapse
|