51
|
Johnston TM, Fox SH. Symptomatic Models of Parkinson's Disease and L-DOPA-Induced Dyskinesia in Non-human Primates. Curr Top Behav Neurosci 2015; 22:221-35. [PMID: 25158623 DOI: 10.1007/7854_2014_352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Models of Parkinson's disease (PD) can be produced in several non-human primate (NHP) species by applying neurotoxic lesions to the nigrostriatal dopamine pathway. The most commonly used neurotoxin is MPTP, a compound accidentally discovered as a contaminant of street drugs. Compared to other neurotoxins, MPTP has the advantage of crossing the blood-brain barrier and can thus be administered systemically. MPTP-lesioned NHPs exhibit the main core clinical features of PD. When treated with L-DOPA, these NHP models develop involuntary movements resembling the phenomenology of human dyskinesias. In old-world NHP species (macaques, baboons), choreic and dystonic dyskinesias can be readily distinguished and quantified with specific rating scales. More recently, certain non-motor symptoms relevant to human PD have been described in L-DOPA-treated MPTP-NHPs, including a range of neuropsychiatric abnormalities and sleep disturbances. The main shortcomings of MPTP-NHP models consist in a lack of progression of the underlying neurodegenerative lesion, along with an inability to model the intracellular protein-inclusion pathology typical of PD. The strength of MPTP-NHP models lies in their face and predictive validity for symptomatic treatments of parkinsonian motor features. Indeed, these models have been instrumental to the development of several medical and surgical approaches that are currently applied to treat PD.
Collapse
Affiliation(s)
- Tom M Johnston
- Toronto Western Research Institute, University of Toronto, Toronto Western Hospital, 399, Bathurst St, Toronto, ON, M5T 2S8, Canada
| | | |
Collapse
|
52
|
Lindenbach D, Conti MM, Ostock CY, Dupre KB, Bishop C. Alterations in primary motor cortex neurotransmission and gene expression in hemi-parkinsonian rats with drug-induced dyskinesia. Neuroscience 2015; 310:12-26. [PMID: 26363150 DOI: 10.1016/j.neuroscience.2015.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/20/2015] [Accepted: 09/04/2015] [Indexed: 02/05/2023]
Abstract
Treatment of Parkinson's disease (PD) with dopamine replacement relieves symptoms of poverty of movement, but often causes drug-induced dyskinesias. Accumulating clinical and pre-clinical evidence suggests that the primary motor cortex (M1) is involved in the pathophysiology of PD and that modulating cortical activity may be a therapeutic target in PD and dyskinesia. However, surprisingly little is known about how M1 neurotransmitter tone or gene expression is altered in PD, dyskinesia or associated animal models. The present study utilized the rat unilateral 6-hydroxydopamine (6-OHDA) model of PD/dyskinesia to characterize structural and functional changes taking place in M1 monoamine innervation and gene expression. 6-OHDA caused dopamine pathology in M1, although the lesion was less severe than in the striatum. Rats with 6-OHDA lesions showed a PD motor impairment and developed dyskinesia when given L-DOPA or the D1 receptor agonist, SKF81297. M1 expression of two immediate-early genes (c-Fos and ARC) was strongly enhanced by either L-DOPA or SKF81297. At the same time, expression of genes specifically involved in glutamate and GABA signaling were either modestly affected or unchanged by lesion and/or treatment. We conclude that M1 neurotransmission and signal transduction in the rat 6-OHDA model of PD/dyskinesia mirror features of human PD, supporting the utility of the model to study M1 dysfunction in PD and the elucidation of novel pathophysiological mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- D Lindenbach
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, USA
| | - M M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, USA
| | - C Y Ostock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, USA
| | - K B Dupre
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, USA
| | - C Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, USA.
| |
Collapse
|
53
|
Krishna V, Elias G, Sammartino F, Basha D, King NKK, Fasano A, Munhoz R, Kalia SK, Hodaie M, Venkatraghavan L, Lozano AM, Hutchison WD. The effect of dexmedetomidine on the firing properties of STN neurons in Parkinson's disease. Eur J Neurosci 2015; 42:2070-7. [DOI: 10.1111/ejn.13004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/10/2015] [Accepted: 06/18/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Vibhor Krishna
- Division of Neurosurgery; Toronto Western Hospital; University of Toronto; 399 Bathurst Street Toronto ON M5T2S8 Canada
| | - Gavin Elias
- Division of Neurosurgery; Toronto Western Hospital; University of Toronto; 399 Bathurst Street Toronto ON M5T2S8 Canada
| | - Francesco Sammartino
- Division of Neurosurgery; Toronto Western Hospital; University of Toronto; 399 Bathurst Street Toronto ON M5T2S8 Canada
| | - Diellor Basha
- Department of Physiology; Toronto Western Hospital; University of Toronto; Toronto ON Canada
| | - Nicolas K. K. King
- Division of Neurosurgery; Toronto Western Hospital; University of Toronto; 399 Bathurst Street Toronto ON M5T2S8 Canada
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease; Toronto Western Hospital; Toronto ON Canada
| | - Renato Munhoz
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease; Toronto Western Hospital; Toronto ON Canada
| | - Suneil K. Kalia
- Division of Neurosurgery; Toronto Western Hospital; University of Toronto; 399 Bathurst Street Toronto ON M5T2S8 Canada
| | - Mojgan Hodaie
- Division of Neurosurgery; Toronto Western Hospital; University of Toronto; 399 Bathurst Street Toronto ON M5T2S8 Canada
| | - Lashmi Venkatraghavan
- Department of Anesthesiology; Toronto Western Hospital; University of Toronto; Toronto ON Canada
| | - Andres M. Lozano
- Division of Neurosurgery; Toronto Western Hospital; University of Toronto; 399 Bathurst Street Toronto ON M5T2S8 Canada
| | - William D. Hutchison
- Department of Physiology; Toronto Western Hospital; University of Toronto; Toronto ON Canada
| |
Collapse
|
54
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
55
|
Aron Badin R, Vadori M, Cozzi E, Hantraye P. Translational research for Parkinson׳s disease: The value of pre-clinical primate models. Eur J Pharmacol 2015; 759:118-26. [DOI: 10.1016/j.ejphar.2015.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/15/2022]
|
56
|
Yoshimi K, Kumada S, Weitemier A, Jo T, Inoue M. Reward-Induced Phasic Dopamine Release in the Monkey Ventral Striatum and Putamen. PLoS One 2015; 10:e0130443. [PMID: 26110516 PMCID: PMC4482386 DOI: 10.1371/journal.pone.0130443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/20/2015] [Indexed: 12/13/2022] Open
Abstract
In-vivo voltammetry has successfully been used to detect dopamine release in rodent brains, but its application to monkeys has been limited. We have previously detected dopamine release in the caudate of behaving Japanese monkeys using diamond microelectrodes (Yoshimi 2011); however it is not known whether the release pattern is the same in various areas of the forebrain. Recent studies have suggested variations in the dopaminergic projections to forebrain areas. In the present study, we attempted simultaneous recording at two locations in the striatum, using fast-scan cyclic voltammetry (FSCV) on carbon fibers, which has been widely used in rodents. Responses to unpredicted food and liquid rewards were detected repeatedly. The response to the liquid reward after conditioned stimuli was enhanced after switching the prediction cue. These characteristics were generally similar between the ventral striatum and the putamen. Overall, the technical application of FSCV recording in multiple locations was successful in behaving primates, and further voltammetric recordings in multiple locations will expand our knowledge of dopamine reward responses.
Collapse
Affiliation(s)
- Kenji Yoshimi
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| | - Shiori Kumada
- Department of Psychology, Japan Women's University, Kawasaki, Kanagawa, Japan
| | | | - Takayuki Jo
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masato Inoue
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
57
|
Fox SH, Brotchie JM, Johnston TM. Primate Models of Complications Related to Parkinson Disease Treatment. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
58
|
Athauda D, Foltynie T. The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nat Rev Neurol 2014; 11:25-40. [PMID: 25447485 DOI: 10.1038/nrneurol.2014.226] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many agents developed for neuroprotective treatment of Parkinson disease (PD) have shown great promise in the laboratory, but none have translated to positive results in patients with PD. Potential neuroprotective drugs, such as ubiquinone, creatine and PYM50028, have failed to show any clinical benefits in recent high-profile clinical trials. This 'failure to translate' is likely to be related primarily to our incomplete understanding of the pathogenic mechanisms underlying PD, and excessive reliance on data from toxin-based animal models to judge which agents should be selected for clinical trials. Restricted resources inevitably mean that difficult compromises must be made in terms of trial design, and reliable estimation of efficacy is further hampered by the absence of validated biomarkers of disease progression. Drug development in PD dementia has been mostly unsuccessful; however, emerging biochemical, genetic and pathological evidence suggests a link between tau and amyloid-β deposition and cognitive decline in PD, potentially opening up new possibilities for therapeutic intervention. This Review discusses the most important 'druggable' disease mechanisms in PD, as well as the most-promising drugs that are being evaluated for their potential efficiency in treatment of motor and cognitive impairments in PD.
Collapse
Affiliation(s)
- Dilan Athauda
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
59
|
Ko JH, Lerner RP, Eidelberg D. Effects of levodopa on regional cerebral metabolism and blood flow. Mov Disord 2014; 30:54-63. [PMID: 25296957 DOI: 10.1002/mds.26041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 01/24/2023] Open
Abstract
Levodopa (L-dopa) has been at the forefront of antiparkinsonian therapy for a half century. Recent advances in functional brain imaging have contributed substantially to the understanding of the effects of L-dopa and other dopaminergic treatment on the activity of abnormal motor and cognitive brain circuits in Parkinson's disease patients. Progress has also been made in understanding the functional pathology of dyskinesias, a common side effect of l-dopa treatment, at both regional and network levels. Here, we review these studies, focusing mainly on the new mechanistic insights provided by metabolic brain imaging and network analysis.
Collapse
Affiliation(s)
- Ji Hyun Ko
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | |
Collapse
|
60
|
Engeln M, De Deurwaerdère P, Li Q, Bezard E, Fernagut PO. Widespread Monoaminergic Dysregulation of Both Motor and Non-Motor Circuits in Parkinsonism and Dyskinesia. Cereb Cortex 2014; 25:2783-92. [DOI: 10.1093/cercor/bhu076] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
61
|
Galvan A, Hu X, Rommelfanger KS, Pare JF, Khan ZU, Smith Y, Wichmann T. Localization and function of dopamine receptors in the subthalamic nucleus of normal and parkinsonian monkeys. J Neurophysiol 2014; 112:467-79. [PMID: 24760789 DOI: 10.1152/jn.00849.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The subthalamic nucleus (STN) receives a dopaminergic innervation from the substantia nigra pars compacta, but the role of this projection remains poorly understood, particularly in primates. To address this issue, we used immuno-electron microscopy to localize D1, D2, and D5 dopamine receptors in the STN of rhesus macaques and studied the electrophysiological effects of activating D1-like or D2-like receptors in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian monkeys. Labeling of D1 and D2 receptors was primarily found presynaptically, on preterminal axons and putative glutamatergic and GABAergic terminals, while D5 receptors were more significantly expressed postsynaptically, on dendritic shafts of STN neurons. The electrical spiking activity of STN neurons, recorded with standard extracellular recording methods, was studied before, during, and after intra-STN administration of the dopamine D1-like receptor agonist SKF82958, the D2-like receptor agonist quinpirole, or artificial cerebrospinal fluid (control injections). In normal animals, administration of SKF82958 significantly reduced the spontaneous firing but increased the rate of intraburst firing and the proportion of pause-burst sequences of firing. Quinpirole only increased the proportion of such pause-burst sequences in STN neurons of normal monkeys. In MPTP-treated monkeys, the D1-like receptor agonist also reduced the firing rate and increased the proportion of pause-burst sequences, while the D2-like receptor agonist did not change any of the chosen descriptors of the firing pattern of STN neurons. Our data suggest that dopamine receptor activation can directly modulate the electrical activity of STN neurons by pre- and postsynaptic mechanisms in both normal and parkinsonian states, predominantly via activation of D1 receptors.
Collapse
Affiliation(s)
- Adriana Galvan
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia;
| | - Xing Hu
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Karen S Rommelfanger
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia
| | - Jean-Francois Pare
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Zafar U Khan
- Laboratory of Neurobiology at CIMES, Faculty of Medicine, University of Malaga, Malaga, Spain; Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain; and CIBERNED, Institute of Health Carlos III, Madrid, Spain
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
62
|
Li J, Luo C, Chen Y, Chen Q, Huang R, Sun J, Gong Q, Wu X, Qi Z, Liang Z, Li L, Li H, Li P, Wang W, Shang HF. Parkinson׳s disease-related modulation of functional connectivity associated with the striatum in the resting state in a nonhuman primate model. Brain Res 2014; 1555:10-9. [PMID: 24530271 DOI: 10.1016/j.brainres.2014.01.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/26/2014] [Accepted: 01/28/2014] [Indexed: 02/07/2023]
Abstract
The goal of this study was to describe Parkinson׳s disease (PD)-related modulation of functional connectivity (FC) associated with the striatum in the resting state in a nonhuman primate model of early-stage PD. Weekly intravenous injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (0.5 mg/kg body weight) were performed until parkinsonian motor symptoms developed in four macaques. After 13 weeks of MPTP treatment, all monkeys displayed parkinsonian symptoms. During the course of the experiment, each animal underwent four magnetic resonance imaging scans and four positron emission tomography (PET) scans with the vesicular monoamine transporter 2 (VMAT2)-selective ligand 9-[(18)F] fluoropropyl-(+)-dihydrotetrabenazine, performed prior to the beginning of MPTP administration as well as after 4, 9, and 13 MPTP injections. The FC profile of the striatum was evaluated using a seed voxel correlation approach and post hoc region of interest analysis on resting-state functional magnetic resonance imaging data. The PET images were subjected to region of interest analysis to examine brain regional reductions in VMAT2 density in the PD model. Significant reductions in the connectivity pattern of the striatal regions were observed: limbic striatum and left hippocampus; caudate nucleus/associative and brain regions, including the right pre-supplementary motor area and bilateral dorsolateral prefrontal cortex; putamen/associative region and left inferior temporal gyrus or right orbital and medial prefrontal cortex; and putamen/motor and cortical structures, including the right superior temporal gyrus and bilateral postcentral gyrus. Subsequent PET studies showed the progressive loss of striatal VMAT2 in the striatum with the presentation of parkinsonism. Significant differences between the specific uptake ratio reductions in each striatal subdivision were not found. By using a long-term, low-dose MPTP-lesioned nonhuman primate model, this study demonstrated PD-related decreased corticostriatal FC in a resting state; moreover, altered sensorimotor integration was also found in early-stage PD.
Collapse
Affiliation(s)
- Jianpeng Li
- Department of Neurology, West China Hospital, Sichuan University, China
| | - Chunyan Luo
- Department of Neurology, West China Hospital, Sichuan University, China
| | - Yongping Chen
- Department of Neurology, West China Hospital, Sichuan University, China
| | - Qin Chen
- Department of Neurology, West China Hospital, Sichuan University, China
| | - Rui Huang
- Department of Neurology, West China Hospital, Sichuan University, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, China
| | - Qiyong Gong
- Department of Radiology, West China Hospital, Sichuan University, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, China
| | - Zhongzhi Qi
- Department of Nuclear Medicine, West China Hospital, Sichuan University, China
| | - Zhenglu Liang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, China
| | - Lin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, China
| | - Hongxia Li
- National Chengdu Center for Safety Evaluation of Drugs, China
| | - Peng Li
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, China.
| |
Collapse
|
63
|
Porras G, De Deurwaerdere P, Li Q, Marti M, Morgenstern R, Sohr R, Bezard E, Morari M, Meissner WG. L-dopa-induced dyskinesia: beyond an excessive dopamine tone in the striatum. Sci Rep 2014; 4:3730. [PMID: 24429495 PMCID: PMC3893648 DOI: 10.1038/srep03730] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/20/2013] [Indexed: 01/07/2023] Open
Abstract
L-dopa remains the mainstay treatment for Parkinson's disease (PD), although in later stages, treatment is complicated by L-dopa-induced dyskinesias (LID). Current evidence links LID to excessive striatal L-dopa-derived dopamine (DA) release, while the possibility of a direct involvement of L-dopa itself in LID has been largely ignored. Here we show that L-dopa can alter basal ganglia activity and produce LID without enhancing striatal DA release in parkinsonian non-human primates. These data may have therapeutic implications for the management of advanced PD since they suggest that LID could result from diverse mechanisms of action of L-dopa.
Collapse
Affiliation(s)
- Gregory Porras
- 1] Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [2] CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [3] Motac neuroscience, Manchester, UK
| | - Philippe De Deurwaerdere
- 1] Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [2] CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Qin Li
- 1] Motac neuroscience, Manchester, UK [2] Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Matteo Marti
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Rudolf Morgenstern
- Institute of Pharmacology and Toxicology, Charité Campus Mitte, Humboldt University, 10117 Berlin, Germany
| | - Reinhard Sohr
- Institute of Pharmacology and Toxicology, Charité Campus Mitte, Humboldt University, 10117 Berlin, Germany
| | - Erwan Bezard
- 1] Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [2] CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [3] Motac neuroscience, Manchester, UK [4] Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China [5] Service de Neurologie, Centre Expert Parkinson, CHU de Bordeaux, 33076 Bordeaux, France
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Wassilios G Meissner
- 1] Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [2] CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [3] Service de Neurologie, Centre Expert Parkinson, CHU de Bordeaux, 33076 Bordeaux, France [4] Centre de référence AMS, CHU de Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
64
|
Fan XT, Zhao F, Ai Y, Andersen A, Hardy P, Ling F, Gerhardt GA, Zhang Z, Quintero JE. Cortical glutamate levels decrease in a non-human primate model of dopamine deficiency. Brain Res 2014; 1552:34-40. [PMID: 24398457 DOI: 10.1016/j.brainres.2013.12.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 12/19/2013] [Accepted: 12/29/2013] [Indexed: 11/28/2022]
Abstract
While Parkinson's disease is the result of dopaminergic dysfunction of the nigrostriatal system, the clinical manifestations of Parkinson's disease are brought about by alterations in multiple neural components, including cortical areas. We examined how 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration affected extracellular cortical glutamate levels by comparing glutamate levels in normal and MPTP-lesioned nonhuman primates (Macaca mulatta). Extracellular glutamate levels were measured using glutamate microelectrode biosensors. Unilateral MPTP-administration rendered the animals with hemiparkinsonian symptoms, including dopaminergic deficiencies in the substantia nigra and the premotor and motor cortices, and with statistically significant decreases in basal glutamate levels in the primary motor cortex on the side ipsilateral to the MPTP-lesion. These results suggest that the functional changes of the glutamatergic system, especially in the motor cortex, in models of Parkinson's disease could provide important insights into the mechanisms of this disease.
Collapse
Affiliation(s)
- X T Fan
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, PR China.,Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA
| | - F Zhao
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA.,Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry Education, Capital Medical University, Beijing 100069 China
| | - Y Ai
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA
| | - A Andersen
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA.,Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098 USA
| | - P Hardy
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA.,Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098 USA
| | - F Ling
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, PR China
| | - G A Gerhardt
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA.,Center for Microelectrode Technology, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098 USA
| | - Z Zhang
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA
| | - J E Quintero
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA.,Center for Microelectrode Technology, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098 USA
| |
Collapse
|
65
|
MALDI Mass Spectrometry Imaging of 1-Methyl-4-phenylpyridinium (MPP+) in Mouse Brain. Neurotox Res 2013; 25:135-45. [DOI: 10.1007/s12640-013-9449-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/24/2013] [Accepted: 12/05/2013] [Indexed: 12/01/2022]
|
66
|
Fitoussi A, Dellu-Hagedorn F, De Deurwaerdère P. Monoamines tissue content analysis reveals restricted and site-specific correlations in brain regions involved in cognition. Neuroscience 2013; 255:233-45. [DOI: 10.1016/j.neuroscience.2013.09.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 11/29/2022]
|
67
|
Lindenbach D, Bishop C. Critical involvement of the motor cortex in the pathophysiology and treatment of Parkinson's disease. Neurosci Biobehav Rev 2013; 37:2737-50. [PMID: 24113323 DOI: 10.1016/j.neubiorev.2013.09.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/20/2013] [Accepted: 09/13/2013] [Indexed: 12/16/2022]
Abstract
This review examines the involvement of the motor cortex in Parkinson's disease (PD), a debilitating movement disorder typified by degeneration of dopamine cells of the substantia nigra. While much of PD research has focused on the caudate/putamen, many aspects of motor cortex function are abnormal in PD patients and in animal models of PD, implicating motor cortex involvement in disease symptoms and their treatment. Herein, we discuss several lines of evidence to support this hypothesis. Dopamine depletion alters regional metabolism in the motor cortex and also reduces interneuron activity, causing a breakdown in intracortical inhibition. This leads to functional reorganization of motor maps and excessive corticostriatal synchrony when movement is initiated. Recent work suggests that electrical stimulation of the motor cortex provides a clinical benefit for PD patients. Based on extant research, we identify a number of unanswered questions regarding the motor cortex in PD and argue that a better understanding of the contribution of the motor cortex to PD symptoms will facilitate the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- David Lindenbach
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, PO Box 6000, Binghamton, NY 13902-6000, USA.
| | | |
Collapse
|
68
|
Solari N, Bonito-Oliva A, Fisone G, Brambilla R. Understanding cognitive deficits in Parkinson's disease: lessons from preclinical animal models. Learn Mem 2013; 20:592-600. [PMID: 24049188 DOI: 10.1101/lm.032029.113] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) has been, until recently, mainly defined by the presence of characteristic motor symptoms, such as rigidity, tremor, bradykinesia/akinesia, and postural instability. Accordingly, pharmacological and surgical treatments have so far addressed these motor disturbances, leaving nonmotor, cognitive deficits an unmet clinical condition. At the preclinical level, the large majority of studies aiming at defining mechanisms and testing novel therapies have similarly focused on the motor aspects of PD. Unfortunately, deterioration of the executive functions, such as attention, recognition, working memory, and problem solving, often appear in an early, premotor phase of the disease and progressively increase in intensity, negatively affecting the quality of life of ∼50%-60% of PD patients. At present, the cellular mechanisms underlying cognitive impairments in PD patients are largely unknown and an adequate treatment is still missing. The preclinical research has recently developed new animal models that may open new perspectives for a more integrated approach to the treatment of both motor and cognitive symptoms of the disease. This review will provide an overview on the cognitive symptoms occurring in early PD patients and then focus on the rodent and nonhuman primate models so far available for the study of discriminative and spatial memory attention and learning abilities related to this pathological condition.
Collapse
Affiliation(s)
- Nicola Solari
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute and University, 20132 Milano, Italy
| | | | | | | |
Collapse
|
69
|
Riahi G, Morissette M, Samadi P, Parent M, Di Paolo T. Basal ganglia serotonin 1B receptors in parkinsonian monkeys with L-DOPA-induced dyskinesia. Biochem Pharmacol 2013; 86:970-8. [PMID: 23954709 DOI: 10.1016/j.bcp.2013.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 01/03/2023]
Abstract
L-DOPA-induced dyskinesias (LID)s are abnormal involuntary movements limiting the chronic use of L-DOPA, the main pharmacological treatment of Parkinson's disease (PD). Serotonin receptors are thought to contribute to LID but serotonin 1B (5-HT1B) receptors have never been investigated in any primate models of PD and LID. Therefore, we measured 5-HT1B receptors with [(3)H]GR 125743 autoradiography in controls, MPTP-lesioned monkeys, and L-DOPA-treated MPTP monkeys, with or without Ro 61-8048 treatment, a kynurenine hydroxylase inhibitor alleviating LID. In normal condition, 5-HT1B receptor specific binding was highest in the substantia nigra pars reticulata (SNr), high in the globus pallidus (GP), nucleus accumbens and substantia innominata and lower in the caudate nucleus and putamen. 5-HT1B receptors were increased in caudate nucleus, putamen and SNr of MPTP monkeys compared to controls. L-DOPA-treated MPTP monkeys had elevated 5-HT1B receptor specific binding in caudate nucleus, putamen, SNr and internal GP. In all these brain regions, increases were prevented by co-administration of Ro 61-8048. No effect of MPTP lesion or treatment was observed for 5-HT1B specific binding in the external GP, nucleus accumbens and substantia innominata. This study is the first description in primates of altered brain 5-HT1B receptors associated with prevention of LID.
Collapse
Affiliation(s)
- Golnasim Riahi
- Faculty of Pharmacy, Université Laval, Quebec City, Canada, G1K 7P4; Neuroscience Research Unit, Centre de recherche du CHU de Québec, Quebec City, Canada, G1V 4G2; Centre de Recherche de l'Institut universitaire en santé mentale de Québec, Quebec City, Canada, G1J 2G3
| | | | | | | | | |
Collapse
|
70
|
Spühler IA, Hauri A. Decoding the dopamine signal in macaque prefrontal cortex: a simulation study using the Cx3Dp simulator. PLoS One 2013; 8:e71615. [PMID: 23951205 PMCID: PMC3741115 DOI: 10.1371/journal.pone.0071615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/01/2013] [Indexed: 01/07/2023] Open
Abstract
Dopamine transmission in the prefrontal cortex plays an important role in reward based learning, working memory and attention. Dopamine is thought to be released non-synaptically into the extracellular space and to reach distant receptors through diffusion. This simulation study examines how the dopamine signal might be decoded by the recipient neuron. The simulation was based on parameters from the literature and on our own quantified, structural data from macaque prefrontal area 10. The change in extracellular dopamine concentration was estimated at different distances from release sites and related to the affinity of the dopamine receptors. Due to the sparse and random distribution of release sites, a transient heterogeneous pattern of dopamine concentration emerges. Our simulation predicts, however, that at any point in the simulation volume there is sufficient dopamine to bind and activate high-affinity dopamine receptors. We propose that dopamine is broadcast to its distant receptors and any change from the local baseline concentration might be decoded by a transient change in the binding probability of dopamine receptors. Dopamine could thus provide a graduated ‘teaching’ signal to reinforce concurrently active synapses and cell assemblies. In conditions of highly reduced or highly elevated dopamine levels the simulations predict that relative changes in the dopamine signal can no longer be decoded, which might explain why cognitive deficits are observed in patients with Parkinson’s disease, or induced through drugs blocking dopamine reuptake.
Collapse
Affiliation(s)
- Isabelle Ayumi Spühler
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zürich, Switzerland.
| | | |
Collapse
|
71
|
Porras G, Li Q, Bezard E. Modeling Parkinson's disease in primates: The MPTP model. Cold Spring Harb Perspect Med 2013; 2:a009308. [PMID: 22393538 DOI: 10.1101/cshperspect.a009308] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate models of Parkinson's disease (PD) reproduce most, although not all, of the clinical and pathological hallmarks of PD. The present contribution presents the possibilities offered by the MPTP monkey models of PD to readers with minimal knowledge of PD, emphasizing the diversity of species, route and regimen of administration, symptoms and pathological features. Readers would eventually find out that there is not a single MPTP monkey model of PD but instead MPTP monkey models of PD, each addressing a specific experimental need.
Collapse
Affiliation(s)
- Gregory Porras
- University de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293 Bordeaux, France; CNRS, Institut des Maladiesw Neurodégénératives, UMR 5293 Bordeaux, France
| | | | | |
Collapse
|
72
|
Pifl C, Hornykiewicz O, Blesa J, Adánez R, Cavada C, Obeso JA. Reduced noradrenaline, but not dopamine and serotonin in motor thalamus of the MPTP primate: relation to severity of Parkinsonism. J Neurochem 2013; 125:657-62. [DOI: 10.1111/jnc.12162] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/08/2013] [Accepted: 01/14/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Christian Pifl
- Center for Brain Research; Medical University of Vienna; Vienna Austria
| | - Oleh Hornykiewicz
- Center for Brain Research; Medical University of Vienna; Vienna Austria
| | - Javier Blesa
- Movement Disorders Group; Neurosciences Division; CIMA, and Department of Neurology and Neurosurgery; Clínica Universidad de Navarra; Pamplona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Instituto Carlos III, Ministerio de Ciencia e Innovación; Madrid Spain
| | - Rebeca Adánez
- Movement Disorders Group; Neurosciences Division; CIMA, and Department of Neurology and Neurosurgery; Clínica Universidad de Navarra; Pamplona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Instituto Carlos III, Ministerio de Ciencia e Innovación; Madrid Spain
| | - Carmen Cavada
- Departamento de Anatomía, Histología y Neurociencia; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
- Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| | - José A. Obeso
- Movement Disorders Group; Neurosciences Division; CIMA, and Department of Neurology and Neurosurgery; Clínica Universidad de Navarra; Pamplona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Instituto Carlos III, Ministerio de Ciencia e Innovación; Madrid Spain
| |
Collapse
|
73
|
Toxicity of MPTP on neurotransmission in three mouse models of Parkinson's disease. ACTA ACUST UNITED AC 2012; 65:689-94. [PMID: 23083629 DOI: 10.1016/j.etp.2012.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/24/2012] [Accepted: 09/18/2012] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) is recognized as the second most common neurodegenerative disorder after Alzheimer's disease. PD is mainly characterized by a selective degeneration of the dopaminergic neurons in the substantia nigra. Also, it is observed imbalances in some nondopaminergic systems, including the serotonergic system. Serotonergic dysfunction appears to play a role in some parkinsonian symptoms, including motor function, L-dopa-induced dyskinesia, mood, psychosis, and constipation. The fact that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes a parkinsonian syndrome was discovered in 1982 and has been used extensively and successfully in various mammalian species, including monkeys and mice, to produce an experimental model of PD. Three common dosing regimens of the MPTP-induced mice model of PD were compared on dopaminergic neurotransmission and serotonin levels in various brain regions. Results showed that tyrosine hydroxylase activity and dopaminergic transporter density were reduced in striatum and substantia nigra of mice and that this reduction was dependent on the cumulative dose of MPTP injected. Furthermore, for the three protocols, a decrease of dopamine (DA) level was observed in striatum, associated with a significant diminution of DA concentration in frontal cortex only for the chronic treatment. Moreover, a decrease of serotonin level was observed in midbrain and hippocampus of acute and sub-acute intoxicated-mice. In all, the results suggested that dosing regimen should be carefully pre-considered. Furthermore, the acute and sub-acute MPTP protocols represent good models of early, subclinical stages of PD, ideal in the development of neuroprotective strategies.
Collapse
|
74
|
Pifl C, Kish SJ, Hornykiewicz O. Thalamic noradrenaline in Parkinson's disease: deficits suggest role in motor and non-motor symptoms. Mov Disord 2012; 27:1618-24. [PMID: 23038412 DOI: 10.1002/mds.25109] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/04/2012] [Accepted: 06/11/2012] [Indexed: 01/18/2023] Open
Abstract
The thalamus occupies a pivotal position within the corticobasal ganglia-cortical circuits. In Parkinson's disease (PD), the thalamus exhibits pathological neuronal discharge patterns, foremost increased bursting and oscillatory activity, which are thought to perturb the faithful transfer of basal ganglia impulse flow to the cortex. Analogous abnormal thalamic discharge patterns develop in animals with experimentally reduced thalamic noradrenaline; conversely, added to thalamic neuronal preparations, noradrenaline exhibits marked antioscillatory and antibursting activity. Our study is based on this experimentally established link between noradrenaline and the quality of thalamic neuronal discharges. We analyzed 14 thalamic nuclei from all functionally relevant territories of 9 patients with PD and 8 controls, and measured noradrenaline with high-performance liquid chromatography with electrochemical detection. In PD, noradrenaline was profoundly reduced in all nuclei of the motor (pallidonigral and cerebellar) thalamus (ventroanterior: -86%, P = .0011; ventrolateral oral: -87%, P = .0010; ventrolateral caudal: -89%, P = .0014): Also, marked noradrenaline losses, ranging from 68% to 91% of controls, were found in other thalamic territories, including associative, limbic and intralaminar regions; the primary sensory regions were only mildly affected. The marked noradrenergic deafferentiation of the thalamus discloses a strategically located noradrenergic component in the overall pathophysiology of PD, suggesting a role in the complex mechanisms involved with the genesis of the motor and non-motor symptoms. Our study thus significantly contributes to the knowledge of the extrastriatal nondopaminergic mechanisms of PD with direct relevance to treatment of this disorder.
Collapse
Affiliation(s)
- Christian Pifl
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
75
|
Pienaar IS, Lu B, Schallert T. Closing the gap between clinic and cage: sensori-motor and cognitive behavioural testing regimens in neurotoxin-induced animal models of Parkinson's disease. Neurosci Biobehav Rev 2012; 36:2305-24. [PMID: 22910679 DOI: 10.1016/j.neubiorev.2012.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/28/2012] [Accepted: 07/16/2012] [Indexed: 12/21/2022]
Abstract
Animal models that make use of chemical toxins to adversely affect the nigrostriatal dopaminergic pathway of rodents and primates have contributed significantly towards the development of symptomatic therapies for Parkinson's disease (PD) patients. Although their use in developing neuro-therapeutic and -regenerative compounds remains to be ascertained, toxin-based mammalian and a range of non-mammalian models of PD are important tools in the identification and validation of candidate biomarkers for earlier diagnosis, as well as in the development of novel treatments that are currently working their way into the clinic. Toxin models of PD have and continue to be important models to use for understanding the consequences of nigrostriatal dopamine cell loss. Functional assessment of these models is also a critical component for eventual translational success. Sensitive behavioural testing regimens for assessing the extent of dysfunction exhibited in the toxin models, the degree of protection or improvement afforded by potential treatment modalities, and the correlation of these findings with what is observed clinically in PD patients, ultimately determines whether a potential treatment moves to clinical trials. Here, we review existing published work that describes the use of such behavioural outcome measures associated with toxin models of parkinsonism. In particular, we focus on tests assessing sensorimotor and cognitive function, both of which are significantly and progressively impaired in PD.
Collapse
Affiliation(s)
- Ilse S Pienaar
- Institute for Ageing and Health, Department of Neurology, The University of Newcastle, Newcastle-Upon-Tyne, United Kingdom.
| | | | | |
Collapse
|
76
|
Pham AH, Meng S, Chu QN, Chan DC. Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. Hum Mol Genet 2012; 21:4817-26. [PMID: 22859504 PMCID: PMC3607482 DOI: 10.1093/hmg/dds311] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondria continually undergo fusion and fission, and these dynamic processes play a major role in regulating mitochondrial function. Studies of several genes associated with familial Parkinson's disease (PD) have implicated aberrant mitochondrial dynamics in the disease pathology, but the importance of these processes in dopaminergic neurons remains poorly understood. Because the mitofusins Mfn1 and Mfn2 are essential for mitochondrial fusion, we deleted these genes from a subset of dopaminergic neurons in mice. Loss of Mfn2 results in a movement defect characterized by reduced activity and rearing. In open field tests, Mfn2 mutants show severe, age-dependent motor deficits that can be rescued with L-3,4 dihydroxyphenylalanine. These motor deficits are preceded by the loss of dopaminergic terminals in the striatum. However, the loss of dopaminergic neurons in the midbrain occurs weeks after the onset of these motor and striatal deficits, suggesting a retrograde mode of neurodegeneration. In our conditional knockout strategy, we incorporated a mitochondrially targeted fluorescent reporter to facilitate tracking of mitochondria in the affected neurons. Using an organotypic slice culture system, we detected fragmented mitochondria in the soma and proximal processes of these neurons. In addition, we found markedly reduced mitochondrial mass and transport, which may contribute to the neuronal loss. These effects are specific for Mfn2, as the loss of Mfn1 yielded no corresponding defects in the nigrostriatal circuit. Our findings indicate that perturbations of mitochondrial dynamics can cause nigrostriatal defects and may be a risk factor for the neurodegeneration in PD.
Collapse
Affiliation(s)
- Anh H Pham
- Division of Biology, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
77
|
Bezard E, Yue Z, Kirik D, Spillantini MG. Animal models of Parkinson's disease: limits and relevance to neuroprotection studies. Mov Disord 2012; 28:61-70. [PMID: 22753348 DOI: 10.1002/mds.25108] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/26/2012] [Accepted: 06/11/2012] [Indexed: 12/11/2022] Open
Abstract
Over the last two decades, significant strides has been made toward acquiring a better knowledge of both the etiology and pathogenesis of Parkinson's disease (PD). Experimental models are of paramount importance to obtain greater insights into the pathogenesis of the disease. Thus far, neurotoxin-based animal models have been the most popular tools employed to produce selective neuronal death in both in vitro and in vivo systems. These models have been commonly referred to as the pathogenic models. The current trend in modeling PD revolves around what can be called the disease gene-based models or etiologic models. The value of utilizing multiple models with a different mechanism of insult rests on the premise that dopamine-producing neurons die by stereotyped cascades that can be activated by a range of insults, from neurotoxins to downregulation and overexpression of disease-related genes. In this position article, we present the relevance of both pathogenic and etiologic models as well as the concept of clinically relevant designs that, we argue, should be utilized in the preclinical development phase of new neuroprotective therapies before embarking into clinical trials.
Collapse
Affiliation(s)
- Erwan Bezard
- University de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | | | | | | |
Collapse
|
78
|
Franco V, Turner RS. Testing the contributions of striatal dopamine loss to the genesis of parkinsonian signs. Neurobiol Dis 2012; 47:114-25. [PMID: 22498034 PMCID: PMC3358361 DOI: 10.1016/j.nbd.2012.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/01/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022] Open
Abstract
The diverse and independently-varying signs of Parkinson's disease (PD) are often attributed to one simple mechanism: degeneration of the dopaminergic innervation of the posterolateral striatum. However, growing recognition of the dopamine (DA) loss and other pathology in extra-striatal brain regions has led to uncertainty whether loss of DA in the striatum is sufficient to cause parkinsonian signs. We tested this hypothesis by infusing cis-flupenthixol (cis-flu; a broad-spectrum D1/D2 receptor antagonist) into different regions of the macaque putamen (3 hemispheres of 2 monkeys) while the animal performed a visually-cued choice reaction time task in which visual cues indicated the arm to reach with and the peripheral target to contact to obtain food reward. Following reward delivery, the animal was required to self-initiate release of the peripheral target and return of the chosen hand to its home position (i.e., without the benefit of external sensory cues or immediate rewards). Infusions of cis-flu at 15 of 26 sites induced prolongations of reaction time (9 of 15 cases), movement duration (6 cases), and/or dwell time of the hand at the peripheral target (8 cases). Dwell times were affected more severely (+95%) than visually-triggered reaction times or movement durations (+25% and +15%, respectively). Specifically, the animal's hand often 'froze' at the peripheral target for up to 25-s, similar to the akinetic freezing episodes observed in PD patients. Across injections, slowing of self-initiation did not correlate in severity with prolongations of visually-triggered reaction time or movement duration, although the latter two were correlated with each other. Episodes of slowed self-initiation appeared primarily in the arm contralateral to the injected hemisphere and were not associated with increased muscle co-contraction or global alterations in behavioral state (i.e., inattention or reduced motivation), consistent with the idea that these episodes reflected a fundamental impairment of movement initiation. We found no evidence for an anatomic topography within the putamen for the effects elicited. We conclude that acute focal blockade of DA transmission in the putamen is sufficient to induce marked akinesia-like impairments. Furthermore, different classes of impairments can be induced independently, suggesting that specific parkinsonian signs have unique pathophysiologic substrates.
Collapse
Affiliation(s)
- Vanessa Franco
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261-0001, USA
| | - Robert S. Turner
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261-0001, USA
- Department of Neurobiology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261-0001, USA
| |
Collapse
|
79
|
Blesa J, Pifl C, Sánchez-González MA, Juri C, García-Cabezas MA, Adánez R, Iglesias E, Collantes M, Peñuelas I, Sánchez-Hernández JJ, Rodríguez-Oroz MC, Avendaño C, Hornykiewicz O, Cavada C, Obeso JA. The nigrostriatal system in the presymptomatic and symptomatic stages in the MPTP monkey model: a PET, histological and biochemical study. Neurobiol Dis 2012; 48:79-91. [PMID: 22677034 DOI: 10.1016/j.nbd.2012.05.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 05/20/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) is diagnosed when striatal dopamine (DA) loss exceeds a certain threshold and the cardinal motor features become apparent. The presymptomatic compensatory mechanisms underlying the lack of motor manifestations despite progressive striatal depletion are not well understood. Most animal models of PD involve the induction of a severe dopaminergic deficit in an acute manner, which departs from the typical, chronic evolution of PD in humans. We have used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administered to monkeys via a slow intoxication protocol to produce a more gradual development of nigral lesion. Twelve control and 38 MPTP-intoxicated monkeys were divided into four groups. The latter included monkeys who were always asymptomatic, monkeys who recovered after showing mild parkinsonian signs, and monkeys with stable, moderate and severe parkinsonism. We found a close correlation between cell loss in the substantia nigra pars compacta (SNc) and striatal dopaminergic depletion and the four motor states. There was an overall negative correlation between the degree of parkinsonism (Kurlan scale) and in vivo PET ((18)F-DOPA K(i) and (11)C-DTBZ binding potential), as well as with TH-immunoreactive cell counts in SNc, striatal dopaminergic markers (TH, DAT and VMAT2) and striatal DA concentration. This intoxication protocol permits to establish a critical threshold of SNc cell loss and dopaminergic innervation distinguishing between the asymptomatic and symptomatic parkinsonian stages. Compensatory changes in nigrostriatal dopaminergic activity occurred in the recovered and parkinsonian monkeys when DA depletion was at least 88% of control, and accordingly may be considered too late to explain compensatory mechanisms in the early asymptomatic period. Our findings suggest the need for further exploration of the role of non-striatal mechanisms in PD prior to the development of motor features.
Collapse
Affiliation(s)
- J Blesa
- Movement Disorders Group, Neurosciences Division, CIMA, and Department of Neurology and Neurosurgery, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Iderberg H, Francardo V, Pioli E. Animal models of l-DOPA–induced dyskinesia: an update on the current options. Neuroscience 2012; 211:13-27. [DOI: 10.1016/j.neuroscience.2012.03.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
|
81
|
Contribution of Serotonergic Transmission to the Motor and Cognitive Effects of High-Frequency Stimulation of the Subthalamic Nucleus or Levodopa in Parkinson’s Disease. Mol Neurobiol 2012; 45:173-85. [DOI: 10.1007/s12035-011-8230-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
|
82
|
Huot P, Johnston TH, Koprich JB, Winkelmolen L, Fox SH, Brotchie JM. Regulation of cortical and striatal 5-HT1A receptors in the MPTP-lesioned macaque. Neurobiol Aging 2012; 33:207.e9-19. [DOI: 10.1016/j.neurobiolaging.2010.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/31/2010] [Accepted: 09/14/2010] [Indexed: 11/15/2022]
|
83
|
5-HT2A receptor levels increase in MPTP-lesioned macaques treated chronically with L-DOPA. Neurobiol Aging 2012; 33:194.e5-15. [DOI: 10.1016/j.neurobiolaging.2010.04.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/30/2010] [Accepted: 04/29/2010] [Indexed: 12/18/2022]
|
84
|
Delaville C, Navailles S, Benazzouz A. Effects of noradrenaline and serotonin depletions on the neuronal activity of globus pallidus and substantia nigra pars reticulata in experimental parkinsonism. Neuroscience 2012; 202:424-33. [DOI: 10.1016/j.neuroscience.2011.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/31/2011] [Accepted: 11/10/2011] [Indexed: 11/28/2022]
|
85
|
Abstract
Parkinson's disease is a neurodegenerative disorder whose cardinal manifestations are due primarily to a profound deficit in brain dopamine. Since the 1980s, several therapeutic strategies have been discovered to treat the symptoms of this neurological disorder, but as of yet, none halts or retards the neurodegenerative process. In an attempt to shed light on the neurobiology of Parkinson's disease, a number of experimental models have been developed, especially during the last 25 years. They come essentially in 3 flavors: pharmacological (eg, reserpine), toxic (eg, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), and genetic (eg, transgenic synuclein mice). These models can also be recast as etiologic, pathogenic, and symptomatic/pathophysiologic, as each may contribute to our understanding of the cause, the mechanisms, and the treatment of Parkinson's disease. In this review, we will discuss the question of Parkinson's disease models, starting from the period when this journal was born to today. During this journey of 25 years, we will discuss both the significant contributions of the Parkinson's disease models and hurdles that remain to be overcome to one day cure this neurological disease.
Collapse
Affiliation(s)
- Erwan Bezard
- Insitute of Neurodegenerative Diseases, Université Victor Ségalen-Bordeaux II, Centre National de la Recherche Scientifique, Bordeaux, France
| | | |
Collapse
|
86
|
Tan SKH, Hartung H, Sharp T, Temel Y. Serotonin-dependent depression in Parkinson's disease: a role for the subthalamic nucleus? Neuropharmacology 2011; 61:387-99. [PMID: 21251918 DOI: 10.1016/j.neuropharm.2011.01.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/23/2010] [Accepted: 01/05/2011] [Indexed: 12/17/2022]
Abstract
Depression is the most common neuropsychiatric co-morbidity in Parkinson's disease (PD). The underlying mechanism of depression in PD is complex and likely involves biological, psychosocial and therapeutic factors. The biological mechanism may involve changes in monoamine systems, in particular the serotonergic (5-hydroxytryptamine, 5-HT) system. It is well established that the 5-HT system is markedly affected in the Parkinsonian brain, with evidence including pathological loss of markers of 5-HT axons as well as cell bodies in the dorsal and median raphe nuclei of the midbrain. However, it remains unresolved whether alterations to the 5-HT system alone are sufficient to confer vulnerability to depression. Here we propose low 5-HT combined with altered network activity within the basal ganglia as critically involved in depression in PD. The latter hypothesis is derived from a number of recent findings that highlight the close interaction between the basal ganglia and the 5-HT system, not only in motor but also limbic functions. These findings include evidence that clinical depression is a side effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN), a treatment option in advanced PD. Further, it has recently been demonstrated that STN DBS in animal models inhibits 5-HT neurotransmission, and that this change may underpin depressive-like side effects. This review provides an overview of 5-HT alterations in PD and a discussion of how these changes might combine with altered basal ganglia network activity to increase depression vulnerability.
Collapse
Affiliation(s)
- Sonny K H Tan
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
87
|
Vezoli J, Fifel K, Leviel V, Dehay C, Kennedy H, Cooper HM, Gronfier C, Procyk E. Early presymptomatic and long-term changes of rest activity cycles and cognitive behavior in a MPTP-monkey model of Parkinson's disease. PLoS One 2011; 6:e23952. [PMID: 21887350 PMCID: PMC3161087 DOI: 10.1371/journal.pone.0023952] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 07/28/2011] [Indexed: 11/25/2022] Open
Abstract
Background It is increasingly recognized that non-motor symptoms are a prominent feature of Parkinson's disease and in the case of cognitive deficits can precede onset of the characteristic motor symptoms. Here, we examine in 4 monkeys chronically treated with low doses of the neurotoxin MPTP the early and long-term alterations of rest-activity rhythms in relationship to the appearance of motor and cognitive symptoms. Methodology/Principal Findings Behavioral activity recordings as well as motor and cognitive assessments were carried out continuously and in parallel before, during and for several months following MPTP-treatment (12–56 weeks). Cognitive abilities were assessed using a task that is dependent on the functional integrity of the fronto-striatal axis. Rest-activity cycles were monitored continuously using infrared movement detectors of locomotor activity. Motor impairment was evaluated using standardized scales for primates. Results show that MPTP treatment led to an immediate alteration (within one week) of rest-activity cycles and cognitive deficits. Parkinsonian motor deficits only became apparent 3 to 5 weeks after initiating chronic MPTP administration. In three of the four animals studied, clinical scores returned to control levels 5–7 weeks following cessation of MPTP treatment. In contrast, both cognitive deficits and chronobiological alterations persisted for many months. Levodopa treatment led to an improvement of cognitive performance but did not affect rest-activity rhythms in the two cases tested. Conclusions/Significance Present results show that i) changes in the rest activity cycles constituted early detectable consequences of MPTP treatment and, along with cognitive alterations, characterize the presymptomatic stage; ii) following motor recovery there is a long-term persistence of non-motor symptoms that could reflect differential underlying compensatory mechanisms in these domains; iii) the progressive MPTP-monkey model of presymptomatic ongoing parkinsonism offers possibilities for in-depth studies of early non-motor symptoms including sleep alterations and cognitive deficits.
Collapse
Affiliation(s)
- Julien Vezoli
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
- Ernst Strüngmann Institute (ESI) in Cooperation with Max Planck Society, Frankfurt, Germany
- * E-mail: (JV); (HMC)
| | - Karim Fifel
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Vincent Leviel
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Colette Dehay
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Henry Kennedy
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Howard M. Cooper
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
- * E-mail: (JV); (HMC)
| | - Claude Gronfier
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Emmanuel Procyk
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| |
Collapse
|
88
|
Huot P, Fox SH, Brotchie JM. The serotonergic system in Parkinson's disease. Prog Neurobiol 2011; 95:163-212. [PMID: 21878363 DOI: 10.1016/j.pneurobio.2011.08.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 01/23/2023]
Abstract
Although the cardinal manifestations of Parkinson's disease (PD) are attributed to a decline in dopamine levels in the striatum, a breadth of non-motor features and treatment-related complications in which the serotonergic system plays a pivotal role are increasingly recognised. Serotonin (5-HT)-mediated neurotransmission is altered in PD and the roles of the different 5-HT receptor subtypes in disease manifestations have been investigated. The aims of this article are to summarise and discuss all published preclinical and clinical studies that have investigated the serotonergic system in PD and related animal models, in order to recapitulate the state of the current knowledge and to identify areas that need further research and understanding.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, MCL 11-419, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, Ontario, Canada M5T 2S8
| | | | | |
Collapse
|
89
|
Wichmann T, Dostrovsky JO. Pathological basal ganglia activity in movement disorders. Neuroscience 2011; 198:232-44. [PMID: 21723919 DOI: 10.1016/j.neuroscience.2011.06.048] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 11/16/2022]
Abstract
Our understanding of the pathophysiology of movement disorders and associated changes in basal ganglia activities has significantly changed during the last few decades. This process began with the development of detailed anatomical models of the basal ganglia, followed by studies of basal ganglia activity patterns in animal models of common movement disorders and electrophysiological recordings in movement disorder patients undergoing functional neurosurgical procedures. These investigations first resulted in an appreciation of global activity changes in the basal ganglia in parkinsonism and other disorders, and later in the detailed description of pathological basal ganglia activity patterns, specifically burst patterns and oscillatory synchronous discharge of basal ganglia neurons. In this review, we critically summarize our current knowledge of the pathological discharge patterns of basal ganglia neurons in Parkinson's disease, dystonia, and dyskinesias.
Collapse
Affiliation(s)
- T Wichmann
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | | |
Collapse
|
90
|
Yoshimi K, Naya Y, Mitani N, Kato T, Inoue M, Natori S, Takahashi T, Weitemier A, Nishikawa N, McHugh T, Einaga Y, Kitazawa S. Phasic reward responses in the monkey striatum as detected by voltammetry with diamond microelectrodes. Neurosci Res 2011; 71:49-62. [PMID: 21645558 DOI: 10.1016/j.neures.2011.05.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 04/16/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
Reward-induced burst firing of dopaminergic neurons has mainly been studied in the primate midbrain. Voltammetry allows high-speed detection of dopamine release in the projection area. Although voltammetry has revealed presynaptic modulation of dopamine release in the striatum, to date, reward-induced release in awakened brains has been recorded only in rodents. To make such recordings, it is possible to use conventional carbon fibres in monkey brains but the use of these fibres is limited by their physical fragility. In this study, constant-potential amperometry was applied to novel diamond microelectrodes for high-speed detection of dopamine. In primate brains during Pavlovian cue-reward trials, a sharp response to a reward cue was detected in the caudate of Japanese monkeys. Overall, this method allows measurements of monoamine release in specific target areas of large brains, the findings from which will expand the knowledge of reward responses obtained by unit recordings.
Collapse
Affiliation(s)
- Kenji Yoshimi
- Department of Neurophysiology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Delaville C, Deurwaerdère PD, Benazzouz A. Noradrenaline and Parkinson's disease. Front Syst Neurosci 2011; 5:31. [PMID: 21647359 PMCID: PMC3103977 DOI: 10.3389/fnsys.2011.00031] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/04/2011] [Indexed: 01/28/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopamine (DA) neurons in the substantia nigra pars compacta, and motor symptoms including bradykinesia, rigidity, and tremor at rest. These symptoms are exhibited when striatal dopamine concentration has decreased by around 70%. In addition to motor deficits, PD is also characterized by the non-motor symptoms. However, depletion of DA alone in animal models has failed to simultaneously elicit both the motor and non-motor deficits of PD, possibly because the disease is a multi-system disorder that features a profound loss in other neurotransmitter systems. There is growing evidence that additional loss of noradrenaline (NA) neurons of the locus coeruleus, the principal source of NA in the brain, could be involved in the clinical expression of motor as well as in non-motor deficits. In the present review, we analyze the latest evidence for the implication of NA in the pathophysiology of PD obtained from animal models of parkinsonism and from parkinsonian patients. Recent studies have shown that NA depletion alone, or combined with DA depletion, results in motor as well as in non-motor dysfunctions. In addition, by using selective agonists and antagonists of noradrenaline alpha receptors we, and others, have shown that α2 receptors are implicated in the control of motor activity and that α2 receptor antagonists can improve PD motor symptoms as well as l-Dopa-induced dyskinesia. In this review we argue that the loss of NA neurons in PD has an impact on all PD symptoms and that the addition of NAergic agents to dopaminergic medication could be beneficial in the treatment of the disease.
Collapse
Affiliation(s)
- Claire Delaville
- UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux Bordeaux, France
| | | | | |
Collapse
|
92
|
Riahi G, Morissette M, Parent M, Di Paolo T. Brain 5-HT(2A) receptors in MPTP monkeys and levodopa-induced dyskinesias. Eur J Neurosci 2011; 33:1823-31. [PMID: 21501255 DOI: 10.1111/j.1460-9568.2011.07675.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Levodopa-induced dyskinesias (LIDs) are abnormal involuntary movements induced by the chronic use of levodopa (l-Dopa) limiting the quality of life of Parkinson's disease (PD) patients. We evaluated changes of the serotonin 5-HT(2A) receptors in control monkeys, in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys and in l-Dopa-treated MPTP monkeys, without or with adjunct treatments to inhibit the expression of LID: CI-1041, a selective NR1A/2B subunit antagonist of glutamate N-methyl-d-aspartic acid (NMDA) receptor, or Cabergoline, a long-acting dopamine D(2) receptor agonist. All treatments were administered for 1 month and animals were killed 24 h after the last dose of l-Dopa. Striatal concentrations of serotonin were decreased in all MPTP monkeys investigated, as measured by high-performance liquid chromatography. [(3) H]Ketanserin-specific binding to 5-HT(2A) receptors was measured by autoradiography. l-Dopa treatment that induced dyskinesias increased 5-HT(2A) receptor-specific binding in the caudate nucleus and the anterior cingulate gyrus (AcgG) compared with control monkeys. Moreover, [(3) H]Ketanserin-specific binding was increased in the dorsomedial caudate nucleus in l-Dopa-treated MPTP monkeys compared with saline-treated MPTP monkeys. Nondyskinetic monkeys treated with CI-1041 or Cabergoline showed low 5-HT(2A) -specific binding in the posterior dorsomedial caudate nucleus and the anterior AcgG compared with dyskinetic monkeys. No significant difference in 5-HT(2A) receptor binding was observed in any brain regions examined in saline-treated MPTP monkeys compared with control monkeys. These results confirm the involvement of serotonergic pathways and the glutamate/serotonin interactions in LID. They also support targeting 5-HT(2A) receptors as a potential treatment for LID.
Collapse
Affiliation(s)
- Golnasim Riahi
- Faculty of Pharmacy, Laval University, Quebec City, Canada
| | | | | | | |
Collapse
|
93
|
Peneder TM, Scholze P, Berger ML, Reither H, Heinze G, Bertl J, Bauer J, Richfield EK, Hornykiewicz O, Pifl C. Chronic exposure to manganese decreases striatal dopamine turnover in human alpha-synuclein transgenic mice. Neuroscience 2011; 180:280-92. [PMID: 21333719 DOI: 10.1016/j.neuroscience.2011.02.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 02/01/2011] [Accepted: 02/09/2011] [Indexed: 12/20/2022]
Abstract
Interaction of genetic and environmental factors is likely involved in Parkinson's disease (PD). Mutations and multiplications of alpha-synuclein (α-syn) cause familial PD, and chronic manganese (Mn) exposure can produce an encephalopathy with signs of parkinsonism. We exposed male transgenic C57BL/6J mice expressing human α-syn or the A53T/A30P doubly mutated human α-syn under the tyrosine hydroxylase promoter and non-transgenic littermates to MnCl₂-enriched (1%) or control food, starting at the age of 4 months. Locomotor activity was increased by Mn without significant effect of the transgenes. Mice were sacrificed at the age of 7 or 20 months. Striatal Mn was significantly increased about three-fold in those exposed to MnCl₂. The number of tyrosine hydroxylase positive substantia nigra compacta neurons was significantly reduced in 20 months old mice (-10%), but Mn or transgenes were ineffective (three-way ANOVA with the factors gene, Mn and age). In 7 months old mice, striatal homovanillic acid (HVA)/dopamine (DA) ratios and aspartate levels were significantly increased in control mice with human α-syn as compared to non-transgenic controls (+17 and +11%, respectively); after Mn exposure both parameters were significantly reduced (-16 and -13%, respectively) in human α-syn mice, but unchanged in non-transgenic animals and mice with mutated α-syn (two-way ANOVA with factors gene and Mn). None of the parameters were changed in the 20 months old mice. Single HVA/DA ratios and single aspartate levels significantly correlated across all treatment groups suggesting a causal relationship between the rate of striatal DA metabolism and aspartate release. In conclusion, under our experimental conditions, Mn and human α-syn, wild-type and doubly mutated, did not interact to induce PD-like neurodegenerative changes. However, Mn significantly and selectively interacted with human wild-type α-syn on indices of striatal DA neurotransmission, the neurotransmitter most relevant to PD.
Collapse
Affiliation(s)
- T M Peneder
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Neuroanatomical study of the A11 diencephalospinal pathway in the non-human primate. PLoS One 2010; 5:e13306. [PMID: 20967255 PMCID: PMC2954154 DOI: 10.1371/journal.pone.0013306] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/21/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The A11 diencephalospinal pathway is crucial for sensorimotor integration and pain control at the spinal cord level. When disrupted, it is thought to be involved in numerous painful conditions such as restless legs syndrome and migraine. Its anatomical organization, however, remains largely unknown in the non-human primate (NHP). We therefore characterized the anatomy of this pathway in the NHP. METHODS AND FINDINGS In situ hybridization of spinal dopamine receptors showed that D1 receptor mRNA is absent while D2 and D5 receptor mRNAs are mainly expressed in the dorsal horn and D3 receptor mRNA in both the dorsal and ventral horns. Unilateral injections of the retrograde tracer Fluoro-Gold (FG) into the cervical spinal enlargement labeled A11 hypothalamic neurons quasi-exclusively among dopamine areas. Detailed immunohistochemical analysis suggested that these FG-labeled A11 neurons are tyrosine hydroxylase-positive but dopa-decarboxylase and dopamine transporter-negative, suggestive of a L-DOPAergic nucleus. Stereological cell count of A11 neurons revealed that this group is composed by 4002±501 neurons per side. A 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) intoxication with subsequent development of a parkinsonian syndrome produced a 50% neuronal cell loss in the A11 group. CONCLUSION The diencephalic A11 area could be the major source of L-DOPA in the NHP spinal cord, where it may play a role in the modulation of sensorimotor integration through D2 and D3 receptors either directly or indirectly via dopamine formation in spinal dopa-decarboxylase-positives cells.
Collapse
|
95
|
The nigrostriatal pathway: axonal collateralization and compartmental specificity. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2010. [PMID: 20411767 DOI: 10.1007/978-3-211-92660-4_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This paper reviews two of the major features of the nigrostriatal pathway, its axonal collateralization, and compartmental specificity, as revealed by single-axon labeling experiments in rodents and immunocytological analysis of human postmortem tissue. The dorsal and ventral tiers of the substantia nigra pars compacta harbor various types of neurons the axons of which branch not only within the striatum but also in other major components of the basal ganglia. Furthermore, some nigrostriatal axons send collaterals both to thalamus and to brainstem pedunculopontine tegmental nucleus. In humans, the compartmental specificity of the nigrostriatal pathway is revealed by the fact that the matrix compartment is densely innervated by dopaminergic fibers, whereas the striosomes display different densities of dopaminergic terminals depending on their location within the striatum. The nigral neurons most severely affected in Parkinson's disease are the ventral tier cells that project to the matrix and form deep clusters in the substantia nigra pars reticulata.
Collapse
|
96
|
Storvik M, Arguel MJ, Schmieder S, Delerue-Audegond A, Li Q, Qin C, Vital A, Bioulac B, Gross CE, Wong G, Nahon JL, Bezard E. Genes regulated in MPTP-treated macaques and human Parkinson's disease suggest a common signature in prefrontal cortex. Neurobiol Dis 2010; 38:386-94. [PMID: 20206263 DOI: 10.1016/j.nbd.2010.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 02/11/2010] [Accepted: 02/13/2010] [Indexed: 11/20/2022] Open
Abstract
The presymptomatic phase of Parkinson's disease (PD) is now recognized as a prodromal phase, with compensatory mechanism masking its progression and non-motor early manifestations, such as depression, cognitive disturbances and apathy. Those mechanisms were thought to be strictly dopamine-mediated until recent advances have shed light upon involvement of putative outside-basal ganglia, i.e. cortical, structures. We took advantage of our progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaque model to monitor whole genome transcriptional changes in several brain areas. Our data reveals that transcriptomic activity changes take place from early stages, suggesting very early compensatory mechanisms or pathological activity outside the basal ganglia, including the PFC. Specific transcriptomic changes occurring in the PFC of fully parkinsonian MPTP-treated macaques have been identified. Interestingly, a large part of these transcriptomic changes were also observed in human post-mortem samples of patients with neurodegenerative diseases analysed by quantitative PCR. These results suggest that the PFC is able to detect the progression of dopamine denervation even at very early time points. There are therefore mechanisms, within the PFC, leading to compensatory alterations and/or participating to pathophysiology of prodromal PD manifestations.
Collapse
Affiliation(s)
- Markus Storvik
- Department of Biosciences, Department of Neurobiology, Department of Pharmacology and Toxicology, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Galvan A, Hu X, Smith Y, Wichmann T. Localization and function of GABA transporters in the globus pallidus of parkinsonian monkeys. Exp Neurol 2010; 223:505-15. [PMID: 20138865 DOI: 10.1016/j.expneurol.2010.01.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/10/2010] [Accepted: 01/29/2010] [Indexed: 12/19/2022]
Abstract
The GABA transporters GAT-1 and GAT-3 are abundant in the external and internal segments of the globus pallidus (GPe and GPi, respectively). We have shown that pharmacological blockade of either of these transporters results in decreased neuronal firing, and in elevated levels of extracellular GABA in normal monkeys. We now studied whether the electrophysiologic and biochemical effects of local intra-pallidal injections of GAT-1 and GAT-3 blockers, or the subcellular localization of these transporters, are altered in monkeys rendered parkinsonian by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The subcellular localization of the transporters in GPe and GPi, studied with electron microscopy immunoperoxidase, was similar to that found in normal animals: i.e., GAT-3 immunoreactivity was mostly confined to glial processes, while GAT-1 labeling was expressed in unmyelinated axons and glial processes. A combined injection/recording device was used to record the extracellular activity of single neurons in GPe and GPi, before, during and after administration of small volumes (1microl) of either the GAT-1 inhibitor, SKF-89976A hydrochloride (720ng), or the GAT-3 inhibitor, (S)-SNAP-5114 (500ng). In GPe, the effects of GAT-1 or GAT-3 blockade were similar to those seen in normal monkeys. However, unlike the findings in the normal state, the firing of most neurons was not affected by blockade of either transporter in GPi. These results suggest that, after dopaminergic depletion, the functions of GABA transporters are altered in GPi; without major changes in their subcellular localization.
Collapse
Affiliation(s)
- Adriana Galvan
- Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
98
|
Nayyar T, Bubser M, Ferguson MC, Neely MD, Shawn Goodwin J, Montine TJ, Deutch AY, Ansah TA. Cortical serotonin and norepinephrine denervation in parkinsonism: preferential loss of the beaded serotonin innervation. Eur J Neurosci 2010; 30:207-16. [PMID: 19659923 DOI: 10.1111/j.1460-9568.2009.06806.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Parkinson's Disease (PD) is marked by prominent motor symptoms that reflect striatal dopamine insufficiency. However, non-motor symptoms, including depression, are common in PD. It has been suggested that these changes reflect pathological involvement of non-dopaminergic systems. We examined regional changes in serotonin (5-HT) and norepinephrine (NE) systems in mice treated with two different 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment paradigms, at survival times of 3 or 16 weeks after the last MPTP injection. MPTP caused a decrease in striatal dopamine concentration, the magnitude of which depended on the treatment regimen and survival interval after MPTP treatment. There was significant involvement of other subcortical areas receiving a dopamine innervation, but no consistent changes in 5-HT or NE levels in subcortical sites. In contrast, we observed an enduring decrease in 5-HT and NE concentrations in both the somatosensory cortex and medial prefrontal cortex (PFC). Immunohistochemical studies also revealed a decrease in the density of PFC NE and 5-HT axons. The decrease in the cortical serotonergic innervation preferentially involved the thick beaded but not smooth fine 5-HT axons. Similar changes in the 5-HT innervation of post-mortem samples of the PFC from idiopathic PD cases were seen. Our findings point to a major loss of the 5-HT and NE innervations of the cortex in MPTP-induced parkinsonism, and suggest that loss of the beaded cortical 5-HT innervation is associated with a predisposition to the development of depression in PD.
Collapse
Affiliation(s)
- Tultul Nayyar
- Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Urbaniak Hunter K, Yarbrough C, Ciacci J. Gene- and cell-based approaches for neurodegenerative disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 671:117-30. [PMID: 20455500 DOI: 10.1007/978-1-4419-5819-8_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases comprise an important group ofchronic diseases that increase in incidence with rising age. In particular, the two most common neurodegenerative diseases are Alzheimer's disease and Parkinson's disease, both of which will be discussed below. A third, Huntington's disease, occurs infrequently, but has been studied intensely. Each of these diseases shares characteristics which are also generalizeable to other neurodegenerative diseases: accumulation ofproteinaceous substances that leads inexorably to selective neuronal death and decline in neural function. Treatments for these diseases have historically focused on symptomatic relief, but recent advances in molecular research have identified more specific targets. Additionally, stem cell therapy, immunotherapy and trophic-factor delivery provide avenues for neuronal protection that may alter the natural progression of these devastating illnesses. Upcoming clinical trials will evaluate treatment strategies and provide hope that translational research will decrease the onset of debilitating disability associated with neurodegenerative disease.
Collapse
|
100
|
Fox SH, Brotchie JM. The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. PROGRESS IN BRAIN RESEARCH 2010; 184:133-57. [DOI: 10.1016/s0079-6123(10)84007-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|