51
|
Benvenga MJ, Chaney SF, Baez M, Britton TC, Hornback WJ, Monn JA, Marek GJ. Metabotropic Glutamate 2 Receptors Play a Key Role in Modulating Head Twitches Induced by a Serotonergic Hallucinogen in Mice. Front Pharmacol 2018; 9:208. [PMID: 29599719 PMCID: PMC5862811 DOI: 10.3389/fphar.2018.00208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/23/2018] [Indexed: 11/29/2022] Open
Abstract
There is substantial evidence that glutamate can modulate the effects of 5-hydroxytryptamine2A (5-HT2A) receptor activation through stimulation of metabotropic glutamate2/3 (mGlu2/3) receptors in the prefrontal cortex. Here we show that constitutive deletion of the mGlu2 gene profoundly attenuates an effect of 5-HT2A receptor activation using the mouse head twitch response (HTR). MGlu2 and mGlu3 receptor knockout (KO) as well as age-matched ICR (CD-1) wild type (WT) mice were administered (±)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and observed for head twitch activity. DOI failed to produce significant head twitches in mGlu2 receptor KO mice at a dose 10-fold higher than the peak effective dose in WT or mGlu3 receptor KO mice. In addition, the mGlu2/3 receptor agonist LY379268, and the mGlu2 receptor positive allosteric modulator (PAM) CBiPES, potently blocked the HTR to DOI in WT and mGlu3 receptor KO mice. Conversely, the mGlu2/3 receptor antagonist LY341495 (10 mg/kg) increased the HTR produced by DOI (3 mg/kg) in mGlu3 receptor KO mice. Finally, the mGlu2 receptor potentiator CBiPES was able to attenuate the increase in the HTR produced by LY341495 in mGlu3 receptor KO mice. Taken together, all of these results are consistent with the hypothesis that that DOI-induced head twitches are modulated by mGlu2 receptor activation. These results also are in keeping with a critical autoreceptor function for mGlu2 receptors in the prefrontal cortex with differential effects of acute vs. chronic perturbation (e.g., constitutive mGlu2 receptor KO mice). The robust attenuation of DOI-induced head twitches in the mGlu2 receptor KO mice appears to reflect the critical role of glutamate in ongoing regulation of 5-HT2A receptors in the prefrontal cortex. Future experiments with inducible knockouts for the mGlu2 receptor and/or selective mGlu3 receptor agonists/PAMs/antagonists could provide an important tools in understanding glutamatergic modulation of prefrontal cortical 5-HT2A receptor function.
Collapse
Affiliation(s)
- Mark J Benvenga
- Neuroscience Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States.,Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, United States
| | - Stephen F Chaney
- Neuroscience Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Melvyn Baez
- Neuroscience Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Thomas C Britton
- Discovery Chemistry Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - William J Hornback
- Discovery Chemistry Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - James A Monn
- Discovery Chemistry Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Gerard J Marek
- Neuroscience Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
52
|
Jo HJ, McCairn KW, Gibson WS, Testini P, Zhao CZ, Gorny KR, Felmlee JP, Welker KM, Blaha CD, Klassen BT, Min HK, Lee KH. Global network modulation during thalamic stimulation for Tourette syndrome. NEUROIMAGE-CLINICAL 2018; 18:502-509. [PMID: 29560306 PMCID: PMC5857897 DOI: 10.1016/j.nicl.2018.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/09/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Abstract
Background and objectives Deep brain stimulation (DBS) of the thalamus is a promising therapeutic alternative for treating medically refractory Tourette syndrome (TS). However, few human studies have examined its mechanism of action. Therefore, the networks that mediate the therapeutic effects of thalamic DBS remain poorly understood. Methods Five participants diagnosed with severe medically refractory TS underwent bilateral thalamic DBS stereotactic surgery. Intraoperative fMRI characterized the blood oxygen level-dependent (BOLD) response evoked by thalamic DBS and determined whether the therapeutic effectiveness of thalamic DBS, as assessed using the Modified Rush Video Rating Scale test, would correlate with evoked BOLD responses in motor and limbic cortical and subcortical regions. Results Our results reveal that thalamic stimulation in TS participants has wide-ranging effects that impact the frontostriatal, limbic, and motor networks. Thalamic stimulation induced suppression of motor and insula networks correlated with motor tic reduction, while suppression of frontal and parietal networks correlated with vocal tic reduction. These regions mapped closely to major regions of interest (ROI) identified in a nonhuman primate model of TS. Conclusions Overall, these findings suggest that a critical factor in TS treatment should involve modulation of both frontostriatal and motor networks, rather than be treated as a focal disorder of the brain. Using the novel combination of DBS-evoked tic reduction and fMRI in human subjects, we provide new insights into the basal ganglia-cerebellar-thalamo-cortical network-level mechanisms that influence the effects of thalamic DBS. Future translational research should identify whether these network changes are cause or effect of TS symptoms.
Collapse
Affiliation(s)
- Hang Joon Jo
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin W McCairn
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - William S Gibson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Paola Testini
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Cong Zhi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Joel P Felmlee
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kirk M Welker
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bryan T Klassen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
53
|
Marek GJ, Ramos BP. β 2-Adrenergic Receptor Activation Suppresses the Rat Phenethylamine Hallucinogen-Induced Head Twitch Response: Hallucinogen-Induced Excitatory Post-synaptic Potentials as a Potential Substrate. Front Pharmacol 2018; 9:89. [PMID: 29472863 PMCID: PMC5809958 DOI: 10.3389/fphar.2018.00089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/26/2018] [Indexed: 12/20/2022] Open
Abstract
5-Hydroxytryptamine2A (5-HT2A) receptors are enriched in layers I and Va of the rat prefrontal cortex and neocortex and their activation increases the frequency of glutamatergic excitatory post-synaptic potentials/currents (EPSP/Cs) onto layer V pyramidal cells. A number of other G-protein coupled receptors (GPCRs) are also enriched in cortical layers I and Va and either induce (α1-adrenergic and orexin2) or suppress (metabotropic glutamate2 [mGlu2], adenosine A1, μ-opioid) both 5-HT-induced EPSCs and head twitches or head shakes induced by the phenethylamine hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI). Another neurotransmitter receptor also localized to apparent thalamocortical afferents to layers I and Va of the rat prefrontal cortex and neocortex is the β2-adrenergic receptor. Therefore, we conducted preliminary electrophysiological experiments with rat brain slices examining the effects of epinephrine on electrically-evoked EPSPs following bath application of DOI (3 μM). Epinephrine (0.3-10 μM) suppressed the late EPSPs produced by electrical stimulation and DOI. The selective β2-adrenergic receptor antagonist ICI-118,551 (300 nM) resulted in a rightward shift of the epinephrine concentration-response relationship. We also tested the selective β2-adrenergic receptor agonist clenbuterol and the antagonist ICI-118,551 on DOI-induced head twitches. Clenbuterol (0.3-3 mg/kg, i.p.) suppressed DOI (1.25 mg/kg, i.p.)-induced head twitches. This clenbuterol effect appeared to be at least partially reversed by the selective β2-adrenergic receptor antagonist ICI-118,553 (0.01-1 mg/kg, i.p.), with significant reversal at doses of 0.1 and 1 mg/kg. Thus, β2-adrenergic receptor activation reverses the effects of phenethylamine hallucinogens in the rat prefrontal cortex. While Gi/Go-coupled GPCRs have previously been shown to suppress both the electrophysiological and behavioral effects of 5-HT2A receptor activation in the mPFC, the present work appears to extend this suppressant action to a Gs-coupled GPCR. Furthermore, the modulation of 5-HT2A receptor activation-induced glutamate release onto mPFC layer V pyramidal neurons apical dendrites by a range GPCRs in rat brain slices appears to results in behaviorally salient effects of relevance when screening for novel CNS therapeutic drugs.
Collapse
Affiliation(s)
- Gerard J. Marek
- Department of Psychiatry, School of Medicine, Ribicoff Research Facilities of the Connecticut Mental Health Center, Yale University, New Haven, CT, United States
- Astellas Pharma Global Development, Inc., Global Medical Science, CNS and Pain, Northbrook, IL, United States
| | - Brian P. Ramos
- Department of Neurobiology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
54
|
Infralimbic dopamine D2 receptors mediate glucocorticoid-induced facilitation of auditory fear memory extinction in rats. Brain Res 2018; 1682:84-92. [PMID: 29329984 DOI: 10.1016/j.brainres.2018.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 11/23/2022]
Abstract
The infralimbic (IL) cortex of the medial prefrontal cortex plays an important role in the extinction of fear memory. Also, it has been showed that both brain glucocorticoid and dopamine receptors are involved in many processes such as fear extinction that drive learning and memory; however, the interaction of these receptors in the IL cortex remains unclear. We examined a putative interaction between the effects of glucocorticoid and dopamine receptors stimulation in the IL cortex on fear memory extinction in an auditory fear conditioning paradigm in male rats. Corticosterone (the endogenous glucocorticoid receptor ligand), or RU38486 (the synthetic glucocorticoid receptor antagonist) microinfusion into the IL cortex 10 min before test 1 attenuated auditory fear expression at tests 1-3, suggesting as an enhancement of fear extinction. The effect of corticosterone, but not RU38486 was counteracted by the dopamine D2 receptor antagonist sulpiride pre-treatment administered into the IL (at a dose that failed to alter freezing behavior on its own). In contrast, intra-IL infusion of the dopamine D1 receptor antagonist SCH23390 pre-treatment failed to alter freezing behavior. These findings provide evidence for the involvement of the IL cortex D2 receptors in CORT-induced facilitation of fear memory extinction.
Collapse
|
55
|
Hashikawa Y, Hashikawa K, Falkner AL, Lin D. Ventromedial Hypothalamus and the Generation of Aggression. Front Syst Neurosci 2017; 11:94. [PMID: 29375329 PMCID: PMC5770748 DOI: 10.3389/fnsys.2017.00094] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
Aggression is a costly behavior, sometimes with severe consequences including death. Yet aggression is prevalent across animal species ranging from insects to humans, demonstrating its essential role in the survival of individuals and groups. The question of how the brain decides when to generate this costly behavior has intrigued neuroscientists for over a century and has led to the identification of relevant neural substrates. Various lesion and electric stimulation experiments have revealed that the hypothalamus, an ancient structure situated deep in the brain, is essential for expressing aggressive behaviors. More recently, studies using precise circuit manipulation tools have identified a small subnucleus in the medial hypothalamus, the ventrolateral part of the ventromedial hypothalamus (VMHvl), as a key structure for driving both aggression and aggression-seeking behaviors. Here, we provide an updated summary of the evidence that supports a role of the VMHvl in aggressive behaviors. We will consider our recent findings detailing the physiological response properties of populations of VMHvl cells during aggressive behaviors and provide new understanding regarding the role of the VMHvl embedded within the larger whole-brain circuit for social sensation and action.
Collapse
Affiliation(s)
- Yoshiko Hashikawa
- Neuroscience Institute, New York University School of Medicine, New York University, New York, NY, United States
| | - Koichi Hashikawa
- Neuroscience Institute, New York University School of Medicine, New York University, New York, NY, United States
| | - Annegret L Falkner
- Neuroscience Institute, New York University School of Medicine, New York University, New York, NY, United States
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York University, New York, NY, United States.,Department of Psychiatry, New York University School of Medicine, New York University, New York, NY, United States.,Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
56
|
Abstract
Cortical networks are composed of glutamatergic excitatory projection neurons and local GABAergic inhibitory interneurons that gate signal flow and sculpt network dynamics. Although they represent a minority of the total neocortical neuronal population, GABAergic interneurons are highly heterogeneous, forming functional classes based on their morphological, electrophysiological, and molecular features, as well as connectivity and in vivo patterns of activity. Here we review our current understanding of neocortical interneuron diversity and the properties that distinguish cell types. We then discuss how the involvement of multiple cell types, each with a specific set of cellular properties, plays a crucial role in diversifying and increasing the computational power of a relatively small number of simple circuit motifs forming cortical networks. We illustrate how recent advances in the field have shed light onto the mechanisms by which GABAergic inhibition contributes to network operations.
Collapse
|
57
|
Kendirli MT, Bertram EH. Genetic resistance to kindling associated with alterations in circuit function. Neurobiol Dis 2017; 105:213-220. [PMID: 28602856 DOI: 10.1016/j.nbd.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 11/17/2022] Open
Abstract
How a seizure spreads from a focal onset zone to other regions of the brain is not well understood, and animal studies suggest that there is a genetic influence. To understand how genetic factors may influence seizure spread, we examined whether the kindling resistance of WAG/Rij rats, which are slow to develop kindled motor seizures, is independent of the site of seizure induction and thus a global phenomenon, or whether it is circuit specific. We compared the kindling rates (number of stimulations to induce kindled motor seizures) of WAG/Rij rats to the rates of kindling in Sprague Dawley rats. Both groups underwent a standard hippocampal kindling protocol and a separate group was kindled from the medial dorsal nucleus of the thalamus, a site that has been previously demonstrated to result in the very rapid development of motor seizures. To examine whether there were differences in the interaction in a circuit involved with the motor seizures, evoked responses were obtained from the prefrontal cortex following stimulation of the subiculum or medial dorsal thalamic nucleus. The WAG/Rij rats once again demonstrated resistance to kindling in the hippocampus, but both strains kindled rapidly from the medial dorsal nucleus. In the WAG/Rij rats there was also a reduction in the duration of the afterdischarge in the frontal cortex during hippocampal stimulation, but there was no reduction during thalamic kindling. The prefrontal cortex evoked responses were reduced following stimulation of the subiculum in the WAG/Rij rats, but the evoked responses to thalamic stimulation were the same in both strains. These findings suggest that there are genetic influences in the strength of the input from the subiculum to the prefrontal cortex in WAG/Rij rats that could explain the resistance to limbic kindling because of reduced excitatory drive onto a key target region.
Collapse
Affiliation(s)
- M Tansel Kendirli
- Department of Neurology, University of Virginia, Charlottesville, P.O. Box 801330, Virginia 22908-1330, USA
| | - Edward H Bertram
- Department of Neurology, University of Virginia, Charlottesville, P.O. Box 801330, Virginia 22908-1330, USA.
| |
Collapse
|
58
|
Garcia AF, Nakata KG, Ferguson SM. Viral strategies for targeting cortical circuits that control cocaine-taking and cocaine-seeking in rodents. Pharmacol Biochem Behav 2017; 174:33-41. [PMID: 28552825 DOI: 10.1016/j.pbb.2017.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
Addiction to cocaine is a chronic disease characterized by persistent drug-taking and drug-seeking behaviors, and a high likelihood of relapse. The prefrontal cortex (PFC) has long been implicated in the development of cocaine addiction, and relapse. However, the PFC is a heterogeneous structure, and understanding the role of PFC subdivisions, cell types and afferent/efferent connections is critical for gaining a comprehensive picture of the contribution of the PFC in addiction-related behaviors. Here we provide an update on the role of the PFC in cocaine addiction from recent work that used viral-mediated optogenetic and chemogenetic tools to study the role of the PFC in drug-taking and drug-seeking behavior in rodents. Following overviews of rodent PFC neuroanatomy and of viral-mediated optogenetic and chemogenetic techniques, we review studies of manipulations within the PFC, followed by a review of work that utilized targeted manipulations to PFC inputs and outputs.
Collapse
Affiliation(s)
- Aaron F Garcia
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Neuroscience Graduate Program, University of Washington, Seattle, WA, United States
| | - Kanichi G Nakata
- Neuroscience Graduate Program, University of Washington, Seattle, WA, United States
| | - Susan M Ferguson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Neuroscience Graduate Program, University of Washington, Seattle, WA, United States; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.
| |
Collapse
|
59
|
Ogundele OM, Lee CC, Francis J. Thalamic dopaminergic neurons projects to the paraventricular nucleus-rostral ventrolateral medulla/C1 neural circuit. Anat Rec (Hoboken) 2017; 300:1307-1314. [PMID: 27981779 DOI: 10.1002/ar.23528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/17/2016] [Accepted: 09/22/2016] [Indexed: 01/02/2023]
Abstract
Paraventricular nuclei (PVN) projections to the rostral ventrolateral medulla (RVLM)/C1 catecholaminergic neuron group constitute the pre-autonomic sympathetic center involved in the neural control of systemic cardiovascular function. However, the role of extra-hypothalamic and thalamic dopaminergic (DA) inputs in this circuit remains underexplored. Using retrograde neuroanatomical tracing and high contrast confocal imaging methods, we investigated the projections and morphology of the discrete thalamic DA neuron groups in the dorsal hypothalamic area and their contribution to the PVN-RVLM neural circuit. We found that DA neuron subgroups in the Zona Incerta (Zi; 60%) and Reuniens thalamic nuclei (Re; 40%) were labeled comparably to the PVN (85%) after a retrograde tracer was injected into the RVLM/C1 (P < 0.01 mean ± SEM). The Re/Zi DA neuron subgroups were characterized by angulated cell bodies, superiomedial and inferiomedial projections reaching the contralateral Re/Zi and ipsilateral PVN DA neurons respectively. Ultimately, we deduced that the DA projections of the Re/Zi to the PVN contribute to the PVN-RVLM/C1 neural circuit. As a result of these connections, the Re/Zi DA neuron groups may regulate preautonomic sympathetic events associated with the PVN-RVLM pathway. Anat Rec, 300:1307-1314, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Olalekan M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Charles C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| |
Collapse
|
60
|
Millan EZ, Ong Z, McNally GP. Paraventricular thalamus: Gateway to feeding, appetitive motivation, and drug addiction. PROGRESS IN BRAIN RESEARCH 2017; 235:113-137. [DOI: 10.1016/bs.pbr.2017.07.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
61
|
Abstract
Hallucinogens evoke sensory, perceptual, affective, and cognitive effects that may be useful to understand the neurobiological basis of mood and psychotic disorders. The present chapter reviews preclinical research carried out in recent years in order to better understand the action of psychotomimetic agents such as the noncompetitive NMDA receptor (NMDA-R) antagonists and serotonergic hallucinogens. Our studies have focused on the mechanisms through which these agents alter cortical activity. Noncompetitive NMDA-R antagonists, such as phencyclidine (PCP) and MK-801 (dizocilpine), as well as the serotonergic hallucinogens DOI and 5-MeO-DMT, produce similar effects on cellular and population activity in prefrontal cortex (PFC); these effects include alterations of pyramidal neuron discharge (with an overall increase in firing), as well as a marked attenuation of the low frequency oscillations (0.2-4 Hz) to which neuronal discharge is coupled in anesthetized rodents. PCP increases c-fos expression in excitatory neurons from various cortical and subcortical areas, particularly the thalamus. This effect of PCP involves the preferential blockade of NMDA-R on GABAergic neurons of the reticular nucleus of the thalamus, which provides feedforward inhibition to the rest of thalamic nuclei. It is still unknown whether serotonergic hallucinogens also affect thalamocortical networks. However, when examined, similar alterations in other cortical areas, such as the primary visual cortex (V1), have been observed, suggesting that these agents affect cortical activity in sensory and associative areas. Interestingly, the disruption of PFC activity induced by PCP, DOI and 5-MeO-DMT is reversed by classical and atypical antipsychotic drugs. This effect suggests a possible link between the mechanisms underlying the disruption of perception by multiple classes of hallucinogenic agents and the therapeutic efficacy of antipsychotic agents.
Collapse
|
62
|
Hervig ME, Thomsen MS, Kalló I, Mikkelsen JD. Acute phencyclidine administration induces c-Fos-immunoreactivity in interneurons in cortical and subcortical regions. Neuroscience 2016; 334:13-25. [PMID: 27476436 DOI: 10.1016/j.neuroscience.2016.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023]
Abstract
Dysfunction of N-Methyl-d-aspartate receptors (NMDARs) is believed to underlie some of the symptoms in schizophrenia, and non-competitive NMDAR antagonists (including phencyclidine (PCP)) are widely used as pharmacological schizophrenia models. Furthermore, mounting evidence suggests that impaired γ-aminobutyric acid (GABA) neurotransmission contributes to the cognitive deficits in schizophrenia. Thus alterations in GABAergic interneurons have been observed in schizophrenia patients and animal models. Acute systemic administration of PCP increases levels of c-Fos in several cortical and subcortical areas, but whether such induction occurs in specific populations of GABAergic interneuron subtypes still remains to be established. We performed an immunohistochemical analysis of the PCP-induced c-Fos-immunoreactivity (IR) in parvalbumin (PV) and calbindin (CB) interneuron subtypes in the cortex and thalamus of rats. A single dose of PCP (10mg/kg, s.c.) significantly increased total number of c-Fos-IR in: (1) the prelimbic, infralimbic, anterior cingulate, ventrolateral orbital, motor, somatosensory and retrosplenial cortices as well as the nucleus accumbens (NAc), field CA1 of the hippocampus (CA1) field of hippocampus and mediodorsal thalamus (MD); (2) PV-IR cells in the ventrolateral orbitofrontal and retrosplenial cortices and CA1 field of hippocampus; and (3) CB-IR cells in the motor cortex. Overall, our data indicate that PCP activates a wide range of cortical and subcortical brain regions and that a substantial part of this activation is present in GABAergic interneurons in certain regions. This suggests that the psychotomimetic effect of PCP may be mediated via GABAergic interneurons.
Collapse
Affiliation(s)
- Mona E Hervig
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen, Denmark.
| | - Morten S Thomsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Imre Kalló
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
63
|
Tomás Pereira I, Agster KL, Burwell RD. Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. I. afferents. Hippocampus 2016; 26:1189-212. [PMID: 27119220 DOI: 10.1002/hipo.22603] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 04/06/2016] [Accepted: 04/22/2016] [Indexed: 01/08/2023]
Abstract
In this study the subcortical afferents for the rat PER areas 35 and 36, POR, and the lateral and medial entorhinal areas (LEA and MEA) were characterized. We analyzed 33 retrograde tract-tracing experiments distributed across the five regions. For each experiment, we estimated the total numbers, percentages, and densities of labeled cells in 36 subcortical structures and nuclei distributed across septum, basal ganglia, claustrum, amygdala, olfactory structures, thalamus, and hypothalamus. We found that the complement of subcortical inputs differs across the five regions, especially the PER and POR. The PER receives input from the reuniens, suprageniculate, and medial geniculate thalamic nuclei as well as the amygdala. Overall, the subcortical inputs to the PER were consistent with a role in perception, multimodal processing, and the formation of associations that include the motivational significance of individual items and objects. Subcortical inputs to the POR were dominated by the dorsal thalamus, particularly the lateral posterior nucleus, a region implicated in visuospatial attention. The complement of subcortical inputs to the POR is consistent with a role in representing and monitoring the local spatial context. We also report that, in addition to the PER, the LEA and the medial band of the MEA also receive strong amygdala input. In contrast, subcortical input to the POR and the MEA lateral band includes much less amygdala input and is dominated by dorsal thalamic nuclei, particularly nuclei involved in spatial information processing. Thus, some subcortical inputs are consistent with the view that there is functional differentiation along the septotemporal axis of the hippocampus, but others provide considerable integration. Overall, we conclude that the patterns of subcortical inputs to the PER, POR, and the entorhinal LEA and MEA provide further evidence for functional differentiation in the medial temporal lobe. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Inês Tomás Pereira
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island, 02912
| | - Kara L Agster
- Department of Neuroscience, Brown University, Providence, Rhode Island, 02912
| | - Rebecca D Burwell
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island, 02912.,Department of Neuroscience, Brown University, Providence, Rhode Island, 02912
| |
Collapse
|
64
|
|
65
|
Semenova U, Raeva S, Sedov A. Participation of the thalamic CM-Pf complex in movement performance in patients with dystonia. Mov Disord 2016; 31:1398-404. [PMID: 27126370 DOI: 10.1002/mds.26653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION The centrum medianum- parafascicular complex of the human thalamus has a critical influence on cortical activity and significantly influences somatosensory function, arousal, and attention. In addition to its cortical connections, this region of the intralaminar thalamic nuclei is also connected to motor areas of the basal ganglia and the brain stem. OBJECTIVE The goal of this study was to identify movement-related neurons in the centrum medianum-parafascicular complex and analyze the changes in their activity during voluntary movements in patients with cervical dystonia. METHODS Single-unit activity was recorded during the micro-electrode-guided surgical ablation procedures in patients with cervical dystonia. The neural responses and synchronous electromyographic signals of the neck and finger flexor muscles were simultaneously recorded. RESULTS We found the following 3 types of movement-sensitive neurons in the centrum medianum-parafascicular complex: neurons that responded selectively to voluntary hand movement (hand-only neurons), neurons that selectively responded to neck movements (neck-only neurons), neurons responding to both hand and neck movements (combined neurons). We discovered the following 3 patterns of movement-related changes in neural activity: an increase in the firing rate, a reduction in the bursting activity, and short-term oscillations and synchronization with neighboring neurons. The most pronounced and prolonged responses were observed during movements involving neck muscles as well as during involuntary dystonic movements. CONCLUSION The centrum medianum-parafascicular complex of the thalamus is a component of the subcortical network that participates in motor behavior and may be involved in the pathophysiology of cervical dystonia. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ulia Semenova
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana Raeva
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Sedov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
66
|
Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning. Proc Natl Acad Sci U S A 2016; 113:E1382-91. [PMID: 26903620 DOI: 10.1073/pnas.1525586113] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions.
Collapse
|
67
|
Prasad JA, Abela AR, Chudasama Y. Midline thalamic reuniens lesions improve executive behaviors. Neuroscience 2016; 345:77-88. [PMID: 26868974 DOI: 10.1016/j.neuroscience.2016.01.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/29/2022]
Abstract
The role of the thalamus in complex cognitive behavior is a topic of increasing interest. Here we demonstrate that lesions of the nucleus reuniens (NRe), a midline thalamic nucleus interconnected with both hippocampal and prefrontal circuitry, lead to enhancement of executive behaviors typically associated with the prefrontal cortex. Rats were tested on four behavioral tasks: (1) the combined attention-memory (CAM) task, which simultaneously assessed attention to a visual target and memory for that target over a variable delay; (2) spatial memory using a radial arm maze, (3) discrimination and reversal learning using a touchscreen operant platform, and (4) decision-making with delayed outcomes. Following NRe lesions, the animals became more efficient in their performance, responding with shorter reaction times but also less impulsively than controls. This change, combined with a decrease in perseverative responses, led to focused attention in the CAM task and accelerated learning in the visual discrimination task. There were no observed changes in tasks involving either spatial memory or value-based decision making. These data complement ongoing efforts to understand the role of midline thalamic structures in human cognition, including the development of thalamic stimulation as a therapeutic strategy for acquired cognitive disabilities (Schiff, 2008; Mair et al., 2011), and point to the NRe as a potential target for clinical intervention.
Collapse
Affiliation(s)
- J A Prasad
- Department of Psychology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - A R Abela
- Department of Psychology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Y Chudasama
- Department of Psychology, McGill University, Montreal, QC, H3A 1B1, Canada.
| |
Collapse
|
68
|
Organization of Prefrontal-Striatal Connections. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-12-802206-1.00021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
69
|
Orexin/Hypocretin-1 Receptor Antagonism Selectively Reduces Cue-Induced Feeding in Sated Rats and Recruits Medial Prefrontal Cortex and Thalamus. Sci Rep 2015; 5:16143. [PMID: 26536818 PMCID: PMC4633617 DOI: 10.1038/srep16143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/07/2015] [Indexed: 12/31/2022] Open
Abstract
The orexin/hypocretin system is important for reward-seeking behaviors, however less is known about its function in non-homeostatic feeding. Environmental influences, particularly cues for food can stimulate feeding in the absence of hunger and lead to maladaptive overeating behavior. The key components of the neural network that mediates this cue-induced overeating in sated rats include lateral hypothalamus, amygdala, and medial prefrontal cortex (mPFC), yet the neuropharmacological mechanisms within this network remain unknown. The current study investigated a causal role for orexin in cue-driven feeding, and examined the neural substrates through which orexin mediates this effect. Systemic administration of the orexin-1 receptor (OX1R) antagonist SB-334867 had no effect on baseline eating, but significantly reduced cue-driven consumption in sated rats. Complementary neural analysis revealed that decreased cue-induced feeding under SB-334867 increased Fos expression in mPFC and paraventricular thalamus. These results demonstrate that OX1R signaling critically regulates cue-induced feeding, and suggest orexin is acting through prefrontal cortical and thalamic sites to drive eating in the absence of hunger. These findings inform our understanding of how food-associated cues override signals from the body to promote overeating, and indicate OX1R antagonism as a potential pharmacologic target for treatment of disordered eating in humans.
Collapse
|
70
|
Kang L, Tian MK, Bailey CDC, Lambe EK. Dendritic spine density of prefrontal layer 6 pyramidal neurons in relation to apical dendrite sculpting by nicotinic acetylcholine receptors. Front Cell Neurosci 2015; 9:398. [PMID: 26500498 PMCID: PMC4597126 DOI: 10.3389/fncel.2015.00398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/22/2015] [Indexed: 01/31/2023] Open
Abstract
Prefrontal layer 6 (L6) pyramidal neurons play an important role in the adult control of attention, facilitated by their strong activation by nicotinic acetylcholine receptors. These neurons in mouse association cortex are distinctive morphologically when compared to L6 neurons in primary cortical regions. Roughly equal proportions of the prefrontal L6 neurons have apical dendrites that are “long” (reaching to the pial surface) vs. “short” (terminating in the deep layers, as in primary cortical regions). This distinct prefrontal morphological pattern is established in the post-juvenile period and appears dependent on nicotinic receptors. Here, we examine dendritic spine densities in these two subgroups of prefrontal L6 pyramidal neurons under control conditions as well as after perturbation of nicotinic acetylcholine receptors. In control mice, the long neurons have significantly greater apical and basal dendritic spine density compared to the short neurons. Furthermore, manipulations of nicotinic receptors (chrna5 deletion or chronic developmental nicotine exposure) have distinct effects on these two subgroups of L6 neurons: apical spine density is significantly reduced in long neurons, and basal spine density is significantly increased in short neurons. These changes appear dependent on the α5 nicotinic subunit encoded by chrna5. Overall, the two subgroups of prefrontal L6 neurons appear positioned to integrate information either across cortex (long neurons) or within the deep layers (short neurons), and nicotinic perturbations differently alter spine density within each subgroup.
Collapse
Affiliation(s)
- Lily Kang
- Department of Physiology, University of Toronto Toronto, ON, Canada
| | - Michael K Tian
- Department of Physiology, University of Toronto Toronto, ON, Canada
| | - Craig D C Bailey
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph Guelph, ON, Canada
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto Toronto, ON, Canada ; Department of Obstetrics and Gynecology, University of Toronto Toronto, ON, Canada
| |
Collapse
|
71
|
Kirouac GJ. Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neurosci Biobehav Rev 2015; 56:315-29. [DOI: 10.1016/j.neubiorev.2015.08.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
|
72
|
Inoue M, Iwai R, Yamanishi E, Yamagata K, Komabayashi-Suzuki M, Honda A, Komai T, Miyachi H, Kitano S, Watanabe C, Teshima W, Mizutani KI. Deletion of Prdm8 impairs development of upper-layer neocortical neurons. Genes Cells 2015; 20:758-70. [PMID: 26283595 DOI: 10.1111/gtc.12274] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023]
Abstract
Upper-layer (UL) neocortical neurons are the most prominent distinguishing features of the mammalian neocortex compared with those of the avian dorsal cortex and are vastly expanded in primates. However, little is known about the identities of the genes that control the specification of UL neurons. Here, we found that Prdm8, a member of the PR (PRDI-BF1 and RIZ homology) domain protein family, was specifically expressed in the postnatal UL neocortex, particular those in late-born RORß-positive layer IV neurons. We generated homozygous Prdm8 knockout (Prdm8 KO) mice and found that the deletion of Prdm8 causes growth retardation and a reduced brain weight, although the brain weight-to-body weight ratio is unchanged at postnatal day 8 (P8). Immunohistochemistry showed that the relative UL thickness, but not the thickness of the deep layer (DL), was significantly reduced in Prdm8 KO mice compared with wild-type (WT) mice. In addition, we found that a number of late-born Brn2-positive UL neurons were significantly decreased in Prdm8 KO mice. To identify genes regulated by Prdm8 during neocortical development, we compared expression profiling analysis in Prdm8 KO and WT mice, and identified some candidate genes. These results suggest that the proper expression of Prdm8 is required for the normal development and construction of UL neurons in the mammalian neocortex.
Collapse
Affiliation(s)
- Mayuko Inoue
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan.,Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Ryota Iwai
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan
| | - Emiko Yamanishi
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan
| | - Kazuyuki Yamagata
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan
| | - Mariko Komabayashi-Suzuki
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan
| | - Aya Honda
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan
| | - Tae Komai
- Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Hitoshi Miyachi
- Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Satsuki Kitano
- Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Chisato Watanabe
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan
| | - Waka Teshima
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan
| | - Ken-ichi Mizutani
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan.,Japan Science and Technology Agency, PRESTO, Saitama, 332-0012, Japan
| |
Collapse
|
73
|
Vertes RP, Linley SB, Hoover WB. Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev 2015; 54:89-107. [PMID: 25616182 PMCID: PMC4976455 DOI: 10.1016/j.neubiorev.2015.01.014] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 12/19/2014] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
The thalamus was subdivided into three major groups: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Limbic nuclei of thalamus (or 'limbic thalamus') consist of the anterior nuclei, midline nuclei, medial division of the mediodorsal nucleus (MDm) and central medial nucleus (CM) of the intralaminar complex. The midline nuclei include the paraventricular (PV) and paratenial (PT) nuclei, dorsally, and the reuniens (RE) and rhomboid (RH) nuclei, ventrally. The 'limbic' thalamic nuclei predominantly connect with limbic-related structures and serve a direct role in limbic-associated functions. Regarding the midline nuclei, RE/RH mainly target limbic cortical structures, particularly the hippocampus and the medial prefrontal cortex. Accordingly, RE/RH participate in functions involving interactions of the HF and mPFC. By contrast, PV/PT mainly project to limbic subcortical structures, particularly the amygdala and nucleus accumbens, and hence are critically involved in affective behaviors such as stress/anxiety, feeding behavior, and drug seeking activities. The anatomical/functional characteristics of MDm and CM are very similar to those of the midline nuclei and hence the collection of nuclei extending dorsoventrally along the midline/paramidline of the thalamus constitute the core of the 'limbic thalamus'.
Collapse
Affiliation(s)
- Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States.
| | - Stephanie B Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Walter B Hoover
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, United States
| |
Collapse
|
74
|
Limbic thalamus and state-dependent behavior: The paraventricular nucleus of the thalamic midline as a node in circadian timing and sleep/wake-regulatory networks. Neurosci Biobehav Rev 2015; 54:3-17. [DOI: 10.1016/j.neubiorev.2014.11.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/09/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
|
75
|
Chen Z, Tang Y, Tao H, Li C, Zhang X, Liu Y. Dynorphin activation of kappa opioid receptor reduces neuronal excitability in the paraventricular nucleus of mouse thalamus. Neuropharmacology 2015; 97:259-69. [PMID: 26056031 DOI: 10.1016/j.neuropharm.2015.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 01/16/2023]
Abstract
It has been reported that kappa opioid receptor (KOR) is expressed in the paraventricular nucleus of thalamus (PVT), a brain region associated with arousal, drug reward and stress. Although intra-PVT infusion of KOR agonist was found to inhibit drug-seeking behavior, it is still unclear whether endogenous KOR agonists directly regulate PVT neuron activity. Here, we investigated the effect of the endogenous KOR agonist dynorphin-A (Dyn-A) on the excitability of mouse PVT neurons at different developmental ages. We found Dyn-A strongly inhibited PVT neurons through a direct postsynaptic hyperpolarization. Under voltage-clamp configuration, Dyn-A evoked an obvious outward current in majority of neurons tested in anterior PVT (aPVT) but only in minority of neurons in posterior PVT (pPVT). The Dyn-A current was abolished by KOR antagonist nor-BNI, Ba(2+) and non-hydrolyzable GDP analogue GDP-β-s, indicating that Dyn-A activates KOR and opens G-protein-coupled inwardly rectifying potassium channels in PVT neurons. More interestingly, by comparing Dyn-A currents in aPVT neurons of mice at various ages, we found Dyn-A evoked significant larger current in aPVT neurons from mice around prepuberty and early puberty stage. In addition, KOR activation by Dyn-A didn't produce obvious desensitization, while mu opioid receptor (MOR) activation induced obvious desensitization of mu receptor itself and also heterologous desensitization of KOR in PVT neurons. Together, our findings indicate that Dyn-A activates KOR and inhibits aPVT neurons in mice at various ages especially around puberty, suggesting a possible role of KOR in regulating aPVT-related brain function including stress response and drug-seeking behavior during adolescence.
Collapse
Affiliation(s)
- Zhiheng Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yamei Tang
- Department of Laboratory, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Cunyan Li
- Department of Laboratory, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xianghui Zhang
- Mental Health Institute, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha 410011, China
| | - Yong Liu
- Mental Health Institute, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha 410011, China.
| |
Collapse
|
76
|
Effects of intra-infralimbic prefrontal cortex injections of cannabidiol in the modulation of emotional behaviors in rats: Contribution of 5HT1A receptors and stressful experiences. Behav Brain Res 2015; 286:49-56. [DOI: 10.1016/j.bbr.2015.02.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 01/27/2023]
|
77
|
Vertes RP. Major diencephalic inputs to the hippocampus: supramammillary nucleus and nucleus reuniens. Circuitry and function. PROGRESS IN BRAIN RESEARCH 2015; 219:121-44. [PMID: 26072237 DOI: 10.1016/bs.pbr.2015.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampus receives two major external inputs from the diencephalon, that is, from the supramammillary nucleus (SUM) and nucleus reuniens (RE) of the midline thalamus. These two afferents systems project to separate, nonoverlapping, regions of the hippocampus. Specifically, the SUM distributes to the dentate gyrus (DG) and to CA2 of the dorsal and ventral hippocampus, whereas RE projects to CA1 of the dorsal and ventral hippocampus and to the subiculum. SUM and RE fibers to the hippocampus participate in common as well as in separate functions. Both systems would appear to amplify signals from other sources to their respective hippocampal targets. SUM amplifies signals from the entorhinal cortex (EC) to DG, whereas RE may amplify them from CA3 (and EC) to CA1 of the hippocampus. This "amplification" may serve to promote the transfer, encoding, and possibly storage of information from EC to DG and from CA3 and EC to CA1. Regarding their unique actions on the hippocampus, the SUM is a vital part of an ascending brainstem to hippocampal system generating the theta rhythm of the hippocampus, whereas RE importantly routes information from the medial prefrontal cortex to the hippocampus to thereby mediate functions involving both structures. In summary, although, to date, SUM and RE afferents to the hippocampus have not been extensively explored, the SUM and RE exert a profound influence on the hippocampus in processes of learning and memory.
Collapse
Affiliation(s)
- Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
78
|
Ikemoto S, Yang C, Tan A. Basal ganglia circuit loops, dopamine and motivation: A review and enquiry. Behav Brain Res 2015; 290:17-31. [PMID: 25907747 DOI: 10.1016/j.bbr.2015.04.018] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 12/26/2022]
Abstract
Dopamine neurons located in the midbrain play a role in motivation that regulates approach behavior (approach motivation). In addition, activation and inactivation of dopamine neurons regulate mood and induce reward and aversion, respectively. Accumulating evidence suggests that such motivational role of dopamine neurons is not limited to those located in the ventral tegmental area, but also in the substantia nigra. The present paper reviews previous rodent work concerning dopamine's role in approach motivation and the connectivity of dopamine neurons, and proposes two working models: One concerns the relationship between extracellular dopamine concentration and approach motivation. High, moderate and low concentrations of extracellular dopamine induce euphoric, seeking and aversive states, respectively. The other concerns circuit loops involving the cerebral cortex, basal ganglia, thalamus, epithalamus, and midbrain through which dopaminergic activity alters approach motivation. These models should help to generate hypothesis-driven research and provide insights for understanding altered states associated with drugs of abuse and affective disorders.
Collapse
Affiliation(s)
- Satoshi Ikemoto
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA.
| | - Chen Yang
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| | - Aaron Tan
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| |
Collapse
|
79
|
Weng HH, Chen CF, Tsai YH, Wu CY, Lee M, Lin YC, Yang CT, Tsai YH, Yang CY. Gray matter atrophy in narcolepsy: An activation likelihood estimation meta-analysis. Neurosci Biobehav Rev 2015; 59:53-63. [PMID: 25825285 DOI: 10.1016/j.neubiorev.2015.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 02/07/2015] [Accepted: 03/19/2015] [Indexed: 12/17/2022]
Abstract
The authors reviewed the literature on the use of voxel-based morphometry (VBM) in narcolepsy magnetic resonance imaging (MRI) studies via the use of a meta-analysis of neuroimaging to identify concordant and specific structural deficits in patients with narcolepsy as compared with healthy subjects. We used PubMed to retrieve articles published between January 2000 and March 2014. The authors included all VBM research on narcolepsy and compared the findings of the studies by using gray matter volume (GMV) or gray matter concentration (GMC) to index differences in gray matter. Stereotactic data were extracted from 8 VBM studies of 149 narcoleptic patients and 162 control subjects. We applied activation likelihood estimation (ALE) technique and found significant regional gray matter reduction in the bilateral hypothalamus, thalamus, globus pallidus, extending to nucleus accumbens (NAcc) and anterior cingulate cortex (ACC), left mid orbital and rectal gyri (BAs 10 and 11), right inferior frontal gyrus (BA 47), and the right superior temporal gyrus (BA 41) in patients with narcolepsy. The significant gray matter deficits in narcoleptic patients occurred in the bilateral hypothalamus and frontotemporal regions, which may be related to the emotional processing abnormalities and orexin/hypocretin pathway common among populations of patients with narcolepsy.
Collapse
Affiliation(s)
- Hsu-Huei Weng
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taiwan; Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan; Department of Psychology, National Chung Cheng University, Chiayi, Taiwan
| | - Chih-Feng Chen
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taiwan
| | - Yuan-Hsiung Tsai
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taiwan
| | - Chih-Ying Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taiwan
| | - Meng Lee
- Department of Neurology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taiwan
| | - Yu-Ching Lin
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan; Division of Pulmonary and Critical Care Medicine and Department of Respiratory Care, Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Respiratory Care, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Ta Yang
- Division of Pulmonary and Critical Care Medicine of Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Respiratory Care, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Huang Tsai
- Division of Pulmonary and Critical Care Medicine of Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan.
| | - Chun-Yuh Yang
- Faculty of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
80
|
|
81
|
Griffin AL. Role of the thalamic nucleus reuniens in mediating interactions between the hippocampus and medial prefrontal cortex during spatial working memory. Front Syst Neurosci 2015; 9:29. [PMID: 25805977 PMCID: PMC4354269 DOI: 10.3389/fnsys.2015.00029] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/17/2015] [Indexed: 11/13/2022] Open
Abstract
Despite decades of research, the neural mechanisms of spatial working memory remain poorly understood. Although the dorsal hippocampus is known to be critical for memory-guided behavior, experimental evidence suggests that spatial working memory depends not only on the hippocampus itself, but also on the circuit comprised of the hippocampus and the medial prefrontal cortex (mPFC). Disruption of hippocampal-mPFC interactions may result in failed transfer of spatial and contextual information processed by the hippocampus to the circuitry in mPFC responsible for decision making and goal-directed behavior. Oscillatory synchrony between the hippocampus and mPFC has been shown to increase in tasks with high spatial working memory demand. However, the mechanisms and circuitry supporting hippocampal-mPFC interactions during these tasks is unknown. The midline thalamic nucleus reuniens (RE) is reciprocally connected to both the hippocampus and the mPFC and has been shown to be critical for a variety of working memory tasks. Therefore, it is likely that hippocampal-mPFC oscillatory synchrony is modulated by RE activity. This article will review the anatomical connections between the hippocampus, mPFC and RE along with the behavioral studies that have investigated the effects of RE disruption on working memory task performance. The article will conclude with suggestions for future directions aimed at identifying the specific role of the RE in regulating functional interactions between the hippocampus and the PFC and investigating the degree to which these interactions contribute to spatial working memory.
Collapse
Affiliation(s)
- Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware Newark, DE, USA
| |
Collapse
|
82
|
Abstract
The main impetus for a mini-symposium on corticothalamic interrelationships was the recent number of studies highlighting the role of the thalamus in aspects of cognition beyond sensory processing. The thalamus contributes to a range of basic cognitive behaviors that include learning and memory, inhibitory control, decision-making, and the control of visual orienting responses. Its functions are deeply intertwined with those of the better studied cortex, although the principles governing its coordination with the cortex remain opaque, particularly in higher-level aspects of cognition. How should the thalamus be viewed in the context of the rest of the brain? Although its role extends well beyond relaying of sensory information from the periphery, the main function of many of its subdivisions does appear to be that of a relay station, transmitting neural signals primarily to the cerebral cortex from a number of brain areas. In cognition, its main contribution may thus be to coordinate signals between diverse regions of the telencephalon, including the neocortex, hippocampus, amygdala, and striatum. This central coordination is further subject to considerable extrinsic control, for example, inhibition from the basal ganglia, zona incerta, and pretectal regions, and chemical modulation from ascending neurotransmitter systems. What follows is a brief review on the role of the thalamus in aspects of cognition and behavior, focusing on a summary of the topics covered in a mini-symposium held at the Society for Neuroscience meeting, 2014.
Collapse
|
83
|
The lamprey pallium provides a blueprint of the mammalian motor projections from cortex. Curr Biol 2015; 25:413-23. [PMID: 25619762 DOI: 10.1016/j.cub.2014.12.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND The frontal lobe control of movement in mammals has been thought to be a specific function primarily related to the layered neocortex with its efferent connections. In contrast, we now show that the same basic organization is present even in one of the phylogenetically oldest vertebrates, the lamprey. RESULTS Stimulation of specific sites in the pallium/cortex evokes eye, trunk, locomotor, or oral movements. The pallial projection neurons target brainstem motor centers and basal ganglia subnuclei and have prominent dendrites extending into the outer molecular layer. They exhibit the characteristic features of pyramidal neurons and elicit monosynaptic glutamatergic excitatory postsynaptic potentials in output neurons of the optic tectum, reticulospinal neurons, and, as shown earlier, basal ganglia neurons. CONCLUSIONS Our results demonstrate marked similarities in the efferent functional connectivity and control of motor behavior between the lamprey pallium and mammalian neocortex. Thus, the lamprey motor pallium/cortex represents an evolutionary blueprint of the corresponding mammalian system.
Collapse
|
84
|
Pereira de Vasconcelos A, Cassel JC. The nonspecific thalamus: A place in a wedding bed for making memories last? Neurosci Biobehav Rev 2014; 54:175-96. [PMID: 25451763 DOI: 10.1016/j.neubiorev.2014.10.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/11/2014] [Accepted: 10/23/2014] [Indexed: 01/30/2023]
Abstract
We summarize anatomical, electrophysiological and behavioral evidence that the rostral intralaminar (ILN) and the reuniens and rhomboid (ReRh) nuclei that belong to the nonspecific thalamus, might be part of a hippocampo-cortico-thalamic network underlying consolidation of enduring declarative(-like) memories at systems level. The first part of this review describes the anatomical and functional organization of these thalamic nuclei. The second part presents the theoretical models supporting the active systems-level consolidation, a process that relies upon sleep specific field-potential oscillations occurring during both slow-wave sleep (SWS) and rapid eye movement (REM) sleep. The last part presents data in the rat showing that the lesion of the rostral ILN or of the ReRh specifically hinders the formation of remote spatial memories without affecting task acquisition or retrieval of a recent memory. These results showing a critical role of the ILN and ReRh nuclei in the transformation of a recent memory into a remote one are discussed in the context of their control of cortical arousal (ARAS) and of thalamo-cortico-thalamic synchronization.
Collapse
Affiliation(s)
- Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Université de Strasbourg, CNRS, Faculté de Psychologie Neuropôle de Strasbourg - GDR CNRS 2905, 12 rue Goethe, F-67000 Strasbourg, France.
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Université de Strasbourg, CNRS, Faculté de Psychologie Neuropôle de Strasbourg - GDR CNRS 2905, 12 rue Goethe, F-67000 Strasbourg, France
| |
Collapse
|
85
|
Williams NR, Taylor JJ, Lamb K, Hanlon CA, Short EB, George MS. Role of functional imaging in the development and refinement of invasive neuromodulation for psychiatric disorders. World J Radiol 2014; 6:756-778. [PMID: 25349661 PMCID: PMC4209423 DOI: 10.4329/wjr.v6.i10.756] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/17/2014] [Accepted: 08/31/2014] [Indexed: 02/07/2023] Open
Abstract
Deep brain stimulation (DBS) is emerging as a powerful tool for the alleviation of targeted symptoms in treatment-resistant neuropsychiatric disorders. Despite the expanding use of neuropsychiatric DBS, the mechanisms responsible for its effects are only starting to be elucidated. Several modalities such as quantitative electroencephalography as well a intraoperative recordings have been utilized to attempt to understand the underpinnings of this new treatment modality, but functional imaging appears to offer several unique advantages. Functional imaging techniques like positron emission tomography, single photon emission computed tomography and functional magnetic resonance imaging have been used to examine the effects of focal DBS on activity in a distributed neural network. These investigations are critical for advancing the field of invasive neuromodulation in a safe and effective manner, particularly in terms of defining the neuroanatomical targets and refining the stimulation protocols. The purpose of this review is to summarize the current functional neuroimaging findings from neuropsychiatric DBS implantation for three disorders: treatment-resistant depression, obsessive-compulsive disorder, and Tourette syndrome. All of the major targets will be discussed (Nucleus accumbens, anterior limb of internal capsule, subcallosal cingulate, Subthalamic nucleus, Centromedial nucleus of the thalamus-Parafasicular complex, frontal pole, and dorsolateral prefrontal cortex). We will also address some apparent inconsistencies within this literature, and suggest potential future directions for this promising area.
Collapse
|
86
|
Oscillatory activity in the medial prefrontal cortex and nucleus accumbens correlates with impulsivity and reward outcome. PLoS One 2014; 9:e111300. [PMID: 25333512 PMCID: PMC4205097 DOI: 10.1371/journal.pone.0111300] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/15/2014] [Indexed: 01/22/2023] Open
Abstract
Actions expressed prematurely without regard for their consequences are considered impulsive. Such behaviour is governed by a network of brain regions including the prefrontal cortex (PFC) and nucleus accumbens (NAcb) and is prevalent in disorders including attention deficit hyperactivity disorder (ADHD) and drug addiction. However, little is known of the relationship between neural activity in these regions and specific forms of impulsive behaviour. In the present study we investigated local field potential (LFP) oscillations in distinct sub-regions of the PFC and NAcb on a 5-choice serial reaction time task (5-CSRTT), which measures sustained, spatially-divided visual attention and action restraint. The main findings show that power in gamma frequency (50-60 Hz) LFP oscillations transiently increases in the PFC and NAcb during both the anticipation of a cue signalling the spatial location of a nose-poke response and again following correct responses. Gamma oscillations were coupled to low-frequency delta oscillations in both regions; this coupling strengthened specifically when an error response was made. Theta (7-9 Hz) LFP power in the PFC and NAcb increased during the waiting period and was also related to response outcome. Additionally, both gamma and theta power were significantly affected by upcoming premature responses as rats waited for the visual cue to respond. In a subgroup of rats showing persistently high levels of impulsivity we found that impulsivity was associated with increased error signals following a nose-poke response, as well as reduced signals of previous trial outcome during the waiting period. Collectively, these in-vivo neurophysiological findings further implicate the PFC and NAcb in anticipatory impulsive responses and provide evidence that abnormalities in the encoding of rewarding outcomes may underlie trait-like impulsive behaviour.
Collapse
|
87
|
Abstract
Although commonly viewed as a sensory information relay center, the thalamus has been increasingly recognized as an essential node in various higher-order cognitive circuits, and the underlying thalamocortical interaction mechanism has attracted increasing scientific interest. However, the development of thalamocortical connections and how such development relates to cognitive processes during the earliest stages of life remain largely unknown. Leveraging a large human pediatric sample (N = 143) with longitudinal resting-state fMRI scans and cognitive data collected during the first 2 years of life, we aimed to characterize the age-dependent development of thalamocortical connectivity patterns by examining the functional relationship between the thalamus and nine cortical functional networks and determine the correlation between thalamocortical connectivity and cognitive performance at ages 1 and 2 years. Our results revealed that the thalamus-sensorimotor and thalamus-salience connectivity networks were already present in neonates, whereas the thalamus-medial visual and thalamus-default mode network connectivity emerged later, at 1 year of age. More importantly, brain-behavior analyses based on the Mullen Early Learning Composite Score and visual-spatial working memory performance measured at 1 and 2 years of age highlighted significant correlations with the thalamus-salience network connectivity. These results provide new insights into the understudied early functional brain development process and shed light on the behavioral importance of the emerging thalamocortical connectivity during infancy.
Collapse
|
88
|
Hay YA, Andjelic S, Badr S, Lambolez B. Orexin-dependent activation of layer VIb enhances cortical network activity and integration of non-specific thalamocortical inputs. Brain Struct Funct 2014; 220:3497-512. [PMID: 25108310 DOI: 10.1007/s00429-014-0869-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
Neocortical layer VI is critically involved in thalamocortical activity changes during the sleep/wake cycle. It receives dense projections from thalamic nuclei sensitive to the wake-promoting neuropeptides orexins, and its deepest part, layer VIb, is the only cortical lamina reactive to orexins. This convergence of wake-promoting inputs prompted us to investigate how layer VIb can modulate cortical arousal, using patch-clamp recordings and optogenetics in rat brain slices. We found that the majority of layer VIb neurons were excited by nicotinic agonists and orexin through the activation of nicotinic receptors containing α4-α5-β2 subunits and OX2 receptor, respectively. Specific effects of orexin on layer VIb neurons were potentiated by low nicotine concentrations and we used this paradigm to explore their intracortical projections. Co-application of nicotine and orexin increased the frequency of excitatory post-synaptic currents in the ipsilateral cortex, with maximal effect in infragranular layers and minimal effect in layer IV, as well as in the contralateral cortex. The ability of layer VIb to relay thalamocortical inputs was tested using photostimulation of channelrhodopsin-expressing fibers from the orexin-sensitive rhomboid nucleus in the parietal cortex. Photostimulation induced robust excitatory currents in layer VIa neurons that were not pre-synaptically modulated by orexin, but exhibited a delayed, orexin-dependent, component. Activation of layer VIb by orexin enhanced the reliability and spike-timing precision of layer VIa responses to rhomboid inputs. These results indicate that layer VIb acts as an orexin-gated excitatory feedforward loop that potentiates thalamocortical arousal.
Collapse
Affiliation(s)
- Y Audrey Hay
- UM CR 18, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France.
- UMR 8246, Centre National de la Recherche Scientifique (CNRS), Paris, France.
- UMR-S 1130, Institut national de la Santé et de la Recherche Médicale (INSERM), Paris, France.
| | - Sofija Andjelic
- UM CR 18, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- UMR 8246, Centre National de la Recherche Scientifique (CNRS), Paris, France
- UMR-S 1130, Institut national de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Sammy Badr
- UM CR 18, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- UMR 8246, Centre National de la Recherche Scientifique (CNRS), Paris, France
- UMR-S 1130, Institut national de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Bertrand Lambolez
- UM CR 18, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France.
- UMR 8246, Centre National de la Recherche Scientifique (CNRS), Paris, France.
- UMR-S 1130, Institut national de la Santé et de la Recherche Médicale (INSERM), Paris, France.
- UMR 8246, Neuroscience Paris Seine, Université Pierre et Marie Curie, 9 quai St Bernard case 16, 75005, Paris, France.
| |
Collapse
|
89
|
A comprehensive thalamocortical projection map at the mesoscopic level. Nat Neurosci 2014; 17:1276-85. [PMID: 25086607 PMCID: PMC4152774 DOI: 10.1038/nn.3780] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/10/2014] [Indexed: 11/08/2022]
Abstract
The thalamus relays sensori-motor information to the cortex and is an integral part of cortical executive functions. The precise distribution of thalamic projections to the cortex is poorly characterized, particularly in mouse. We employed a systematic, high-throughput viral approach to visualize thalamocortical axons with high sensitivity. We then developed algorithms to directly compare injection and projection information across animals. By tiling the mouse thalamus with 254 overlapping injections, we constructed a comprehensive map of thalamocortical projections. We determined the projection origins of specific cortical subregions and verified that the characterized projections formed functional synapses using optogenetic approaches. As an important application, we determined the optimal stereotaxic coordinates for targeting specific cortical subregions and expanded these analyses to localize cortical layer-preferential projections. This data set will serve as a foundation for functional investigations of thalamocortical circuits. Our approach and algorithms also provide an example for analyzing the projection patterns of other brain regions.
Collapse
|
90
|
Nicotinic acetylcholine receptors in attention circuitry: the role of layer VI neurons of prefrontal cortex. Cell Mol Life Sci 2014; 71:1225-44. [PMID: 24122021 PMCID: PMC3949016 DOI: 10.1007/s00018-013-1481-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/03/2013] [Accepted: 09/16/2013] [Indexed: 12/15/2022]
Abstract
Cholinergic modulation of prefrontal cortex is essential for attention. In essence, it focuses the mind on relevant, transient stimuli in support of goal-directed behavior. The excitation of prefrontal layer VI neurons through nicotinic acetylcholine receptors optimizes local and top-down control of attention. Layer VI of prefrontal cortex is the origin of a dense feedback projection to the thalamus and is one of only a handful of brain regions that express the α5 nicotinic receptor subunit, encoded by the gene chrna5. This accessory nicotinic receptor subunit alters the properties of high-affinity nicotinic receptors in layer VI pyramidal neurons in both development and adulthood. Studies investigating the consequences of genetic deletion of α5, as well as other disruptions to nicotinic receptors, find attention deficits together with altered cholinergic excitation of layer VI neurons and aberrant neuronal morphology. Nicotinic receptors in prefrontal layer VI neurons play an essential role in focusing attention under challenging circumstances. In this regard, they do not act in isolation, but rather in concert with cholinergic receptors in other parts of prefrontal circuitry. This review urges an intensification of focus on the cellular mechanisms and plasticity of prefrontal attention circuitry. Disruptions in attention are one of the greatest contributing factors to disease burden in psychiatric and neurological disorders, and enhancing attention may require different approaches in the normal and disordered prefrontal cortex.
Collapse
|
91
|
Varela C, Kumar S, Yang JY, Wilson MA. Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Struct Funct 2014; 219:911-29. [PMID: 23571778 PMCID: PMC4179252 DOI: 10.1007/s00429-013-0543-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 03/13/2013] [Indexed: 12/18/2022]
Abstract
The reuniens nucleus in the midline thalamus projects to the medial prefrontal cortex (mPFC) and the hippocampus, and has been suggested to modulate interactions between these regions, such as spindle-ripple correlations during sleep and theta band coherence during exploratory behavior. Feedback from the hippocampus to the nucleus reuniens has received less attention but has the potential to influence thalamocortical networks as a function of hippocampal activation. We used the retrograde tracer cholera toxin B conjugated to two fluorophores to study thalamic projections to the dorsal and ventral hippocampus and to the prelimbic and infralimbic subregions of mPFC. We also examined the feedback connections from the hippocampus to reuniens. The goal was to evaluate the anatomical basis for direct coordination between reuniens, mPFC, and hippocampus by looking for double-labeled cells in reuniens and hippocampus. In confirmation of previous reports, the nucleus reuniens was the origin of most thalamic afferents to the dorsal hippocampus, whereas both reuniens and the lateral dorsal nucleus projected to ventral hippocampus. Feedback from hippocampus to reuniens originated primarily in the dorsal and ventral subiculum. Thalamic cells with collaterals to mPFC and hippocampus were found in reuniens, across its anteroposterior axis, and represented, on average, about 8 % of the labeled cells in reuniens. Hippocampal cells with collaterals to mPFC and reuniens were less common (~1 % of the labeled subicular cells), and located in the molecular layer of the subiculum. The results indicate that a subset of reuniens cells can directly coordinate activity in mPFC and hippocampus. Cells with collaterals in the hippocampus-reuniens-mPFC network may be important for the systems consolidation of memory traces and for theta synchronization during exploratory behavior.
Collapse
Affiliation(s)
- C Varela
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 46-5233, Cambridge, MA, 02139, USA,
| | | | | | | |
Collapse
|
92
|
Matzeu A, Zamora-Martinez ER, Martin-Fardon R. The paraventricular nucleus of the thalamus is recruited by both natural rewards and drugs of abuse: recent evidence of a pivotal role for orexin/hypocretin signaling in this thalamic nucleus in drug-seeking behavior. Front Behav Neurosci 2014; 8:117. [PMID: 24765071 PMCID: PMC3982054 DOI: 10.3389/fnbeh.2014.00117] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/20/2014] [Indexed: 01/12/2023] Open
Abstract
A major challenge for the successful treatment of drug addiction is the long-lasting susceptibility to relapse and multiple processes that have been implicated in the compulsion to resume drug intake during abstinence. Recently, the orexin/hypocretin (Orx/Hcrt) system has been shown to play a role in drug-seeking behavior. The Orx/Hcrt system regulates a wide range of physiological processes, including feeding, energy metabolism, and arousal. It has also been shown to be recruited by drugs of abuse. Orx/Hcrt neurons are predominantly located in the lateral hypothalamus that projects to the paraventricular nucleus of the thalamus (PVT), a region that has been identified as a "way-station" that processes information and then modulates the mesolimbic reward and extrahypothalamic stress systems. Although not thought to be part of the "drug addiction circuitry", recent evidence indicates that the PVT is involved in the modulation of reward function in general and drug-directed behavior in particular. Evidence indicates a role for Orx/Hcrt transmission in the PVT in the modulation of reward function in general and drug-directed behavior in particular. One hypothesis is that following repeated drug exposure, the Orx/Hcrt system acquires a preferential role in mediating the effects of drugs vs. natural rewards. The present review discusses recent findings that suggest maladaptive recruitment of the PVT by drugs of abuse, specifically Orx/Hcrt-PVT neurotransmission.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Molecular and Cellular Neuroscience Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Eva R. Zamora-Martinez
- Molecular and Cellular Neuroscience Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Rémi Martin-Fardon
- Molecular and Cellular Neuroscience Department, The Scripps Research InstituteLa Jolla, CA, USA
| |
Collapse
|
93
|
A mesoscale connectome of the mouse brain. Nature 2014; 508:207-14. [PMID: 24695228 DOI: 10.1038/nature13186] [Citation(s) in RCA: 1692] [Impact Index Per Article: 153.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/27/2014] [Indexed: 12/12/2022]
Abstract
Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.
Collapse
|
94
|
Edelstyn NMJ, Mayes AR, Ellis SJ. Damage to the dorsomedial thalamic nucleus, central lateral intralaminar thalamic nucleus, and midline thalamic nuclei on the right-side impair executive function and attention under conditions of high demand but not low demand. Neurocase 2014; 20:121-32. [PMID: 23030052 DOI: 10.1080/13554794.2012.713497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study reports a patient, OG, with a unilateral right-sided thalamic lesion. High resolution 3T magnetic resonance imaging revealed damage to the parvicellular and magnocellular subdivisions of the dorsomedial thalamus (DMT), the central lateral intralaminar nucleus (also known as the paralamellar DMT), the paraventricular and the central medial midline thalamic nuclei. According to the neuropsychological literature, the DMT, the midline and intralaminar thalamic nuclei influence a wide array of cognitive functions by virtue of their modulatory influences on executive function and attention, and this is particularly indicated under conditions of low arousal or high cognitive demand. We explored this prediction in OG, and compared his performance on a range of low and high demand versions of tests that tapped executive function and attention to a group of 6 age- and IQ-matched controls. OG, without exception, significantly under performed on the high-demand attention and executive function tasks, but performed normally on the low-demand versions. These findings extend and refine current understanding of the effects of thalamic lesion on attention and executive function.
Collapse
Affiliation(s)
- N M J Edelstyn
- a School of Psychology , University of Keele , Staffordshire , UK
| | | | | |
Collapse
|
95
|
Hsu DT, Kirouac GJ, Zubieta JK, Bhatnagar S. Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood. Front Behav Neurosci 2014; 8:73. [PMID: 24653686 PMCID: PMC3949320 DOI: 10.3389/fnbeh.2014.00073] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/20/2014] [Indexed: 12/21/2022] Open
Abstract
The purpose of this review is to describe how the function and connections of the paraventricular thalamic nucleus (Pa) may play a role in the regulation of stress and negative emotional behavior. Located in the dorsal midline thalamus, the Pa is heavily innervated by serotonin, norepinephrine, dopamine (DA), corticotropin-releasing hormone, and orexins (ORX), and is the only thalamic nucleus connected to the group of structures comprising the amygdala, bed nucleus of the stria terminalis (BNST), nucleus accumbens (NAcc), and infralimbic/subgenual anterior cingulate cortex (sgACC). These neurotransmitter systems and structures are involved in regulating motivation and mood, and display abnormal functioning in several psychiatric disorders including anxiety, substance use, and major depressive disorders (MDD). Furthermore, rodent studies show that the Pa is consistently and potently activated following a variety of stressors and has a unique role in regulating responses to chronic stressors. These observations provide a compelling rationale for investigating the Pa in the link between stress and negative emotional behavior, and for including the Pa in the neural pathways of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- David T Hsu
- Department of Psychiatry and the Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | - Gilbert J Kirouac
- Departments of Oral Biology and Psychiatry, Faculties of Dentistry and Medicine, University of Manitoba Winnipeg, MB, Canada
| | - Jon-Kar Zubieta
- Department of Psychiatry and the Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | - Seema Bhatnagar
- Department of Anesthesiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| |
Collapse
|
96
|
Zakiewicz IM, Bjaalie JG, Leergaard TB. Brain-wide map of efferent projections from rat barrel cortex. Front Neuroinform 2014; 8:5. [PMID: 24550819 PMCID: PMC3914153 DOI: 10.3389/fninf.2014.00005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/14/2014] [Indexed: 12/05/2022] Open
Abstract
The somatotopically organized whisker barrel field of the rat primary somatosensory (S1) cortex is a commonly used model system for anatomical and physiological investigations of sensory processing. The neural connections of the barrel cortex have been extensively mapped. But most investigations have focused on connections to limited regions of the brain, and overviews in the literature of the connections across the brain thus build on a range of material from different laboratories, presented in numerous publications. Furthermore, given the limitations of the conventional journal article format, analyses and interpretations are hampered by lack of access to the underlying experimental data. New opportunities for analyses have emerged with the recent release of an online resource of experimental data consisting of collections of high-resolution images from 6 experiments in which anterograde tracers were injected in S1 whisker or forelimb representations. Building on this material, we have conducted a detailed analysis of the brain wide distribution of the efferent projections of the rat barrel cortex. We compare our findings with the available literature and reports accumulated in the Brain Architecture Management System (BAMS2) database. We report well-known and less known intracortical and subcortical projections of the barrel cortex, as well as distinct differences between S1 whisker and forelimb related projections. Our results correspond well with recently published overviews, but provide additional information about relative differences among S1 projection targets. Our approach demonstrates how collections of shared experimental image data are suitable for brain-wide analysis and interpretation of connectivity mapping data.
Collapse
Affiliation(s)
- Izabela M Zakiewicz
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Jan G Bjaalie
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Trygve B Leergaard
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| |
Collapse
|
97
|
Smith Y, Galvan A, Ellender TJ, Doig N, Villalba RM, Huerta-Ocampo I, Wichmann T, Bolam JP. The thalamostriatal system in normal and diseased states. Front Syst Neurosci 2014; 8:5. [PMID: 24523677 PMCID: PMC3906602 DOI: 10.3389/fnsys.2014.00005] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/11/2014] [Indexed: 11/13/2022] Open
Abstract
Because of our limited knowledge of the functional role of the thalamostriatal system, this massive network is often ignored in models of the pathophysiology of brain disorders of basal ganglia origin, such as Parkinson's disease (PD). However, over the past decade, significant advances have led to a deeper understanding of the anatomical, electrophysiological, behavioral and pathological aspects of the thalamostriatal system. The cloning of the vesicular glutamate transporters 1 and 2 (vGluT1 and vGluT2) has provided powerful tools to differentiate thalamostriatal from corticostriatal glutamatergic terminals, allowing us to carry out comparative studies of the synaptology and plasticity of these two systems in normal and pathological conditions. Findings from these studies have led to the recognition of two thalamostriatal systems, based on their differential origin from the caudal intralaminar nuclear group, the center median/parafascicular (CM/Pf) complex, or other thalamic nuclei. The recent use of optogenetic methods supports this model of the organization of the thalamostriatal systems, showing differences in functionality and glutamate receptor localization at thalamostriatal synapses from Pf and other thalamic nuclei. At the functional level, evidence largely gathered from thalamic recordings in awake monkeys strongly suggests that the thalamostriatal system from the CM/Pf is involved in regulating alertness and switching behaviors. Importantly, there is evidence that the caudal intralaminar nuclei and their axonal projections to the striatum partly degenerate in PD and that CM/Pf deep brain stimulation (DBS) may be therapeutically useful in several movement disorders.
Collapse
Affiliation(s)
- Yoland Smith
- Yerkes National Primate Research Center, Emory UniversityAtlanta, GA, USA
- Department of Neurology, Emory UniversityAtlanta, GA, USA
- Udall Center of Excellence for Parkinson’s Disease, Emory UniversityAtlanta, GA, USA
| | - Adriana Galvan
- Yerkes National Primate Research Center, Emory UniversityAtlanta, GA, USA
- Department of Neurology, Emory UniversityAtlanta, GA, USA
- Udall Center of Excellence for Parkinson’s Disease, Emory UniversityAtlanta, GA, USA
| | - Tommas J. Ellender
- Department of Pharmacology, MRC Anatomical Neuropharmacology UnitOxford, UK
| | - Natalie Doig
- Department of Pharmacology, MRC Anatomical Neuropharmacology UnitOxford, UK
| | - Rosa M. Villalba
- Yerkes National Primate Research Center, Emory UniversityAtlanta, GA, USA
- Udall Center of Excellence for Parkinson’s Disease, Emory UniversityAtlanta, GA, USA
| | | | - Thomas Wichmann
- Yerkes National Primate Research Center, Emory UniversityAtlanta, GA, USA
- Department of Neurology, Emory UniversityAtlanta, GA, USA
- Udall Center of Excellence for Parkinson’s Disease, Emory UniversityAtlanta, GA, USA
| | - J. Paul Bolam
- Department of Pharmacology, MRC Anatomical Neuropharmacology UnitOxford, UK
| |
Collapse
|
98
|
Kim JP, Min HK, Knight EJ, Duffy PS, Abulseoud OA, Marsh MP, Kelsey K, Blaha CD, Bennet KE, Frye MA, Lee KH. Centromedian-parafascicular deep brain stimulation induces differential functional inhibition of the motor, associative, and limbic circuits in large animals. Biol Psychiatry 2013; 74:917-926. [PMID: 23993641 PMCID: PMC3910443 DOI: 10.1016/j.biopsych.2013.06.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/05/2013] [Accepted: 06/19/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the centromedian-parafascicular (CM-Pf) thalamic nuclei has been considered an option for treating Tourette syndrome. Using a large animal DBS model, this study was designed to explore the network effects of CM-Pf DBS. METHODS The combination of DBS and functional magnetic resonance imaging is a powerful means of tracing brain circuitry and testing the modulatory effects of electrical stimulation on a neuronal network in vivo. With a within-subjects design, we tested the proportional effects of CM and Pf DBS by manipulating current spread and varying stimulation contacts in healthy pigs (n = 5). RESULTS Our results suggests that CM-Pf DBS has an inhibitory modulating effect in areas that have been suggested as contributing to impaired sensory-motor and emotional processing. The results also help to define the differential neural circuitry effects of the CM and Pf with evidence of prominent sensorimotor/associative effects for CM DBS and prominent limbic/associative effects for Pf DBS. CONCLUSIONS Our results support the notion that stimulation of deep brain structures, such as the CM-Pf, modulates multiple networks with cortical effects. The networks affected by CM-Pf stimulation in this study reinforce the conceptualization of Tourette syndrome as a condition with psychiatric and motor symptoms and of CM-Pf DBS as a potentially effective tool for treating both types of symptoms.
Collapse
Affiliation(s)
- Joo Pyung Kim
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA, Department of Neurosurgery, CHA University, Bundang CHA Medical Center, Sungnam, Republic of Korea
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA, Division of Engineering, Mayo Clinic, Rochester, Minnesota, USA, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Emily J. Knight
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Penelope S. Duffy
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Osama A. Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael P. Marsh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Katherine Kelsey
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Charles D. Blaha
- Department of Psychology, University of Memphis, Memphis, TN, USA
| | - Kevin E. Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA, Division of Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
99
|
Cassel JC, Pereira de Vasconcelos A, Loureiro M, Cholvin T, Dalrymple-Alford JC, Vertes RP. The reuniens and rhomboid nuclei: neuroanatomy, electrophysiological characteristics and behavioral implications. Prog Neurobiol 2013; 111:34-52. [PMID: 24025745 PMCID: PMC4975011 DOI: 10.1016/j.pneurobio.2013.08.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 08/27/2013] [Accepted: 08/31/2013] [Indexed: 12/17/2022]
Abstract
The reuniens and rhomboid nuclei, located in the ventral midline of the thalamus, have long been regarded as having non-specific effects on the cortex, while other evidence suggests that they influence behavior related to the photoperiod, hunger, stress or anxiety. We summarise the recent anatomical, electrophysiological and behavioral evidence that these nuclei also influence cognitive processes. The first part of this review describes the reciprocal connections of the reuniens and rhomboid nuclei with the medial prefrontal cortex and the hippocampus. The connectivity pattern among these structures is consistent with the idea that these ventral midline nuclei represent a nodal hub to influence prefrontal-hippocampal interactions. The second part describes the effects of a stimulation or blockade of the ventral midline thalamus on cortical and hippocampal electrophysiological activity. The final part summarizes recent literature supporting the emerging view that the reuniens and rhomboid nuclei may contribute to learning, memory consolidation and behavioral flexibility, in addition to general behavior and aspects of metabolism.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Université de Strasbourg, CNRS, Faculté de Psychologie, Neuropôle de Strasbourg GDR 2905 du CNRS, 12 rue Goethe, F-67000 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
100
|
Disruption of thalamocortical activity in schizophrenia models: relevance to antipsychotic drug action. Int J Neuropsychopharmacol 2013; 16:2145-63. [PMID: 23809188 DOI: 10.1017/s1461145713000643] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Non-competitive NMDA receptor antagonists are widely used as pharmacological models of schizophrenia due to their ability to evoke the symptoms of the illness. Likewise, serotonergic hallucinogens, acting on 5-HT(2A) receptors, induce perceptual and behavioural alterations possibly related to psychotic symptoms. The neurobiological basis of these alterations is not fully elucidated. Data obtained in recent years revealed that the NMDA receptor antagonist phencyclidine (PCP) and the serotonergic hallucinogen 1-(2,5-dimethoxy-4-iodophenyl-2-aminopropane; DOI) produce a series of common actions in rodent prefrontal cortex (PFC) that may underlie psychotomimetic effects. Hence, both agents markedly disrupt PFC function by altering pyramidal neuron discharge (with an overall increase) and reducing the power of low frequency cortical oscillations (LFCO; < 4 Hz). In parallel, PCP increased c-fos expression in excitatory neurons of various cortical areas, the thalamus and other subcortical structures, such as the amygdala. Electrophysiological studies revealed that PCP altered similarly the function of the centromedial and mediodorsal nuclei of the thalamus, reciprocally connected with PFC, suggesting that its psychotomimetic properties are mediated by an alteration of thalamocortical activity (the effect of DOI was not examined in the thalamus). Interestingly, the observed effects were prevented or reversed by the antipsychotic drugs clozapine and haloperidol, supporting that the disruption of PFC activity is intimately related to the psychotomimetic activity of these agents. Overall, the present experimental model can be successfully used to elucidate the neurobiological basis of schizophrenia symptoms and to examine the potential antipsychotic activity of new drugs in development.
Collapse
|