51
|
Shin E, Rogers JT, Devoto P, Björklund A, Carta M. Noradrenaline neuron degeneration contributes to motor impairments and development of L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Exp Neurol 2014; 257:25-38. [DOI: 10.1016/j.expneurol.2014.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/26/2022]
|
52
|
Stayte S, Vissel B. Advances in non-dopaminergic treatments for Parkinson's disease. Front Neurosci 2014; 8:113. [PMID: 24904259 PMCID: PMC4033125 DOI: 10.3389/fnins.2014.00113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/30/2014] [Indexed: 01/05/2023] Open
Abstract
Since the 1960's treatments for Parkinson's disease (PD) have traditionally been directed to restore or replace dopamine, with L-Dopa being the gold standard. However, chronic L-Dopa use is associated with debilitating dyskinesias, limiting its effectiveness. This has resulted in extensive efforts to develop new therapies that work in ways other than restoring or replacing dopamine. Here we describe newly emerging non-dopaminergic therapeutic strategies for PD, including drugs targeting adenosine, glutamate, adrenergic, and serotonin receptors, as well as GLP-1 agonists, calcium channel blockers, iron chelators, anti-inflammatories, neurotrophic factors, and gene therapies. We provide a detailed account of their success in animal models and their translation to human clinical trials. We then consider how advances in understanding the mechanisms of PD, genetics, the possibility that PD may consist of multiple disease states, understanding of the etiology of PD in non-dopaminergic regions as well as advances in clinical trial design will be essential for ongoing advances. We conclude that despite the challenges ahead, patients have much cause for optimism that novel therapeutics that offer better disease management and/or which slow disease progression are inevitable.
Collapse
Affiliation(s)
- Sandy Stayte
- Neuroscience Department, Neurodegenerative Disorders Laboratory, Garvan Institute of Medical Research, Sydney NSW, Australia ; Faculty of Medicine, University of New South Wales, Sydney NSW, Australia
| | - Bryce Vissel
- Neuroscience Department, Neurodegenerative Disorders Laboratory, Garvan Institute of Medical Research, Sydney NSW, Australia ; Faculty of Medicine, University of New South Wales, Sydney NSW, Australia
| |
Collapse
|
53
|
Loss of locus coeruleus noradrenergic neurons alters the inflammatory response to LPS in substantia nigra but does not affect nigral cell loss. J Neural Transm (Vienna) 2014; 121:1493-505. [DOI: 10.1007/s00702-014-1223-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/12/2014] [Indexed: 10/25/2022]
|
54
|
Beaudoin-Gobert M, Sgambato-Faure V. Serotonergic pharmacology in animal models: from behavioral disorders to dyskinesia. Neuropharmacology 2014; 81:15-30. [PMID: 24486710 DOI: 10.1016/j.neuropharm.2014.01.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/19/2014] [Accepted: 01/20/2014] [Indexed: 02/04/2023]
Abstract
Serotonin (5-HT) dysfunction has been involved in both movement and behavioral disorders. Serotonin pharmacology improves dyskinetic movements as well as depressive, anxious, aggressive and anorexic symptoms. Animal models have been useful to investigate more precisely to what extent 5-HT is involved and whether drugs targeting the 5-HT system can counteract the symptoms exhibited. We review existing rodent and non-human primate (NHP) animal models in which selective 5-HT or dual 5-HT-norepinephrine (NE) transporter inhibitors, as well as specific 5-HT receptors agonists and antagonists, monoamine oxidase A inhibitors (IMAO-A) and MDMA (Ecstasy) have been used. We review overlaps between the various drug classes involved. We confront behavioral paradigms and treatment regimen. Some but not all animal models and associated pharmacological treatments have been extensively studied in the litterature. In particular, the impact of selective serotonin reuptake inhibitors (SSRI) has been extensively investigated using a variety of pharmacological or genetic rodent models of depression, anxiety, aggressiveness. But the validity of these rodent models is questioned. On the contrary, few studies did address the potential impact of targeting the 5-HT system on NHP models of behavioral disorders, despite the fact that those models may match more closely to human pathologies. Further investigations with carefull behavioral analysis will improve our understanding of neural bases underlying the pathophysiology of movement and behavioral disorders.
Collapse
Affiliation(s)
- Maude Beaudoin-Gobert
- Centre de Neuroscience Cognitive, Centre National de la Recherche Scientifique UMR 5229, Bron cedex F-69675, France; Université Lyon 1, France
| | - Véronique Sgambato-Faure
- Centre de Neuroscience Cognitive, Centre National de la Recherche Scientifique UMR 5229, Bron cedex F-69675, France; Université Lyon 1, France.
| |
Collapse
|
55
|
Kim S, Park JM, Moon J, Choi HJ. Alpha-synuclein interferes with cAMP/PKA-dependent upregulation of dopamine β-hydroxylase and is associated with abnormal adaptive responses to immobilization stress. Exp Neurol 2013; 252:63-74. [PMID: 24252179 DOI: 10.1016/j.expneurol.2013.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/21/2013] [Accepted: 11/10/2013] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is clinically characterized not only by motor symptoms but also by non-motor symptoms, such as anxiety and mood changes. Based on our previous study showing that overexpression of wild-type or mutant α-synuclein (α-SYN) interferes with cAMP/PKA-dependent transcriptional activation in norepinephrine (NE)-producing cells, the effect of wild-type and mutant α-SYN on cAMP response element (CRE)-mediated regulation of the NE-synthesizing enzyme dopamine β-hydroxylase (DBH) was evaluated in this study. Overexpression of wild-type or mutant α-SYN interfered with CRE-mediated regulation of DBH transcription in NE-producing SK-N-BE(2) cells. Upon entering the nucleus, α-SYN interacted with the DBH promoter region encompassing the CRE, which interfered with forskolin-induced CREB binding to the CRE region. Interestingly, mutant A53T α-SYN showed much higher tendency to nuclear translocation and interaction with the DBH promoter region encompassing the CRE than wild type. In addition, A53T α-SYN expressing transgenic mice exhibited increased anxiety-like behaviors under normal conditions and abnormal regulation of DBH expression in response to immobilization stress with abnormal adaptive responses. These data provide an insight into the physiological function of α-SYN in NErgic neuronal cells, which further indicates that the α-SYN mutation may play a causative role in the generation of non-motor symptoms in PD.
Collapse
Affiliation(s)
- Sasuk Kim
- College of Pharmacy, CHA University, Seongnam, Gyeonggi-do, South Korea; College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Ji-Min Park
- Department of Bioengineering, College of Life Science, CHA University, Seoul, South Korea
| | - Jisook Moon
- Department of Bioengineering, College of Life Science, CHA University, Seoul, South Korea.
| | - Hyun Jin Choi
- College of Pharmacy, CHA University, Seongnam, Gyeonggi-do, South Korea.
| |
Collapse
|
56
|
Guimarães J, Moura E, Silva E, Aguiar P, Garrett C, Vieira-Coelho MA. Locus Coeruleus Is Involved in Weight Loss in a Rat Model of Parkinson's Disease: An Effect Reversed by Deep Brain Stimulation. Brain Stimul 2013; 6:845-55. [DOI: 10.1016/j.brs.2013.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 06/01/2013] [Accepted: 06/03/2013] [Indexed: 01/24/2023] Open
|
57
|
Badger JL, Cordero-Llana O, Hartfield EM, Wade-Martins R. Parkinson's disease in a dish - Using stem cells as a molecular tool. Neuropharmacology 2013; 76 Pt A:88-96. [PMID: 24035919 DOI: 10.1016/j.neuropharm.2013.08.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/23/2013] [Accepted: 08/27/2013] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, with a strong genetic component to both the familial and sporadic forms. The cardinal motor symptoms of the disease result from the loss of dopamine (DA) neurons in the midbrain. There is currently no cure for PD and improved methods for modelling the disease are required in order to develop more effective therapeutic interventions. Patient-derived induced pluripotent stem cells (iPSCs) carry the genetic background of the donor, enabling accurate modelling of genetic diseases in vitro. Various human iPSCs from patients suffering different genetic forms of PD have been differentiated into DA neurons and demonstrated signs of the pathophysiology of PD in vitro. The examination of key cellular pathways such as calcium regulation and autophagy indicate that disease-associated genetic variants may have important implications for cellular function. This review examines and critiques how DA neurons from patient iPSCs have been used to model PD in vitro, and what iPSCs might hold for the future of PD research. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- J L Badger
- StemBANCC, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK; Molecular Neurodegeneration Group, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | |
Collapse
|
58
|
|
59
|
Rampersaud N, Harkavyi A, Giordano G, Lever R, Whitton J, Whitton P. Exendin-4 reverts behavioural and neurochemical dysfunction in a pre-motor rodent model of Parkinson's disease with noradrenergic deficit. Br J Pharmacol 2013; 167:1467-79. [PMID: 22774922 DOI: 10.1111/j.1476-5381.2012.02100.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD) is characterized by progressive dopaminergic cell loss; however, the noradrenergic system exhibits degeneration as well. Noradrenergic deficit in PD may be responsible for certain non-motor symptoms of the pathology, including psychiatric disorders and cognitive decline. The aim of this study was to generate a pre-motor rodent model of PD with noradrenergic denervation, and to assess whether treatment with exendin-4 (EX-4), a glucagon-like peptide 1 receptor agonist, could reverse impairment exhibited by our model. EXPERIMENTAL APPROACH We generated a model of PD utilizing N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine and 6-hydroxydopamine to create partial lesions of both the noradrenergic and dopaminergic systems respectively. We then assessed the validity of our model using an array of behavioural paradigms and biochemical techniques. Finally, we administered EX-4 over a 1 week period to determine therapeutic efficacy. KEY RESULTS Our model exhibits anhedonia and decreased object recognition as indicated by a decrease in sucrose preference, increased immobility in the forced swim test and reduced novel object exploration. Tissue and extracellular dopamine and noradrenaline were reduced in the frontal cortex and striatum. TH+ cell counts decreased in the locus coeruleus and substantia nigra. Treatment with EX-4 reversed behavioural impairment and restored extracellular/tissue levels of both dopamine and noradrenaline and TH+ cell counts. CONCLUSION AND IMPLICATIONS We conclude that early treatment with EX-4 may reverse certain neuropsychiatric dysfunction and restore dopamine and noradrenaline content.
Collapse
Affiliation(s)
- N Rampersaud
- Department of Pharmacology, Faculty of Life Sciences, The School of Pharmacy, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
60
|
Itoi K, Ohara S, Kobayashi K. Selective ablation of dopamine β-hydroxylase neurons in the brain by immunotoxin-mediated neuronal targeting: new insights into brain catecholaminergic circuitry and catecholamine-related diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 68:155-66. [PMID: 24054144 DOI: 10.1016/b978-0-12-411512-5.00008-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The locus coeruleus (LC) has been implicated in a variety of physiological functions including sleep/wakefulness, cognition/memory, stress/emotion, and pain. Marked loss of LC-noradrenergic (NAergic) neurons is observed in autopsy specimens of patients with Alzheimer's disease and Parkinson's disease (PD), and part of the clinical symptoms of these diseases may be related to dysfunction of the LC. Neurotoxins have been utilized to ablate LC-NAergic neurons in experimental animals for elucidating the pathophysiological implication of the loss of LC, but there are methodological drawbacks in previously utilized methods. We employed immunotoxin-mediated neuronal targeting to overcome these problems. Following complete disruption of the LC-NAergic neurons by immunotoxin, mice showed behavioral changes, which resembled the nonmotor symptoms of PD. The LC-NAergic neurons did not regenerate following ablation, so the immunotoxin-mediated neuronal targeting may be useful especially for studying the long-term effects of the loss of LC-NAergic neurons on brain functions.
Collapse
Affiliation(s)
- Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan; Department of Neuroendocrinology, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | | | | |
Collapse
|
61
|
Szot P, Franklin A, Sikkema C, Wilkinson CW, Raskind MA. Sequential Loss of LC Noradrenergic and Dopaminergic Neurons Results in a Correlation of Dopaminergic Neuronal Number to Striatal Dopamine Concentration. Front Pharmacol 2012; 3:184. [PMID: 23129999 PMCID: PMC3487487 DOI: 10.3389/fphar.2012.00184] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/02/2012] [Indexed: 11/17/2022] Open
Abstract
Noradrenergic neurons in the locus coeruleus (LC) are significantly reduced in Parkinson’s disease (PD) and the LC exhibits neuropathological changes early in the disease process. It has been suggested that a loss of LC neurons can enhance the susceptibility of dopaminergic neurons to damage. To determine if LC noradrenergic innervation protects dopaminergic neurons from damage, the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was administered to adult male C57Bl/6 mice 3 days after bilateral LC administration of 6-hydroxydopamine (6OHDA), a time when there is a significant reduction in LC neuronal number and innervation to forebrain regions. To assess if LC loss can affect dopaminergic loss four groups of animals were studied: control, 6OHDA, MPTP, and 6OHDA + MPTP; animals sacrificed 3 weeks after MPTP administration. The number of dopaminergic neurons in the substantia nigra (SN) and ventral tegmental area (VTA), and noradrenergic neurons in the LC were determined. Catecholamine levels in striatum were measured by high-pressure liquid chromatography. The loss of LC neurons did not affect the number of dopaminergic neurons in the SN and VTA compared to control; however, LC 6OHDA significantly reduced striatal dopamine (DA; 29% reduced) but not norepinephrine (NE) concentration. MPTP significantly reduced SN and VTA neuronal number and DA concentration in the striatum compared to control; however, there was not a correlation of striatal DA concentration with SN or VTA neuronal number. Administration of 6OHDA prior to MPTP did not enhance MPTP-induced damage despite an effect of LC loss on striatal DA concentration. However, the loss of LC neurons before MPTP resulted now in a correlation between SN and VTA neuronal number to striatal DA concentration. These results demonstrate that the loss of either LC or DA neurons can affect the function of each others systems, indicating the importance of both the noradrenergic and dopaminergic system in PD.
Collapse
Affiliation(s)
- Patricia Szot
- Mental Illness Research, Education and Clinical Center, Veterans Administration Puget Sound Health Care System Seattle, WA, USA ; Department of Psychiatry and Behavioral Sciences, University of Washington Seattle, WA, USA
| | | | | | | | | |
Collapse
|
62
|
Rampersaud N, Harkavyi A, Giordano G, Lever R, Whitton J, Whitton PS. Exendin-4 reverses biochemical and behavioral deficits in a pre-motor rodent model of Parkinson's disease with combined noradrenergic and serotonergic lesions. Neuropeptides 2012; 46:183-93. [PMID: 22921965 DOI: 10.1016/j.npep.2012.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 11/18/2022]
Abstract
Research on Parkinson's disease (PD) has mainly focused on the degeneration of the dopaminergic neurons of nigro-striatal pathway; however, post-mortem studies have demonstrated that other brain regions such as the locus coeruleus (LC) and raphe nuclei (RN) are significantly affected as well. Degeneration of these crucial neuronal cell bodies may be responsible for depressive behavior and cognitive decline present in the pre-motor stage of PD. We have thus set out to create a pre-motor rodent model of PD which mimics the early stages of the condition. N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), a selective noradrenergic neurotoxin, and parachloroampetamine (pCA), a selective serotonergic neurotoxin, were utilized concomitantly with bilateral 6-hydroxydopamine (6-OHDA) injections into the striatum to produce a pre-motor rodent model of PD with partial deficits in the dopaminergic, noradrenergic, and serotonergic systems. Our model exhibited a depressive/anhedonic condition as assessed using sucrose preference testing and the forced swim test. Our model also demonstrated deficits in object memory. These behavioral impairments were accompanied by a decline in both tissue and extracellular levels of all three neurotransmitters in both the frontal cortex and striatum. Immunohistochemistry also revealed a decrease in TH+ cells in the LC and substantia nigra. Exendin-4 (EX-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, promoted recovery of both the biochemical and behavioral dysfunction exhibited by our model. EX-4 was able to preserve the functional integrity of the dopaminergic, noradrenergic, and serotonergic systems. In conclusion, we have generated a novel animal model of PD that recapitulates certain pre-motor symptomology. These symptoms and causative physiology are ameliorated upon treatment with EX-4 and thus it could be used as a possible therapy for the non-motor symptoms prominent in the early stages of PD.
Collapse
Affiliation(s)
- N Rampersaud
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | | | | | | | | | |
Collapse
|
63
|
Revuelta GJ, Uthayathas S, Wahlquist AE, Factor SA, Papa SM. Non-human primate FOG develops with advanced parkinsonism induced by MPTP Treatment. Exp Neurol 2012; 237:464-9. [PMID: 22967858 PMCID: PMC3582410 DOI: 10.1016/j.expneurol.2012.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 07/19/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
Abstract
Freezing of gait (FOG) is a debilitating feature of Parkinson's disease (PD) and other forms of parkinsonism. The anatomical or pathophysiological correlates are poorly understood largely due to the lack of a well-established animal model. Here we studied whether FOG is reproduced in the non-human primate (NHP) model of PD. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys (Genus Macaca, n=29) were examined for the development of FOG, and the leg movements were recorded with accelerometry. The relationships between developing FOG and the animals' characteristics, the MPTP treatments, and the modeled outcomes were determined. In parkinsonian monkeys FOG developed frequently (48%) manifesting similar characteristics to those seen in PD patients. In addition, FOG episodes in the monkey were accompanied by leg trembling with the typical duration (2-10s) and frequency (~7 Hz). The development of NHP FOG was significantly associated with the severity of parkinsonism, as shown by high motor disability scores (≥ 20) and levodopa-induced dyskinesia scores (p=0.01 and p=0.04, respectively). Differences in demographics and MPTP treatments (doses, treatment duration, etc.) had no influence on NHP FOG occurrence, with the exception of gender that showed FOG predominance in males (p=0.03). The unique features of FOG in PD can be replicated in severely parkinsonian macaques, and this represents the first description of a FOG animal model.
Collapse
Affiliation(s)
- Gonzalo J Revuelta
- Department of Neurology, Division of Movement Disorders, Emory University School of Medicine, Atlanta, GA, USA.
| | | | | | | | | |
Collapse
|
64
|
Vazey EM, Aston-Jones G. The emerging role of norepinephrine in cognitive dysfunctions of Parkinson's disease. Front Behav Neurosci 2012; 6:48. [PMID: 22848194 PMCID: PMC3404393 DOI: 10.3389/fnbeh.2012.00048] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/09/2012] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 1% of the population over age 60. In those patients cognitive dysfunction is a persistent issue that impairs quality of life and productivity. Neuropathological studies demonstrate significant damage in brain regions outside the nigral dopamine (DA) system, including early degeneration of locus coeruleus norepinephrine (LC-NE) neurons, yet discussion of PD and treatment focus has remained dopaminergic-based. Motor symptoms benefit from DA replacement for many years, but other symptoms including several cognitive deficits continue unabated. Recent interest in non-DA substrates of PD highlights early involvement of LC-NE neurons and provides evidence for a prodromal phase, with cognitive disturbance, even in sporadic PD. We outline insights from basic research in LC-NE function to clinical and pathological evidence highlighting a role for NE in PD cognitive dysfunction. We propose that loss of LC-NE regulation, particularly in higher cortical regions, critically underlies certain cognitive dysfunctions in early PD. As a major unmet need for patients, research and use of NE drugs in PD may provide significant benefits for cognitive processing.
Collapse
Affiliation(s)
- Elena M Vazey
- Laboratory of Neuromodulation and Behavior, Department of Neurosciences, Medical University of South Carolina Charleston, SC, USA
| | | |
Collapse
|
65
|
Heterogeneous responses to antioxidants in noradrenergic neurons of the Locus coeruleus indicate differing susceptibility to free radical content. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:820285. [PMID: 22577493 PMCID: PMC3345253 DOI: 10.1155/2012/820285] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 01/24/2012] [Accepted: 02/08/2012] [Indexed: 11/17/2022]
Abstract
The present study investigated the effects of the antioxidants trolox and dithiothreitol (DTT) on mouse Locus coeruleus (LC) neurons. Electrophysiological measurement of action potential discharge and whole cell current responses in the presence of each antioxidant suggested that there are three neuronal subpopulations within the LC. In current clamp experiments, most neurons (55%; 6/11) did not respond to the antioxidants. The remaining neurons exhibited either hyperpolarization and decreased firing rate (27%; 3/11) or depolarization and increased firing rate (18%; 2/11). Calcium and JC-1 imaging demonstrated that these effects did not change intracellular Ca2+ concentration but may influence mitochondrial function as both antioxidant treatments modulated mitochondrial membrane potential. These suggest that the antioxidant-sensitive subpopulations of LC neurons may be more susceptible to oxidative stress (e.g., due to ATP depletion and/or overactivation of Ca2+-dependent pathways). Indeed it may be that this subpopulation of LC neurons is preferentially destroyed in neurological pathologies such as Parkinson's disease. If this is the case, there may be a protective role for antioxidant therapies.
Collapse
|
66
|
Striatal dysfunctions associated with mitochondrial DNA damage in dopaminergic neurons in a mouse model of Parkinson's disease. J Neurosci 2012; 31:17649-58. [PMID: 22131425 DOI: 10.1523/jneurosci.4871-11.2011] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common progressive neurodegenerative disorders, characterized by resting tremor, rigidity, bradykinesia, and postural instability. These symptoms are associated with massive loss of tyrosine hydroxylase-positive neurons in the substantia nigra (SN) causing an estimated 70-80% depletion of dopamine (DA) in the striatum, where their projections are located. Although the etiology of PD is unknown, mitochondrial dysfunctions have been associated with the disease pathophysiology. We used a mouse model expressing a mitochondria-targeted restriction enzyme, PstI or mito-PstI, to damage mitochondrial DNA (mtDNA) in dopaminergic neurons. The expression of mito-PstI induces double-strand breaks in the mtDNA, leading to an oxidative phosphorylation deficiency, mostly due to mtDNA depletion. Taking advantage of a dopamine transporter (DAT) promoter-driven tetracycline transactivator protein (tTA), we expressed mito-PstI exclusively in dopaminergic neurons, creating a novel PD transgenic mouse model (PD-mito-PstI mouse). These mice recapitulate most of the major features of PD: they have a motor phenotype that is reversible with l-DOPA treatment, a progressive neurodegeneration of the SN dopaminergic population, and striatal DA depletion. Our results also showed that behavioral phenotypes in PD-mito-PstI mice were associated with striatal dysfunctions preceding SN loss of tyrosine hydroxylase-positive neurons and that other neurotransmitter systems [noradrenaline (NE) and serotonin (5-HT)] were increased after the disruption of DA neurons, potentially as a compensatory mechanism. This transgenic mouse model provides a novel model to study the role of mitochondrial defects in the axonal projections of the striatum in the pathophysiology of PD.
Collapse
|
67
|
Isaias IU, Marzegan A, Pezzoli G, Marotta G, Canesi M, Biella GEM, Volkmann J, Cavallari P. A role for locus coeruleus in Parkinson tremor. Front Hum Neurosci 2012; 5:179. [PMID: 22287946 PMCID: PMC3250076 DOI: 10.3389/fnhum.2011.00179] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 12/16/2011] [Indexed: 12/03/2022] Open
Abstract
We analyzed rest tremor, one of the etiologically most elusive hallmarks of Parkinson disease (PD), in 12 consecutive PD patients during a specific task activating the locus coeruleus (LC) to investigate a putative role of noradrenaline (NA) in tremor generation and suppression. Clinical diagnosis was confirmed in all subjects by reduced dopamine reuptake transporter (DAT) binding values investigated by single photon computed tomography imaging (SPECT) with [123I] N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane (FP-CIT). The intensity of tremor (i.e., the power of Electromyography [EMG] signals), but not its frequency, significantly increased during the task. In six subjects, tremor appeared selectively during the task. In a second part of the study, we retrospectively reviewed SPECT with FP-CIT data and confirmed the lack of correlation between dopaminergic loss and tremor by comparing DAT binding values of 82 PD subjects with bilateral tremor (n = 27), unilateral tremor (n = 22), and no tremor (n = 33). This study suggests a role of the LC in Parkinson tremor.
Collapse
Affiliation(s)
- Ioannis U Isaias
- Dipartimento di Fisiologia Umana, Laboratorio Analisi del Movimento L.A.M.B., Università degli Studi di Milano Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Thompson VB, Koprich JB, Chen EY, Kordower JH, Terpstra BT, Lipton JW. Prenatal exposure to MDMA alters noradrenergic neurodevelopment in the rat. Neurotoxicol Teratol 2012; 34:206-13. [PMID: 21978916 PMCID: PMC3268906 DOI: 10.1016/j.ntt.2011.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 11/18/2022]
Abstract
3,4-methylenedioxymethamphetamine (MDMA; ecstasy) binds with high affinity to the norepinephrine transporter (NET), making the noradrenergic system a potential target during fetal exposure. Recent data indicate that adult rats that had been prenatally exposed to MDMA display persistent deficits in working memory and attention; behaviors consistent with abnormal noradrenergic signaling in the forebrain. The present study was designed to investigate whether prenatal exposure to MDMA from embryonic days 14-20 affects the structure and/or function of the noradrenergic system of the rat on postnatal day 21. Offspring that were prenatally exposed to MDMA exhibited an increase in noradrenergic fiber density in the prelimbic region of the prefrontal cortex and the CA1 region of the hippocampus that was not accompanied by an increase in the number of noradrenergic neurons in the locus coeruleus. Direct tissue autoradiography using tritiated nisoxetine demonstrated that while NET binding was not altered in the prelimbic cortex, the dentate gyrus, or the locus coeruleus, it was increased in the CA1, CA2, and CA3 regions of the hippocampus. Basal levels of norepinephrine were increased in the prefrontal cortex and the nucleus accumbens of MDMA-exposed rats, as compared to saline-treated controls. These findings indicate that prenatal exposure to MDMA results in structural changes in the noradrenergic system as well as functional alterations in NE neurotransmission in structures that are critical in attentional processing.
Collapse
Affiliation(s)
- V B Thompson
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA.
| | | | | | | | | | | |
Collapse
|
69
|
Vivacqua G, Casini A, Vaccaro R, Salvi EP, Pasquali L, Fornai F, Yu S, D’Este L. Spinal cord and parkinsonism: Neuromorphological evidences in humans and experimental studies. J Chem Neuroanat 2011; 42:327-40. [DOI: 10.1016/j.jchemneu.2011.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/20/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
|
70
|
Barnum CJ, Bhide N, Lindenbach D, Surrena MA, Goldenberg AA, Tignor S, Klioueva A, Walters H, Bishop C. Effects of noradrenergic denervation on L-DOPA-induced dyskinesia and its treatment by α- and β-adrenergic receptor antagonists in hemiparkinsonian rats. Pharmacol Biochem Behav 2011; 100:607-15. [PMID: 21978941 DOI: 10.1016/j.pbb.2011.09.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/12/2011] [Accepted: 09/17/2011] [Indexed: 11/17/2022]
Abstract
While L-3,4-dihydroxyphenylalanine (L-DOPA) remains the standard treatment for Parkinson's disease (PD), long-term efficacy is often compromised by L-DOPA-induced dyskinesia (LID). Recent research suggests that targeting the noradrenergic (NE) system may provide relief from both PD and LID, however, most PD patients exhibit NE loss which may modify response to such strategies. Therefore this investigation aimed to characterize the development and expression of LID and the anti-dyskinetic potential of the α2- and β-adrenergic receptor antagonists idazoxan and propranolol, respectively, in rats receiving 6-OHDA lesions with (DA lesion) or without desipramaine protection (DA+NE lesion). Male Sprague-Dawley rats (N=110) received unilateral 6-hydroxydopamine lesions. Fifty-three rats received desipramine to protect NE neurons (DA lesion) and 57 received no desipramine reducing striatal and hippocampal NE content 64% and 86% respectively. In experiment 1, the development and expression of L-DOPA-induced abnormal involuntary movements (AIMs) and rotations were examined. L-DOPA efficacy using the forepaw adjusting steps (FAS) test was also assessed in DA- and DA+NE-lesioned rats. In experiment 2, DA- and DA+NE-lesioned rats received pre-treatments of idazoxan or propranolol followed by L-DOPA after which the effects of these adrenergic compounds were observed. Results demonstrated that moderate NE loss reduced the development and expression of AIMs and rotations but not L-DOPA efficacy while anti-dyskinetic efficacy of α2- and β-adrenergic receptor blockade was maintained. These findings suggest that the NE system modulates LID and support the continued investigation of adrenergic compounds for the improved treatment of PD.
Collapse
Affiliation(s)
- Christopher J Barnum
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Lin Y, Sarfraz Y, Jensen A, Dunn AJ, Stone EA. Participation of brainstem monoaminergic nuclei in behavioral depression. Pharmacol Biochem Behav 2011; 100:330-9. [PMID: 21893082 DOI: 10.1016/j.pbb.2011.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 01/15/2023]
Abstract
Several lines of research have now suggested the controversial hypothesis that the central noradrenergic system acts to exacerbate depression as opposed to having an antidepressant function. If correct, lesions of this system should increase resistance to depression, which has been partially but weakly supported by previous studies. The present study reexamined this question using two more recent methods to lesion noradrenergic neurons in mice: intraventricular (ivt) administration of either the noradrenergic neurotoxin, DSP4, or of a dopamine-β-hydroxylase-saporin immunotoxin (DBH-SAP ITX) prepared for mice. Both agents given 2 weeks prior were found to significantly increase resistance to depressive behavior in several tests including acute and repeated forced swims, tail suspension and endotoxin-induced anhedonia. Both agents also increased locomotor activity in the open field. Cell counts of brainstem monoaminergic neurons, however, showed that both methods produced only partial lesions of the locus coeruleus and also affected the dorsal raphe or ventral tegmental area. Both the cell damage and the antidepressant and hyperactive effects of ivt DSP4 were prevented by a prior i.p. injection of the NE uptake blocker, reboxetine. The results are seen to be consistent with recent pharmacological experiments showing that noradrenergic and serotonergic systems function to inhibit active behavior. Comparison with previous studies utilizing more complete and selective LC lesions suggest that mouse strain, lesion size or involvement of multiple neuronal systems are critical variables in the behavioral and affective effects of monoaminergic lesions and that antidepressant effects and hyperactivity may be more likely to occur if lesions are partial and/or involve multiple monoaminergic systems.
Collapse
Affiliation(s)
- Yan Lin
- Department of Psychiatry, New York University Langone School of Medicine, 550 First Ave, New York, NY 10016, United States
| | | | | | | | | |
Collapse
|
72
|
Isaias IU, Marotta G, Pezzoli G, Sabri O, Schwarz J, Crenna P, Classen J, Cavallari P. Enhanced catecholamine transporter binding in the locus coeruleus of patients with early Parkinson disease. BMC Neurol 2011; 11:88. [PMID: 21777421 PMCID: PMC3146819 DOI: 10.1186/1471-2377-11-88] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 07/21/2011] [Indexed: 11/20/2022] Open
Abstract
Background Studies in animals suggest that the noradrenergic system arising from the locus coeruleus (LC) and dopaminergic pathways mutually influence each other. Little is known however, about the functional state of the LC in patients with Parkinson disease (PD). Methods We retrospectively reviewed clinical and imaging data of 94 subjects with PD at an early clinical stage (Hoehn and Yahr stage 1-2) who underwent single photon computed tomography imaging with FP-CIT ([123I] N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane). FP-CIT binding values from the patients were compared with 15 healthy subjects: using both a voxel-based whole brain analysis and a volume of interest analysis of a priori defined brain regions. Results Average FP-CIT binding in the putamen and caudate nucleus was significantly reduced in PD subjects (43% and 57% on average, respectively; p < 0.001). In contrast, subjects with PD showed an increased binding in the LC (166% on average; p < 0.001) in both analyses. LC-binding correlated negatively with striatal FP-CIT binding values (caudate: contralateral, ρ = -0.28, p < 0.01 and ipsilateral ρ = -0.26, p < 0.01; putamen: contralateral, ρ = -0.29, p < 0.01 and ipsilateral ρ = -0.29, p < 0.01). Conclusions These findings are consistent with an up-regulation of noradrenaline reuptake in the LC area of patients with early stage PD, compatible with enhanced noradrenaline release, and a compensating activity for degeneration of dopaminergic nigrostriatal projections.
Collapse
Affiliation(s)
- Ioannis U Isaias
- Dipartimento di Fisiologia Umana, Università degli Studi di Milano, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Knaryan VH, Samantaray S, Le Gal C, Ray SK, Banik NL. Tracking extranigral degeneration in animal models of Parkinson's disease: quest for effective therapeutic strategies. J Neurochem 2011; 118:326-38. [PMID: 21615738 DOI: 10.1111/j.1471-4159.2011.07320.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sporadic Parkinson's disease (PD) is now interpreted as a complex nervous system disorder in which the projection neurons are predominantly damaged. Such an interpretation is based on mapping of Lewy body and Lewy neurite pathology. Symptoms of the human disease are much widespread, which span from pre-clinical non-motor symptoms and clinical motor symptoms to cognitive discrepancies often seen in advanced stages. Existing symptomatic treatments further complicate with overt drug-irresponsive symptoms. PD is better understood by assimilation of extranigral degenerative pathways with nigrostriatal degenerative mechanisms. The term 'extranigral' appeared first in the 1990s to more rigorously define the nigral pathology by process of elimination. However, as clinicians progressively identified PD symptoms unresponsive to the gold standard drug l-DOPA, definitions of PD symptoms were redefined. Non-motor symptoms prodromal to motor symptoms just as pre-clinical to clinical, and conjointly emerged the concept of nigral versus extranigral degeneration in PD. While nigrostriatal degeneration is responsible for the neurobiological substrates of extrapyramydal motor features, extranigral degeneration corroborates a vast majority of other changes in discrete central, peripheral, and enteric nervous system nuclei, which together account for global symptoms of the human disease. As an extranigral site, spinal cord degeneration has also been implicated in PD progression. Interconnected to the upper CNS structures with descending and ascending pathways, spinal neurons participate in movement and sensory circuits, controlling movement and reflexes. Several clinical and in vivo studies have demonstrated signs of parkinsonism-related degenerative processes in spinal cord, which led to recent consideration of spinal cord as an area of potential therapeutic target. In a nutshell, this review explores how the existing animal models can actually reflect the human disease in order to facilitate PD research. Evolution of extranigral degeneration studies has been succinctly revisited, followed by a survey on animal models in light of recent findings in clinical PD. Together, it may help to develop effective therapeutic strategies for PD.
Collapse
Affiliation(s)
- Varduhi H Knaryan
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | |
Collapse
|
74
|
Delaville C, Deurwaerdère PD, Benazzouz A. Noradrenaline and Parkinson's disease. Front Syst Neurosci 2011; 5:31. [PMID: 21647359 PMCID: PMC3103977 DOI: 10.3389/fnsys.2011.00031] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/04/2011] [Indexed: 01/28/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopamine (DA) neurons in the substantia nigra pars compacta, and motor symptoms including bradykinesia, rigidity, and tremor at rest. These symptoms are exhibited when striatal dopamine concentration has decreased by around 70%. In addition to motor deficits, PD is also characterized by the non-motor symptoms. However, depletion of DA alone in animal models has failed to simultaneously elicit both the motor and non-motor deficits of PD, possibly because the disease is a multi-system disorder that features a profound loss in other neurotransmitter systems. There is growing evidence that additional loss of noradrenaline (NA) neurons of the locus coeruleus, the principal source of NA in the brain, could be involved in the clinical expression of motor as well as in non-motor deficits. In the present review, we analyze the latest evidence for the implication of NA in the pathophysiology of PD obtained from animal models of parkinsonism and from parkinsonian patients. Recent studies have shown that NA depletion alone, or combined with DA depletion, results in motor as well as in non-motor dysfunctions. In addition, by using selective agonists and antagonists of noradrenaline alpha receptors we, and others, have shown that α2 receptors are implicated in the control of motor activity and that α2 receptor antagonists can improve PD motor symptoms as well as l-Dopa-induced dyskinesia. In this review we argue that the loss of NA neurons in PD has an impact on all PD symptoms and that the addition of NAergic agents to dopaminergic medication could be beneficial in the treatment of the disease.
Collapse
Affiliation(s)
- Claire Delaville
- UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux Bordeaux, France
| | | | | |
Collapse
|
75
|
Meitzen J, Luoma JI, Stern CM, Mermelstein PG. β1-Adrenergic receptors activate two distinct signaling pathways in striatal neurons. J Neurochem 2011; 116:984-95. [PMID: 21143600 DOI: 10.1111/j.1471-4159.2010.07137.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine (NE) and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP response element binding protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. NE-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which NE and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how NE and β1-adrenergic receptors may affect striatal physiology.
Collapse
Affiliation(s)
- John Meitzen
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
76
|
Cumming P, Borghammer P. Molecular imaging and the neuropathologies of Parkinson's disease. Curr Top Behav Neurosci 2011; 11:117-48. [PMID: 22034053 DOI: 10.1007/7854_2011_165] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The main motor symptoms of Parkinson's disease (PD) are linked to degeneration of the nigrostriatal dopamine (DA) fibers, especially those innervating the putamen. This degeneration can be assessed in molecular imaging studies with presynaptic tracers such as [(18)F]-fluoro-L-DOPA (FDOPA) and ligands for DA transporter ligands. However, the pathologies of PD are by no means limited to nigrostriatal loss. Results of post mortem and molecular imaging studies reveal parallel degenerations of cortical noradrenaline (NA) and serotonin (5-HT) innervations, which may contribute to affective and cognitive changes of PD. Especially in advanced PD, cognitive impairment can come to resemble that seen in Alzheimer's dementia, as can the degeneration of acetylcholine innervations arising in the basal forebrain. The density of striatal DA D(2) receptors increases in early untreated PD, consistent with denervation upregulation, but there is an accelerated rate of DA receptor loss as the disease advances. Animal studies and post mortem investigations reveal changes in brain opioid peptide systems, but these are poorly documented in imaging studies of PD. Relatively minor changes in the binding sites for GABA are reported in cortex and striatum of PD patients. There remains some controversy about the expression of the 18 kDa translocator protein (TSPO) in activated microglia as an indicator of an active inflammatory component of neurodegeneration in PD. A wide variety of autonomic disturbances contribute to the clinical syndrome of PD; the degeneration of myocardial sympathetic innervation can be revealed in SPECT studies of PD patients with autonomic failure. Considerable emphasis has been placed on investigations of cerebral blood flow and energy metabolism in PD. Due to the high variance of these physiological estimates, researchers have often employed normalization procedures for the sensitive detection of perturbations in relatively small patient groups. However, a widely used normalization to the global mean must be used with caution, as it can result in spurious findings of relative hypermetabolic changes in subcortical structures. A meta-analysis of the quantitative studies to date shows that there is in fact widespread hypometabolism and cerebral blood flow in the cerebral cortex, especially in frontal cortex and parietal association areas. These changes can bias the use of global mean normalization, and probably represent the pathophysiological basis of the cognitive impairment of PD.
Collapse
Affiliation(s)
- Paul Cumming
- Department of Nuclear Medicine, Ludwig-Maximilian's University of Munich, Munich, Germany,
| | | |
Collapse
|
77
|
McMillan PJ, White SS, Franklin A, Greenup JL, Leverenz JB, Raskind MA, Szot P. Differential response of the central noradrenergic nervous system to the loss of locus coeruleus neurons in Parkinson's disease and Alzheimer's disease. Brain Res 2010; 1373:240-52. [PMID: 21147074 DOI: 10.1016/j.brainres.2010.12.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 11/17/2022]
Abstract
In Parkinson's disease (PD), there is a significant loss of noradrenergic neurons in the locus coeruleus (LC) in addition to the loss of dopaminergic neurons in the substantia nigra (SN). The goal of this study was to determine if the surviving LC noradrenergic neurons in PD demonstrate compensatory changes in response to the neuronal loss, as observed in Alzheimer's disease (AD). Tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH) mRNA expression in postmortem LC tissue of control and age-matched PD subjects demonstrated a significant reduction in the number of noradrenergic neurons in the LC of PD subjects. TH mRNA expression/neuron did not differ between control and PD subjects, but DBH mRNA expression/neuron was significantly elevated in PD subjects compared to control. This increase in DBH mRNA expression in PD subjects is not a response to neuronal loss because the amount of DBH mRNA expression/neuron in AD subjects was not significantly different from control. Norepinephrine transporter (NET) binding site concentration in the LC of PD subjects was significantly reduced over the cell body region as well as the peri-LC dendritic zone. In PD subjects, the loss of dendrites from surviving noradrenergic neurons was also apparent with TH-immunoreactivity (IR). This loss of LC dendritic innervation in PD subjects as measured by TH-IR was not due to LC neuronal loss because TH-IR in AD subjects was robust, despite a similar loss of LC neurons. These data suggest that there is a differential response of the noradrenergic nervous system in PD compared to AD in response to the loss of LC neurons.
Collapse
Affiliation(s)
- Pamela J McMillan
- Northwest Network for Mental Illness, Veterans Administration Puget Sound Health Care System, Seattle, Washington 98108, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Heneka MT, O'Banion MK, Terwel D, Kummer MP. Neuroinflammatory processes in Alzheimer's disease. J Neural Transm (Vienna) 2010; 117:919-47. [PMID: 20632195 DOI: 10.1007/s00702-010-0438-z] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 12/12/2022]
Abstract
Generation of neurotoxic amyloid beta peptides and their deposition along with neurofibrillary tangle formation represent key pathological hallmarks in Alzheimer's disease (AD). Recent evidence suggests that inflammation may be a third important component which, once initiated in response to neurodegeneration or dysfunction, may actively contribute to disease progression and chronicity. Various neuroinflammatory mediators including complement activators and inhibitors, chemokines, cytokines, radical oxygen species and inflammatory enzyme systems are expressed and released by microglia, astrocytes and neurons in the AD brain. Degeneration of aminergic brain stem nuclei including the locus ceruleus and the nucleus basalis of Meynert may facilitate the occurrence of inflammation in their projection areas given the antiinflammatory and neuroprotective action of their key transmitters norepinephrine and acetylcholine. While inflammation has been thought to arise secondary to degeneration, recent experiments demonstrated that inflammatory mediators may stimulate amyloid precursor protein processing by various means and therefore can establish a vicious cycle. Despite the fact that some aspects of inflammation may even be protective for bystander neurons, antiinflammatory treatment strategies should therefore be considered. Non-steroidal anti-inflammatory drugs have been shown to reduce the risk and delay the onset to develop AD. While, the precise molecular mechanism underlying this effect is still unknown, a number of possible mechanisms including cyclooxygenase 2 or gamma-secretase inhibition and activation of the peroxisome proliferator activated receptor gamma may alone or, more likely, in concert account for the epidemiologically observed protection.
Collapse
Affiliation(s)
- Michael T Heneka
- Department of Neurology, Clinical Neurosciences, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
| | | | | | | |
Collapse
|
79
|
Millan MJ. From the cell to the clinic: a comparative review of the partial D₂/D₃receptor agonist and α2-adrenoceptor antagonist, piribedil, in the treatment of Parkinson's disease. Pharmacol Ther 2010; 128:229-73. [PMID: 20600305 DOI: 10.1016/j.pharmthera.2010.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2010] [Indexed: 12/16/2022]
Abstract
Though L-3,4-dihydroxyphenylalanine (L-DOPA) is universally employed for alleviation of motor dysfunction in Parkinson's disease (PD), it is poorly-effective against co-morbid symptoms like cognitive impairment and depression. Further, it elicits dyskinesia, its pharmacokinetics are highly variable, and efficacy wanes upon long-term administration. Accordingly, "dopaminergic agonists" are increasingly employed both as adjuncts to L-DOPA and as monotherapy. While all recognize dopamine D(2) receptors, they display contrasting patterns of interaction with other classes of monoaminergic receptor. For example, pramipexole and ropinirole are high efficacy agonists at D(2) and D(3) receptors, while pergolide recognizes D(1), D(2) and D(3) receptors and a broad suite of serotonergic receptors. Interestingly, several antiparkinson drugs display modest efficacy at D(2) receptors. Of these, piribedil displays the unique cellular signature of: 1), signal-specific partial agonist actions at dopamine D(2)and D(3) receptors; 2), antagonist properties at α(2)-adrenoceptors and 3), minimal interaction with serotonergic receptors. Dopamine-deprived striatal D(2) receptors are supersensitive in PD, so partial agonism is sufficient for relief of motor dysfunction while limiting undesirable effects due to "over-dosage" of "normosensitive" D(2) receptors elsewhere. Further, α(2)-adrenoceptor antagonism reinforces adrenergic, dopaminergic and cholinergic transmission to favourably influence motor function, cognition, mood and the integrity of dopaminergic neurones. In reviewing the above issues, the present paper focuses on the distinctive cellular, preclinical and therapeutic profile of piribedil, comparisons to pramipexole, ropinirole and pergolide, and the core triad of symptoms that characterises PD-motor dysfunction, depressed mood and cognitive impairment. The article concludes by highlighting perspectives for clarifying the mechanisms of action of piribedil and other antiparkinson agents, and for optimizing their clinical exploitation.
Collapse
Affiliation(s)
- Mark J Millan
- Dept of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine (Paris), France.
| |
Collapse
|
80
|
Essential tremor: evolving clinicopathological concepts in an era of intensive post-mortem enquiry. Lancet Neurol 2010; 9:613-22. [PMID: 20451458 DOI: 10.1016/s1474-4422(10)70090-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Essential tremor (ET) is one of the most common neurological disorders. In recent years, as a result of systematic post-mortem examinations, our knowledge of the pathophysiology of this disease has grown substantially. Clearly identifiable structural changes (ie, Purkinje cell loss, Lewy bodies) have been observed in the brains of individuals with ET. These changes are not uniform and seem to follow several patterns, localising to the cerebellum itself or to a collection of brainstem neurons that synapse directly with Purkinje cells. Furthermore, these changes are similar to those seen in degenerative diseases. A wealth of clinical, epidemiological, and now post-mortem data indicate that this disease, or perhaps this family of diseases, is likely to be neurodegenerative. The molecular mechanisms that underlie these structural changes in ET are unknown. However, with more controlled, tissue-based studies being done, it is hoped that these mechanisms will be elucidated, thereby laying the foundation for the development of more targeted, effective pharmacotherapeutic interventions.
Collapse
|
81
|
Szot P, Miguelez C, White SS, Franklin A, Sikkema C, Wilkinson CW, Ugedo L, Raskind MA. A comprehensive analysis of the effect of DSP4 on the locus coeruleus noradrenergic system in the rat. Neuroscience 2010; 166:279-91. [PMID: 20045445 DOI: 10.1016/j.neuroscience.2009.12.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/30/2009] [Accepted: 12/10/2009] [Indexed: 11/19/2022]
Abstract
Degeneration of the noradrenergic neurons in the locus coeruleus (LC) is a major component of Alzheimer's (AD) and Parkinson's disease (PD), but the consequence of noradrenergic neuronal loss has different effects on the surviving neurons in the two disorders. Therefore, understanding the consequence of noradrenergic neuronal loss is important in determining the role of this neurotransmitter in these neurodegenerative disorders. The goal of the study was to determine if the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) could be used as a model for either (or both) AD or PD. Rats were administered DSP4 and sacrificed 3 days 2 weeks and 3 months later. DSP4-treatment resulted in a rapid, though transient reduction in norepinephrine (NE) and NE transporter (NET) in many brain regions receiving variable innervation from the LC. Alpha(1)-adrenoreceptors binding site concentrations were unchanged in all brain regions at all three time points. However, an increase in alpha(2)-AR was observed in many different brain regions 2 weeks and 3 months after DSP4. These changes observed in forebrain regions occurred without a loss in LC noradrenergic neurons. Expression of synthesizing enzymes or NET did not change in amount of expression/neuron despite the reduction in NE tissue content and NET binding site concentrations at early time points, suggesting no compensatory response. In addition, DSP4 did not affect basal activity of LC at any time point in anesthetized animals, but 2 weeks after DSP4 there is a significant increase in irregular firing of noradrenergic neurons. These data indicate that DSP4 is not a selective LC noradrenergic neurotoxin, but does affect noradrenergic neuron terminals locally, as evident by the changes in transmitter and markers at terminal regions. However, since DSP4 did not result in a loss of noradrenergic neurons, it is not considered an adequate model for noradrenergic neuronal loss observed in AD and PD.
Collapse
Affiliation(s)
- P Szot
- Northwest Network for Mental Illness Research, Education, and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Wang Y, Zhang QJ, Liu J, Ali U, Gui ZH, Hui YP, Chen L, Wu ZH, Li Q. Noradrenergic lesion of the locus coeruleus increases apomorphine-induced circling behavior and the firing activity of substantia nigra pars reticulata neurons in a rat model of Parkinson's disease. Brain Res 2010; 1310:189-99. [DOI: 10.1016/j.brainres.2009.10.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/27/2009] [Accepted: 10/29/2009] [Indexed: 11/25/2022]
|
83
|
Pérez V, Marin C, Rubio A, Aguilar E, Barbanoj M, Kulisevsky J. Effect of the additional noradrenergic neurodegeneration to 6-OHDA-lesioned rats in levodopa-induced dyskinesias and in cognitive disturbances. J Neural Transm (Vienna) 2009; 116:1257-66. [PMID: 19710996 DOI: 10.1007/s00702-009-0291-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022]
Abstract
Parkinson's disease is a motor and cognitive disorder characterised by a progressive loss of the substantia nigra pars compacta (SNc) dopaminergic neurons as well as of the locus coeruleus (LC) noradrenergic neurons. It has been suggested that LC neurodegeneration might influence levodopa-induced motor disturbances and cognitive performance. We investigated the influence of dopaminergic and noradrenergic lesions on levodopa-induced dyskinesias and on working memory in rats. Two groups of animals were used: (1) rats with a dopaminergic lesion induced by a unilateral administration of the neurotoxin 6-hydroxydopamine (6-OHDA), and (2) rats with a combined lesion of the dopaminergic and noradrenergic systems induced by 6-OHDA and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), respectively. Dyskinesias were evaluated on days 1, 8, 15 and 22 of chronic levodopa treatment (6 mg/kg, twice at day, i.p.). Working memory was evaluated by a radial-arm maze (1) before lesions, (2) before levodopa administration and (3) after 22 days of levodopa treatment. Total, axial, limb and orofacial dyskinesias not differed significantly between both groups. Working memory tasks worsened in both lesioned groups reaching significance in terms of time of performance (P < 0.05). The number of repeated entries in the same arm (errors) was only significant in the double-lesioned group (P < 0.05). This behaviour was not different from the one observed after chronic levodopa treatment. These results suggest that levodopa-induced dyskinesias in the 6-OHDA-lesioned rats were not affected by the additional noradrenergic lesion, whereas this last condition was sufficient to worse the cognitive performance deficit produced by the dopaminergic lesion.
Collapse
Affiliation(s)
- V Pérez
- Laboratori de Neuropsicofarmacología, Institut de Recerca de l'Hospital de la Sta Creu i de Sant Pau, Avgda. St. Antoni M feminine Claret, 167, 08025, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
84
|
Luchtman DW, Shao D, Song C. Behavior, neurotransmitters and inflammation in three regimens of the MPTP mouse model of Parkinson's disease. Physiol Behav 2009; 98:130-8. [DOI: 10.1016/j.physbeh.2009.04.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 01/19/2023]
|
85
|
Ionov ID. Self-Amplification of Nigral Degeneration in Parkinson's Disease: A Hypothesis. Int J Neurosci 2009; 118:1763-80. [DOI: 10.1080/00207450802330561] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
86
|
Koprich JB, Johnston TH, Huot P, Fox SH, Brotchie JM. New insights into the organization of the basal ganglia. Curr Neurol Neurosci Rep 2009; 9:298-304. [DOI: 10.1007/s11910-009-0045-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
87
|
Berglöf E, Strömberg I. Locus coeruleus promotes survival of dopamine neurons in ventral mesencephalon. An in oculo grafting study. Exp Neurol 2009; 216:158-65. [DOI: 10.1016/j.expneurol.2008.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 11/12/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|
88
|
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The prevalence is increasing with age and averages approximately 0.3% in the entire population. The clinical picture is dominated by the cardinal motor symptoms such as tremor at rest, bradykinesia, muscular rigidity, stooped posture and postural instability. Psychiatric comorbidity is common, comprising dementia, depression, anxiety and psychosis. Although many drugs have been developed and introduced into the market to provide symptomatic treatment, there is still no cure for PD and not even solid evidence for disease-modifying strategies. In addition, motor complications in advanced stages of the disease, side effects of the dopaminergic therapy, and non-motor symptoms remain huge challenges during long-term therapy. Thus, new therapeutic agents are desperately needed. Here, we describe current therapies and possible future developments that we hope will contribute to sustaining quality of life in patients suffering from Parkinson's disease for many years.
Collapse
Affiliation(s)
- Karl Strecker
- Department of Neurology, University of Leipzig, Movement Disorders group, Liebigstrasse 22 a, 04103 Leipzig, Germany.
| | | |
Collapse
|
89
|
Rommelfanger KS, Mitrano DA, Smith Y, Weinshenker D. Light and electron microscopic localization of alpha-1 adrenergic receptor immunoreactivity in the rat striatum and ventral midbrain. Neuroscience 2008; 158:1530-40. [PMID: 19068224 DOI: 10.1016/j.neuroscience.2008.11.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/07/2008] [Accepted: 11/11/2008] [Indexed: 10/21/2022]
Abstract
Electrophysiological and pharmacological studies have demonstrated that alpha-1 adrenergic receptor (alpha1AR) activation facilitates dopamine (DA) transmission in the striatum and ventral midbrain. However, because little is known about the localization of alpha1ARs in dopaminergic regions, the substrate(s) and mechanism(s) underlying this facilitation of DA signaling are poorly understood. To address this issue, we used light and electron microscopy immunoperoxidase labeling to examine the cellular and ultrastructural distribution of alpha1ARs in the caudate putamen, nucleus accumbens, ventral tegmental area, and substantia nigra in the rat. Analysis at the light microscopic level revealed alpha1AR immunoreactivity mainly in neuropil, with occasional staining in cell bodies. At the electron microscopic level, alpha1AR immunoreactivity was found primarily in presynaptic elements, with scarce postsynaptic labeling. Unmyelinated axons and about 30-50% terminals forming asymmetric synapses contained the majority of presynaptic labeling in the striatum and midbrain, while in the midbrain a subset of terminals forming symmetric synapses also displayed immunoreactivity. Postsynaptic labeling was scarce in both striatal and ventral midbrain regions. On the other hand, only 3-6% of spines displayed alpha1AR immunoreactivity in the caudate putamen and nucleus accumbens. These data suggest that the facilitation of dopaminergic transmission by alpha1ARs in the mesostriatal system is probably achieved primarily by pre-synaptic regulation of glutamate and GABA release.
Collapse
Affiliation(s)
- K S Rommelfanger
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
90
|
Ruffoli R, Soldani P, Pasquali L, Ruggieri S, Paparelli A, Fornai F. Methamphetamine Fails to Alter the Noradrenergic Integrity of the Heart. Ann N Y Acad Sci 2008; 1139:337-44. [DOI: 10.1196/annals.1432.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
91
|
Natale G, Pasquali L, Ruggieri S, Paparelli A, Fornai F. Parkinson's disease and the gut: a well known clinical association in need of an effective cure and explanation. Neurogastroenterol Motil 2008; 20:741-9. [PMID: 18557892 DOI: 10.1111/j.1365-2982.2008.01162.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder which leads to severe movement impairment; however, Parkinsonian patients frequently suffer from gastrointestinal (GI) problems which at present are poorly understood, scarcely investigated, and lack an effective cure. Traditionally, PD is attributed to the loss of mesencephalic dopamine-containing neurons; nonetheless, additional nuclei, such as the dorsal motor nucleus of the vagus nerve and specific central noradrenergic nuclei, are now identified as targets of PD. While the effects of PD on the somatic motor systems are well characterized, the influence on the digestive system still needs to be clarified. Recent findings demonstrate the occurrence of pathological alterations within peripheral neuronal networks in the GI tract of Parkinsonian patients. However, it remains unclear whether a real cell loss occurs, and whether this happens specifically for a subclass of autonomic neurons or if it reflects the sole loss of autonomic nerves. This review summarizes the neurochemical and morphological changes which might be responsible for impaired GI motility. Moreover, we focus on the experimental models to reproduce the altered digestive system of Parkinsonian patients since an experimental model able to mimic such features of PD is required. In the last part of the manuscript, we suggest potential therapeutic targets.
Collapse
Affiliation(s)
- G Natale
- Department of Human Morphology and Applied Biology, University of Pisa, Italy
| | | | | | | | | |
Collapse
|
92
|
Effect of locus coeruleus denervation on levodopa-induced motor fluctuations in hemiparkinsonian rats. J Neural Transm (Vienna) 2008; 115:1133-9. [DOI: 10.1007/s00702-008-0060-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
|
93
|
Giorgi FS, Blandini F, Cantafora E, Biagioni F, Armentero MT, Pasquali L, Orzi F, Murri L, Paparelli A, Fornai F. Activation of brain metabolism and fos during limbic seizures: The role of Locus Coeruleus. Neurobiol Dis 2008; 30:388-399. [DOI: 10.1016/j.nbd.2008.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/12/2008] [Accepted: 02/22/2008] [Indexed: 11/16/2022] Open
|
94
|
Newman MB, Bakay RAE. Therapeutic potentials of human embryonic stem cells in Parkinson's disease. Neurotherapeutics 2008; 5:237-51. [PMID: 18394566 PMCID: PMC5084166 DOI: 10.1016/j.nurt.2008.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The loss of dopaminergic neurons of the substantia nigra is the pathological hallmark characteristic of Parkinson's disease (PD). The strategy of replacing these degenerating neurons with other cells that produce dopamine has been the main approach in the cell transplantation field for PD research. The isolation, differentiation, and long-term cultivation of human embryonic stem cells and the therapeutic research discovery made in relation to the beneficial properties of neurotrophic and neural growth factors has advanced the transplantation field beyond dopamine-producing cells. The present review addresses recent advances in human embryonic stem cell experimentation in relation to treating PD, as well as cell transplantation techniques in conjunction with alternative therapeutics.
Collapse
Affiliation(s)
- Mary B Newman
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
95
|
Dauvergne C, Smit AE, Valla J, Diagne M, Buisseret-Delmas C, Buisseret P, Pinganaud G, Vanderwerf F. Are locus coeruleus neurons involved in blinking? Neurosci Res 2008; 61:182-91. [PMID: 18400323 DOI: 10.1016/j.neures.2008.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/30/2008] [Accepted: 02/25/2008] [Indexed: 10/22/2022]
Abstract
To investigate the involvement of the noradrenergic locus coeruleus (LC) in the reflex blink circuit, c-Fos and neuronal tracer experiments were performed in the rat. LC neurons involved in reflex blink were localized by analyzing c-Fos protein expression after electrical stimulation of the supraorbital nerve. Subsequently, neuronal tracers were injected in two different nuclei which are part of the reflex blink circuit. Anterograde tracer experiments in the sensory trigeminal complex (STC) explored the trigemino-coerulear connection; retrograde tracer experiments in the latero-caudal portion of the superior colliculus (SC) established coerulear-collicular connections. The combination of retrograde tracer injections into the latero-caudal SC portion combined with electrical stimulation of the supraorbital nerve identified c-Fos positive LC neurons that project to the latero-caudal SC. Our results revealed the existence of a STC-LC-SC loop.
Collapse
Affiliation(s)
- Céline Dauvergne
- Laboratoire de Physiologie de la Manducation, UP7, 4 place Jussieu, 75252 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Pérez V, Sosti V, Rubio A, Barbanoj M, Rodríguez-Alvarez J, Kulisevsky J. Modulation of the motor response to dopaminergic drugs in a parkinsonian model of combined dopaminergic and noradrenergic degeneration. Eur J Pharmacol 2007; 576:83-90. [PMID: 17888901 DOI: 10.1016/j.ejphar.2007.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 08/10/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
Besides dopaminergic deficiency, other neurotransmitter systems such as noradrenergic nuclei are affected in Parkinson's disease. Locus coeruleus degeneration might influence the response to dopamine replacement and the presence of long-term complications such as dyskinesias. In this scenario of noradrenergic and dopaminergic neurodegeneration, behavioural effects induced by dopaminergic-interacting drugs are incompletely known. We investigated whether noradrenergic lesion modulates the levodopa (l-DOPA) response and modifies the response to adenosine antagonists and its interaction with l-DOPA. We examined the motor behaviour induced by: 1) subthreshold doses of l-DOPA (2mg/kg, i.p.), 2) the adenosine-receptor antagonist caffeine (10mg/kg), and 3) the combination of l-DOPA (2mg/kg) and caffeine (10mg/kg). Each study was done in two experimental conditions: a) rats with unilateral 6-OHDA lesion and b) rats with a lesion of the nigrostriatal pathway (6-OHDA) combined with selective denervation of locus coeruleus-noradrenergic terminal fields by N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4). While only 28% of the 6-OHDA-lesioned animals presented circling behaviour after l-DOPA challenge, all (100%) double-denervated animals rotated after the same l-DOPA dose (p<0.05). No statistical differences in the percentage of rotating animals were observed between single- and double-denervated rats after caffeine challenge. Combined l-DOPA-caffeine challenge produced rotational behaviour in all (100%) single- and double-denervated rats. No differences in total turns were observed between single- and double-denervated animals in each treatment condition. These findings suggest that additional noradrenergic denervation selectively decreases the motor threshold to l-DOPA treatment without modifying the magnitude or the pattern of the motor response to adenosinergic antagonism.
Collapse
Affiliation(s)
- Virgili Pérez
- Laboratori de Neuropsicofarmacologia, Institut de Recerca de l'Hospital de la Santa Creu i de Sant Pau, Avgda. St. Antoni M(a) Claret, 167, 08025 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
97
|
Weinshenker D, Ferrucci M, Busceti CL, Biagioni F, Lazzeri G, Liles LC, Lenzi P, Pasquali L, Murri L, Paparelli A, Fornai F. Genetic or pharmacological blockade of noradrenaline synthesis enhances the neurochemical, behavioral, and neurotoxic effects of methamphetamine. J Neurochem 2007; 105:471-83. [PMID: 18042179 DOI: 10.1111/j.1471-4159.2007.05145.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) lesions of the locus coeruleus, the major brain noradrenergic nucleus, exacerbate the damage to nigrostriatal dopamine (DA) terminals caused by the psychostimulant methamphetamine (METH). However, because noradrenergic terminals contain other neuromodulators and the noradrenaline (NA) transporter, which may act as a neuroprotective buffer, it was unclear whether this enhancement of METH neurotoxicity was caused by the loss of noradrenergic innervation or the loss of NA itself. We addressed the specific role of NA by comparing the effects of METH in mice with noradrenergic lesions (DSP-4) and those with intact noradrenergic terminals but specifically lacking NA (genetic or acute pharmacological blockade of the NA biosynthetic enzyme dopamine beta-hydroxylase; DBH). We found that genetic deletion of DBH (DBH-/- mice) and acute treatment of wild-type mice with a DBH inhibitor (fusaric acid) recapitulated the effects of DSP-4 lesions on METH responses. All three methods of NA depletion enhanced striatal DA release, extracellular oxidative stress (as measured by in vivo microdialysis of DA and 2,3-dihydroxybenzoic acid), and behavioral stereotypies following repeated METH administration. These effects accompanied a worsening of the striatal DA neuron terminal damage and ultrastructural changes to medium spiny neurons. We conclude that NA itself is neuroprotective and plays a fundamental role in the sensitivity of striatal DA terminals to the neurochemical, behavioral, and neurotoxic effects of METH.
Collapse
Affiliation(s)
- David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Chun LS, Samii A, Hutter CM, Griffith A, Roberts JW, Leis BC, Mosley AD, Wander PL, Edwards KL, Payami H, Zabetian CP. DBH -1021C-->T does not modify risk or age at onset in Parkinson's disease. Ann Neurol 2007; 62:99-101. [PMID: 17503507 PMCID: PMC2823266 DOI: 10.1002/ana.21149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
DBH is a candidate gene in Parkinson's disease (PD) and contains a putative functional polymorphism (-1021C-->T) that has been reported to modify PD susceptibility. We examined -1021C-->T in a sample of 1,244 PD patients and 1,186 unrelated control subjects. There was no significant difference in allele (p = 0.14) or genotype (p = 0.26) frequencies between the two groups. A similar result was obtained after pooling our data with those previously published. Furthermore, we found no evidence for an effect of genotype on age at onset among patients. Our findings argue against DBH -1021C-->T as a risk factor or age at onset modifier in PD.
Collapse
Affiliation(s)
- Lani S Chun
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Rommelfanger KS, Edwards GL, Freeman KG, Liles LC, Miller GW, Weinshenker D. Norepinephrine loss produces more profound motor deficits than MPTP treatment in mice. Proc Natl Acad Sci U S A 2007; 104:13804-9. [PMID: 17702867 PMCID: PMC1959463 DOI: 10.1073/pnas.0702753104] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although Parkinson's disease (PD) is characterized primarily by loss of nigrostriatal dopaminergic neurons, there is a concomitant loss of norepinephrine (NE) neurons in the locus coeruleus. Dopaminergic lesions induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are commonly used to model PD, and although MPTP effectively mimics the dopaminergic neuropathology of PD in mice, it fails to produce PD-like motor deficits. We hypothesized that MPTP is unable to recapitulate the motor abnormalities of PD either because the behavioral paradigms used to measure coordinated behavior in mice are not sensitive enough or because MPTP in the absence of NE loss is insufficient to impair motor control. We tested both possibilities by developing a battery of coordinated movement tests and examining motor deficits in dopamine beta-hydroxylase knockout (Dbh-/-) mice that lack NE altogether. We detected no motor abnormalities in MPTP-treated control mice, despite an 80% loss of striatal dopamine (DA) terminals. Dbh-/- mice, on the other hand, were impaired in most tests and also displayed spontaneous dyskinesias, despite their normal striatal DA content. A subset of these impairments was recapitulated in control mice with 80% NE lesions and reversed in Dbh-/- mice, either by restoration of NE or treatment with a DA agonist. MPTP did not exacerbate baseline motor deficits in Dbh-/- mice. Finally, striatal levels of phospho-ERK-1/2 and DeltaFosB/FosB, proteins which are associated with PD and dyskinesias, were elevated in Dbh-/- mice. These results suggest that loss of locus coeruleus neurons contributes to motor dysfunction in PD.
Collapse
Affiliation(s)
| | - G. L. Edwards
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - K. G. Freeman
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | | | - G. W. Miller
- Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322; and
| | - D. Weinshenker
- Departments of *Human Genetics and
- To whom correspondence should be addressed at:
Department of Human Genetics, Emory University, Whitehead 301, 615 Michael Street, Atlanta, GA 30322. E-mail:
| |
Collapse
|
100
|
Fulceri F, Biagioni F, Ferrucci M, Lazzeri G, Bartalucci A, Galli V, Ruggieri S, Paparelli A, Fornai F. Abnormal involuntary movements (AIMs) following pulsatile dopaminergic stimulation: Severe deterioration and morphological correlates following the loss of locus coeruleus neurons. Brain Res 2007; 1135:219-29. [PMID: 17222394 DOI: 10.1016/j.brainres.2006.12.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 12/06/2006] [Accepted: 12/08/2006] [Indexed: 12/26/2022]
Abstract
Parkinsonian patients are treated with dopamine replacement therapy (typically, intermittent administration of the dopamine precursor L-DOPA); however, this is associated with the onset of abnormal involuntary movements, which seriously impair the quality of life. The molecular mechanisms underlying abnormal involuntary movements represent an intense field of investigation in the area of neurobiology of disease, although their aetiology remains unclear. Apart from the fine cellular mechanisms, the pathways responsible for the generation of abnormal involuntary movements may involve changes in neurotransmitter systems. A potential candidate is noradrenaline, since a severe loss of this neurotransmitter characterizes Parkinson's disease, and noradrenergic drugs produce a symptomatic relief of L-DOPA-induced dyskinesia. In previous studies we found that pulsatile dopamine release, in the absence of the physiological noradrenaline innervation, produces motor alterations and ultrastructural changes within striatal neurons. In the present study we demonstrate that a unilateral damage to the noradrenaline system anticipates the onset and worsens the severity of L-DOPA-induced contralateral abnormal involuntary movements in hemi-parkinsonian rats. Similarly, ubiquitin-positive striatal ultrastructural changes occur in unilaterally dopamine-depleted, noradrenaline-deficient rats following chronic L-DOPA administration. This study confirms a significant impact of the noradrenergic system in the natural history of Parkinson's disease and extends its role to the behavioural and morphological effects taking place during pulsatile dopamine replacement therapy.
Collapse
Affiliation(s)
- F Fulceri
- Department of Human Morphology and Applied Biology, University of Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|