51
|
Valguarnera E, Feldman MF. Glycoengineered Outer Membrane Vesicles as a Platform for Vaccine Development. Methods Enzymol 2017; 597:285-310. [PMID: 28935107 DOI: 10.1016/bs.mie.2017.06.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
As we enter into the postantibiotic era, vaccines to prevent bacterial infections previously treatable with antibiotics are urgently needed. Most successful antibacterial vaccines are glycoconjugates, composed of cell surface carbohydrates chemically attached to a carrier protein. Glycoconjugate vaccines provide a safe and consistent strategy against polysaccharide-encapsulated pathogens. The best examples are the conjugate vaccines against Haemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis, all based on capsular polysaccharides. Although these types of vaccines are effective, their current manufacturing process presents multiple drawbacks, such as biosafety risks and batch-to-batch variability. Furthermore, inclusion of additional serotypes is extremely slow, mainly due to the intricate chemical methods of conjugation. Thus, novel platforms for antibacterial vaccines are required. Gram-negative bacteria are able to produce outer membrane vesicles (OMVs). OMVs are mainly composed of lipopolysaccharide (LPS), outer membrane and periplasmic proteins, and phospholipids. Although their biogenesis is poorly understood, it is known that OMVs are formed by blebbing of the outer membrane. OMVs are attractive candidates for novel vaccine delivery platforms due to their immunogenic properties, self-adjuvanticity, and capacity for enhancement by recombinant engineering. We have shown that OMVs can be engineered to display surface glycans from different bacteria and that these glycoengineered OMVs (geOMVs) are effective in diverse animal models of infection. Here we provide a detailed method for the design and preparation of geOMV displaying the O-antigen from a prominent uropathogenic Escherichia coli (UPEC) serotype, O25b, as a proof of concept for the use of geOMVs as vaccine candidates.
Collapse
Affiliation(s)
| | - Mario F Feldman
- Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
52
|
Construction of a synthetic metabolic pathway for biosynthesis of the non-natural methionine precursor 2,4-dihydroxybutyric acid. Nat Commun 2017. [PMID: 28631755 PMCID: PMC5481828 DOI: 10.1038/ncomms15828] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
2,4-Dihydroxybutyric acid (DHB) is a molecule with considerable potential as a versatile chemical synthon. Notably, it may serve as a precursor for chemical synthesis of the methionine analogue 2-hydroxy-4-(methylthio)butyrate, thus, targeting a considerable market in animal nutrition. However, no natural metabolic pathway exists for the biosynthesis of DHB. Here we have therefore conceived a three-step metabolic pathway for the synthesis of DHB starting from the natural metabolite malate. The pathway employs previously unreported malate kinase, malate semialdehyde dehydrogenase and malate semialdehyde reductase activities. The kinase and semialdehyde dehydrogenase activities were obtained by rational design based on structural and mechanistic knowledge of candidate enzymes acting on sterically cognate substrates. Malate semialdehyde reductase activity was identified from an initial screening of several natural enzymes, and was further improved by rational design. The pathway was expressed in a minimally engineered Escherichia coli strain and produces 1.8 g l-1 DHB with a molar yield of 0.15.
Collapse
|
53
|
Control of type III protein secretion using a minimal genetic system. Nat Commun 2017; 8:14737. [PMID: 28485369 PMCID: PMC5436071 DOI: 10.1038/ncomms14737] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/27/2017] [Indexed: 01/12/2023] Open
Abstract
Gram-negative bacteria secrete proteins using a type III secretion system (T3SS), which functions as a needle-like molecular machine. The many proteins involved in T3SS construction are tightly regulated due to its role in pathogenesis and motility. Here, starting with the 35 kb Salmonella pathogenicity island 1 (SPI-1), we eliminated internal regulation and simplified the genetics by removing or recoding genes, scrambling gene order and replacing all non-coding DNA with synthetic genetic parts. This process results in a 16 kb cluster that shares no sequence identity, regulation or organizational principles with SPI-1. Building this simplified system led to the discovery of essential roles for an internal start site (SpaO) and small RNA (InvR). Further, it can be controlled using synthetic regulatory circuits, including under SPI-1 repressing conditions. This work reveals an incredible post-transcriptional robustness in T3SS assembly and aids its control as a tool in biotechnology.
Collapse
|
54
|
Application of β-glucuronidase (GusA) as an effective reporter for extremely acidophilic Acidithiobacillus ferrooxidans. Appl Microbiol Biotechnol 2017; 101:3283-3294. [DOI: 10.1007/s00253-017-8116-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
|
55
|
Cuccui J, Terra VS, Bossé JT, Naegeli A, Abouelhadid S, Li Y, Lin CW, Vohra P, Tucker AW, Rycroft AN, Maskell DJ, Aebi M, Langford PR, Wren BW. The N-linking glycosylation system from Actinobacillus pleuropneumoniae is required for adhesion and has potential use in glycoengineering. Open Biol 2017. [PMID: 28077594 DOI: 10.1098/rsob.160212.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Actinobacillus pleuropneumoniae is a mucosal respiratory pathogen causing contagious porcine pleuropneumonia. Pathogenesis studies have demonstrated a major role for the capsule, exotoxins and outer membrane proteins. Actinobacillus pleuropneumoniae can also glycosylate proteins, using a cytoplasmic N-linked glycosylating enzyme designated NGT, but its transcriptional arrangement and role in virulence remains unknown. We investigated the NGT locus and demonstrated that the putative transcriptional unit consists of rimO, ngt and a glycosyltransferase termed agt. From this information we used the A. pleuropneumoniae glycosylation locus to decorate an acceptor protein, within Escherichia coli, with a hexose polymer that reacted with an anti-dextran antibody. Mass spectrometry analysis of a truncated protein revealed that this operon could add up to 29 repeat units to the appropriate sequon. We demonstrated the importance of NGT in virulence, by creating deletion mutants and testing them in a novel respiratory cell line adhesion model. This study demonstrates the importance of the NGT glycosylation system for pathogenesis and its potential biotechnological application for glycoengineering.
Collapse
Affiliation(s)
- Jon Cuccui
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Vanessa S Terra
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Janine T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London W2 1PG, UK
| | - Andreas Naegeli
- Institute of Microbiology, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Sherif Abouelhadid
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London W2 1PG, UK
| | - Chia-Wei Lin
- Institute of Microbiology, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Prerna Vohra
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Andrew N Rycroft
- The Royal Veterinary College, Hawkshead Campus, Hatfield, Hertfordshire AL9 7TA, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Markus Aebi
- Institute of Microbiology, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London W2 1PG, UK
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | |
Collapse
|
56
|
Kuenzl T, Sroka M, Srivastava P, Herdewijn P, Marlière P, Panke S. Overcoming the membrane barrier: Recruitment of γ-glutamyl transferase for intracellular release of metabolic cargo from peptide vectors. Metab Eng 2017; 39:60-70. [DOI: 10.1016/j.ymben.2016.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 11/25/2022]
|
57
|
D'Alessandro M, Turina P, Melandri BA, Dunn SD. Modulation of coupling in the Escherichia coli ATP synthase by ADP and P i: Role of the ε subunit C-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:34-44. [PMID: 27751906 DOI: 10.1016/j.bbabio.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 08/06/2016] [Accepted: 10/13/2016] [Indexed: 01/28/2023]
Abstract
The ε-subunit of ATP-synthase is an endogenous inhibitor of the hydrolysis activity of the complex and its α-helical C-terminal domain (εCTD) undergoes drastic changes among at least two different conformations. Even though this domain is not essential for ATP synthesis activity, there is evidence for its involvement in the coupling mechanism of the pump. Recently, it was proposed that coupling of the ATP synthase can vary as a function of ADP and Pi concentration. In the present work, we have explored the possible role of the εCTD in this ADP- and Pi-dependent coupling, by examining an εCTD-lacking mutant of Escherichia coli. We show that the loss of Pi-dependent coupling can be observed also in the εCTD-less mutant, but the effects of Pi on both proton pumping and ATP hydrolysis were much weaker in the mutant than in the wild-type. We also show that the εCTD strongly influences the binding of ADP to a very tight binding site (half-maximal effect≈1nM); binding at this site induces higher coupling in EFOF1 and increases responses to Pi. It is proposed that one physiological role of the εCTD is to regulate the kinetics and affinity of ADP/Pi binding, promoting ADP/Pi-dependent coupling.
Collapse
Affiliation(s)
- M D'Alessandro
- Department of Biology, Laboratory of Biochemistry and Biophysics, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - P Turina
- Department of Biology, Laboratory of Biochemistry and Biophysics, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - B A Melandri
- Department of Biology, Laboratory of Biochemistry and Biophysics, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - S D Dunn
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
58
|
Alkim C, Trichez D, Cam Y, Spina L, François JM, Walther T. The synthetic xylulose-1 phosphate pathway increases production of glycolic acid from xylose-rich sugar mixtures. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:201. [PMID: 27679669 PMCID: PMC5029101 DOI: 10.1186/s13068-016-0610-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/01/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Glycolic acid (GA) is a two-carbon hydroxyacid with applications in the cosmetic, textile, and medical industry. Microbial GA production from all sugars can be achieved by engineering the natural glyoxylate shunt. The synthetic (d)-xylulose-1 phosphate (X1P) pathway provides a complementary route to produce GA from (d)-xylose. The simultaneous operation of the X1P and glyoxylate pathways increases the theoretical GA yield from xylose by 20 %, which may strongly improve GA production from hemicellulosic hydrolysates. RESULTS We herein describe the construction of an E. coli strain that produces GA via the glyoxylate pathway at a yield of 0.31 , 0.29 , and 0.37 g/g from glucose, xylose, or a mixture of glucose and xylose (mass ratio: 33:66 %), respectively. When the X1P pathway operates in addition to the glyoxylate pathway, the GA yields on the three substrates are, respectively, 0.39 , 0.43 , and 0.47 g/g. Upon constitutive expression of the sugar permease GalP, the GA yield of the strain which simultaneously operates the glyoxylate and X1P pathways further increases to 0.63 g/g when growing on the glucose/xylose mixture. Under these conditions, the GA yield on the xylose fraction of the sugar mixture reaches 0.75 g/g, which is the highest yield reported to date. CONCLUSIONS These results demonstrate that the synthetic X1P pathway has a very strong potential to improve GA production from xylose-rich hemicellulosic hydrolysates.
Collapse
Affiliation(s)
- Ceren Alkim
- LISBP, CNRS, INRA, INSA, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- TWB, 3 rue Ariane, 31520 Ramonville-St. Agne, France
| | - Debora Trichez
- LISBP, CNRS, INRA, INSA, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- TWB, 3 rue Ariane, 31520 Ramonville-St. Agne, France
| | - Yvan Cam
- LISBP, CNRS, INRA, INSA, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- TWB, 3 rue Ariane, 31520 Ramonville-St. Agne, France
| | - Lucie Spina
- LISBP, CNRS, INRA, INSA, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- TWB, 3 rue Ariane, 31520 Ramonville-St. Agne, France
| | - Jean Marie François
- LISBP, CNRS, INRA, INSA, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- TWB, 3 rue Ariane, 31520 Ramonville-St. Agne, France
| | - Thomas Walther
- LISBP, CNRS, INRA, INSA, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- TWB, 3 rue Ariane, 31520 Ramonville-St. Agne, France
| |
Collapse
|
59
|
Elhenawy W, Davis RM, Fero J, Salama NR, Felman MF, Ruiz N. The O-Antigen Flippase Wzk Can Substitute for MurJ in Peptidoglycan Synthesis in Helicobacter pylori and Escherichia coli. PLoS One 2016; 11:e0161587. [PMID: 27537185 PMCID: PMC4990322 DOI: 10.1371/journal.pone.0161587] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/08/2016] [Indexed: 11/19/2022] Open
Abstract
The peptidoglycan (PG) cell wall is an essential component of the cell envelope of most bacteria. Biogenesis of PG involves a lipid-linked disaccharide-pentapeptide intermediate called lipid II, which must be translocated across the cytoplasmic membrane after it is synthesized in the inner leaflet of this bilayer. Accordingly, it has been demonstrated that MurJ, the proposed lipid II flippase in Escherichia coli, is required for PG biogenesis, and thereby viability. In contrast, MurJ is not essential in Bacillus subtilis because this bacterium produces AmJ, an unrelated protein that is functionally redundant with MurJ. In this study, we investigated why MurJ is not essential in the prominent gastric pathogen, Helicobacter pylori. We found that in this bacterium, Wzk, the ABC (ATP-binding cassette) transporter that flips the lipid-linked O- or Lewis- antigen precursors across the inner membrane, is redundant with MurJ for cell viability. Heterologous expression of wzk in E. coli also suppresses the lethality caused by the loss of murJ. Furthermore, we show that this cross-species complementation is abolished when Wzk is inactivated by mutations that target a domain predicted to be required for ATPase activity. Our results suggest that Wzk can flip lipid II, implying that Wzk is the flippase with the most relaxed specificity for lipid-linked saccharides ever identified.
Collapse
Affiliation(s)
- Wael Elhenawy
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Alberta, Canada
| | - Rebecca M. Davis
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, United States of America
| | - Jutta Fero
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America
| | - Nina R. Salama
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America
| | - Mario F. Felman
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Alberta, Canada
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, United States of America
- * E-mail:
| |
Collapse
|
60
|
Cam Y, Alkim C, Trichez D, Trebosc V, Vax A, Bartolo F, Besse P, François JM, Walther T. Engineering of a Synthetic Metabolic Pathway for the Assimilation of (d)-Xylose into Value-Added Chemicals. ACS Synth Biol 2016; 5:607-18. [PMID: 26186096 DOI: 10.1021/acssynbio.5b00103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A synthetic pathway for (d)-xylose assimilation was stoichiometrically evaluated and implemented in Escherichia coli strains. The pathway proceeds via isomerization of (d)-xylose to (d)-xylulose, phosphorylation of (d)-xylulose to obtain (d)-xylulose-1-phosphate (X1P), and aldolytic cleavage of the latter to yield glycolaldehyde and DHAP. Stoichiometric analyses showed that this pathway provides access to ethylene glycol with a theoretical molar yield of 1. Alternatively, both glycolaldehyde and DHAP can be converted to glycolic acid with a theoretical yield that is 20% higher than for the exclusive production of this acid via the glyoxylate shunt. Simultaneous expression of xylulose-1 kinase and X1P aldolase activities, provided by human ketohexokinase-C and human aldolase-B, respectively, restored growth of a (d)-xylulose-5-kinase mutant on xylose. This strain produced ethylene glycol as the major metabolic endproduct. Metabolic engineering provided strains that assimilated the entire C2 fraction into the central metabolism or that produced 4.3 g/L glycolic acid at a molar yield of 0.9 in shake flasks.
Collapse
Affiliation(s)
- Yvan Cam
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Ceren Alkim
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Debora Trichez
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Vincent Trebosc
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Amélie Vax
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - François Bartolo
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- Département Génie Mathématiques et Modélisation (GMM), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Philippe Besse
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- Département Génie Mathématiques et Modélisation (GMM), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Jean Marie François
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Thomas Walther
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| |
Collapse
|
61
|
Elhenawy W, Bording-Jorgensen M, Valguarnera E, Haurat MF, Wine E, Feldman MF. LPS Remodeling Triggers Formation of Outer Membrane Vesicles in Salmonella. mBio 2016; 7:e00940-16. [PMID: 27406567 PMCID: PMC4958258 DOI: 10.1128/mbio.00940-16] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Outer membrane vesicles (OMV) are proposed to mediate multiple functions during pathogenesis and symbiosis. However, the mechanisms responsible for OMV formation remain poorly understood. It has been shown in eukaryotic membranes that lipids with an inverted-cone shape favor the formation of positive membrane curvatures. Based on these studies, we formulated the hypothesis that lipid A deacylation might impose shape modifications that result in the curvature of the outer membrane (OM) and subsequent OMV formation. We tested the effect of lipid A remodeling on OMV biogenesis employing Salmonella enterica serovar Typhimurium as a model organism. Expression of the lipid A deacylase PagL resulted in increased vesiculation, without inducing an envelope stress response. Mass spectrometry analysis revealed profound differences in the patterns of lipid A in OM and OMV, with accumulation of deacylated lipid A forms exclusively in OMV. OMV biogenesis by intracellular bacteria upon macrophage infection was drastically reduced in a pagL mutant strain. We propose a novel mechanism for OMV biogenesis requiring lipid A deacylation in the context of a multifactorial process that involves the orchestrated remodeling of the outer membrane. IMPORTANCE The role of lipid remodeling in vesiculation is well documented in eukaryotes. Similarly, bacteria produce membrane-derived vesicles; however, the molecular mechanisms underlying their production are yet to be determined. In this work, we investigated the role of outer membrane remodeling in OMV biogenesis in S Typhimurium. We showed that the expression of the lipid A deacylase PagL results in overvesiculation with deacylated lipid A accumulation exclusively in OMV. An S Typhimurium ΔpagL strain showed a significant reduction in intracellular OMV secretion relative to the wild-type strain. Our results suggest a novel mechanism for OMV biogenesis that involves outer membrane remodeling through lipid A modification. Understanding how OMV are produced by bacteria is important to advance our understanding of the host-pathogen interactions.
Collapse
Affiliation(s)
- Wael Elhenawy
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ezequiel Valguarnera
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, Missouri, USA
| | - M Florencia Haurat
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Mario F Feldman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
62
|
Met104 is the CO-replaceable ligand at Fe(II) heme in the CO-sensing transcription factor BxRcoM-1. J Biol Inorg Chem 2016; 21:559-69. [DOI: 10.1007/s00775-016-1368-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
|
63
|
Koh S, Hwang J, Guchhait K, Lee EG, Kim SY, Kim S, Lee S, Chung JM, Jung HS, Lee SJ, Ryu CM, Lee SG, Oh TK, Kwon O, Kim MH. Molecular Insights into Toluene Sensing in the TodS/TodT Signal Transduction System. J Biol Chem 2016; 291:8575-90. [PMID: 26903514 PMCID: PMC4861429 DOI: 10.1074/jbc.m116.718841] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 11/17/2022] Open
Abstract
TodS is a sensor kinase that responds to various monoaromatic compounds, which either cause an agonistic or antagonistic effect on phosphorylation of its cognate response regulator TodT, and controls tod operon expression in Pseudomonas putida strains. We describe a molecular sensing mechanism of TodS that is activated in response to toluene. The crystal structures of the TodS Per-Arnt-Sim (PAS) 1 sensor domain (residues 43–164) and its complex with toluene (agonist) or 1,2,4-trimethylbenzene (antagonist) show a typical β2α3β3 PAS fold structure (residues 45–149), forming a hydrophobic ligand-binding site. A signal transfer region (residues 150–163) located immediately after the canonical PAS fold may be intrinsically flexible and disordered in both apo-PAS1 and antagonist-bound forms and dramatically adapt an α-helix upon toluene binding. This structural change in the signal transfer region is proposed to result in signal transmission to activate the TodS/TodT two-component signal transduction system. Site-directed mutagenesis and β-galactosidase assays using a P. putida reporter strain system verified the essential residues involved in ligand sensing and signal transfer and suggest that the Phe46 residue acts as a ligand-specific switch.
Collapse
Affiliation(s)
- Serry Koh
- From the Infection and Immunity Research Center,
| | | | - Koushik Guchhait
- From the Infection and Immunity Research Center, the Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350, Korea
| | - Eun-Gyeong Lee
- the Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350, Korea the Biochemicals and Synthetic Biology Research Center, and
| | - Sang-Yoon Kim
- the Biochemicals and Synthetic Biology Research Center, and
| | - Sujin Kim
- the Biochemicals and Synthetic Biology Research Center, and
| | - Sangmin Lee
- the Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 200-701, Korea, and
| | - Jeong Min Chung
- the Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 200-701, Korea, and
| | - Hyun Suk Jung
- the Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 200-701, Korea, and
| | - Sang Jun Lee
- From the Infection and Immunity Research Center, the Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350, Korea
| | - Choong-Min Ryu
- the Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350, Korea the Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Seung-Goo Lee
- the Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350, Korea the Biochemicals and Synthetic Biology Research Center, and
| | - Tae-Kwang Oh
- From the Infection and Immunity Research Center, the Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350, Korea
| | - Ohsuk Kwon
- the Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350, Korea the Biochemicals and Synthetic Biology Research Center, and
| | - Myung Hee Kim
- From the Infection and Immunity Research Center, the Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350, Korea
| |
Collapse
|
64
|
Mills DC, Jervis AJ, Abouelhadid S, Yates LE, Cuccui J, Linton D, Wren BW. Functional analysis of N-linking oligosaccharyl transferase enzymes encoded by deep-sea vent proteobacteria. Glycobiology 2015; 26:398-409. [PMID: 26610891 DOI: 10.1093/glycob/cwv111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/20/2015] [Indexed: 01/04/2023] Open
Abstract
Bacterial N-linking oligosaccharyl transferases (OTase enzymes) transfer lipid-linked glycans to selected proteins in the periplasm and were first described in the intestinal pathogen Campylobacter jejuni, a member of the ε-proteobacteria-subdivision of bacteria. More recently, orthologues from other ε-proteobacterial Campylobacter and Helicobacter species and a δ-proteobacterium, Desulfovibrio desulfuricans, have been described, suggesting that these two subdivisions of bacteria may be a source of further N-linked protein glycosylation systems. Whole-genome sequencing of both ε- and δ-proteobacteria from deep-sea vent habitats, a rich source of species from these subdivisions, revealed putative ORFs encoding OTase enzymes and associated adjacent glycosyltransferases similar to the C. jejuni N-linked glycosylation locus. We expressed putative OTase ORFs from the deep-sea vent species Nitratiruptor tergarcus, Sulfurovum lithotrophicum and Deferribacter desulfuricans in Escherichia coli and showed that they were able to functionally complement the C. jejuni OTase, CjPglB. The enzymes were shown to possess relaxed glycan specificity, transferring diverse glycan structures and demonstrated different glycosylation sequon specificities. Additionally, a permissive D. desulfuricans acceptor protein was identified, and we provide evidence that the N-linked glycan synthesized by N. tergarcus and S. lithotrophicum contains an acetylated sugar at the reducing end. This work demonstrates that deep-sea vent bacteria encode functional N-glycosylation machineries and are a potential source of biotechnologically important OTase enzymes.
Collapse
Affiliation(s)
- Dominic C Mills
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, University of London, Keppel Street, London WC1E 7HT, UK
| | - Adrian J Jervis
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| | - Sherif Abouelhadid
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, University of London, Keppel Street, London WC1E 7HT, UK
| | - Laura E Yates
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, University of London, Keppel Street, London WC1E 7HT, UK
| | - Jon Cuccui
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, University of London, Keppel Street, London WC1E 7HT, UK
| | - Dennis Linton
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| | - Brendan W Wren
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, University of London, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
65
|
Schieck E, Lartigue C, Frey J, Vozza N, Hegermann J, Miller RA, Valguarnera E, Muriuki C, Meens J, Nene V, Naessens J, Weber J, Lowary TL, Vashee S, Feldman MF, Jores J. Galactofuranose in Mycoplasma mycoides is important for membrane integrity and conceals adhesins but does not contribute to serum resistance. Mol Microbiol 2015; 99:55-70. [PMID: 26354009 DOI: 10.1111/mmi.13213] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 12/20/2022]
Abstract
Mycoplasma mycoides subsp. capri (Mmc) and subsp. mycoides (Mmm) are important ruminant pathogens worldwide causing diseases such as pleuropneumonia, mastitis and septicaemia. They express galactofuranose residues on their surface, but their role in pathogenesis has not yet been determined. The M. mycoides genomes contain up to several copies of the glf gene, which encodes an enzyme catalysing the last step in the synthesis of galactofuranose. We generated a deletion of the glf gene in a strain of Mmc using genome transplantation and tandem repeat endonuclease coupled cleavage (TREC) with yeast as an intermediary host for the genome editing. As expected, the resulting YCp1.1-Δglf strain did not produce the galactofuranose-containing glycans as shown by immunoblots and immuno-electronmicroscopy employing a galactofuranose specific monoclonal antibody. The mutant lacking galactofuranose exhibited a decreased growth rate and a significantly enhanced adhesion to small ruminant cells. The mutant was also 'leaking' as revealed by a β-galactosidase-based assay employing a membrane impermeable substrate. These findings indicate that galactofuranose-containing polysaccharides conceal adhesins and are important for membrane integrity. Unexpectedly, the mutant strain showed increased serum resistance.
Collapse
Affiliation(s)
- Elise Schieck
- International Livestock Research Institute, Old Naivasha Road, P.O. Box 30709, 00100, Nairobi, Kenya
| | - Carole Lartigue
- UMR 1332 Biologie du Fruit et Pathologie, The French National Institute for Agricultural Research, INRA-Université Bordeaux, Segalen, 71, avenue Edouard Bourlaux, CS20032, F-33882, Villenave D'Ornon CEDEX, Bordeaux, France.,UMR 1332 de Biologie du Fruit et Pathologie, Université Bordeaux, F-33140, Villenave d'Ornon, Bordeaux, France
| | - Joachim Frey
- Institute of Veterinary Bacteriology, University of Bern, CH-3001, Bern, Switzerland
| | - Nicolas Vozza
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Rachel A Miller
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Ezequiel Valguarnera
- Department of Molecular Microbiology, Washington University School of Medicine St Louis, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Cecilia Muriuki
- International Livestock Research Institute, Old Naivasha Road, P.O. Box 30709, 00100, Nairobi, Kenya
| | - Jochen Meens
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Vish Nene
- International Livestock Research Institute, Old Naivasha Road, P.O. Box 30709, 00100, Nairobi, Kenya
| | - Jan Naessens
- International Livestock Research Institute, Old Naivasha Road, P.O. Box 30709, 00100, Nairobi, Kenya
| | - Johann Weber
- Center for Integrative Genomics, Lausanne Genomic Technologies Facility,University of Lausanne, Lausanne, Switzerland
| | - Todd L Lowary
- Department of Chemistry, Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Sanjay Vashee
- J. Craig Venter Institute, 9704 Medical Center Drive, MD 20850, Rockville, USA
| | - Mario F Feldman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.,Department of Molecular Microbiology, Washington University School of Medicine St Louis, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Joerg Jores
- International Livestock Research Institute, Old Naivasha Road, P.O. Box 30709, 00100, Nairobi, Kenya.,Institute of Veterinary Bacteriology, University of Bern, CH-3001, Bern, Switzerland
| |
Collapse
|
66
|
Mesleh MF, Rajaratnam P, Conrad M, Chandrasekaran V, Liu CM, Pandya BA, Hwang YS, Rye PT, Muldoon C, Becker B, Zuegg J, Meutermans W, Moy TI. Targeting Bacterial Cell Wall Peptidoglycan Synthesis by Inhibition of Glycosyltransferase Activity. Chem Biol Drug Des 2015; 87:190-9. [PMID: 26358369 DOI: 10.1111/cbdd.12662] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/20/2015] [Accepted: 08/27/2015] [Indexed: 11/25/2022]
Abstract
Synthesis of bacterial cell wall peptidoglycan requires glycosyltransferase enzymes that transfer the disaccharide-peptide from lipid II onto the growing glycan chain. The polymerization of the glycan chain precedes cross-linking by penicillin-binding proteins and is essential for growth for key bacterial pathogens. As such, bacterial cell wall glycosyltransferases are an attractive target for antibiotic drug discovery. However, significant challenges to the development of inhibitors for these targets include the development of suitable assays and chemical matter that is suited to the nature of the binding site. We developed glycosyltransferase enzymatic activity and binding assays using the natural products moenomycin and vancomycin as model inhibitors. In addition, we designed a library of disaccharide compounds based on the minimum moenomycin fragment with peptidoglycan glycosyltransferase inhibitory activity and based on a more drug-like and synthetically versatile disaccharide building block. A subset of these disaccharide compounds bound and inhibited the glycosyltransferase enzymes, and these compounds could serve as chemical entry points for antibiotic development.
Collapse
Affiliation(s)
- Michael F Mesleh
- Cubist Pharmaceuticals, a wholly-owned subsidiary of Merck & Co. Inc., 65 Hayden Avenue, Lexington, MA, 02421, USA
| | - Premraj Rajaratnam
- Alchemia Limited, 3 Hi-Tech Court, Eight Mile Plains, Brisbane Technology Park, Qld, 4113, Australia
| | - Mary Conrad
- Cubist Pharmaceuticals, a wholly-owned subsidiary of Merck & Co. Inc., 65 Hayden Avenue, Lexington, MA, 02421, USA
| | - Vasu Chandrasekaran
- Cubist Pharmaceuticals, a wholly-owned subsidiary of Merck & Co. Inc., 65 Hayden Avenue, Lexington, MA, 02421, USA
| | - Christopher M Liu
- Cubist Pharmaceuticals, a wholly-owned subsidiary of Merck & Co. Inc., 65 Hayden Avenue, Lexington, MA, 02421, USA
| | - Bhaumik A Pandya
- Cubist Pharmaceuticals, a wholly-owned subsidiary of Merck & Co. Inc., 65 Hayden Avenue, Lexington, MA, 02421, USA
| | - You Seok Hwang
- Cubist Pharmaceuticals, a wholly-owned subsidiary of Merck & Co. Inc., 65 Hayden Avenue, Lexington, MA, 02421, USA
| | - Peter T Rye
- Agilent Technologies, Inc., 11 Audubon Road, Wakefield, MA, 01880, USA
| | - Craig Muldoon
- Alchemia Limited, 3 Hi-Tech Court, Eight Mile Plains, Brisbane Technology Park, Qld, 4113, Australia
| | - Bernd Becker
- Alchemia Limited, 3 Hi-Tech Court, Eight Mile Plains, Brisbane Technology Park, Qld, 4113, Australia
| | - Johannes Zuegg
- Alchemia Limited, 3 Hi-Tech Court, Eight Mile Plains, Brisbane Technology Park, Qld, 4113, Australia
| | - Wim Meutermans
- Alchemia Limited, 3 Hi-Tech Court, Eight Mile Plains, Brisbane Technology Park, Qld, 4113, Australia
| | - Terence I Moy
- Cubist Pharmaceuticals, a wholly-owned subsidiary of Merck & Co. Inc., 65 Hayden Avenue, Lexington, MA, 02421, USA
| |
Collapse
|
67
|
Gunasekara SM, Hicks MN, Park J, Brooks CL, Serate J, Saunders CV, Grover SK, Goto JJ, Lee JW, Youn H. Directed evolution of the Escherichia coli cAMP receptor protein at the cAMP pocket. J Biol Chem 2015; 290:26587-96. [PMID: 26378231 DOI: 10.1074/jbc.m115.678474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli cAMP receptor protein (CRP) requires cAMP binding to undergo a conformational change for DNA binding and transcriptional regulation. Two CRP residues, Thr(127) and Ser(128), are known to play important roles in cAMP binding through hydrogen bonding and in the cAMP-induced conformational change, but the connection between the two is not completely clear. Here, we simultaneously randomized the codons for these two residues and selected CRP mutants displaying high CRP activity in a cAMP-producing E. coli. Many different CRP mutants satisfied the screening condition for high CRP activity, including those that cannot form any hydrogen bonds with the incoming cAMP at the two positions. In vitro DNA-binding analysis confirmed that these selected CRP mutants indeed display high CRP activity in response to cAMP. These results indicate that the hydrogen bonding ability of the Thr(127) and Ser(128) residues is not critical for the cAMP-induced CRP activation. However, the hydrogen bonding ability of Thr(127) and Ser(128) was found to be important in attaining high cAMP affinity. Computational analysis revealed that most natural cAMP-sensing CRP homologs have Thr/Ser, Thr/Thr, or Thr/Asn at positions 127 and 128. All of these pairs are excellent hydrogen bonding partners and they do not elevate CRP activity in the absence of cAMP. Taken together, our analyses suggest that CRP evolved to have hydrogen bonding residues at the cAMP pocket residues 127 and 128 for performing dual functions: preserving high cAMP affinity and keeping CRP inactive in the absence of cAMP.
Collapse
Affiliation(s)
| | | | | | - Cory L Brooks
- Chemistry, California State University Fresno, Fresno, California 93740
| | - Jose Serate
- the Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | | | | | - Joy J Goto
- Chemistry, California State University Fresno, Fresno, California 93740
| | - Jin-Won Lee
- the Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | | |
Collapse
|
68
|
Ravenscroft N, Haeuptle MA, Kowarik M, Fernandez FS, Carranza P, Brunner A, Steffen M, Wetter M, Keller S, Ruch C, Wacker M. Purification and characterization of a Shigella conjugate vaccine, produced by glycoengineering Escherichia coli. Glycobiology 2015; 26:51-62. [PMID: 26353918 DOI: 10.1093/glycob/cwv077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/06/2015] [Indexed: 12/25/2022] Open
Abstract
Shigellosis remains a major cause of diarrheal disease in developing countries and causes substantial morbidity and mortality in children. Glycoconjugate vaccines consisting of bacterial surface polysaccharides conjugated to carrier proteins are the most effective vaccines for controlling invasive bacterial infections. Nevertheless, the development of a multivalent conjugate vaccine to prevent Shigellosis has been hampered by the complex manufacturing process as the surface polysaccharide for each strain requires extraction, hydrolysis, chemical activation and conjugation to a carrier protein. The use of an innovative biosynthetic Escherichia coli glycosylation system substantially simplifies the production of glycoconjugates. Herein, the Shigella dysenteriae type 1 (Sd1) O-polysaccharide is expressed and its functional assembly on an E. coli glycosyl carrier lipid is demonstrated by HPLC analysis and mass spectrometry. The polysaccharide is enzymatically conjugated to specific asparagine residues of the carrier protein by co-expression of the PglB oligosaccharyltransferase and the carrier protein exotoxin A (EPA) from Pseudomonas aeruginosa. The extraction and purification of the Shigella glycoconjugate (Sd1-EPA) and its detailed characterization by the use of physicochemical methods including NMR and mass spectrometry is described. The report shows for the first time that bioconjugation provides a newly developed and improved approach to produce an Sd1 glycoconjugate that can be characterized using state-of-the-art techniques. In addition, this generic process together with the analytical methods is ideally suited for the production of additional Shigella serotypes, allowing the development of a multivalent Shigella vaccine.
Collapse
Affiliation(s)
- Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | | | | | - Paula Carranza
- GlycoVaxyn AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | | | | | - Michael Wetter
- GlycoVaxyn AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Sacha Keller
- GlycoVaxyn AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Corina Ruch
- GlycoVaxyn AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Michael Wacker
- GlycoVaxyn AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| |
Collapse
|
69
|
Alkim C, Cam Y, Trichez D, Auriol C, Spina L, Vax A, Bartolo F, Besse P, François JM, Walther T. Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli. Microb Cell Fact 2015; 14:127. [PMID: 26336892 PMCID: PMC4559361 DOI: 10.1186/s12934-015-0312-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Ethylene glycol (EG) is a bulk chemical that is mainly used as an anti-freezing agent and a raw material in the synthesis of plastics. Production of commercial EG currently exclusively relies on chemical synthesis using fossil resources. Biochemical production of ethylene glycol from renewable resources may be more sustainable. RESULTS Herein, a synthetic pathway is described that produces EG in Escherichia coli through the action of (D)-xylose isomerase, (D)-xylulose-1-kinase, (D)-xylulose-1-phosphate aldolase, and glycolaldehyde reductase. These reactions were successively catalyzed by the endogenous xylose isomerase (XylA), the heterologously expressed human hexokinase (Khk-C) and aldolase (Aldo-B), and an endogenous glycolaldehyde reductase activity, respectively, which we showed to be encoded by yqhD. The production strain was optimized by deleting the genes encoding for (D)-xylulose-5 kinase (xylB) and glycolaldehyde dehydrogenase (aldA), and by overexpressing the candidate glycolaldehyde reductases YqhD, GldA, and FucO. The strain overproducing FucO was the best EG producer reaching a molar yield of 0.94 in shake flasks, and accumulating 20 g/L EG with a molar yield and productivity of 0.91 and 0.37 g/(L.h), respectively, in a controlled bioreactor under aerobic conditions. CONCLUSIONS We have demonstrated the feasibility to produce EG from (D)-xylose via a synthetic pathway in E. coli at approximately 90 % of the theoretical yield.
Collapse
Affiliation(s)
- Ceren Alkim
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France. .,UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP), INRA, Toulouse, France. .,CNRS, UMR5504, Toulouse, France. .,TWB, 3 rue Ariane, 31520, Ramonville-St. Agnes, France.
| | - Yvan Cam
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France. .,UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP), INRA, Toulouse, France. .,CNRS, UMR5504, Toulouse, France. .,TWB, 3 rue Ariane, 31520, Ramonville-St. Agnes, France.
| | - Debora Trichez
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France. .,UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP), INRA, Toulouse, France. .,CNRS, UMR5504, Toulouse, France.
| | - Clément Auriol
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France. .,UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP), INRA, Toulouse, France. .,CNRS, UMR5504, Toulouse, France. .,TWB, 3 rue Ariane, 31520, Ramonville-St. Agnes, France.
| | - Lucie Spina
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France. .,UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP), INRA, Toulouse, France. .,CNRS, UMR5504, Toulouse, France.
| | - Amélie Vax
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France. .,UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP), INRA, Toulouse, France. .,CNRS, UMR5504, Toulouse, France.
| | - François Bartolo
- UMR CNRS 5219, Institut de Mathématiques de Toulouse, INSA, Université de Toulouse, Toulouse, France.
| | - Philippe Besse
- UMR CNRS 5219, Institut de Mathématiques de Toulouse, INSA, Université de Toulouse, Toulouse, France.
| | - Jean Marie François
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France. .,UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP), INRA, Toulouse, France. .,CNRS, UMR5504, Toulouse, France. .,TWB, 3 rue Ariane, 31520, Ramonville-St. Agnes, France.
| | - Thomas Walther
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France. .,UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP), INRA, Toulouse, France. .,CNRS, UMR5504, Toulouse, France. .,TWB, 3 rue Ariane, 31520, Ramonville-St. Agnes, France.
| |
Collapse
|
70
|
Gundogdu O, da Silva DT, Mohammad B, Elmi A, Mills DC, Wren BW, Dorrell N. The Campylobacter jejuni MarR-like transcriptional regulators RrpA and RrpB both influence bacterial responses to oxidative and aerobic stresses. Front Microbiol 2015; 6:724. [PMID: 26257713 PMCID: PMC4508579 DOI: 10.3389/fmicb.2015.00724] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/02/2015] [Indexed: 11/13/2022] Open
Abstract
The ability of the human intestinal pathogen Campylobacter jejuni to respond to oxidative stress is central to bacterial survival both in vivo during infection and in the environment. Re-annotation of the C. jejuni NCTC11168 genome revealed the presence of two MarR-type transcriptional regulators Cj1546 and Cj1556, originally annotated as hypothetical proteins, which we have designated RrpA and RrpB (regulator of response to peroxide) respectively. Previously we demonstrated a role for RrpB in both oxidative and aerobic (O2) stress and that RrpB was a DNA binding protein with auto-regulatory activity, typical of MarR-type transcriptional regulators. In this study, we show that RrpA is also a DNA binding protein and that a rrpA mutant in strain 11168H exhibits increased sensitivity to hydrogen peroxide oxidative stress. Mutation of either rrpA or rrpB reduces catalase (KatA) expression. However, a rrpAB double mutant exhibits higher levels of resistance to hydrogen peroxide oxidative stress, with levels of KatA expression similar to the wild-type strain. Mutation of either rrpA or rrpB also results in a reduction in the level of katA expression, but this reduction was not observed in the rrpAB double mutant. Neither the rrpA nor rrpB mutant exhibits any significant difference in sensitivity to either cumene hydroperoxide or menadione oxidative stresses, but both mutants exhibit a reduced ability to survive aerobic (O2) stress, enhanced biofilm formation and reduced virulence in the Galleria mellonella infection model. The rrpAB double mutant exhibits wild-type levels of biofilm formation and wild-type levels of virulence in the G mellonella infection model. Together these data indicate a role for both RrpA and RrpB in the C. jejuni peroxide oxidative and aerobic (O2) stress responses, enhancing bacterial survival in vivo and in the environment.
Collapse
Affiliation(s)
- Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine , London, UK
| | - Daiani T da Silva
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine , London, UK
| | - Banaz Mohammad
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine , London, UK
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine , London, UK
| | - Dominic C Mills
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine , London, UK
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine , London, UK
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine , London, UK
| |
Collapse
|
71
|
A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii. Proc Natl Acad Sci U S A 2015; 112:9442-7. [PMID: 26170289 DOI: 10.1073/pnas.1502966112] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infections with Acinetobacter baumannii, one of the most troublesome and least studied multidrug-resistant superbugs, are increasing at alarming rates. A. baumannii encodes a type VI secretion system (T6SS), an antibacterial apparatus of Gram-negative bacteria used to kill competitors. Expression of the T6SS varies among different strains of A. baumannii, for which the regulatory mechanisms are unknown. Here, we show that several multidrug-resistant strains of A. baumannii harbor a large, self-transmissible resistance plasmid that carries the negative regulators for T6SS. T6SS activity is silenced in plasmid-containing, antibiotic-resistant cells, while part of the population undergoes frequent plasmid loss and activation of the T6SS. This activation results in T6SS-mediated killing of competing bacteria but renders A. baumannii susceptible to antibiotics. Our data show that a plasmid that has evolved to harbor antibiotic resistance genes plays a role in the differentiation of cells specialized in the elimination of competing bacteria.
Collapse
|
72
|
Ortiz MTL, Rosario PBL, Luna-Nevarez P, Gamez AS, Martínez-del Campo A, Del Rio G. Quality control test for sequence-phenotype assignments. PLoS One 2015; 10:e0118288. [PMID: 25700273 PMCID: PMC4336291 DOI: 10.1371/journal.pone.0118288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 12/22/2014] [Indexed: 11/18/2022] Open
Abstract
Relating a gene mutation to a phenotype is a common task in different disciplines such as protein biochemistry. In this endeavour, it is common to find false relationships arising from mutations introduced by cells that may be depurated using a phenotypic assay; yet, such phenotypic assays may introduce additional false relationships arising from experimental errors. Here we introduce the use of high-throughput DNA sequencers and statistical analysis aimed to identify incorrect DNA sequence-phenotype assignments and observed that 10–20% of these false assignments are expected in large screenings aimed to identify critical residues for protein function. We further show that this level of incorrect DNA sequence-phenotype assignments may significantly alter our understanding about the structure-function relationship of proteins. We have made available an implementation of our method at http://bis.ifc.unam.mx/en/software/chispas.
Collapse
Affiliation(s)
- Maria Teresa Lara Ortiz
- Department of Biochemistry and Structural Biology. Instituto de Fisiología Celular at the Universidad Nacional Autónoma de México, México DF, 04510, México
| | - Pablo Benjamín Leon Rosario
- Department of Biochemistry and Structural Biology. Instituto de Fisiología Celular at the Universidad Nacional Autónoma de México, México DF, 04510, México
| | - Pablo Luna-Nevarez
- Department of agronomical sciences and veterinary. Sonora Institute of Technology, Obregon city 85000, Mexico
| | - Alba Savin Gamez
- Department of Biochemistry and Structural Biology. Instituto de Fisiología Celular at the Universidad Nacional Autónoma de México, México DF, 04510, México
| | - Ana Martínez-del Campo
- Department of Genetics. Instituto de Fisiología Celular at the Universidad Nacional Autónoma de México, México DF, 04510, México
| | - Gabriel Del Rio
- Department of Biochemistry and Structural Biology. Instituto de Fisiología Celular at the Universidad Nacional Autónoma de México, México DF, 04510, México
- * E-mail:
| |
Collapse
|
73
|
Kämpf MM, Braun M, Sirena D, Ihssen J, Thöny-Meyer L, Ren Q. In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation. Microb Cell Fact 2015; 14:12. [PMID: 25612741 PMCID: PMC4308876 DOI: 10.1186/s12934-015-0195-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/12/2015] [Indexed: 11/26/2022] Open
Abstract
Background Glycoconjugated vaccines composed of polysaccharide antigens covalently linked to immunogenic carrier proteins have proved to belong to the most effective and safest vaccines for combating bacterial pathogens. The functional transfer of the N-glycosylation machinery from Campylobacter jejuni to the standard prokaryotic host Escherichia coli established a novel bioconjugation methodology termed bacterial glycoengineering. Results In this study, we report on the production of a new recombinant glycoconjugate vaccine against Shigella flexneri 2a representing the major serotype for global outbreaks of shigellosis. We demonstrate that S. flexneri 2a O-polysaccharides can be transferred to a detoxified variant of Pseudomonas aeruginosa carrier protein exotoxin A (EPA) by the C. jejuni oligosaccharyltransferase PglB, resulting in glycosylated EPA-2a. Moreover, we optimized the in vivo production of this novel vaccine by identification and quantitative analysis of critical process parameters for glycoprotein synthesis. It was found that sequential induction of oligosaccharyltransferase PglB and carrier protein EPA increased the specific productivity of EPA-2a by a factor of 1.6. Furthermore, by the addition of 10 g/L of the monosaccharide N-acetylglucosamine during induction, glycoconjugate vaccine yield was boosted up to 3.1-fold. The optimum concentration of Mg2+ ions for N-glycan transfer was determined to be 10 mM. Finally, optimized parameters were transferred to high cell density cultures with a 46-fold increase of overall yield of glycoconjugate compared to the one in initial shake flask production. Conclusion The present study is the first attempt to identify stimulating parameters for improved productivity of S. flexneri 2a bioconjugates. Optimization of glycosylation efficiency will ultimately foster the transfer of lab-scale expression to a cost-effective in vivo production process for a glycoconjugate vaccine against S. flexneri 2a in E. coli. This study is an important step towards this goal and provides a starting point for further optimization studies.
Collapse
Affiliation(s)
- Michael M Kämpf
- Laboratory for Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland. .,GlycoVaxyn AG, Grabenstrasse 3, 8952, Schlieren, Switzerland.
| | - Martin Braun
- GlycoVaxyn AG, Grabenstrasse 3, 8952, Schlieren, Switzerland.
| | | | - Julian Ihssen
- Laboratory for Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland.
| | - Linda Thöny-Meyer
- Laboratory for Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland.
| | - Qun Ren
- Laboratory for Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland.
| |
Collapse
|
74
|
Vozza NF, Feldman MF. Glyco-engineering O-Antigen-Based Vaccines and Diagnostics in E. coli. Methods Mol Biol 2015; 1321:57-70. [PMID: 26082215 DOI: 10.1007/978-1-4939-2760-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The biotechnological relevance of protein glycosylation has exponentially grown in recent years. With the advances in protein glycosylation research, new possibilities for glyco-engineering have arisen, and a wide array of glycans can be designed and potentially transferred to target proteins in the biotechnologically relevant host Escherichia coli. Here we provide insight on how to select the best strains and plasmids. We also describe methods for determination of glycan expression and assembly, protein glycosylation using western blot, and preparation of samples for mass spectrometry.
Collapse
Affiliation(s)
- Nicolas F Vozza
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
75
|
Effects of the global regulator CsrA on the BarA/UvrY two-component signaling system. J Bacteriol 2014; 197:983-91. [PMID: 25535275 DOI: 10.1128/jb.02325-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The hybrid sensor kinase BarA and its cognate response regulator UvrY, members of the two-component signal transduction family, activate transcription of CsrB and CsrC noncoding RNAs. These two small RNAs act by sequestering the RNA binding protein CsrA, which posttranscriptionally regulates translation and/or stability of its target mRNAs. Here, we provide evidence that CsrA positively affects, although indirectly, uvrY expression, at both the transcriptional and translational levels. We also demonstrate that CsrA is required for properly switching BarA from its phosphatase to its kinase activity. Thus, the existence of a feedback loop mechanism that involves the Csr and BarA/UvrY global regulatory systems is exposed.
Collapse
|
76
|
Acyl-homoserine lactone recognition and response hindering the quorum-sensing regulator EsaR. PLoS One 2014; 9:e107687. [PMID: 25238602 PMCID: PMC4169570 DOI: 10.1371/journal.pone.0107687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
During quorum sensing in the plant pathogen Pantoea stewartii subsp. stewartii, EsaI, an acyl-homoserine lactone (AHL) synthase, and the transcription factor EsaR coordinately control capsular polysaccharide production. The capsule is expressed only at high cell density when AHL levels are high, leading to inactivation of EsaR. In lieu of detailed structural information, the precise mechanism whereby EsaR recognizes AHL and is hindered by it, in a response opposite to that of most other LuxR homologues, remains unresolved. Hence, a random mutagenesis genetic approach was designed to isolate EsaR* variants that are immune to the effects of AHL. Error-prone PCR was used to generate the desired mutants, which were subsequently screened for their ability to repress transcription in the presence of AHL. Following sequencing, site-directed mutagenesis was used to generate all possible mutations of interest as single, rather than multiple amino acid substitutions. Eight individual amino acids playing a critical role in the AHL-insensitive phenotype have been identified. The ability of EsaR* variants to bind AHL and the effect of individual substitutions on the overall conformation of the protein were examined through in vitro assays. Six EsaR* variants had a decreased ability to bind AHL. Fluorescence anisotropy was used to examine the relative DNA binding affinity of the final two EsaR* variants, which retained some AHL binding capability but remained unresponsive to it, perhaps due to an inability of the N-terminal domain to transduce information to the C-terminal domain.
Collapse
|
77
|
Segall-Shapiro TH, Meyer AJ, Ellington AD, Sontag ED, Voigt CA. A 'resource allocator' for transcription based on a highly fragmented T7 RNA polymerase. Mol Syst Biol 2014; 10:742. [PMID: 25080493 PMCID: PMC4299498 DOI: 10.15252/msb.20145299] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthetic genetic systems share resources with the host, including machinery for transcription
and translation. Phage RNA polymerases (RNAPs) decouple transcription from the host and generate
high expression. However, they can exhibit toxicity and lack accessory proteins (σ factors
and activators) that enable switching between different promoters and modulation of activity. Here,
we show that T7 RNAP (883 amino acids) can be divided into four fragments that have to be
co-expressed to function. The DNA-binding loop is encoded in a C-terminal 285-aa ‘σ
fragment’, and fragments with different specificity can direct the remaining 601-aa
‘core fragment’ to different promoters. Using these parts, we have built a resource
allocator that sets the core fragment concentration, which is then shared by multiple σ
fragments. Adjusting the concentration of the core fragment sets the maximum transcriptional
capacity available to a synthetic system. Further, positive and negative regulation is implemented
using a 67-aa N-terminal ‘α fragment’ and a null (inactivated) σ
fragment, respectively. The α fragment can be fused to recombinant proteins to make promoters
responsive to their levels. These parts provide a toolbox to allocate transcriptional resources via
different schemes, which we demonstrate by building a system which adjusts promoter activity to
compensate for the difference in copy number of two plasmids.
Collapse
Affiliation(s)
- Thomas H Segall-Shapiro
- Department of Biological Engineering, Synthetic Biology Center Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam J Meyer
- Institute for Cellular and Molecular Biology University of Texas at Austin, Austin, TX, USA
| | - Andrew D Ellington
- Institute for Cellular and Molecular Biology University of Texas at Austin, Austin, TX, USA
| | - Eduardo D Sontag
- Department of Mathematics, Rutgers University, Piscataway, NJ, USA
| | - Christopher A Voigt
- Department of Biological Engineering, Synthetic Biology Center Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
78
|
Garcia-Quintanilla F, Iwashkiw JA, Price NL, Stratilo C, Feldman MF. Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery. Front Microbiol 2014; 5:381. [PMID: 25120536 PMCID: PMC4114197 DOI: 10.3389/fmicb.2014.00381] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/08/2014] [Indexed: 11/13/2022] Open
Abstract
Vaccines developing immune responses toward surface carbohydrates conjugated to proteins are effective in preventing infection and death by bacterial pathogens. Traditional production of these vaccines utilizes complex synthetic chemistry to acquire and conjugate the glycan to a protein. However, glycoproteins produced by bacterial protein glycosylation systems are significantly easier to produce, and could possible be used as vaccine candidates. In this work, we functionally expressed the Burkholderia pseudomallei O polysaccharide (OPS II), the Campylobacter jejuni oligosaccharyltransferase (OTase), and a suitable glycoprotein (AcrA) in a designer E. coli strain with a higher efficiency for production of glycoconjugates. We were able to produce and purify the OPS II-AcrA glycoconjugate, and MS analysis confirmed correct glycan was produced and attached. We observed the attachment of the O-acetylated deoxyhexose directly to the acceptor protein, which expands the range of substrates utilized by the OTase PglB. Injection of the glycoprotein into mice generated an IgG immune response against B. pseudomallei, and this response was partially protective against an intranasal challenge. Our experiments show that bacterial engineered glycoconjugates can be utilized as vaccine candidates against B. pseudomallei. Additionally, our new E. coli strain SDB1 is more efficient in glycoprotein production, and could have additional applications in the future.
Collapse
Affiliation(s)
| | - Jeremy A. Iwashkiw
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
| | - Nancy L. Price
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
| | - Chad Stratilo
- Defence Research and Development Canada – Suffield Research CentreMedicine Hat, AB, Canada
| | - Mario F. Feldman
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
79
|
Li G, Young KD. A cAMP-independent carbohydrate-driven mechanism inhibits tnaA expression and TnaA enzyme activity in Escherichia coli. MICROBIOLOGY-SGM 2014; 160:2079-2088. [PMID: 25061041 DOI: 10.1099/mic.0.080705-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
When Escherichia coli is grown in a medium lacking glucose or another preferred carbohydrate, the concentration of cAMP-cAMP receptor protein (cAMP-CRP) increases, and this latter complex regulates the expression of more than 180 genes. To respond rapidly to changes in carbohydrate availability, E. coli must maintain a suitable intracellular concentration of cAMP by either exporting or degrading excess cAMP. Currently, cAMP export via the TolC protein is thought to be more efficient at reducing these levels than is CpdA-mediated degradation of cAMP. Here, we compared the contributions of TolC and CpdA by measuring the expression of cAMP-regulated genes that encode tryptophanase (TnaA) and β-galactosidase. In the presence of exogenous cAMP, a tolC mutant produced intermediate levels of these enzymes, suggesting that cAMP levels were held in check by CpdA. Conversely, a cpdA mutant produced much higher amounts of these enzymes, indicating that CpdA was more efficient than TolC at reducing cAMP levels. Surprisingly, expression of the tnaA gene halted rapidly when glucose was added to cells lacking both TolC and CpdA, even though under these conditions cAMP could not be removed by either pathway and tnaA expression should have remained high. This result suggests the existence of an additional mechanism that eliminates intracellular cAMP or terminates expression of some cAMP-CRP-regulated genes. In addition, adding glucose and other carbohydrates rapidly inhibited the function of pre-formed TnaA, indicating that TnaA is regulated by a previously unknown carbohydrate-dependent post-translational mechanism.
Collapse
Affiliation(s)
- Gang Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Kevin D Young
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| |
Collapse
|
80
|
Yu Y, Liu X, Wang H, Li X, Lin J. Construction and characterization of tetH overexpression and knockout strains of Acidithiobacillus ferrooxidans. J Bacteriol 2014; 196:2255-64. [PMID: 24727223 PMCID: PMC4054192 DOI: 10.1128/jb.01472-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/28/2014] [Indexed: 11/20/2022] Open
Abstract
Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms used for bioleaching. It can obtain energy from the oxidation of Fe(2+), H2, S(0), and various reduced inorganic sulfur compounds (RISCs). Tetrathionate is a key intermediate during RISC oxidation, hydrolyzed by tetrathionate hydrolase (TetH), and used as sole energy source. In this study, a tetH knockout (ΔtetH) mutant and a tetH overexpression strain were constructed and characterized. The tetH overexpression strain grew better on sulfur and tetrathionate and possessed a higher rate of tetrathionate utilization and TetH activity than the wild type. However, its cell yields on tetrathionate were much lower than those on sulfur. The ΔtetH mutant could not grow on tetrathionate but could proliferate on sulfur with a lower cell yield than the wild type's, which indicated that tetrathionate hydrolysis is mediated only by TetH, encoded by tetH. The ΔtetH mutant could survive in ferrous medium with an Fe(2+) oxidation rate similar to that of the wild type. For the tetH overexpression strain, the rate was relatively higher than that of the wild type. The reverse transcription-quantitative PCR (qRT-PCR) results showed that tetH and doxD2 acted synergistically, and doxD2 was considered important in thiosulfate metabolism. Of the two sqr genes, AFE_0267 seemed to play as important a role in sulfide oxidation as AFE_1792. This study not only provides a substantial basis for studying the function of the tetH gene but also may serve as a model to clarify other candidate genes involved in sulfur oxidation in this organism.
Collapse
Affiliation(s)
- Yangyang Yu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Xiangmei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Huiyan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Xiuting Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
81
|
Wen Q, Liu X, Wang H, Lin J. A versatile and efficient markerless gene disruption system forAcidithiobacillus thiooxidans: application for characterizing a copper tolerance related multicopper oxidase gene. Environ Microbiol 2014; 16:3499-514. [DOI: 10.1111/1462-2920.12494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Qing Wen
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| | - Xiangmei Liu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| | - Huiyan Wang
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| |
Collapse
|
82
|
Expression control of nitrile hydratase and amidase genes in Rhodococcus erythropolis and substrate specificities of the enzymes. Antonie Van Leeuwenhoek 2014; 105:1179-90. [DOI: 10.1007/s10482-014-0179-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
|
83
|
Mohamed YF, Valvano MA. A Burkholderia cenocepacia MurJ (MviN) homolog is essential for cell wall peptidoglycan synthesis and bacterial viability. Glycobiology 2014; 24:564-76. [PMID: 24688094 DOI: 10.1093/glycob/cwu025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cell wall peptidoglycan (PG) of Burkholderia cenocepacia, an opportunistic pathogen, has not yet been characterized. However, the B. cenocepacia genome contains homologs of genes encoding PG biosynthetic functions in other bacteria. PG biosynthesis involves the formation of the undecaprenyl-pyrophosphate-linked N-acetyl glucosamine-N-acetyl muramic acid-pentapeptide, known as lipid II, which is built on the cytosolic face of the cell membrane. Lipid II is then translocated across the membrane and its glycopeptide moiety becomes incorporated into the growing cell wall mesh; this translocation step is critical to PG synthesis. We have investigated candidate flippase homologs of the MurJ family in B. cenocepacia. Our results show that BCAL2764, herein referred to as murJBc, is indispensable for viability. Viable B. cenocepacia could only be obtained through a conditional mutagenesis strategy by placing murJBc under the control of a rhamnose-inducible promoter. Under rhamnose depletion, the conditional strain stopped growing and individual cells displayed morphological abnormalities consistent with a defect in PG synthesis. Bacterial cells unable to express MurJBc underwent cell lysis, while partial MurJBc depletion sensitized the mutant to the action of β-lactam antibiotics. Depletion of MurJBc caused accumulation of PG precursors consistent with the notion that this protein plays a role in lipid II flipping to the periplasmic compartment. Reciprocal complementation experiments of conditional murJ mutants in B. cenocepacia and Escherichia coli with plasmids expressing MurJ from each strain indicated that MurJBc and MurJEc are functional homologs. Together, our results are consistent with the notion that MurJBc is a PG lipid II flippase in B. cenocepacia.
Collapse
|
84
|
relA enhances the adherence of enteropathogenic Escherichia coli. PLoS One 2014; 9:e91703. [PMID: 24643076 PMCID: PMC3958371 DOI: 10.1371/journal.pone.0091703] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 02/14/2014] [Indexed: 11/19/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a known causative agent of diarrhea in children. In the process of colonization of the small intestine, EPEC synthesizes two types of adhesins, the bundle-forming pilus (BFP) and intimin. The BFP pilus is an adhesin associated with the initial stages of adherence of EPEC to epithelial cells, while the outer membrane protein intimin carries out the intimate adherence that takes place at the third stage of infection. BFP is encoded by the bfp operon located in plasmid EAF, present only in typical EPEC isolates, while eae, the gene that encodes intimin is situated in the LEE, a chromosomal pathogenicity island. Transcription of bfp and eae is regulated by the products of the perABC operon, also present in plasmid EAF. Here we show that deletion of relA, that encodes a guanosine penta and tetraphosphate synthetase impairs EPEC adherence to epithelial cells in vitro. In the absence of relA, the transcription of the regulatory operon perABC is reduced, resulting in lower levels of BFP and intimin. Bacterial adherence, BFP and intimin synthesis and perABC expression are restored upon complementation with the wild-type relA allele.
Collapse
|
85
|
Lithgow KV, Scott NE, Iwashkiw JA, Thomson ELS, Foster LJ, Feldman MF, Dennis JJ. A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol Microbiol 2014; 92:116-37. [PMID: 24673753 DOI: 10.1111/mmi.12540] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 01/25/2023]
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) are pathogens of humans, plants, and animals. Burkholderia cenocepacia is one of the most common Bcc species infecting cystic fibrosis (CF) patients and its carriage is associated with poor prognosis. In this study, we characterized a general O-linked protein glycosylation system in B. cenocepacia K56-2. The PglLBc O-oligosaccharyltransferase (O-OTase), encoded by the cloned gene bcal0960, was shown to be capable of transferring a heptasaccharide from the Campylobacter jejuni N-glycosylation system to a Neisseria meningitides-derived acceptor protein in an Escherichia coli background, indicating that the enzyme has relaxed specificities for both the sugar donor and protein acceptor. In B cenocepacia K56-2, PglLBc is responsible for the glycosylation of 23 proteins involved in diverse cellular processes. Mass spectrometry analysis revealed that these proteins are modified with a trisaccharide HexNAc-HexNAc-Hex, which is unrelated to the O-antigen biosynthetic process. The glycosylation sites that were identified existed within regions of low complexity, rich in serine, alanine, and proline. Disruption of bcal0960 abolished glycosylation and resulted in reduced swimming motility and attenuated virulence towards both plant and insect model organisms. This study demonstrates the first example of post-translational modification in Bcc with implications for pathogenesis.
Collapse
Affiliation(s)
- Karen V Lithgow
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | | | | | | | | | | | | |
Collapse
|
86
|
Musumeci MA, Faridmoayer A, Watanabe Y, Feldman MF. Evaluating the role of conserved amino acids in bacterial O-oligosaccharyltransferases by in vivo, in vitro and limited proteolysis assays. Glycobiology 2013; 24:39-50. [DOI: 10.1093/glycob/cwt087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
87
|
Cyclic AMP receptor protein regulates pheromone-mediated bioluminescence at multiple levels in Vibrio fischeri ES114. J Bacteriol 2013; 195:5051-63. [PMID: 23995643 DOI: 10.1128/jb.00751-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bioluminescence in Vibrio fischeri ES114 is activated by autoinducer pheromones, and this regulation serves as a model for bacterial cell-cell signaling. As in other bacteria, pheromone concentration increases with cell density; however, pheromone synthesis and perception are also modulated in response to environmental stimuli. Previous studies suggested that expression of the pheromone-dependent bioluminescence activator LuxR is regulated in response to glucose by cyclic AMP (cAMP) receptor protein (CRP) (P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 164:45-50, 1985; P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 170:4040-4046, 1988; P. V. Dunlap, J. Bacteriol. 171:1199-1202, 1989; and W. F. Friedrich and E. P. Greenberg, Arch. Microbiol. 134:87-91, 1983). Consistent with this model, we found that bioluminescence in V. fischeri ES114 is modulated by glucose and stimulated by cAMP. In addition, a Δcrp mutant was ∼100-fold dimmer than ES114 and did not increase luminescence in response to added cAMP, even though cells lacking crp were still metabolically capable of producing luminescence. We further discovered that CRP regulates not only luxR but also the alternative pheromone synthase gene ainS. We found that His-tagged V. fischeri CRP could bind sequences upstream of both luxR and ainS, supporting bioinformatic predictions of direct regulation at both promoters. Luminescence increased in response to cAMP if either the ainS or luxR system was under native regulation, suggesting cAMP-CRP significantly increases luminescence through both systems. Finally, using transcriptional reporters in transgenic Escherichia coli, we elucidated two additional regulatory connections. First, LuxR-independent basal transcription of the luxI promoter was enhanced by CRP. Second, the effect of CRP on the ainS promoter depended on whether the V. fischeri regulatory gene litR was also introduced. These results suggest an integral role for CRP in pheromone signaling that goes beyond sensing cell density.
Collapse
|
88
|
Lees-Miller RG, Iwashkiw JA, Scott NE, Seper A, Vinogradov E, Schild S, Feldman MF. A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii. Mol Microbiol 2013; 89:816-30. [PMID: 23782391 DOI: 10.1111/mmi.12300] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 11/29/2022]
Abstract
Multi-drug resistant strains of Acinetobacter baumannii are increasingly being isolated in hospitals worldwide. Among the virulence factors identified in this bacterium there is a general O-glycosylation system that appears to be important for biofilm formation and virulence, and the capsular polysaccharide, which is essential for resistance to complement killing. In this work, we identified a locus that is responsible for the synthesis of the O-pentasaccharide found on the glycoproteins. Besides the enzymes required for the assembly of the glycan, additional proteins typically involved in polymerization and transport of capsule were identified within or adjacently to the locus. Mutagenesis of PglC, the initiating glycosyltransferase prevented the synthesis of both glycoproteins and capsule, resulting in abnormal biofilm structures and attenuated virulence in mice. These results, together with the structural analysis of A. baumannii 17978 capsular polysaccharide via NMR, demonstrated that the pentasaccharides that decorate the glycoproteins are also the building blocks for capsule biosynthesis. Two linked subunits, but not longer glycan chains, were detected on proteins via MS. The discovery of a bifurcated pathway for O-glycosylation and capsule synthesis not only provides insight into the biology of A. baumannii but also identifies potential novel candidates for intervention against this emerging pathogen.
Collapse
Affiliation(s)
- Robert G Lees-Miller
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, Edmonton, Alberta, Canada, T6G 2E9
| | | | | | | | | | | | | |
Collapse
|
89
|
Albiniak AM, Matos CFRO, Branston SD, Freedman RB, Keshavarz-Moore E, Robinson C. High-level secretion of a recombinant protein to the culture medium with a Bacillus subtilis twin-arginine translocation system in Escherichia coli. FEBS J 2013; 280:3810-21. [PMID: 23745597 DOI: 10.1111/febs.12376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 11/29/2022]
Abstract
The twin-arginine translocation (Tat) system transports folded proteins across the plasma membrane in bacteria, and heterologous proteins can be exported by this pathway if a Tat-type signal peptide is present at the N-terminus. The system thus has potential for biopharmaceutical production in Escherichia coli, where export to the periplasm is often a favoured approach. Previous studies have shown that E. coli cells can export high levels of protein by the Tat pathway, and the protein product accummulates almost exclusively in the periplasm. In this study, we analysed E. coli cells that express the Bacillus subtilis TatAdCd system in place of the native TatABC system. We show that a heterologous model protein, comprising the TorA signal peptide linked to green fluorescent protein (TorA-GFP), is efficiently exported by the TatAdCd system. However, whereas the GFP is exported initially to the periplasm during batch fermentation, the mature protein is increasingly found in the extracellular culture medium. By the end of a 16-h fermentation, ~ 90% of exported GFP is present in the medium as active mature protein. The total protein profiles of the medium and periplasm are essentially identical, confirming that the outer membrane becomes leaky during the fermentation process. The cells are otherwise intact, and there is no large-scale release of cytoplasmic contents. Export levels are relatively high, with ~ 0.35 g GFP·L⁻¹ culture present in the medium. This system thus offers a means of producing recombinant protein in E. coli and harvesting directly from the medium, with potential advantages in terms of ease of purification and downstream processing.
Collapse
Affiliation(s)
- Anna M Albiniak
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | | | | | | | |
Collapse
|
90
|
Ubiquinone and menaquinone electron carriers represent the yin and yang in the redox regulation of the ArcB sensor kinase. J Bacteriol 2013; 195:3054-61. [PMID: 23645604 DOI: 10.1128/jb.00406-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Arc two-component system, comprising the ArcB sensor kinase and the ArcA response regulator, modulates the expression of numerous genes in response to respiratory growth conditions. Under aerobic growth conditions, the ubiquinone electron carriers were proposed to silence the kinase activity of ArcB by oxidizing two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Here, we confirm the role of the ubiquinone electron carriers as the silencing signal of ArcB in vivo, we show that the redox potential of ArcB is about -41 mV, and we demonstrate that the menaquinols are required for proper ArcB activation upon a shift from aerobic to anaerobic growth conditions. Thus, an essential link in the Arc signal transduction pathway connecting the redox state of the quinone pool to the transcriptional apparatus is elucidated.
Collapse
|
91
|
Effects of combinatorial expression of selA, selB and selC genes on the efficiency of selenocysteine incorporation in Escherichia coli. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-2250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
92
|
Roehrich AD, Guillossou E, Blocker AJ, Martinez-Argudo I. Shigella IpaD has a dual role: signal transduction from the type III secretion system needle tip and intracellular secretion regulation. Mol Microbiol 2013; 87:690-706. [PMID: 23305090 PMCID: PMC3575693 DOI: 10.1111/mmi.12124] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 12/25/2022]
Abstract
Type III secretion systems (T3SSs) are protein injection devices essential for the interaction of many Gram-negative bacteria with eukaryotic cells. While Shigella assembles its T3SS when the environmental conditions are appropriate for invasion, secretion is only activated after physical contact with a host cell. First, the translocators are secreted to form a pore in the host cell membrane, followed by effectors which manipulate the host cell. Secretion activation is tightly controlled by conserved T3SS components: the needle tip proteins IpaD and IpaB, the needle itself and the intracellular gatekeeper protein MxiC. To further characterize the role of IpaD during activation, we combined random mutagenesis with a genetic screen to identify ipaD mutant strains unable to respond to host cell contact. Class II mutants have an overall defect in secretion induction. They map to IpaD's C-terminal helix and likely affect activation signal generation or transmission. The Class I mutant secretes translocators prematurely and is specifically defective in IpaD secretion upon activation. A phenotypically equivalent mutant was found in mxiC. We show that IpaD and MxiC act in the same intracellular pathway. In summary, we demonstrate that IpaD has a dual role and acts at two distinct locations during secretion activation.
Collapse
Affiliation(s)
- A Dorothea Roehrich
- School of Cellular & Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
93
|
Mally M, Fontana C, Leibundgut-Landmann S, Laacisse L, Fan YY, Widmalm G, Aebi M. Glycoengineering of host mimicking type-2 LacNAc polymers and Lewis X antigens on bacterial cell surfaces. Mol Microbiol 2012; 87:112-31. [PMID: 23163552 DOI: 10.1111/mmi.12086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 01/27/2023]
Abstract
Bacterial carbohydrate structures play a central role in mediating a variety of host-pathogen interactions. Glycans can either elicit protective immune response or lead to escape of immune surveillance by mimicking host structures. Lipopolysaccharide (LPS), a major component on the surface of Gram-negative bacteria, is composed of a lipid A-core and the O-antigen polysaccharide. Pathogens like Neisseria meningitidis expose a lipooligosaccharide (LOS), which outermost glycans mimick mammalian epitopes to avoid immune recognition. Lewis X (Galβ1-4(Fucα1-3)GlcNAc) antigens of Helicobacter pylori or of the helminth Schistosoma mansoni modulate the immune response by interacting with receptors on human dendritic cells. In a glycoengineering approach we generate human carbohydrate structures on the surface of recombinant Gram-negative bacteria, such as Escherichia coli and Salmonella enterica sv. Typhimurium that lack O-antigen. A ubiquitous building block in mammalian N-linked protein glycans is Galβ1-4GlcNAc, referred to as a type-2 N-acetyllactosamine, LacNAc, sequence. Strains displaying polymeric LacNAc were generated by introducing a combination of glycosyltransferases that act on modified lipid A-cores, resulting in efficient expression of the carbohydrate epitope on bacterial cell surfaces. The poly-LacNAc scaffold was used as an acceptor for fucosylation leading to polymers of Lewis X antigens. We analysed the distribution of the carbohydrate epitopes by FACS, microscopy and ELISA and confirmed engineered LOS containing LacNAc and Lewis X repeats by MALDI-TOF and NMR analysis. Glycoengineered LOS induced pro-inflammatory response in murine dendritic cells. These bacterial strains can thus serve as tools to analyse the role of defined carbohydrate structures in different biological processes.
Collapse
Affiliation(s)
- Manuela Mally
- ETH Zurich, Institute of Microbiology, Wolfgang-Pauli-Str. 10, HCI F 406, CH- 8093 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
94
|
Wetter M, Kowarik M, Steffen M, Carranza P, Corradin G, Wacker M. Engineering, conjugation, and immunogenicity assessment of Escherichia coli O121 O antigen for its potential use as a typhoid vaccine component. Glycoconj J 2012; 30:511-22. [PMID: 23053636 DOI: 10.1007/s10719-012-9451-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 11/25/2022]
Abstract
State-of-the-art production technologies for conjugate vaccines are complex, multi-step processes. An alternative approach to produce glycoconjugates is based on the bacterial N-linked protein glycosylation system first described in Campylobacter jejuni. The C. jejuni N-glycosylation system has been successfully transferred into Escherichia coli, enabling in vivo production of customized recombinant glycoproteins. However, some antigenic bacterial cell surface polysaccharides, like the Vi antigen of Salmonella enterica serovar Typhi, have not been reported to be accessible to the bacterial oligosaccharyltransferase PglB, hence hamper development of novel conjugate vaccines against typhoid fever. In this report, Vi-like polysaccharide structures that can be transferred by PglB were evaluated as typhoid vaccine components. A polysaccharide fulfilling these requirements was found in Escherichia coli serovar O121. Inactivation of the E. coli O121 O antigen cluster encoded gene wbqG resulted in expression of O polysaccharides reactive with antibodies raised against the Vi antigen. The structure of the recombinantly expressed mutant O polysaccharide was elucidated using a novel HPLC and mass spectrometry based method for purified undecaprenyl pyrophosphate (Und-PP) linked glycans, and the presence of epitopes also found in the Vi antigen was confirmed. The mutant O antigen structure was transferred to acceptor proteins using the bacterial N-glycosylation system, and immunogenicity of the resulting conjugates was evaluated in mice. The conjugate-induced antibodies reacted in an enzyme-linked immunosorbent assay with E. coli O121 LPS. One animal developed a significant rise in serum immunoglobulin anti-Vi titer upon immunization.
Collapse
Affiliation(s)
- Michael Wetter
- GlycoVaxyn AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | | | | | | | | | | |
Collapse
|
95
|
Smith AT, Marvin KA, Freeman KM, Kerby RL, Roberts GP, Burstyn JN. Identification of Cys94 as the distal ligand to the Fe(III) heme in the transcriptional regulator RcoM-2 from Burkholderia xenovorans. J Biol Inorg Chem 2012; 17:1071-82. [PMID: 22855237 PMCID: PMC3484680 DOI: 10.1007/s00775-012-0920-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
The CO-responsive transcriptional regulator RcoM from Burkholderia xenovorans (BxRcoM) was recently identified as a Cys(thiolate)-ligated heme protein that undergoes a redox-mediated ligand switch; however, the Cys bound to the Fe(III) heme was not identified. To that end, we generated and purified three Cys-to-Ser variants of BxRcoM-2--C94S, C127S, and C130S--and examined their spectroscopic properties in order to identify the native Cys(thiolate) ligand. Electronic absorption, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopies demonstrate that the C127S and C130S variants, like wild-type BxRcoM-2, bind a six-coordinate low-spin Fe(III) heme using a Cys/His ligation motif. In contrast, electronic absorption and resonance Raman spectra of the C94S variant are most consistent with a mixture of five-coordinate high-spin and six-coordinate low-spin Fe(III) heme, neither of which are ligated by a Cys(thiolate) ligand. The EPR spectrum of C94S is dominated by a large, axial high-spin Fe(III) signal, confirming that the native ligation motif is not maintained in this variant. Together, these data reveal that Cys(94) is the distal Fe(III) heme ligand in BxRcoM-2; by sequence alignment, Cys(94) is also implicated as the distal Fe(III) heme ligand in BxRcoM-1, another homologue found in the same organism.
Collapse
Affiliation(s)
- Aaron T. Smith
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Katherine A. Marvin
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Katherine M. Freeman
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Robert L. Kerby
- Department of Bacteriology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | - Gary P. Roberts
- Department of Bacteriology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| |
Collapse
|
96
|
Ihssen J, Kowarik M, Wiesli L, Reiss R, Wacker M, Thöny-Meyer L. Structural insights from random mutagenesis of Campylobacter jejuni oligosaccharyltransferase PglB. BMC Biotechnol 2012; 12:67. [PMID: 23006740 PMCID: PMC3527161 DOI: 10.1186/1472-6750-12-67] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/13/2012] [Indexed: 12/17/2022] Open
Abstract
Background Protein glycosylation is of fundamental importance in many biological systems. The discovery of N-glycosylation in bacteria and the functional expression of the N-oligosaccharyltransferase PglB of Campylobacter jejuni in Escherichia coli enabled the production of engineered glycoproteins and the study of the underlying molecular mechanisms. A particularly promising application for protein glycosylation in recombinant bacteria is the production of potent conjugate vaccines where polysaccharide antigens of pathogenic bacteria are covalently bound to immunogenic carrier proteins. Results In this study capsular polysaccharides of the clinically relevant pathogen Staphylococcus aureus serotype 5 (CP5) were expressed in Escherichia coli and linked in vivo to a detoxified version of Pseudomonas aeruginosa exotoxin (EPA). We investigated which amino acids of the periplasmic domain of PglB are crucial for the glycosylation reaction using a newly established 96-well screening system enabling the relative quantification of glycoproteins by enzyme-linked immunosorbent assay. A random mutant library was generated by error-prone PCR and screened for inactivating amino acid substitutions. In addition to 15 inactive variants with amino acid changes within the previously known, strictly conserved WWDYG motif of N-oligosaccharyltransferases, 8 inactivating mutations mapped to a flexible loop in close vicinity of the amide nitrogen atom of the acceptor asparagine as revealed in the crystal structure of the homologous enzyme C. lari PglB. The importance of the conserved loop residue H479 for glycosylation was confirmed by site directed mutagenesis, while a change to alanine of the adjacent, non-conserved L480 had no effect. In addition, we investigated functional requirements in the so-called MIV motif of bacterial N-oligosaccharyltransferases. Amino acid residues I571 and V575, which had been postulated to interact with the acceptor peptide, were subjected to cassette saturation mutagenesis. With the exception of I571C only hydrophobic residues were found in active variants. Variant I571V performed equally well as the wild type, cysteine at the same position reduced glycoprotein yield slightly, while a change to phenylalanine reduced activity by a factor of three. Conclusions This study provides novel structure-function relationships for the periplasmic domain of the Campylobacter jejuni N-oligosaccharyltransferase PglB and describes procedures for generating and screening oligosaccharyltransferase mutant libraries in an engineered E. coli system.
Collapse
Affiliation(s)
- Julian Ihssen
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomaterials, CH-9014, St, Gallen, Switzerland
| | | | | | | | | | | |
Collapse
|
97
|
Burkholderia xenovorans RcoM(Bx)-1, a transcriptional regulator system for sensing low and persistent levels of carbon monoxide. J Bacteriol 2012; 194:5803-16. [PMID: 22923594 DOI: 10.1128/jb.01024-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single-component RcoM transcription factor couples an N-terminally bound heme cofactor with a C-terminal "LytTR" DNA-binding domain. Here the RcoM(Bx)-1 protein from Burkholderia xenovorans LB400 was heterologously expressed and then purified in a form with minimal bound CO (~10%) and was found to stably bind this effector with a nanomolar affinity. DNase I protection assays demonstrated that the CO-associated form binds with a micromolar affinity to two ~60-bp DNA regions, each comprised of a novel set of three direct-repeat binding sites spaced 21 bp apart on center. Binding to each region was independent, while binding to the triplet binding sites within a region was cooperative, depended upon spacing and sequence, and was marked by phased DNase I hyperactivity and protection patterns consistent with considerable changes in the DNA conformation of the nucleoprotein complex. Each protected binding site spanned a conserved motif (5'-TTnnnG-3') that was present, in triplicate, in putative RcoM-binding regions of more than a dozen organisms. In vivo screens confirmed the functional importance of the conserved "TTnnnG" motif residues and their triplet arrangement and were also used to determine an improved binding motif [5'-CnnC(C/A)(G/A)TTCAnG-3'] that more closely corresponds to canonical LytTR domain/DNA-binding sites. A low-affinity but CO-dependent binding of RcoM(Bx)-1 to a variety of DNA probes was demonstrated in vitro. We posit that for the RcoM(Bx)-1 protein, the high CO affinity combined with multiple low-affinity DNA-binding events constitutes a transcriptional "accumulating switch" that senses low but persistent CO levels.
Collapse
|
98
|
Billerbeck S, Panke S. A genetic replacement system for selection-based engineering of essential proteins. Microb Cell Fact 2012; 11:110. [PMID: 22898007 PMCID: PMC3503863 DOI: 10.1186/1475-2859-11-110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Essential genes represent the core of biological functions required for viability. Molecular understanding of essentiality as well as design of synthetic cellular systems includes the engineering of essential proteins. An impediment to this effort is the lack of growth-based selection systems suitable for directed evolution approaches. RESULTS We established a simple strategy for genetic replacement of an essential gene by a (library of) variant(s) during a transformation.The system was validated using three different essential genes and plasmid combinations and it reproducibly shows transformation efficiencies on the order of 107 transformants per microgram of DNA without any identifiable false positives. This allowed for reliable recovery of functional variants out of at least a 105-fold excess of non-functional variants. This outperformed selection in conventional bleach-out strains by at least two orders of magnitude, where recombination between functional and non-functional variants interfered with reliable recovery even in recA negative strains. CONCLUSIONS We propose that this selection system is extremely suitable for evaluating large libraries of engineered essential proteins resulting in the reliable isolation of functional variants in a clean strain background which can readily be used for in vivo applications as well as expression and purification for use in in vitro studies.
Collapse
Affiliation(s)
- Sonja Billerbeck
- ETH Zürich, Department for Biosystems Science and Engineering (D-BSSE), Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sven Panke
- ETH Zürich, Department for Biosystems Science and Engineering (D-BSSE), Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
99
|
Temme K, Hill R, Segall-Shapiro TH, Moser F, Voigt CA. Modular control of multiple pathways using engineered orthogonal T7 polymerases. Nucleic Acids Res 2012; 40:8773-81. [PMID: 22743271 PMCID: PMC3458549 DOI: 10.1093/nar/gks597] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Synthetic genetic sensors and circuits enable programmable control over the timing and conditions of gene expression. They are being increasingly incorporated into the control of complex, multigene pathways and cellular functions. Here, we propose a design strategy to genetically separate the sensing/circuitry functions from the pathway to be controlled. This separation is achieved by having the output of the circuit drive the expression of a polymerase, which then activates the pathway from polymerase-specific promoters. The sensors, circuits and polymerase are encoded together on a 'controller' plasmid. Variants of T7 RNA polymerase that reduce toxicity were constructed and used as scaffolds for the construction of four orthogonal polymerases identified via part mining that bind to unique promoter sequences. This set is highly orthogonal and induces cognate promoters by 8- to 75-fold more than off-target promoters. These orthogonal polymerases enable four independent channels linking the outputs of circuits to the control of different cellular functions. As a demonstration, we constructed a controller plasmid that integrates two inducible systems, implements an AND logic operation and toggles between metabolic pathways that change Escherichia coli green (deoxychromoviridans) and red (lycopene). The advantages of this organization are that (i) the regulation of the pathway can be changed simply by introducing a different controller plasmid, (ii) transcription is orthogonal to host machinery and (iii) the pathway genes are not transcribed in the absence of a controller and are thus more easily carried without invoking evolutionary pressure.
Collapse
Affiliation(s)
- Karsten Temme
- UCB/UCSF Joint Graduate Group in Bioengineering, MC2540, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
100
|
Iwashkiw JA, Seper A, Weber BS, Scott NE, Vinogradov E, Stratilo C, Reiz B, Cordwell SJ, Whittal R, Schild S, Feldman MF. Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog 2012; 8:e1002758. [PMID: 22685409 PMCID: PMC3369928 DOI: 10.1371/journal.ppat.1002758] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/01/2012] [Indexed: 01/12/2023] Open
Abstract
Acinetobacter baumannii is an emerging cause of nosocomial infections. The isolation of strains resistant to multiple antibiotics is increasing at alarming rates. Although A. baumannii is considered as one of the more threatening “superbugs” for our healthcare system, little is known about the factors contributing to its pathogenesis. In this work we show that A. baumannii ATCC 17978 possesses an O-glycosylation system responsible for the glycosylation of multiple proteins. 2D-DIGE and mass spectrometry methods identified seven A. baumannii glycoproteins, of yet unknown function. The glycan structure was determined using a combination of MS and NMR techniques and consists of a branched pentasaccharide containing N-acetylgalactosamine, glucose, galactose, N-acetylglucosamine, and a derivative of glucuronic acid. A glycosylation deficient strain was generated by homologous recombination. This strain did not show any growth defects, but exhibited a severely diminished capacity to generate biofilms. Disruption of the glycosylation machinery also resulted in reduced virulence in two infection models, the amoebae Dictyostelium discoideum and the larvae of the insect Galleria mellonella, and reduced in vivo fitness in a mouse model of peritoneal sepsis. Despite A. baumannii genome plasticity, the O-glycosylation machinery appears to be present in all clinical isolates tested as well as in all of the genomes sequenced. This suggests the existence of a strong evolutionary pressure to retain this system. These results together indicate that O-glycosylation in A. baumannii is required for full virulence and therefore represents a novel target for the development of new antibiotics. Multidrug resistant (MDR) Acinetobacter baumannii strains are an increasing cause of nosocomial infections worldwide. Due to the remarkable ability of A. baumannii to gain resistance to antibiotics, this bacterium is now considered to be a “superbug”. A. baumannii strains resistant to all clinically relevant antibiotics known have also been isolated. Although MDR A. baumannii continues to disseminate globally, very little is known about its pathogenesis mechanisms. Our experiments revealed that A. baumannii ATCC 17978 has a functional O-linked protein glycosylation system, which seems to be present in all strains of A. baumannii sequenced to date and several clinical isolates. We identified seven glycoproteins and elucidated the structure of the glycan moiety. A glycosylation-deficient strain was generated. This strain produced severely reduced biofilms, and exhibited attenuated virulence in amoeba, insect, and murine models. These experiments suggest that glycosylation may play an important role in virulence and may lay the foundation for new drug discovery strategies that could stop the dissemination of this emerging human pathogen, which has become a major threat for healthcare systems.
Collapse
Affiliation(s)
- Jeremy A. Iwashkiw
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Andrea Seper
- Institut fuer Molekulare Biowissenschaften, Karl-Franzens-Universitaet Graz, Graz, Austria
| | - Brent S. Weber
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nichollas E. Scott
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales, Australia
| | - Evgeny Vinogradov
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | - Chad Stratilo
- Defence Research and Development Canada Suffield, Medicine Hat, Alberta, Canada
| | - Bela Reiz
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Stuart J. Cordwell
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales, Australia
| | - Randy Whittal
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Stefan Schild
- Institut fuer Molekulare Biowissenschaften, Karl-Franzens-Universitaet Graz, Graz, Austria
| | - Mario F. Feldman
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|