51
|
Calviello G, Serini S, Piccioni E, Pessina G. Antineoplastic effects of n-3 polyunsaturated fatty acids in combination with drugs and radiotherapy: preventive and therapeutic strategies. Nutr Cancer 2009; 61:287-301. [PMID: 19373602 DOI: 10.1080/01635580802582777] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many data support the beneficial effect of n-3 polyunsaturated fatty acids (PUFAs) as chemopreventive and chemotherapeutic agents in the treatment of several chronic pathologies including cancer. Different molecular mechanisms have been proposed to explain their effects, including alterations in arachidonic acid oxidative metabolism and metabolic conversion of n-3 PUFAs to novel discovered bioactive derivatives; modification of oxidative stress; changes in cell membrane fluidity and structure and altered metabolism and function of membrane proteins. Considerable knowledge has been recently gathered on the possible beneficial effects of n-3 PUFAs administered in combination with different antineoplastic drugs and radiotherapy against melanoma, leukemia, neuroblastoma, and colon, breast, prostate, and lung cancer. The efficacy of these combinations has been demonstrated both in vivo and in vitro, and clinical trials have also been conducted. The aim of this review is to analyze all the n-3 PUFA combinations investigated so far, their efficacy, and the possible molecular mechanisms involved. It would be highly auspicable that the detailed analysis of the literature in this field could further support the common use of n-3 PUFAs in combination with other chemopreventive agents and warrant more clinical investigations designed to test the effectiveness of n-3 PUFA treatments coupled with conventional antineoplastic therapies.
Collapse
Affiliation(s)
- G Calviello
- Institute of General Pathology, Catholic University, L.go F. Vito, 1, Rome 00168, Italy.
| | | | | | | |
Collapse
|
52
|
Kumar MRS, Aithal K, Rao BN, Udupa N, Rao BSS. Cytotoxic, genotoxic and oxidative stress induced by 1,4-naphthoquinone in B16F1 melanoma tumor cells. Toxicol In Vitro 2009; 23:242-50. [DOI: 10.1016/j.tiv.2008.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 10/28/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
|
53
|
Nioi P, Nguyen T. A mutation of Keap1 found in breast cancer impairs its ability to repress Nrf2 activity. Biochem Biophys Res Commun 2007; 362:816-21. [PMID: 17822677 DOI: 10.1016/j.bbrc.2007.08.051] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Accepted: 08/07/2007] [Indexed: 11/17/2022]
Abstract
Keap1 is the substrate recognition module of a Cullin 3-based E3 ubiquitin ligase. Its primary role is to catalyze the ubiquitylation of the Nrf2 transcription factor. Oxidative stress blocks the E3 ligase activity of Keap1 which stabilizes Nrf2 allowing it to drive the expression of certain antioxidant and drug metabolizing enzymes. A recent study identified a mutation in the Keap1 gene (Keap1C23Y) that is present in breast cancer. Using reporter gene assays we show that Keap1C23Y is impaired in its ability to repress Nrf2 dependent transcription. Unlike wild-type Keap1, we found that Keap1C23Y failed to stimulate the degradation of Nrf2. Co-immunopreciptation experiments showed that Keap1C23Y retains its ability to interact with Nrf2 and Cullin 3. In contrast, we found that Keap1C23Y could not efficiently promote the ubiquitylation of Nrf2, suggesting that its intrinsic biological activity might have been compromised. These results revealed an unexpected role for the N-terminal region of Keap1 in regulating its E3 ligase activity. Importantly, our findings suggest that a paradox exists whereby Nrf2 activity is beneficial in non-malignant cells but in cancer cells it may provide a selective advantage for clonal expansion.
Collapse
Affiliation(s)
- Paul Nioi
- Schering-Plough Research Institute, 181 Passaic Avenue, Summit, NJ 07901, USA.
| | | |
Collapse
|
54
|
Kapiszewska M, Cierniak A, Elas M, Lankoff A. Lifespan of etoposide-treated human neutrophils is affected by antioxidant ability of quercetin. Toxicol In Vitro 2007; 21:1020-30. [PMID: 17467952 DOI: 10.1016/j.tiv.2007.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 03/06/2007] [Accepted: 03/12/2007] [Indexed: 11/29/2022]
Abstract
Neutropenia is the primary dose-limiting effect of etoposide toxicity resulting in a decreased efficiency of cancer treatment. Hence, the protection of neutrophils has important clinical implications. We investigated whether quercetin, due to its antioxidant properties, is able to modulate the damaging activity of etoposide. DNA damage, evaluated by the comet assay, and apoptosis, determined by FACScan flow cytometry using Annexin/PI, increased with etoposide doses. The intracellular level of reactive oxygen species (ROS) was enhanced in resting neutrophils incubated with etoposide at concentrations up to 25 microM; above this concentration etoposide revealed antioxidant properties. Only in latex-activated neutrophils, i.e. with latex-stimulated respiratory burst was the ROS production inhibited, as assessed by the luminol amplified chemiluminescence. The characteristic electron spin resonance (ESR) signal of etoposide phenoxyl radical, which occurs in the presence of myeloperoxidase, H2O2 and etoposide, was quenched by quercetin in a dose-dependent manner (0.1-0.5 microM). Quercetin also inhibited DNA damage induced by etoposide and enhanced the inhibitory action of etoposide on the ROS formation in neutrophils. However, quercetin (1 microM) lowered early and late apoptosis/necrosis only when apoptosis was induced by 25 microM etoposide; at higher etoposide concentration apoptosis was enhanced. Summing up, antioxidant adjuvant therapy using quercetin can be beneficial in prolonging neutrophils' lifespan in peripheral blood only when etoposide plasma concentration is low.
Collapse
Affiliation(s)
- Maria Kapiszewska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | | | | | | |
Collapse
|
55
|
Udler M, Maia AT, Cebrian A, Brown C, Greenberg D, Shah M, Caldas C, Dunning A, Easton D, Ponder B, Pharoah P. Common Germline Genetic Variation in Antioxidant Defense Genes and Survival After Diagnosis of Breast Cancer. J Clin Oncol 2007; 25:3015-23. [PMID: 17634480 DOI: 10.1200/jco.2006.10.0099] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purpose The prognosis of breast cancer varies considerably among individuals, and inherited genetic factors may help explain this variability. Of particular interest are genes involved in defense against reactive oxygen species (ROS) because ROS are thought to cause DNA damage and contribute to the pathogenesis of cancer. Patients and Methods We examined associations between 54 polymorphisms that tag the known common variants (minor allele frequency > 0.05) in 10 genes involved in oxidative damage repair (CAT, SOD1, SOD2, GPX1, GPX4, GSR, TXN, TXN2, TXNRD1, and TXNRD2) and survival in 4,470 women with breast cancer. Results Two single nucleotide polymorphisms (SNPs) in GPX4 ( rs713041 and rs757229 ) were associated with all-cause mortality even after adjusting for multiple hypothesis testing (adjusted P = .0041 and P = .0035). These SNPs are correlated with each other (r2 = 0.61). GPX4 rs713041 is located near the selenocysteine insertion sequence element in the GPX4 3′ untranslated region, and the rare allele of this SNP is associated with an increased risk of death, with a hazard ratio of 1.27 per rare allele carried (95% CI, 1.13 to 11.43). This effect was not attenuated after adjusting for tumor stage, grade, or estrogen receptor status. We found that the common allele is preferentially expressed in normal lymphocytes, normal breast, and breast tumors compared with the rare allele, but there were no differences in total levels of GPX4 mRNA across genotypes. Conclusion These data provide strong support for the hypothesis that common variation in GPX4 is associated with prognosis after a diagnosis of breast cancer.
Collapse
Affiliation(s)
- Miriam Udler
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Halvey PJ, Hansen JM, Johnson JM, Go YM, Samali A, Jones DP. Selective oxidative stress in cell nuclei by nuclear-targeted D-amino acid oxidase. Antioxid Redox Signal 2007; 9:807-16. [PMID: 17508907 DOI: 10.1089/ars.2007.1526] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of nuclear-localized oxidative stress on both nuclear antioxidant systems, and the processes that they regulate, are not clearly understood. Here, we targeted a hydrogen peroxide (H(2)O(2))-producing enzyme, D-amino acid oxidase (DAAO), to the nucleus (NLS-DAAO) and used this to generate H(2)O(2) in the nuclei of cells. On addition of N-acetyl-D-alanine (NADA), a substrate of DAAO, to NLS-DAAO-transfected HeLa cells, a twofold increase in ROS production relative to untreated, transfected control was observed. Staining of cellular thiols confirmed that NLS-DAAO-induced ROS selectively modified the nuclear thiol pool, whereas the cytoplasmic pool remained unchanged. Furthermore, NLS-DAAO/NADA-induced ROS caused significant oxidation of the nuclear GSH pool, as measured by nuclear protein S-glutathionylation (Pr-SSG), but under the same conditions, nuclear Trx1 redox state was not altered significantly. NF-kappaB reporter activity was diminished by NLS-DAAO/NADA-stimulated nuclear oxidation. We conclude that nuclear GSH is more susceptible to localized oxidation than is nuclear Trx1. Furthermore, the attenuation of NF-kappaB reporter activity in the absence of nuclear Trx1 oxidation suggests that critical nuclear redox proteins are subject to control by S-glutathionylation during oxidative stress in the nucleus.
Collapse
Affiliation(s)
- Patrick J Halvey
- Division of Pulmonary, Allergy, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
57
|
Abstract
Pharmacogenomics provides knowledge regarding how genetic polymorphisms affect treatment responses. Such an approach is particularly needed in cancer therapy, as most chemotherapeutics drugs affect both tumor and normal cells, are ineffective in many patients and exhibit serious side effects. Leukemia exists in two different forms, myeloid and lymphoid. Acute lymphoblastic leukemia more frequently occurs in children, whereas the risk of acute myeloid leukemia is more common in adults. Despite significant progress in the treatment of these diseases, therapy is still unsuccessful in many patients. Prognosis is particularly poor in adult acute myeloid leukemia. Treatment failure in childhood acute lymphoblastic leukemia due to drug resistance remains the leading cause of cancer-related death in children. Here, we provide an overview of pharmacogenetics studies carried out in children and adults with acute lymphoblastic leukemia and acute myeloid leukemia, attempting to find the associations between treatment responses and polymorphisms in the genes whose products are needed for metabolism, and effects of drugs used in the treatment of leukemia.
Collapse
Affiliation(s)
- Marc Ansari
- Research Center Charles Bruneau, CHU Sainte-Justine, Montréal, Quebec, H3T 1C5, Canada
| | - Maja Krajinovic
- Research Center Charles Bruneau, CHU Sainte-Justine, Montréal, Quebec, H3T 1C5, Canada
- University of Montreal, Department of Pediatrics, Montréal, Québec, H3T 1C5, Canada
- University of Montreal, Department of Pharmacology, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
58
|
Yesumarian Y, Krishnamoorthy MK, Ramasamy G, Ramachandran M. Photodynamic Action and Antimicrobial Activity of Some Excited Metabolites of Dalbergia Sissoidesand Their Ability to Cleave DNA. Nat Prod Commun 2007. [DOI: 10.1177/1934578x0700200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The photodynamic properties of two quinones, 4-methoxydalbergione (DS1) and sissoidenone (DS2), and a coumarin, dalbergin {6-hydroxy-7-methoxy-4-phenylcoumarin, (DS3)}, have been studied. Photogeneration of singlet oxygen (1O2) was monitored by both optical and EPR methods. Based on RNO bleaching, relative to Rose Bengal (RB), the singlet oxygen generating efficiencies of DS1, DS2, and DS3 were determined as 0.10, 0.051 and 0.041, respectively. Using the SOD inhibitable cytochrome c reduction assay, the photogeneration of superoxide anion (O2-•) was monitored. The formation of O2-•was enhanced in the presence of electron donors such as EDTA, DETAPAC and NADH. Photolysis of DS1 and DS3 in DMSO in the presence of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) generated a twelve line EPR spectrum characteristic of an O2-•adduct. In the photosensitization of the DS series, both Type I and Type II paths were involved. The quantum mechanically calculated lowest unoccupied molecular orbital (LUMO) energies of DS1 and DS2 were correlated with the experimental redox potential. Photoinduced DNA scission by DS1, DS2, and DS3 confirms the generation of O2-•from these metabolites.
Collapse
Affiliation(s)
- Yesuthangam Yesumarian
- Department of Chemistry, Jayaraj Annapackiam College for Women (Autonomous), Periyakulam, Theni Dt. 625 601, Tamil Nadu, India
| | | | - Gandhidasan Ramasamy
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | | |
Collapse
|
59
|
Abstract
Hypoxia is a common feature of many solid tumors and contributes to their progression. Hypoxic cells in the tumor are not only involved in therapeutic resistance to chemotherapy and radiotherapy but are also relevant to tumor angiogenesis. To identify novel hypoxia-selective cytotoxins, we screened 20000 cultured broths of microorganisms and found that rakicidin A showed significant hypoxia-selective cytotoxicity. Rakicidin A was approximately 17.5-fold more cytotoxic under hypoxic than under normoxic conditions. CoCl2 and antioxidants had no effect on the rakicidin A cytotoxicity under normoxic conditions and rakicidin A did not show the inhibitory effects on HIF-1 transcriptional activity under hypoxic conditions. Thus, although the action mechanism of the hypoxia-selective cytotoxicity of rakicidin A was unknown, our screening study suggested that rakicidin A acts as an antitumor agent for selective therapy against solid tumors.
Collapse
Affiliation(s)
- Yohko Yamazaki
- Numazu Bio-Medical Research Institute, Microbial Chemistry Research Center, Shizuoka, Japan.
| | | | | |
Collapse
|
60
|
Colas S, Mahéo K, Denis F, Goupille C, Hoinard C, Champeroux P, Tranquart F, Bougnoux P. Sensitization by dietary docosahexaenoic acid of rat mammary carcinoma to anthracycline: a role for tumor vascularization. Clin Cancer Res 2006; 12:5879-86. [PMID: 17020996 DOI: 10.1158/1078-0432.ccr-06-0386] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate whether dietary docosahexaenoic acid (DHA), a peroxidizable polyunsaturated omega-3 fatty acids, sensitizes rat mammary tumors to anthracyclines and whether its action interferes with tumor vascularization, a critical determinant of tumor growth. EXPERIMENTAL DESIGN Female Sprague-Dawley rats were initiated by N-methylnitrosourea to develop mammary tumors and then assigned to a control group (n = 18), receiving a supplementation of palm oil, or to a DHA group (n = 54), supplemented with a microalgae-produced oil (DHASCO, 1.5 g/d). The DHA group was equally subdivided into three subgroups with addition of different amounts of alpha-tocopherol. Epirubicin was injected weekly during 6 weeks after the largest tumor reached 1.5 cm(2), and subsequent changes in the tumor surface were evaluated. Tumor vascularization was assessed by power Doppler sonography before and during chemotherapy. RESULTS DHA and alpha-tocopherol were readily absorbed and incorporated into rat tissues. Epirubicin induced a 45% mammary tumor regression in the DHA-supplemented group, whereas no tumor regression was observed in the control group. In the DHA group, before chemotherapy was initiated, tumor vascular density was 43% lower than in the control group and remained lower during chemotherapy. Enhancement of epirubicin efficacy by DHA was abolished in a dose-dependent manner by alpha-tocopherol, and the same trend was observed for DHA-induced reduction in tumor vascular density. CONCLUSIONS Dietary DHA supplementation led to a reduction in tumor vascularization before the enhancement of any response to anthracyclines, suggesting that DHA chemosensitizes mammary tumors through an inhibition of the host vascular response to the tumor.
Collapse
Affiliation(s)
- Séverine Colas
- Institut National de la Santé et de la Recherche Médicale, E0211 Nutrition Croissance et Cancer, CHU Bretonneau, 2 bis Boulevard Tonnelle, F-37044 Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Thews O, Lambert C, Kelleher DK, Biesalski HK, Vaupel P, Frank J. Possible protective effects of alpha-tocopherol on enhanced induction of reactive oxygen species by 2-methoxyestradiol in tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 566:349-55. [PMID: 16594172 DOI: 10.1007/0-387-26206-7_46] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several non-surgical tumor treatment modalities produce their cytotoxic activity by generating reactive oxygen species (ROS). Anti-oxidative enzymes such as superoxide dismutase (SOD) or exogenously supplied antioxidants may therefore reduce the efficacy of these treatments. The aim of the present study was to analyze the impact of (i) inhibiting SOD using 2-methoxyestradiol (2-ME), or (ii) application of alpha-tocopherol, on the cellular damage induced by hyperthermia (HT) in experimental tumors. DS-sarcoma cells grew either in culture or as solid tumors subcutaneously implanted in rats. In vitro, DS-cells were incubated with 2-ME, and cell proliferation, ROS formation, lipid peroxidation and apoptosis were measured. In vivo, DS-sarcomas were treated with a ROS-generating hyperthermia combined with 2-ME or alpha-tocopherol application. Inhibition of SOD by 2-ME in vitro induced pronounced oxidative injury resulting in reduced proliferation. In vivo, ROS-generating hyperthermia led to local tumor control in 23% of the animals. The additional inhibition of SOD by 2-ME increased the control rate by approximately 50%. Application of alpha-tocopherol was found to have no effect on local tumor control, either in combination with ROS-generating hyperthermia or when 2-ME was additionally applied. Inhibition of SOD during ROS-generating hyperthermia results in pronounced cell injury and an improved local tumor control whereas exogenously applied vitamin E seems not to have an impact on oxidative stress.
Collapse
|
62
|
Abstract
Malignant mesothelioma (MM) is an uncommon tumor with high mortality and morbidity rates. It arises from mesothelial cells that line the pleural, pericardial, peritoneal, and testicular cavities. This is a disease with an indolent course because tumors arise 20 to 40 years after exposure to an inciting agent. Extensive research has shown that mesothelial cells are transformed into MM cells through various chromosomal and cellular pathway defects. These changes alter the normal cells' ability to survive, proliferate, and metastasize. This article discusses the alterations that occur in transforming normal mesothelial cells into MM. It also details some of the signal transduction pathways that seem to be important in MM with the potential for novel targeted therapeutics.
Collapse
Affiliation(s)
- Evan Pisick
- Department of Medicine, Section of Hematology/Oncology, Tufts-New England Medical Center, Boston, MA, USA
| | | |
Collapse
|
63
|
Kniep B, Kniep E, Ozkucur N, Barz S, Bachmann M, Malisan F, Testi R, Rieber EP. 9-O-acetyl GD3 protects tumor cells from apoptosis. Int J Cancer 2006; 119:67-73. [PMID: 16432837 DOI: 10.1002/ijc.21788] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ganglioside GD3 (Neu5Ac alpha8Neu5Ac alpha3Gal beta4GlcCer) is an intracellular lipid messenger that induces apoptosis by targeting mitochondria in various cell types. GD3 can also promote apoptosis when externally added to cells. Previous studies showed that the proapoptotic effects of GD3 can be counteracted by 9-O-acetylation. To determine whether 9-O-acetyl GD3 (acGD3) has a general antiapoptotic potential, the apoptosis-sensitive Jurkat cell line and an apoptosis-sensitive variant of the cell line Molt-4 were preincubated with micromolar concentrations of acGD3 and then treated with inducers of apoptosis. A reduced apoptotic index and an increased cell viability were observed. On the other hand, when the Jurkat cells were treated with GD3 for extended periods of time, a population was selected that was resistant to apoptosis induction by N-acetyl sphingosine as well as by the anti-leukemic drug daunorubicin. Comparative analysis of gangliosides revealed the formation of acGD3 in the resistant Jurkat cells that was not found in the apoptosis-sensitive cells. Conversely, exposing the acGD3 positive and apoptosis-resistant cell line Molt-4 to the O-deacetylating activity of salicylate resulted in a complete disappearance of acGD3 and an enhanced sensitivity to N-acetyl sphingosine-mediated apoptosis. Formation of acGD3 might thus represent a new mechanism how tumor cells can escape apoptosis.
Collapse
Affiliation(s)
- Bernhard Kniep
- Institute of Immunology, Technical University of Dresden, Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Wagner BA, Evig CB, Reszka KJ, Buettner GR, Burns CP. Doxorubicin increases intracellular hydrogen peroxide in PC3 prostate cancer cells. Arch Biochem Biophys 2005; 440:181-90. [PMID: 16054588 PMCID: PMC4538991 DOI: 10.1016/j.abb.2005.06.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 06/02/2005] [Accepted: 06/21/2005] [Indexed: 01/24/2023]
Abstract
We studied the effect of doxorubicin on the production of hydrogen peroxide by PC3 human prostate cancer cells, using a sensitive assay based on aminotriazole-mediated inhibition of catalase. PC3 cells exposed to increasing concentrations of doxorubicin had an increase in intracellular hydrogen peroxide that was concentration-dependent up to 1 microM doxorubicin. The apparent hydrogen peroxide concentration in the PC3 cells was 13 +/- 4 pM under basal steady-state conditions and increased to 51 +/- 13 pM after exposure to 1 microM doxorubicin for 30 min. The level of hydrogen peroxide in the medium as measured by Amplex Red did not increase as a result of doxorubicin treatment. PC3 cells overexpressing catalase were no more resistant to doxorubicin cytotoxicity as compared to non-transduced wild-type cells; therefore, the exact role of hydrogen peroxide in anthracycline cytotoxicity remains unproven. This study demonstrates that a specific oxidative event associated with the exposure of PC3 human prostate cancer cells to anthracyclines results in an increase in intracellular hydrogen peroxide.
Collapse
Affiliation(s)
- Brett A. Wagner
- Department of Medicine, The University of Iowa Carver College of Medicine and Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA
| | - Crystal B. Evig
- Department of Medicine, The University of Iowa Carver College of Medicine and Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA
| | - Krzysztof J. Reszka
- Department of Radiation Oncology (Free Radical and Radiation Biology Graduate Program), The University of Iowa Carver College of Medicine and Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA
- Iowa City VA Medical Center Research Service, Iowa City, IA 52242, USA
| | - Garry R. Buettner
- Department of Radiation Oncology (Free Radical and Radiation Biology Graduate Program), The University of Iowa Carver College of Medicine and Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA
| | - C. Patrick Burns
- Department of Medicine, The University of Iowa Carver College of Medicine and Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA
- Corresponding author. Fax: +1 319 353 8383. (C.P. Burns)
| |
Collapse
|
65
|
Mahéo K, Vibet S, Steghens JP, Dartigeas C, Lehman M, Bougnoux P, Goré J. Differential sensitization of cancer cells to doxorubicin by DHA: a role for lipoperoxidation. Free Radic Biol Med 2005; 39:742-51. [PMID: 16109304 DOI: 10.1016/j.freeradbiomed.2005.04.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 04/27/2005] [Accepted: 04/27/2005] [Indexed: 11/21/2022]
Abstract
Polyunsaturated fatty acids have been reported to enhance the cytotoxic activity of several anticancer drugs. In the present study, we observed that doxorubicin chemosensitization of breast cancer cell lines by docosahexaenoic acid (DHA, a long-chain omega-3 polyunsaturated fatty acid) was cell-line selective, affecting MDA-MB-231 and MCF-7 dox (a doxorubicin-resistant cell line) but not the parental MCF-7 cell line. DHA supplementation led to an increase in membrane phospholipid DHA level, but did not induce changes in intracellular [(14)C]doxorubicin accumulation. In MDA-MB-231, doxorubicin efficacy enhancement by DHA was linked to an increase in malondialdehyde level, a final product of lipid peroxidation. DHA elicited by itself a 3.7-fold malondialdehyde level increase, additive to that induced by doxorubicin. Addition of doxorubicin to DHA further increased the glutathione level, indicative of the generation of an oxidative stress. In contrast to MDA-MB-231, doxorubicin did not increase the malondialdehyde level in MCF-7, although DHA induced lipid peroxidation. Therefore in MCF-7, lipid peroxidation induced by DHA itself was not sufficient to trigger an oxidative stress and to subsequently increase sensitivity to doxorubicin. These data indicate that the differential effect of DHA among cells on drug toxicity results from a differential oxidative response to doxorubicin. Chemosensitization through fatty acids appears as a new promising adjuvant therapeutic paradigm, since omega-3 fatty acids are physiological molecules found in food and are nontoxic in vivo.
Collapse
Affiliation(s)
- Karine Mahéo
- INSERM E 0211 Nutrition, Croissance et Cancer, IFR 135 Imagerie Fonctionnelle, Université François-Rabelais, Tours, France
| | | | | | | | | | | | | |
Collapse
|
66
|
Majsterek I, Gloc E, Blasiak J, Reiter RJ. A comparison of the action of amifostine and melatonin on DNA-damaging effects and apoptosis induced by idarubicin in normal and cancer cells. J Pineal Res 2005; 38:254-63. [PMID: 15813902 DOI: 10.1111/j.1600-079x.2005.00197.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amifostine is a well-known cell protector and its actions involve free radical scavenging, which is also considered as a mechanism underlying the protective actions of melatonin, a secretory product of the pineal gland. In this work we compared the action of 14 mM amifostine and 50 microM melatonin on DNA damage and apoptosis induced by idarubicin in normal human lymphocytes, leukemic K562 cells and HeLa cancer cells. We employed the alkaline comet assay and pulse-field gel electrophoresis to estimate DNA damage. Apoptosis was evaluated by caspase 3 activity assay assisted by the comet assay to evaluate DNA fragmentation and DAPI staining for detection of morphological changes in chromatin. We found that idarubicin induced apoptosis in normal and cancer cells and its level was correlated with the extent of DNA strand breaks. Amifostine reduced apoptosis and DNA damage in normal cells, but it potentiated these effects in cancer cells in this in vitro study. Melatonin protected both normal and cancer cells against genotoxic treatment and apoptosis induced by idarubicin. We conclude that despite its recognized potential as an antioxidant, melatonin should be considered with caution when used in combination with cancer chemotherapy agents, especially in the case of leukemias.
Collapse
|
67
|
Oh-Hashi K, Maehara K, Isobe KI. Hydrogen peroxide induces GADD153 in Jurkat cells through the protein kinase C-dependent pathway. Redox Rep 2005; 9:173-8. [PMID: 15327748 DOI: 10.1179/135100004225005183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Growth arrest and DNA damage-inducible gene 153 (GADD153) is a CCAAT/enhancer binding protein (C/EBP) related gene and is induced in response to various stimuli including DNA damaging agents, UV irradiation, and serum starvation. In this study, we investigated which intracellular signals contribute to the expression of GADD153 mRNA in Jurkat cells in response to oxidative stress using several kinds of kinase inhibitors. GADD153 mRNA expression was immediately enhanced following hydrogen peroxide exposure and was significantly inhibited by treatment with H-7, staurosporin, and Ro-31-8220. In particular, rottlerin, a PKCdelta specific inhibitor, markedly attenuated hydrogen peroxide-induced GADD153 mRNA expression even at 1 microM. Treatment with a potent PKC activator, phorbol-12-myristate-13-acetate (PMA), augmented GADD153 mRNA in Jurkat cells in the presence of hydrogen peroxide, although PMA alone induced GADD153 mRNA marginally. Hydrogen peroxide significantly enhanced the AP-1 binding activity of the nuclear extract from Jurkat cells to the GADD153 AP-1 binding site. AP-1 binding activity was suppressed by rottlerin treatment. These findings indicate that PKC, especially PKCdelta, plays an important role in the induction of GADD153 mRNA following oxidative stress.
Collapse
Affiliation(s)
- Kentaro Oh-Hashi
- Department of Basic Gerontology, National Institute for Longevity Sciences, Obu, Aichi, Japan
| | | | | |
Collapse
|
68
|
Burkhart DJ, Kalet BT, Coleman MP, Post GC, Koch TH. Doxorubicin-formaldehyde conjugates targeting αvβ3 integrin. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1593.3.12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
We have reported the synthesis and biological evaluation of a prodrug to a doxorubicin active metabolite. Under physiologic conditions, release of the active metabolite, a conjugate of doxorubicin with formaldehyde, occurs with a half-life of 1 hour. To direct this prodrug to tumor, we designed two conjugates of the prodrug, doxsaliform, with the αvβ3-targeting peptides, CDCRGDCFC (RGD-4C) and cyclic-(N-Me-VRGDf) (Cilengitide). We now report the synthesis of these doxsaliform-peptide conjugates and their evaluation using MDA-MB-435 cancer cells. A hydroxylamine ether tether was used to attach 5″-formyldoxsaliform to RGD-4C in its acyclic form via an oxime functional group. The construct acyclic-RGD-4C-doxsaliform showed good binding affinity for αvβ3 in the vitronection cell adhesion assay (IC50 = 10 nmol/L) and good growth inhibition of MDA-MB-435 breast cancer cells (IC50 = 50 nmol/L). In its bicyclic forms, RGD-4C showed less affinity for αvβ3 and significantly less water solubility. Cyclic-(N-Me-VRGDf) was modified by substitution of d-4-aminophenylalanine for d-phenylalanine to provide a novel attachment point for doxsaliform. The conjugate, cyclic-(N-Me-VRGDf-NH)-doxsaliform, maintained a high affinity for αvβ3 (IC50 = 5 nmol/L) in the vitronectin cell adhesion assay relative to the peptide bearing only the tether (0.5 nmol/L). The IC50 for growth inhibition of MDA-MB-435 cells was 90 nmol/L. Flow cytometry and growth inhibition experiments suggest that the complete drug construct does not penetrate through the plasma membrane, but the active metabolite does on release from the targeting group. These drug conjugates could have significantly reduced side effects and are promising candidates for in vivo evaluation in tumor-bearing mice.
Collapse
Affiliation(s)
- David J. Burkhart
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Brian T. Kalet
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Michael P. Coleman
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Glen C. Post
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Tad H. Koch
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| |
Collapse
|
69
|
Evig CB, Kelley EE, Weydert CJ, Chu Y, Buettner GR, Burns CP. Endogenous production and exogenous exposure to nitric oxide augment doxorubicin cytotoxicity for breast cancer cells but not cardiac myoblasts. Nitric Oxide 2004; 10:119-29. [PMID: 15158691 DOI: 10.1016/j.niox.2004.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 03/23/2004] [Indexed: 11/24/2022]
Abstract
We studied the effect of nitric oxide (*NO) on the anticancer activity of doxorubicin. When MCF-7 human breast cancer cells were exposed to an aqueous solution of *NO delivered as a bolus 30 min prior to doxorubicin, the cytotoxic effect as measured in a clonogenic assay was increased (doxorubicin alone, 40% survival, doxorubicin plus *NO, 5% survival). The *NO donor diethylamine nitric oxide, but not inactivated donor, also yielded an increase in doxorubicin cytotoxicity. The sequence was important since the simultaneous application of *NO with doxorubicin yielded only a small augmentation of effect, and the exposure of the cells to doxorubicin prior to the *NO obliterated the augmentation. Prior depletion of glutathione by incubation of the cells for 24h with D,L-buthionine-S,R-sulfoximine (BSO) further increased the cytotoxicity so that BSO plus *NO plus doxorubicin killed all of the clones. MCF-7 cells transduced with inducible nitric oxide synthase gene (iNOS) through an adenoviral vector overexpressed iNOS and produced increased amounts of nitrite, an indicator of increased *NO production. These iNOS transduced cells were more susceptible to doxorubicin than vector control or wild-type cells. Cell cycle progression of iNOS transduced cells was not different from controls. Likewise, iNOS transduction resulted in no change in cellular glutathione levels. For comparison, we examined the effect of iNOS transduction on the sensitivity of MCF-7 to edelfosine, a membrane-localizing anticancer drug without direct DNA interaction. Insertion of the iNOS had no effect on killing of the MCF-7 cells by this ether lipid class drug. We also tested the effect of iNOS transduction on doxorubicin sensitivity of H9c2 rat heart-derived myoblasts. We found no augmentation of cytotoxicity by *NO, and this observation offers potential therapeutic tumor selectivity by using *NO with doxorubicin. Therefore, we conclude that *NO produced intracellularly by iNOS overexpression or delivered as a bolus sensitizes human breast cancer cells in culture to doxorubicin, but not to a cardiac cell line or to edelfosine. This augmentation is not due to a modulation of cell cycle distribution or measurable cellular glutathione resulting from the transduction.
Collapse
Affiliation(s)
- Crystal B Evig
- Department of Medicine, The University of Iowa Carver College of Medicine and The University of Iowa Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
70
|
Photosensitisation with naphthoquinones and binaphthoquinones: EPR spin trapping and optical studies-formation of semiquinone radical and reactive oxygen species on photoillumination. J Photochem Photobiol A Chem 2004. [DOI: 10.1016/j.jphotochem.2003.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
71
|
Wersinger C, Rebel G, Lelong-Rebel I. Effect of taurine and other antioxidants on the growth of colon carcinoma cells in the presence of doxorubicin or vinblastine in hypoxic or in ambient oxygen conditions: effect of antioxidants on the action of antineoplastic drugs in MDR and non-MDR cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 526:411-7. [PMID: 12908626 DOI: 10.1007/978-1-4615-0077-3_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- C Wersinger
- UPR 9003 du CNRS, Institut de Recherche Contre les Cancers de l'Appareil Digestif, Hôpitaux Universitaires, BP 426, F 67091 Strasbourg, France
| | | | | |
Collapse
|
72
|
Nakamura T, Imai H, Tsunashima N, Nakagawa Y. Molecular cloning and functional expression of nucleolar phospholipid hydroperoxide glutathione peroxidase in mammalian cells. Biochem Biophys Res Commun 2004; 311:139-48. [PMID: 14575705 DOI: 10.1016/j.bbrc.2003.09.183] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We cloned a full-length cDNA for phospholipid hydroperoxide glutathione peroxidase (PHGPx) including exon Ib from rat and mouse testis. The nuclear signal sequence of the N terminal of rat nuclear PHGPx possessed a different sequence from that previously reported for rat sperm nuclei GPx (SnGPx). Expression of this PHGPx-YFP (yellow fluorescent protein) fusion protein including a novel nuclear signal sequence was exclusively localized in nucleolus; although YFPs fused with only a novel nuclear signal sequence were distributed in the whole nucleus, indicating that preferential translocation of nucleolar PHGPx into nucleoli was required for the nuclear signal sequence and internal sequence of PHGPx. Low level expression of nucleolar PHGPx was detected in several tissues, but the expression of nucleolar PHGPx was extensively high in testis. Immunohistochemical analysis with anti-nucleolar PHGPx indicated that expression of nucleolar PHGPx was observed in the nucleoli in the spermatogonia, spermatocyte, and spermatid. Overexpression of 34kDa nucleolar PHGPx in RBL2H3 cells significantly suppressed cell death induced by actinomycin D and doxorubicin that induced damage in the nucleolus. These results indicated that nucleolar PHGPx plays an important role in prevention of nucleolus from damage in mammalian cells.
Collapse
|
73
|
Boldogh I, Roy G, Lee MS, Bacsi A, Hazra TK, Bhakat KK, Das GC, Mitra S. Reduced DNA double strand breaks in chlorambucil resistant cells are related to high DNA-PKcs activity and low oxidative stress. Toxicology 2003; 193:137-52. [PMID: 14599773 DOI: 10.1016/j.tox.2003.08.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Modulation of DNA repair represents a strategy to overcome acquired drug resistance of cells to genotoxic chemotherapeutic agents, including nitrogen mustards (NM). These agents induce DNA inter-strand cross-links, which in turn produce double strand breaks (dsbs). These breaks are primarily repaired via the nonhomologous end-joining (NHEJ) pathway. A DNA-dependent protein kinase (DNA-PK) complex plays an important role in NHEJ, and its increased level/activity is associated with acquired drug resistance of human tumors. We show in this report that the DNA-PK complex has comparable levels and kinase activity of DNA-PK catalytic subunit (DNA-PKcs) in a nearly isogenic pair of drug-sensitive (A2780) and resistant (A2780/100) cells; however, treatment with chlorambucil (Cbl), a NM-type of drug, induced differential effects in these cells. The kinase activity of DNA-PKcs was increased up to 2h after Cbl treatment in both cell types; however, it subsequently decreased only in sensitive cells, which is consistent with increased levels of DNA dsbs. The decreased kinase activity of DNA-PKcs was not due to a change in its amount or the levels of Ku70 and Ku86, their subcellular distribution, cell cycle progression or caspase-mediated degradation of DNA-PK. In addition to DNA cross-links, Cbl treatment of cells causes a 2.2-fold increase in the level of reactive oxygen species (ROS) in both cell types. However, the ROS in A2780/100 cells were reduced to the basal level after 3-4h, while sensitive cells continued to produce ROS and undergo apoptosis. Pre-treatment of A2780 cells with the glutathione (GSH) precursor, N-acetyl-L-cysteine prevented Cbl-induced increase in ROS, augmented the kinase activity of DNA-PKcs, decreased the levels of DNA dsbs and increased cell survival. Depletion in GSH from A2780/100 cells by L-buthionine sulfoximine (BSO) resulted in sustained production of ROS, lowered DNA-PKcs kinase activity, enhanced levels of DNA dsbs, and increased cell killing by Cbl. We propose that oxidative stress decreases repair of DNA dsbs via lowering kinase activity of DNA-PKcs and that induction of ROS could be the basis for adjuvant therapies for sensitizing tumor cells to nitrogen mustards and other DNA cross-linking drugs.
Collapse
Affiliation(s)
- Istvan Boldogh
- Department of Microbiology and Immunology, Sealy Center for Molecular Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Mas VMD, Hernandez H, Plo I, Bezombes C, Maestre N, Quillet-Mary A, Filomenko R, Demur C, Jaffrézou JP, Laurent G. Protein kinase Czeta mediated Raf-1/extracellular-regulated kinase activation by daunorubicin. Blood 2003; 101:1543-50. [PMID: 12406911 DOI: 10.1182/blood-2002-05-1585] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In light of the emerging concept of a protective function of the mitogen-activated protein kinase (MAPK) pathway under stress conditions, we investigated the influence of the anthracycline daunorubicin (DNR) on MAPK signaling and its possible contribution to DNR-induced cytotoxicity. We show that DNR increased phosphorylation of extracellular-regulated kinases (ERKs) and stimulated activities of both Raf-1 and extracellular-regulated kinase 1 (ERK1) within 10 to 30 minutes in U937 cells. ERK1 stimulation was completely blocked by either the mitogen-induced extracellular kinase (MEK) inhibitor PD98059 or the Raf-1 inhibitor 8-bromo-cAMP (cyclic adenosine monophosphate). However, only partial inhibition of Raf-1 and ERK1 stimulation was observed with the antioxidant N-acetylcysteine (N-Ac). Moreover, the xanthogenate compound D609 that inhibits DNR-induced phosphatidylcholine (PC) hydrolysis and subsequent diacylglycerol (DAG) production, as well as wortmannin that blocks phosphoinositide-3 kinase (PI3K) stimulation, only partially inhibited Raf-1 and ERK1 stimulation. We also observed that DNR stimulated protein kinase C zeta (PKCzeta), an atypical PKC isoform, and that both D609 and wortmannin significantly inhibited DNR-triggered PKCzeta activation. Finally, we found that the expression of PKCzeta kinase-defective mutant resulted in the abrogation of DNR-induced ERK phosphorylation. Altogether, these results demonstrate that DNR activates the classical Raf-1/MEK/ERK pathway and that Raf-1 activation is mediated through complex signaling pathways that involve at least 2 contributors: PC-derived DAG and PI3K products that converge toward PKCzeta. Moreover, we show that both Raf-1 and MEK inhibitors, as well as PKCzeta inhibition, sensitized cells to DNR-induced cytotoxicity.
Collapse
Affiliation(s)
- Véronique Mansat-De Mas
- Institut National de la Santé et de la Recherche Médicale U563, Institut Claudius Régaud, Toulouse, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Sound waves and antineoplastic drugs: The possibility of an enhanced combined anticancer therapy. J Med Ultrason (2001) 2002; 29:173-87. [DOI: 10.1007/bf02480848] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2002] [Accepted: 05/17/2002] [Indexed: 10/24/2022]
|
76
|
Burg D, Mulder GJ. Glutathione conjugates and their synthetic derivatives as inhibitors of glutathione-dependent enzymes involved in cancer and drug resistance. Drug Metab Rev 2002; 34:821-63. [PMID: 12487151 DOI: 10.1081/dmr-120015695] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alterations in levels of glutathione (GSH) and glutathione-dependent enzymes have been implicated in cancer and multidrug resistance of tumor cells. The activity of a number of these, the multidrug resistance-associated protein 1, glutathione S-transferase, DNA-dependent protein kinase, glyoxalase I, and gamma-glutamyl transpeptidase, can be inhibited by GSH-conjugates and synthetic analogs thereof. In this review we focus on the function of these enzymes and carriers in cancer and anti-cancer drug resistance, in relation to their inhibition by GSH-conjugate analogs.
Collapse
Affiliation(s)
- Danny Burg
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, Einsteinweg 55 2333CC, Leiden, The Netherlands.
| | | |
Collapse
|
77
|
Logani MK, Agelan A, Ziskin MC. EFFECT OF MILLIMETER WAVE RADIATION ON CATALASE ACTIVITY. Electromagn Biol Med 2002. [DOI: 10.1081/jbc-120016009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
78
|
Goto S, Kamada K, Soh Y, Ihara Y, Kondo T. Significance of nuclear glutathione S-transferase pi in resistance to anti-cancer drugs. Jpn J Cancer Res 2002; 93:1047-56. [PMID: 12359059 PMCID: PMC5927137 DOI: 10.1111/j.1349-7006.2002.tb02482.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Recent study has shown that nuclear glutathione S-transferase (GST) pi accumulates in cancer cells resistant to doxorubicin hydrochloride (DOX) and may function to prevent nuclear DNA damage caused by DOX (Goto et al., FASEB J., 15, 2702 - 2714 (2001)). It is not clear if the amount of nuclear GSTpi increases in response to other anti-cancer drugs and if so, what is the physiological significance of the nuclear transfer of GSTpi in the acquisition of drug-resistance in cancer cells. In the present study, we employed three cancer cell lines, HCT8 human colonic cancer cells, A549 human lung adenocarcinoma cells, and T98G human glioblastoma cells. We estimated the nuclear transfer of GSTpi induced by the anti-cancer drugs cisplatin (CDDP), irinotecan hydrochloride (CPT-11), etoposide (VP-16) and 5-fluorouracil (5-FU). It was found that: (1) Nuclear GSTpi accumulated in these cancer cells in response to CDDP, DOX, CPT-11, VP-16 and 5-FU. (2) An inhibitor of the nuclear transport of GSTpi, edible mushroom lectin (Agaricus bisporus lectin, ABL), increased the sensitivity of the cancer cells to DOX and CDDP, and partially to CPT-11. Treatment with ABL had no apparent effect on the cytotoxicity of VP-16 and 5-FU. These results suggest that inhibitors of the nuclear transfer of GSTpi have practical value in producing an increase of sensitivity to DOX, CDDP and CPT-11.
Collapse
Affiliation(s)
- Shinji Goto
- Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan.
| | | | | | | | | |
Collapse
|
79
|
Kato S, Post GC, Bierbaum VM, Koch TH. Chemical ionization mass spectrometric determination of acrolein in human breast cancer cells. Anal Biochem 2002; 305:251-9. [PMID: 12054454 DOI: 10.1006/abio.2002.5682] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A selected ion flow tube-chemical ionization mass spectrometric method is presented for the first determination of acrolein metabolically produced in biological tissues. Acrolein in aqueous samples (2.5 ml) is preconcentrated by distillation and directly analyzed using gas-phase proton transfer from H3O+. This method provides sensitive detection of acrolein with the method detection limit of 15 nM at the 99% confidence level. Detection is linear up to the highest concentration studied (13.5 microM, R2 = 0.998). Acrolein levels are determined in doxorubicin-sensitive (MCF-7) and doxorubicin-resistant (MCF-7/Adr) human breast cancer cells in vitro. The intracellular acrolein concentrations differ insignificantly: 0.61 microM for sensitive cells and 0.54 microM for resistant cells. Treatment with a physiological concentration of doxorubicin (0.5 microM) for 24 h at 37 degrees C increased acrolein levels by factors of 2.6 and 1.9 for MCF-7 and MCF-7/Adr cells, respectively. The differential enhancement observed is consistent with the lower levels of enzymes that neutralize oxidative stress in sensitive MCF-7 cells and overexpression of an active drug efflux pump P-170 glycoprotein in resistant MCF-7/Adr cells.
Collapse
Affiliation(s)
- Shuji Kato
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| | | | | | | |
Collapse
|
80
|
Liu FT, Kelsey SM, Newland AC, Jia L. Generation of reactive oxygen species is not involved in idarubicin-induced apoptosis in human leukaemic cells. Br J Haematol 2001; 115:817-25. [PMID: 11843815 DOI: 10.1046/j.1365-2141.2001.03216.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The anthracycline antibiotic idarubicin (IDA) induces double-stranded DNA breaks, the generation of reactive oxygen species (ROS) and apoptosis in human leukaemic cells. It is unclear whether the generation of ROS is associated with the apoptotic process. Using the T-lymphoblastic leukaemic CEM cell line, we found that IDA-induced DNA breaks were correlated with final cell death. The reduction in mitochondrial membrane potential (Deltapsim) and the generation of ROS occurred simultaneously with IDA-induced activation of caspase-9 and caspase-3. Inhibition of caspases by a pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-fmk) completely blocked IDA-induced reduction of Deltapsim, apoptosis and final cell death. Interestingly, ROS generation was significantly enhanced by Z-VAD-fmk. ROS generation was neither caspase dependent nor part of the apoptotic process. IDA-mediated reduction in Deltapsim is caspase dependent and is not a consequence of the generation of ROS. These results indicate that IDA-induced generation of ROS and apoptosis are separate events. Inhibition of caspases facilitates IDA-mediated generation of ROS.
Collapse
Affiliation(s)
- F T Liu
- Department of Haematology/Oncology, St Bartholomew's and The Royal London School of Medicine and Dentistry, London E1 2AD, UK
| | | | | | | |
Collapse
|
81
|
Goto S, Ihara Y, Urata Y, Izumi S, Abe K, Koji T, Kondo T. Doxorubicin-induced DNA intercalation and scavenging by nuclear glutathione S-transferase pi. FASEB J 2001; 15:2702-14. [PMID: 11726546 DOI: 10.1096/fj.01-0376com] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glutathione S-transferase (GST) functions in xenobiotic biotransformation and drug metabolism. Increased expression of GSTpi, an isozyme of GST, has been found in cancer cells resistant to doxorubicin hydrochloride (DOX) or cis-diamminedichloroplatinum (II) (CDDP), and this increase was believed to be correlated with drug resistance of cancer cells. GST is mainly expressed in the cytoplasm; GSTpi in the nucleus has been reported in cancer cells, but the meaning of this result is not known. Here, we studied changes in the amount of nuclear GSTpi after exposure of cancer cells to anticancer drugs, and role of the nuclear GSTpi in drug resistance. We found nuclear GSTpi in cancer cells resistant to DOX, and the amount of nuclear GSTpi was enhanced by treatment of the cancer cells with DOX or CDDP. We also found that a mushroom lectin, an inhibitor of nuclear transport, inhibited the nuclear transfer of GSTpi, suggesting the existence of a specific transport system for the nuclear transfer of GSTpi. Nuclear GSTpi protected DNA against damage by anticancer drugs. These results suggest a possible role of GSTpi in the acquisition of resistance to anticancer drugs by cancer cells.
Collapse
Affiliation(s)
- S Goto
- Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
DNA topoisomerases are essential enzymes that regulate the conformational changes in DNA topology by catalysing the concerted breakage and rejoining of DNA strands during normal cellular growth. Over the past few years there has been considerable pharmacological interest in these enzymes because inhibitors of DNA topoisomerases represent a major class of anticancer drugs. This review highlights topoisomerase-targeting drugs that have shown promising anticancer activities. The mechanisms by which those drugs interfere with the catalytic cycles of type I and type II DNA topoisomerases and the factors involved in the development of resistance to these drugs are discussed.
Collapse
Affiliation(s)
- Z Topcu
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey.
| |
Collapse
|
83
|
Ullrich O, Grune T. Proteasomal degradation of oxidatively damaged endogenous histones in K562 human leukemic cells. Free Radic Biol Med 2001; 31:887-93. [PMID: 11585707 DOI: 10.1016/s0891-5849(01)00672-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A number of antitumor drugs act via the oxidation of nuclear material in the tumor cell. It is therefore important to know if tumor cells can effectively and precisely cope not only with oxidatively induced DNA damage, but also with nuclear protein oxidation. In this study, we investigated the endogenous degradation of oxidatively damaged histones in K562 human leukemic cells after oxidative challenge and demonstrated a link to the overall cellular stress response pathways by poly-ADP-ribose-polymerase (PARP). After an oxidative challenge, endogenous nuclear protein degradation, as well as histone degradation, was enhanced. Among the histone fractions, histone H1 revealed the highest degradation rate, and more than 85% of the total degraded H1 disappeared in the first 30 min after oxidative challenge. Short-term degradation of histones up to 30 min, as well as long-term degradation up to 48 h after oxidative challenge, was significantly reduced in the presence of the PARP inhibitor 3-aminobenzamide, and nearly completely abrogated by the selective proteasome inhibitor lactacystin. Immunoprecipitation experiments indicated that the proteasome specifically degraded oxidized histones. Thus, we show that the nuclear proteosome system in tumor cells is capable of preventing the accumulation of oxidized proteins in this compartment and may suggest further treatment strategies to effectively interfere with the protein "repair" and replacement strategies of tumor cells.
Collapse
Affiliation(s)
- O Ullrich
- Dept. of Cell- and Neurobiology, Institute of Anatomy, Humboldt University Berlin, Schumannstrasse 20/21, D-10098 Berlin, Germany
| | | |
Collapse
|
84
|
Abstract
The anthracycline daunorubicin is widely used in the treatment of acute nonlymphocytic leukemia. The drug has, of course, been the object of intense basic research, as well as preclinical and clinical study. As reviewed in this article, evidence stemming from this research clearly demonstrates that cell response to daunorubicin is highly regulated by multiple signaling events, including a sphingomyelinase-initiated sphingomyelin-ceramide pathway, mitogen-activated kinase and stress-activated protein/c-Jun N-terminal kinase activation, transcription factors such as nuclear factor kappa B, as well as the Fas/Fas-ligand system. These pathways are themselves influenced by a number of lipid products (diacylglycerol, sphingosine-1 phosphate, and glucosyl ceramide), reactive oxygen species, oncogenes (such as the tumor suppressor gene p53), protein kinases (protein kinase C and phosphoinositide-3 kinase), and external stimuli (hematopoietic growth factors and the extracellular matrix). In light of the complexity and diversity of these observations, a comprehensive review has been attempted toward the understanding of their individual implication (and regulation) in daunorubicin-induced signaling. (Blood. 2001;98:913-924)
Collapse
Affiliation(s)
- G Laurent
- INSERM E9910, Institut Claudius Régaud, Toulouse, France.
| | | |
Collapse
|
85
|
Kato S, Burke PJ, Koch TH, Bierbaum VM. Formaldehyde in human cancer cells: detection by preconcentration-chemical ionization mass spectrometry. Anal Chem 2001; 73:2992-7. [PMID: 11467545 DOI: 10.1021/ac001498q] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A rapid and highly sensitive method for the detection of formaldehyde utilizing selected ion flow tube-chemical ionization mass spectrometry is reported. Formaldehyde in aqueous biological samples is preconcentrated by distillation and directly analyzed using gas-phase thermal energy proton transfer from H30+; this procedure can be performed in 30 min. The method detection limit for formaldehyde based on seven replicate measurements of reference water samples (2.5 mL) is 80 nM at the 99% confidence level. Detection is linear up to 130 microM. This technique allows the first measurement of natural formaldehyde levels in human cancer cells in vitro. Elevated levels of formaldehyde relative to the reference water are observed for doxorubicin-sensitive cells (MCF-7 breast cancer, K562 leukemia, HeLa S3 cervical cancer) with estimated intracellular formaldehyde concentrations ranging from 1.5 to 4.0 microM, whereas formaldehyde in doxorubicin-resistant MCF-7/Adr breast cancer cells is essentially at reference level. This trend is inverted for prostate cancer cells LNCaP (sensitive) and DU-145 (resistant). Correlation of natural formaldehyde level with doxorubicin cytotoxicity is a function of the expression of enzymes that neutralize oxidative stress and the drug efflux pump, P-170 glycoprotein.
Collapse
Affiliation(s)
- S Kato
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309, USA
| | | | | | | |
Collapse
|
86
|
Ciftci O, Ullrich O, Schmidt CA, Diestel A, Hass R. Regulation of the nuclear proteasome activity in myelomonocytic human leukemia cells after adriamycin treatment. Blood 2001; 97:2830-2838. [PMID: 11313278 DOI: 10.1182/blood.v97.9.2830] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of different human leukemia cell variants with the anthracycline adriamycin was associated with a rapid activation of the proteasome. Thus, proliferating U937, TUR, and retrodifferentiated U937 cells exhibited a 4.3-fold, 5.8-fold, and 4.3-fold proteasome activation within 15 minutes after adriamycin treatment, respectively. In contrast, little if any proteasome activation was detectable in a growth-arrested differentiated U937 population following adriamycin treatment. Further analysis of this mechanism revealed a significant reduction of adriamycin-induced proteasome activity after inhibition of poly(ADP-ribose) polymerase (PARP) by 3-aminobenzamide (3-ABA) in the proliferating leukemic cell types. These findings suggested that PARP is involved in the regulation of drug-induced proteasome activation. Indeed, anti-PARP immunoprecipitation experiments of adriamycin-treated cells revealed increasing levels of coprecipitated, enzymatically active proteasome particularly in the proliferating cell variants in contrast to the differentiated U937 cells, with a maximum after 15 minutes, and sensitivity to PARP inhibition by 3-ABA. The specific role of the PARP was investigated in U937 and TUR cell clones stably transfected with a constitutively active antisense PARP (asPARP) vector. Thus, asPARP-TUR cells developed a 25-fold increased sensitivity to adriamycin treatment. Furthermore, we investigated leukemic blasts isolated from acute myelogenous leukemia patients and obtained a similarly enhanced proteasome activity after adriamycin treatment, which was dependent on the PARP and thus could be coprecipitated with anti-PARP antibodies. Transient transfection of leukemic blasts with the asPARP vector significantly reduced the adriamycin-induced proteasome activation. These data suggest that the PARP-associated nuclear proteasome activation represents a potential target within chemotherapeutic defense mechanisms developed by leukemia cells.
Collapse
Affiliation(s)
- O Ciftci
- Department of Cell and Neurobiology, Institute of Anatomy, and Department of Hematology and Oncology, University Hospital Charité, Humboldt University, Berlin, Germany
| | | | | | | | | |
Collapse
|
87
|
Mesner PW, Budihardjo II, Kaufmann SH. Chemotherapy-induced apoptosis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 41:461-99. [PMID: 9204156 DOI: 10.1016/s1054-3589(08)61069-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- P W Mesner
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
88
|
Taper HS, Jamison JM, Gilloteaux J, Gwin CA, Gordon T, Summers JL. In vivo reactivation of DNases in implanted human prostate tumors after administration of a vitamin C/K(3) combination. J Histochem Cytochem 2001; 49:109-20. [PMID: 11118483 DOI: 10.1177/002215540104900111] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Human prostate cancer cells (DU145) implanted into nude mice are deficient in DNase activity. After administration of a vitamin C/vitamin K(3) combination, both alkaline DNase (DNase I) and acid DNase (DNase II) activities were detected in cryosections with a histochemical lead nitrate technique. Alkaline DNase activity appeared 1 hr after vitamin administration, decreased slightly until 2 hr, and disappeared by 8 hr after treatment. Acid DNase activity appeared 2 hr after vitamin administration, reached its highest levels between 4 and 8 hr, and maintained its activity 24 hr after treatment. Methyl green staining indicated that DNase expression was accompanied by a decrease in DNA content of the tumor cells. Microscopic examination of 1-microm sections of the tumors indicated that DNase reactivation and the subsequent degradation of DNA induced multiple forms of tumor cell death, including apoptosis and necrosis. The primary form of vitamin-induced tumor cell death was autoschizis, which is characterized by membrane damage and the progressive loss of cytoplasm through a series of self-excisions. These self-excisions typically continue until the perikaryon consists of an apparently intact nucleus surrounded by a thin rim of cytoplasm that contains damaged organelles.
Collapse
Affiliation(s)
- H S Taper
- Laboratoire de Pharmacologie Toxicologique et Cancérologique, Faculté de Médecine, Université Catholique de Louvain, Brussels-Woluwé, Belgium
| | | | | | | | | | | |
Collapse
|
89
|
Ullrich O, Ciftci O, Hass R. Proteasome activation by poly-ADP-ribose-polymerase in human myelomonocytic cells after oxidative stress. Free Radic Biol Med 2000; 29:995-1004. [PMID: 11084288 DOI: 10.1016/s0891-5849(00)00399-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cytotoxic action of a variety of antitumor drugs generate oxidatively modified proteins that are predominantly metabolized via the proteasome. In the present study, a differentiation-retrodifferentiation cell system was exposed to oxidative stress by hydrogen peroxide treatment. Thus, the activity of the nuclear proteasome in proliferating human U937 leukemic cells increased by 2.5-fold after hydrogen peroxide treatment. In contrast, growth-arrested differentiated U937 cells demonstrated 40% less constitutive proteasomal activity, which was not inducible after hydrogen peroxide exposure. After a retrodifferentiation process, however, in which differentiated U937 cells resume autonomous growth again, the proteasomal activity was indistinguishable from that in U937 control cells, both constitutively and after induction of oxidative stress. Moreover, cells of TUR, a differentiation-resistant U937 subclone, expressed an elevated constitutive proteasomal activity that increased by 2.5-fold after oxidative stress. Immunoblot analysis revealed that these differences in proteasomal activities did not correlate with proteasome protein expression but with protein levels of the nuclear enzyme poly-ADP-ribose-polymerase (PARP). Further studies using specific PARP inhibitors revealed that the noninducible proteasome activity in differentiated U937 cells was PARP independent, whereas the increased activity level in oxidatively stressed TUR cells was downregulated upon PARP inhibition. Immunoprecipitation experiments demonstrated a protein-protein interaction of the functional active PARP with the proteasome in correlation with the proteasome activity. Similar results were obtained by analyzing protein carbonyls after oxidative stress. Taken together, these data suggest that proliferating, rather than growth-arrested, cells metabolize oxidatively damaged nuclear proteins via the proteasome by expressing high levels of PARP.
Collapse
Affiliation(s)
- O Ullrich
- Department of Cell Biology and Neurobiology, Institute of Anatomy, Medical Faculty (Charité), Humboldt University Berlin, Berlin, Germany
| | | | | |
Collapse
|
90
|
Kuninaka S, Ichinose Y, Koja K, Toh Y. Suppression of manganese superoxide dismutase augments sensitivity to radiation, hyperthermia and doxorubicin in colon cancer cell lines by inducing apoptosis. Br J Cancer 2000; 83:928-34. [PMID: 10970696 PMCID: PMC2374675 DOI: 10.1054/bjoc.2000.1367] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increased expression of manganese superoxide dismutase (Mn-SOD), one of the mitochondrial enzymes involved in the redox system, has been shown to diminish the cytotoxic effects of several anti-cancer modalities, including tumour necrosis factor-alpha, ionizing radiation, certain chemotherapeutic agents and hyperthermia. We asked if Mn-SOD is a potential target to augment the sensitivity of cancer cells to various anti-cancer treatments and for this we established stable Mn-SOD antisense RNA expressing cell clones from two human colon cancer cell lines, HCT116 (p53 wild-type) and DLD1 (p53 mutant-type). Suppression of Mn-SOD in HCT116 was accompanied by an increased sensitivity to radiation, hyperthermia and doxorubicin, as compared with findings in controls. The mitochondrial permeability transition, as measured by a decrease of the mitochondrial transmembrane potential was more intensely induced by radiation in HCT116 antisense clones than in the control, an event followed by a greater extent of DNA fragmentation. Apoptosis was also induced by hyperthermia more intensely in HCT116 antisense clones than in the control. On the other hand, DLD1 antisense clones did not exhibit any enhancement of sensitivity to any of these treatments. These data support the possibility that inhibition of Mn-SOD activity renders colon cancer cells with wild-type p53 susceptible to apoptosis induced by radiation, hyperthermia and selected anti-cancer drugs. Therefore, we suggest that Mn-SOD could be a target molecule to overcome the resistance to anti-cancer treatments in some colon cancer cells carrying wild-type p53.
Collapse
Affiliation(s)
- S Kuninaka
- Clinical Research Institute, Department of Chest Surgery, Gastroenterologic Surgery, National Kyushu Cancer Center, Notame 3-1-1, Minami-ku, Fukuoka, 811-1395, Japan
| | | | | | | |
Collapse
|
91
|
Kahlos K, Soini Y, Pääkkö P, Säily M, Linnainmaa K, Kinnula VL. Proliferation, apoptosis, and manganese superoxide dismutase in malignant mesothelioma. Int J Cancer 2000; 88:37-43. [PMID: 10962437 DOI: 10.1002/1097-0215(20001001)88:1<37::aid-ijc6>3.0.co;2-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Proliferation and apoptotic indices of tumour cells may have important prognostic significance. Manganese superoxide dismutase (MnSOD), an important anti-oxidant enzyme, has been shown to decrease proliferation of malignant cells transfected with the MnSOD gene. The aim of the present study was to investigate the indices of cell proliferation and apoptosis and their prognostic significance in human mesothelioma and to assess the effect of MnSOD on the proliferation and apoptosis of the mesothelioma cells expressing high constitutive MnSOD activity. Tissue sections from 35 subjects with malignant pleural mesothelioma were studied for cell proliferation by Ki-67 immunohistochemistry and for apoptosis by the TUNEL assay. In additional experiments, 2 mesothelioma cell lines expressing either low (M14K) or high (M38K) MnSOD levels were assessed for proliferative and apoptotic responses to epirubicin. The median proliferation and apoptotic indices of the mesothelioma tissue were 8.2% and 0.75%, respectively. Patients with a high proliferation (>8%) or apoptotic index (>0.75%) showed a worse prognosis (p < 0.001). MnSOD expression was inversely correlated with cell proliferation (p = 0.02). Our cell line experiments indicated that cells expressing high MnSOD levels were more resistant to apoptosis and showed lower proliferation when exposed to epirubicin in vitro. These findings show that high proliferation and apoptosis are associated with a poor prognosis of mesothelioma and that a high MnSOD level is associated with low proliferation of tumour cells. Furthermore, experiments with cultured mesothelioma cells suggest the importance of MnSOD in the proliferation and apoptosis caused by drug exposure.
Collapse
Affiliation(s)
- K Kahlos
- Department of Internal Medicine, University of Oulu, Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
92
|
Choi CH, Kim HS, Kweon OS, Lee TB, You HJ, Rha HS, Jeong JH, Lim DY, Min YD, Kim MS, Chung MH. Reactive oxygen species-specific mechanisms of drug resistance in paraquat-resistant acute myelogenous leukemia sublines. Mol Cells 2000; 10:38-46. [PMID: 10774745 DOI: 10.1007/s10059-000-0038-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Reactive oxygen species (ROS)-specific mechanisms of drug resistance were explored in paraquat (PQ)-resistant acute myelogenous leukemia cell (OCI/AML-2) sublines. For this, PQ-resistant AML sublines, AML-2/PQ100 and AML-2/PQ400, were selected in the presence of PQ concentrations of 100 microg/ml and 400 microg/ml, respectively. They showed a moderate level of cross resistance to cisplatin and doxorubicin. They were also slightly more resistant than the parental cell (AML-2/WT) to etoposide, camptothecin and daunorubicin. The resistance of PQ-resistant AML-2 sublines to cisplatin seemed to be due to increased amounts of metallothionein, which was not only supported by reversal of resistance to cisplatin by propargylglycin (an inhibitor of metallothionein synthesis) but also confirmed by Western blot analysis and reverse transcription-PCR assay. In addition, both AML-PQ100 and /PQ400 sublines showed increased activities of Cu-, Zn-containing superoxide dismutase (Cu,Zn-SOD) and Mn-containing superoxide dismutase (Mn-SOD), whereas AML-2/PQ400, but not AML-2/PQ100, showed increased glutathione S-transferase activity as compared to that of AML-2/WT. However, there was no difference in other ROS-related cellular antioxidants between AML-2/WT and its PQ-resistant sublines. Taken together, these results strongly suggest that increases in levels of metallothionein, glutathione S-transferase, Cu,Zn-SOD and Mn-SOD play important roles in protective mechanisms against toxicity of PQ or ROS in AML cells.
Collapse
MESH Headings
- Alkynes/pharmacology
- Antineoplastic Agents/pharmacology
- Camptothecin/pharmacology
- Cell Survival/drug effects
- Cisplatin/pharmacology
- Daunorubicin/pharmacology
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Etoposide/pharmacology
- Glutathione Transferase/metabolism
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Metallothionein/metabolism
- Paraquat/pharmacology
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Reactive Oxygen Species/metabolism
- Superoxide Dismutase/metabolism
- Tumor Cells, Cultured
- Vincristine/pharmacology
Collapse
Affiliation(s)
- C H Choi
- Department of Pharmacology, Chosun University Medical School, Kwangju, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Johnson Inbaraj J, Krishna MC, Gandhidasan R, Murugesan R. Cytotoxicity, redox cycling and photodynamic action of two naturally occurring quinones. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1472:462-70. [PMID: 10564760 DOI: 10.1016/s0304-4165(99)00150-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two naturally occurring anthraquinones, barleriaquinone-I (BQ-I) and barleriaquinone-II (BQ-II), extracted from Barleria buxifolia, are tested for their cytotoxic action by aerobic incubation with human breast adenocarcinoma cells (MCF7). Cytotoxicities, measured as LD(50) (50% inhibition of colony formation) values, show BQ-II to be more active than BQ-I. Electron paramagnetic resonance studies confirm that BQ-II is reductively activated by NADH:cytochrome c reductase to superoxide anion radical. Cyclic voltammetric studies show one quasi-reversible redox couple for both BQ-I and BQ-II. Also, aerobic solutions of both BQ-I and BQ-II on visible illumination generate reactive oxygen species. Formation of O*-2 is studied by both EPR spin trapping and SOD-inhibitable cytochrome c reduction techniques. BQ-I generates more singlet oxygen as evidenced from the photobleaching of N,N-dimethyl-4-nitrosoaniline.
Collapse
|
94
|
Mansat-de Mas V, Bezombes C, Quillet-Mary A, Bettaïeb A, D'orgeix AD, Laurent G, Jaffrézou JP. Implication of radical oxygen species in ceramide generation, c-Jun N-terminal kinase activation and apoptosis induced by daunorubicin. Mol Pharmacol 1999; 56:867-74. [PMID: 10531389 DOI: 10.1124/mol.56.5.867] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anthracyclines such as daunorubicin (DNR) generate radical oxygen species (ROS), which account, at least in part, for their cytotoxic effect. We observed that early ceramide generation (within 6-10 min) through neutral sphingomyelinase stimulation was inhibitable by the antioxidants N-acetylcysteine and pyrrolidine dithiocarbamate, which led to a decrease in apoptosis (>95% decrease in DNA fragmentation after 6 h). Furthermore, we observed that DNR triggers the c-Jun N-terminal kinase (JNK) and the transcription factor activated protein-1 through an antioxidant-inhibitable mechanism. Treatment of U937 cells with cell-permeant ceramides induced both an increase in ROS generation and JNK activation, and apoptosis, all of which were antioxidant-sensitive. In conclusion, DNR-triggered apoptosis implicates a ceramide-mediated, ROS-dependent JNK and activated protein-1 activation.
Collapse
Affiliation(s)
- V Mansat-de Mas
- Institut National de la Sante et de la Recherche Medicale E9910, Institut Claudius Régaud, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
95
|
Belhoussine R, Morjani H, Gillet R, Palissot V, Manfait M. Two distinct modes of oncoprotein expression during apoptosis resistance in vincristine and daunorubicin multidrug-resistant HL60 cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 457:365-81. [PMID: 10500812 DOI: 10.1007/978-1-4615-4811-9_39] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Apoptosis is a genetically regulated cell death process which results in a variety of morphological changes like chromatin condensation and DNA fragmentation. The decision between survival or death in response to an apoptotic stimulus is determined and regulated in part by oncoproteins which include proteins of the Bcl-2 family (bcl-2, bax, bcl-xL) and bcr-abl. We investigated the effect of these proteins on the induction of this phenomenon in human promyelocytic leukemic HL60 cells and two multidrug resistant homologues selected respectively with vincristine (HL60/VCR) and daunorubicin (HL60R/DNR). We show that sensitive cells at 1 micron and HL60/VCR cells at DNR IC50 were able to undergo apoptosis while HL60R/DNR did not even at much higher concentration of DNR. However, treatment with synthetic C2-ceramide did not sensitize HL60/DNR cells to apoptosis. Cell death through apoptosis or necrosis was accompanied by acidification of the cytosol without mitochondrial membrane depolarization. Western blotting analysis shows that bax is expressed at slightly elevated level in HL60S/VCR in comparison with the other cells lines. Bcl-2 is overexpressed in HL60/VCR but not in HL60R/DNR. However, this cell line displayed a higher expression of bcl-xL. Interestingly, bcr-abl, a dysregulated tyrosine kinase was detected only in HL60R/DNR cells. DNR at the IC50, has no effect on expression of the oncoproteins. These data suggest that in addition of the multidrug resistance phenotype, bcr-abl translocation and bcl-xL overexpression could also account for the development of resistance to cell death induced by anthracyclines in leukemic cells.
Collapse
Affiliation(s)
- R Belhoussine
- Université de Reims, IFR 53, UPRES EA2063, UFR de Pharmacie, Reims, France
| | | | | | | | | |
Collapse
|
96
|
Ullrich O, Reinheckel T, Sitte N, Hass R, Grune T, Davies KJ. Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc Natl Acad Sci U S A 1999; 96:6223-6228. [PMID: 10339569 PMCID: PMC26863 DOI: 10.1073/pnas.96.11.6223] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1998] [Accepted: 03/19/1999] [Indexed: 11/18/2022] Open
Abstract
The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the cytoplasm. Nuclear proteins are also subject to oxidation, and the nucleus of mammalian cells contains proteasome. In human beings, tumor cells frequently are subjected to oxidation as a consequence of antitumor chemotherapy, and K562 human myelogenous leukemia cells have a higher nuclear proteasome activity than do nonmalignant cells. Adaptation to oxidative stress appears to be one element in the development of long-term resistance to many chemotherapeutic drugs and the mechanisms of inducible tumor resistance to oxidation are of obvious importance. After hydrogen peroxide treatment of K562 cells, degradation of the model proteasome peptide substrate suc-LLVY-MCA and degradation of oxidized histones in nuclei increases significantly within minutes. Both increased proteolytic susceptibility of the histone substrates (caused by modification by oxidation) and activation of the proteasome enzyme complex occur independently during oxidative stress. This rapid up-regulation of 20S proteasome activity is accompanied by, and depends on, poly-ADP ribosylation of the proteasome, as shown by inhibitor experiments, 14C-ADP ribose incorporation assays, immunoblotting, in vitro reconstitution experiments, and immunoprecipitation of (activated) proteasome with anti-poly-ADP ribose polymerase antibodies. The poly-ADP ribosylation-mediated activated nuclear 20S proteasome is able to remove oxidatively damaged histones more efficiently and therefore is proposed as an oxidant-stimulatable defense or repair system of the nucleus in K562 leukemia cells.
Collapse
Affiliation(s)
- O Ullrich
- Clinics of Physical Medicine and Rehabilitation, Humboldt University, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
97
|
Johnson Inbaraj J, Gandhidasan R, Murugesan R. Cytotoxicity and superoxide anion generation by some naturally occurring quinones. Free Radic Biol Med 1999; 26:1072-8. [PMID: 10381175 DOI: 10.1016/s0891-5849(98)00318-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four naturally occurring quinones, mansonone-D (MD), mansonone-H (MH), thespone (TP) and thespesone (TPE), extracted from the heartwood of Thespesia populnea have been tested for their cytotoxic action by aerobic incubation with human breast adenocarcinoma (MCF-7) cells. Toxicity of the quinones follows the order MD > TP > MH approximately TPE. EPR spectrometric and Clark electrode oximetric studies indicate that redox cycling of these quinones produce superoxide anion radical (O2*-) and H2O2 on aerobic incubation with NADH:cytochrome c reductase. Generation of superoxide radical during enzymatic reduction of quinones, was confirmed by EPR spin trapping experiment using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap. Cyclic voltammetric studies show reversible redox couples for MD and TP whereas TPE and MH show irreversible redox couple. The electrochemical results indicate that MH and TPE are more difficult to reduce than TP and MD.
Collapse
|
98
|
Washburn MP, Wells WW. Identification of the dehydroascorbic acid reductase and thioltransferase (Glutaredoxin) activities of bovine erythrocyte glutathione peroxidase. Biochem Biophys Res Commun 1999; 257:567-71. [PMID: 10198252 DOI: 10.1006/bbrc.1999.0508] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bovine erythrocyte glutathione (GSH) peroxidase (GPX, EC 1.11.1.9) was examined for GSH-dependent dehydroascorbate (DHA) reductase (EC 1.8.5.1) and thioltransferase (EC 1.8.4.1) activities. Using the direct assay method for GSH-dependent DHA reductase activity, GPX had a kcat (app) of 140 +/- 9 min-1 and specificity constants (kcat/Km(app)) of 5.74 +/- 0.78 x 10(2) M-1s-1 for DHA and 1.18 +/- 0.17 x 10(3) M-1s-1 for GSH based on the monomer Mr of 22,612. Using the coupled assay method for thioltransferase activity, GPX had a kcat (app) of 186 +/- 9 min-1 and specificity constants (app) of 1. 49 +/- 0.14 x 10(3) M-1s-1 for S-sulfocysteine and 1.51 +/- 0.18 x 10(3) M-1s-1 for GSH based on the GPX monomer molecular weight. GPX has a higher specificity constant for S-sulfocysteine than DHA, and both assay systems gave nearly identical specificity constants for GSH. The DHA reductase and thioltransferase activities of GPX adds to the repertoire of functions of this enzyme as an important protector against cellular oxidative stress.
Collapse
Affiliation(s)
- M P Washburn
- Department of Biochemistry, Michigan State University, East Lansing, Michigan, 48824, USA
| | | |
Collapse
|
99
|
Yamato K, Miyahara I, Ichimura A, Hirotsu K, Kojima Y, Sakurai H, Shiomi D, Sato K, Takui T. Superoxide Dismutase Mimetic Complex of Mn(II) /N,N-Bis(2-pyridylmethyl)-(S)-Histidine. CHEM LETT 1999. [DOI: 10.1246/cl.1999.295] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
100
|
Kahlos K, Pitkänen S, Hassinen I, Linnainmaa K, Kinnula VL. Generation of reactive oxygen species by human mesothelioma cells. Br J Cancer 1999; 80:25-31. [PMID: 10389973 PMCID: PMC2363004 DOI: 10.1038/sj.bjc.6690316] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malignant mesothelioma cells contain elevated levels of manganese superoxide dismutase (MnSOD) and are highly resistant to oxidants compared to non-malignant mesothelial cells. Since the level of cellular free radicals may be important for cell survival, we hypothesized that the increase of MnSOD in the mitochondria of mesothelioma cells may alter the free radical levels of these organelles. First, MnSOD activity was compared to the activities of two constitutive mitochondrial enzymes; MnSOD activity was 20 times higher in the mesothelioma cells than in the mesothelial cells, whereas the activities of citrate synthase and cytochrome c oxidase did not differ significantly in the two cell lines. This indicates that the activity of MnSOD per mitochondrion was increased in the mesothelioma cells. Superoxide production was assayed in the isolated mitochondria of these cells using lucigenin chemiluminescence. Mitochondrial superoxide levels were significantly lower (72%) in the mesothelioma cells compared to the mesothelial cells. Oxidant production in intact cells, assayed by fluorimetry using 2',7'-dichlorodihydrofluorescein as a fluorescent probe, did not differ significantly between these cells. We conclude that mitochondrial superoxide levels are lower in mesothelioma cells compared to nonmalignant mesothelial cells, and that this difference may be explained by higher MnSOD activity in the mitochondria of these cells. Oxidant production was not different in these cells, which may be due to the previously observed increase in H2O2-scavenging mechanisms of mesothelioma cells.
Collapse
Affiliation(s)
- K Kahlos
- Department of Internal Medicine, University of Oulu, Finland
| | | | | | | | | |
Collapse
|