51
|
Zlotnik A, Spittau B. GDNF fails to inhibit LPS-mediated activation of mouse microglia. J Neuroimmunol 2014; 270:22-8. [PMID: 24655425 DOI: 10.1016/j.jneuroim.2014.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/16/2013] [Accepted: 03/03/2014] [Indexed: 01/04/2023]
Abstract
GDNF is a potent neuroprotective factor for midbrain dopaminergic (mDA) neurons. In LPS-mediated models for mDA degeneration GDNF increases neuron survival and further reduces microglia activation. To elucidate the effects of GDNF on LPS-induced activation, primary microglia from C57BL/6 and NMRI mice have been analysed. In this study we demonstrate that GDNF is not able to inhibit LPS-mediated upregulation and release of the proinflammatory factors IL6 and TNFα. Moreover, we provide evidence that mouse microglia, in contrast to rat microglia, lack expression of the GDNF signalling receptor c-Ret resulting in abrogated activation of downstream signalling kinases Akt and Erk1/2.
Collapse
Affiliation(s)
- Anke Zlotnik
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-University Freiburg, Germany
| | - Björn Spittau
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-University Freiburg, Germany.
| |
Collapse
|
52
|
Wang C, Wang H, Pang J, Li L, Zhang S, Song G, Li N, Cao J, Zhang L. Glial Cell-Derived Neurotrophic Factor Attenuates Neuropathic Pain in a Mouse Model of Chronic Constriction Injury: Possible Involvement of E-cadherin/p120ctn Signaling. J Mol Neurosci 2014; 54:156-63. [DOI: 10.1007/s12031-014-0266-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 02/14/2014] [Indexed: 12/22/2022]
|
53
|
Wang J, Yang W, Xie H, Song Y, Li Y, Wang L. Ischemic stroke and repair: current trends in research and tissue engineering treatments. Regen Med Res 2014; 2:3. [PMID: 25984331 PMCID: PMC4389883 DOI: 10.1186/2050-490x-2-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/24/2013] [Indexed: 03/15/2023] Open
Abstract
Stroke, the third leading cause of mortality, is usually associated with severe disabilities, high recurrence rate and other poor outcomes. Currently, there are no long-term effective treatments for stroke. Cell and cytokine therapies have been explored previously. However, the therapeutic outcomes are often limited by poor survival of transplanted cells, uncontrolled cell differentiation, ineffective engraftment with host tissues and non-sustained delivery of growth factors. A tissue-engineering approach provides an alternative for treating ischemic stroke. The key design considerations for the tissue engineering approach include: choice of scaffold materials, choice of cells and cytokines and delivery methods. Here, we review current cell and biomaterial based therapies available for ischemic stroke, with a special focus on tissue-engineering strategies for regeneration of stroke-affected neuronal tissue.
Collapse
Affiliation(s)
- Jian Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Yang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Xie
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongkui Li
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ; Medical Research Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
54
|
The proform of glia cell line-derived neurotrophic factor: a potentially biologically active protein. Mol Neurobiol 2013; 49:234-50. [PMID: 23934644 DOI: 10.1007/s12035-013-8515-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/10/2013] [Indexed: 12/24/2022]
Abstract
Growing evidences have revealed that the proforms of several neurotrophins including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT3), by binding to p75 neurotrophin receptor and sortilin, could induce neuronal apoptosis and are implicated in the pathogenesis of various neurodegenerative diseases. The glial cell line-derived neurotrophic factor (GDNF), one of the most potent useful neurotrophic factors for the treatment of Parkinson's disease (PD), is firstly synthesized as the proform (proGDNF) like other neurotrophin NGF, BDNF, and NT3. However, little is known about proGDNF expression and secretion under physiological as well as pathological states in vivo or in vitro. In this study, we investigated the expression profile and dynamic changes of proGDNF in brains of aging and PD animal models, with the interesting finding that proGDNF was a predominant form of GDNF with molecular weight of about 36 kDa by reducing and nonreducing immunoblots in adult brains and was unregulated in the aging, lipopolysaccharide (LPS), and 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP) insult. We further provided direct evidence that accompanied activation of primary astrocytes as well as C6 cell line induced by LPS stimulation, proGDNF was increasingly synthesized and released as the uncleaved form in cell culture. Taken together, our results strongly suggest that proGDNF may be a biologically active protein and has specific effects on the cells close to its secreting site, and a potentially important role of proGDNF signaling in the brains, in the glia-neuronal interaction or in the pathogenesis of PD, should merit further investigation.
Collapse
|
55
|
Zhou X, He X, He B, Zhu Z, Zheng C, Xu J, Jiang L, Gu L, Zhu J, Zhu Q, Liu X. Etifoxine promotes glial‑derived neurotrophic factor‑induced neurite outgrowth in PC12 cells. Mol Med Rep 2013; 8:75-80. [PMID: 23670018 DOI: 10.3892/mmr.2013.1474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/30/2013] [Indexed: 11/06/2022] Open
Abstract
Nerve regeneration and functional recovery are major issues following nerve tissue damage. Etifoxine is currently under investigation as a therapeutic strategy for promoting neuroprotection, accelerating axonal regeneration and modulating inflammation. In the present study, a well‑defined PC12 cell model was used to explore the underlying mechanism of etifoxine‑stimulated neurite outgrowth. Etifoxine was found to promote glial‑derived growth factor (GDNF)‑induced neurite outgrowth in PC12 cells. Average axon length increased from 50.29±9.73 to 22.46±5.62 µm with the use of etifoxine. However, blockage of GDNF downstream signaling was found to lead to the loss of this phenomenon. The average axon length of the etifoxine group reduces to a normal level after the blockage of the GDNF family receptor α1 (GFRα1) and receptor tyrosine kinase (RETS) receptors (27.46±3.59 vs. 22.46±5.62 µm and 25.31±3.68 µm vs. 22.46±5.62 µm, respectively, p>0.05). In addition, etifoxine markedly increased GDNF mRNA and protein expression (1.55‑ and 1.36-fold, respectively). However, blockage was not found to downregulate GDNF expression. The results of the current study demonstrated that etifoxine stimulated neurite outgrowth via GDNF, indicating that GDNF represents a key molecule in etifoxine‑stimulated neurite outgrowth in PC12 cells.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 2013; 138:155-75. [PMID: 23348013 DOI: 10.1016/j.pharmthera.2013.01.004] [Citation(s) in RCA: 590] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 01/07/2013] [Indexed: 12/16/2022]
Abstract
Glial cell-derived neurotrophic factor (GDNF), and the neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are important for the survival, maintenance and regeneration of specific neuronal populations in the adult brain. Depletion of these neurotrophic factors has been linked with disease pathology and symptoms, and replacement strategies are considered as potential therapeutics for neurodegenerative diseases such as Parkinson's, Alzheimer's and Huntington's diseases. GDNF administration has recently been shown to be an effective treatment for Parkinson's disease, with clinical trials currently in progress. Trials with NGF for Alzheimer's disease are ongoing, with some degree of success. Preclinical results using BDNF also show much promise, although there are accompanying difficulties. Ultimately, the administration of a therapy involving proteins in the brain has inherent problems. Because of the blood-brain-barrier, the protein must be infused directly, produced by viral constructs, secreted from implanted protein-secreting cells or actively transported across the brain. An alternative to this is the use of a small molecule agonist, a modulator or enhancer targeting the associated receptors. We evaluate these neurotrophic factors as potential short or long-term treatments, weighing up preclinical and clinical results with the possible effects on the underlying neurodegenerative process.
Collapse
|
57
|
Kalinin S, Willard SL, Shively CA, Kaplan JR, Register TC, Jorgensen MJ, Polak PE, Rubinstein I, Feinstein DL. Development of amyloid burden in African Green monkeys. Neurobiol Aging 2013; 34:2361-9. [PMID: 23601810 DOI: 10.1016/j.neurobiolaging.2013.03.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/13/2013] [Accepted: 03/17/2013] [Indexed: 01/07/2023]
Abstract
The vervet is an old world monkey increasingly being used as a model for human diseases. In addition to plaques and tangles, an additional hallmark of Alzheimer's disease is damage to neurons that synthesize noradrenaline (NA). We characterized amyloid burden in the posterior temporal lobe of young and aged vervets, and compared that with changes in NA levels and astrocyte activation. Total amyloid beta (Aβ)40 and Aβ42 levels were increased in the aged group, as were numbers of amyloid plaques detected using antibody 6E10. Low levels of Aβ42 were detected in 1 of 5 younger animals, although diffusely stained plaques were observed in 4 of these. Increased glial fibrillary acidic protein staining and messenger RNA levels were significantly correlated with increased age, as were cortical NA levels. Levels of Aβ42 and Aβ40, and the number of 6E10-positive plaques, were correlated with NA levels. Interestingly messenger RNA levels of glial derived neurotrophic factor, important for noradrenergic neuronal survival, were reduced with age. These findings suggest that amyloid pathology in aged vervets is associated with astrocyte activation and higher NA levels.
Collapse
Affiliation(s)
- Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Boscia F, Esposito CL, Casamassa A, de Franciscis V, Annunziato L, Cerchia L. The isolectin IB4 binds RET receptor tyrosine kinase in microglia. J Neurochem 2013; 126:428-36. [PMID: 23413818 DOI: 10.1111/jnc.12209] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 02/01/2023]
Abstract
Ret receptor tyrosine kinase is the signaling component of the receptor complex for the family ligands of the glial cell line-derived neurotrophic factor (GDNF). Ret is involved in the development of enteric nervous system, of sympathetic, parasympathetic, motor and sensory neurons, and it is necessary for the post-natal maintenance of dopaminergic neurons. Ret expression has been as well demonstrated on microglia and several evidence indicate that GDNF regulates not only neuronal survival and maturation but also certain functions of microglia in the brain. Here, we demonstrated that the plant lectin Griffonia (Bandeiraea) simplicifolia lectin I, isolectin B4 (IB4), commonly used as a microglial marker in the brain, binds to the glycosylated extracellular domain of Ret on the surface of living NIH3T3 fibroblasts cells stably transfected with Ret as well as in adult rat brain as revealed by immunoblotting. Furthermore, confocal immunofluorescence analysis demonstrated a clear overlap in staining between pRet and IB4 in primary microglia cultures as well as in adult rat sections obtained from control or post-ischemic brain after permanent middle artery occlusion (pMCAO). Interestingly, IB4 staining identified activated or ameboid Ret-expressing microglia under ischemic conditions. Collectively, our data indicate Ret receptor as one of the IB4-reactive glycoconjugate accounting for the IB4 stain in microglia under physiological and ischemic conditions.
Collapse
Affiliation(s)
- Francesca Boscia
- Dipartimento di Neuroscienze, Sezione di Farmacologia, Facolta' di Medicina e Chirurgia, Universita' degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
59
|
Muñoz-Manchado AB, Villadiego J, Suárez-Luna N, Bermejo-Navas A, Garrido-Gil P, Labandeira-García JL, Echevarría M, López-Barneo J, Toledo-Aral JJ. Neuroprotective and reparative effects of carotid body grafts in a chronic MPTP model of Parkinson's disease. Neurobiol Aging 2013; 34:902-15. [DOI: 10.1016/j.neurobiolaging.2012.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/19/2012] [Accepted: 06/01/2012] [Indexed: 12/28/2022]
|
60
|
Awad BI, Carmody MA, Steinmetz MP. Potential role of growth factors in the management of spinal cord injury. World Neurosurg 2013; 83:120-31. [PMID: 23334003 DOI: 10.1016/j.wneu.2013.01.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 01/06/2013] [Accepted: 01/11/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To review central nervous system growth factors and their therapeutic potential and clinical translation into spinal cord injury (SCI), as well as the challenges that have been encountered during clinical development. METHODS A systemic review of the available current and historical literature regarding central nervous system growth factors and clinical trials regarding their use in spinal cord injury was conducted. RESULTS The effectiveness of administering growth factors as a potential therapeutic strategy for SCI has been tested with the use of brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, neurotrophin 3, and neurotrophin-4/5. Delivery of growth factors to injured SC has been tested by numerous methods. Unfortunately, most of clinical trials at this time are uncontrolled and have questionable results because of lack of efficacy and/or unacceptable side effects. CONCLUSIONS There is promise in the use of specific growth factors therapeutically for SCI. However, more studies involving neuronal regeneration and functional recovery are needed, as well the development of delivery methods that allow sufficient quantity of growth factors while restricting their distribution to target sites.
Collapse
Affiliation(s)
- Basem I Awad
- Department of Neurosurgery, Mansoura University School of Medicine, Mansoura, Egypt; Department of Neurosciences, MetroHealth Medical Center, Cleveland, Ohio, USA
| | - Margaret A Carmody
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael P Steinmetz
- Department of Neurosciences, MetroHealth Medical Center, Cleveland, Ohio, USA.
| |
Collapse
|
61
|
Atanasova DY, Lazarov NE. Immunohistochemical Localization of Some Neurotrophic Factors and Their Receptors in the Rat Carotid Body. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/nm.2013.44042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
62
|
Yoo YM, Lee CJ, Kim YJ. Exogenous GDNF increases the migration of the neural stem cells with no protection against kainic acid-induced excitotoxic cell death in rats. Brain Res 2012; 1486:27-38. [PMID: 22985671 DOI: 10.1016/j.brainres.2012.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/20/2012] [Accepted: 09/05/2012] [Indexed: 11/29/2022]
Abstract
Glia cell line-derived neurotrophic factor (GDNF) is a potent survival factor for several neuron types. In this study, we have evaluated the utility of adenovirus-based vectors (Ad) and hippocampal neural stem cells (NSCs) as genetic tools for the delivery of a therapeutic protein, GDNF, in hippocampus tissues damaged by kainic acid (KA)-induced excitotoxicity. The experimental animals were treated with KA 3 days prior to exposure to Ad-GDNF, NSCs, and NSCs infected with Ad-GDNF (Ad-GDNF-NSCs). Seven days after the treatments with Ad-GDNF, NSCs and Ad-GDNF-NSCs, the effects of the treatments were evaluated. GAD-67 labeled cells originating from the transplanted NSCs were observed at increased levels in the Ad-GDNF-NSCs-treated rats as compared to the NSCs-only rats. In situ apoptosis assays showed that the levels of TUNEL-positive cells were slightly, but not significantly, reduced in the Ad-GDNF and Ad-GDNF-NSCs groups, as compared to the saline and NSCs only groups. GDNF expression by NSCs and Ad-GDNF was upregulated as the consequence of adenoviral gene delivery in the NSCs and Ad-GDNF-treated rats, and the transplanted NSCs were shown to have migrated to the hippocampal regions in Ad-GDNF-NSCs rats to a greater degree than in the NSCs-only rats. Furthermore, in the region in which the NSCs were detected, GDNF and GAD-67 expression were increased. These results indicate that the migration and differentiation of NSCs may be associated with the expression of GDNF. However, cell death consequent to KA administration was not prevented by upregulated GDNF and NSCs transplantation. Collectively, our results indicate that GDNF may exert effects on the migration and differentiation of NSCs, but there are no protective properties with regard to excitotoxically damaged hippocampal tissue.
Collapse
Affiliation(s)
- Young-Mi Yoo
- Department of Neurosurgery, Gachon Medical College, Gil Medical Center, Incheon, South Korea
| | | | | |
Collapse
|
63
|
Huang X, Wu L, Li X, Lowe TL. Thermoresponsive and Biodegradable Hydrogels for Sustained Release of Nerve Growth Factor to Stimulate Neurite Outgrowth. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/masy.201200022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
64
|
Abstract
The glial cell line-derived neurotrophic factor (GDNF) was first identified as a survival factor for midbrain dopaminergic neurons, but additional studies provided evidences for a role as a trophic factor for other neurons of the central and peripheral nervous systems. GDNF regulates cellular activity through interaction with glycosyl-phosphatidylinositol-anchored cell surface receptors, GDNF family receptor-α1, which might signal through the transmembrane Ret tyrosine receptors or the neural cell adhesion molecule, to promote cell survival, neurite outgrowth, and synaptogenesis. The neuroprotective effect of exogenous GDNF has been shown in different experimental models of focal and global brain ischemia, by local administration of the trophic factor, using viral vectors carrying the GDNF gene and by transplantation of GDNF-expressing cells. These different strategies and the mechanisms contributing to neuroprotection by GDNF are discussed in this review. Importantly, neuroprotection by GDNF was observed even when administered after the ischemic injury.
Collapse
Affiliation(s)
- Emília P Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | | | | | | |
Collapse
|
65
|
Abstract
This review addresses current understanding of the germline stem cell niche unit in mammalian testes. Spermatogenesis is a classic model of tissue-specific stem cell function relying on self-renewal and differentiation of spermatogonial stem cells (SSCs). These fate decisions are influenced by a niche microenvironment composed of a growth factor milieu that is provided by several testis somatic support cell populations. Investigations over the last two decades have identified key determinants of the SSC niche including cytokines that regulate SSC functions and support cells providing these factors, adhesion molecules that influence SSC homing, and developmental heterogeneity of the niche during postnatal aging. Emerging evidence suggests that Sertoli cells are a key support cell population influencing the formation and function of niches by secreting soluble factors and possibly orchestrating contributions of other support cells. Investigations with mice have shown that niche influence on SSC proliferation differs during early postnatal development and adulthood. Moreover, there is mounting evidence of an age-related decline in niche function, which is likely influenced by systemic factors. Defining the attributes of stem cell niches is key to developing methods to utilize these cells for regenerative medicine. The SSC population and associated niche comprise a valuable model system for study that provides fundamental knowledge about the biology of tissue-specific stem cells and their capacity to sustain homeostasis of regenerating tissue lineages. While the stem cell is essential for maintenance of all self-renewing tissues and has received considerable attention, the role of niche cells is at least as important and may prove to be more receptive to modification in regenerative medicine.
Collapse
Affiliation(s)
- Jon M Oatley
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| | | |
Collapse
|
66
|
Differential impairment of catecholaminergic cell maturation and survival by genetic mitochondrial complex II dysfunction. Mol Cell Biol 2012; 32:3347-57. [PMID: 22711987 DOI: 10.1128/mcb.00128-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The SDHD gene (subunit D of succinate dehydrogenase) has been shown to be involved in the generation of paragangliomas and pheochromocytomas. Loss of heterozygosity of the normal allele is necessary for tumor transformation of the affected cells. As complete SdhD deletion is lethal, we have generated mouse models carrying a "floxed" SdhD allele and either an inducible (SDHD-ESR strain) or a catecholaminergic tissue-specific (TH-SDHD strain) CRE recombinase. Ablation of both SdhD alleles in adult SDHD-ESR mice did not result in generation of paragangliomas or pheochromocytomas. In contrast, carotid bodies from these animals showed smaller volume than controls. In accord with these observations, the TH-SDHD mice had decreased cell numbers in the adrenal medulla, carotid body, and superior cervical ganglion. They also manifested inhibited postnatal maturation of mesencephalic dopaminergic neurons and progressive cell loss during the first year of life. These alterations were particularly intense in the substantia nigra, the most affected neuronal population in Parkinson's disease. Unexpectedly, TH(+) neurons in the locus coeruleus and group A13, also lacking the SdhD gene, were unaltered. These data indicate that complete loss of SdhD is not sufficient to induce tumorigenesis in mice. They suggest that substantia nigra neurons are more susceptible to mitochondrial damage than other catecholaminergic cells, particularly during a critical postnatal maturation period.
Collapse
|
67
|
GDNF is predominantly expressed in the PV+ neostriatal interneuronal ensemble in normal mouse and after injury of the nigrostriatal pathway. J Neurosci 2012; 32:864-72. [PMID: 22262884 DOI: 10.1523/jneurosci.2693-11.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is absolutely required for survival of dopaminergic (DA) nigrostriatal neurons and protect them from toxic insults. Hence, it is a promising, albeit experimental, therapy for Parkinson's disease (PD). However, the source of striatal GDNF is not well known. GDNF seems to be normally synthesized in neurons, but numerous reports suggest GDNF production in glial cells, particularly in the injured brain. We have studied in detail striatal GDNF production in normal mouse and after damage of DA neurons with MPTP. Striatal GDNF mRNA was present in neonates but markedly increased during the first 2-3 postnatal weeks. Cellular identification of GDNF by unequivocal histochemical methods demonstrated that in normal or injured adult animals GDNF is expressed by striatal neurons and is not synthesized in significant amounts by astrocytes or microglial cells. GDNF mRNA expression was not higher in reactive astrocytes than in normal ones. Approximately 95% of identified neostriatal GDNF-expressing cells in normal and injured animals are parvalbumin-positive (PV+) interneurons, which only represent ~0.7% of all striatal neurons. The remaining 5% of GDNF+ cells are cholinergic and somatostatin+ interneurons. Surprisingly, medium spiny projection neurons (MSNs), the vast majority of striatal neurons that receive a strong DA innervation, do not express GDNF. PV+ interneurons constitute an oscillatory functional ensemble of electrically connected cells that control MSNs' firing. Production of GDNF in the PV+ neurons might be advantageous to supply synchronous activity-dependent release of GDNF in broad areas of the striatum. Stimulation of the GDNF-producing striatal PV+ ensemble in PD patients could have therapeutic effects.
Collapse
|
68
|
Airavaara M, Pletnikova O, Doyle ME, Zhang YE, Troncoso JC, Liu QR. Identification of novel GDNF isoforms and cis-antisense GDNFOS gene and their regulation in human middle temporal gyrus of Alzheimer disease. J Biol Chem 2011; 286:45093-102. [PMID: 22081608 DOI: 10.1074/jbc.m111.310250] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Primate-specific genes and isoforms could provide insight into human brain diseases. Our bioinformatic analysis revealed that there are possibly five isoforms of human GDNF gene with different pre- and pro-regions by inter- and intra-exon splicing. By using TaqMan primer probe sets, designed between exons, we verified the expression of all isoforms. Furthermore, a novel GDNFOS gene was found to be transcribed from the opposite strand of GDNF gene. GDNFOS gene has four exons that are spliced into different isoforms. GDNFOS1 and GDNFOS2 are long noncoding RNAs, and GDNFOS3 encodes a protein of 105 amino acids. To study human GDNF and GDNFOS regulation in neurodegenerative diseases, the protein and mRNA levels were measured by Western blot and RT-quantitative PCR, respectively, in postmortem middle temporal gyrus (MTG) of Alzheimer disease (AD) and Huntington disease (HD) patients in comparison with those of normal controls. In the MTG of AD patients, the mature GDNF peptide was down-regulated; however, the transcript of GDNF isoform from human exon 2 was up-regulated, whereas that of the conserved isoform from exon 1 remained unchanged in comparison with those of normal controls. In contrast, the mature GDNF peptide and the isoform mRNA levels were not changed in the MTG of HD. The findings of novel GDNF and GDNFOS isoforms and differences in tissue expression patterns dysregulated in AD brains may further reveal the role of endogenous GDNF in human brain diseases.
Collapse
Affiliation(s)
- Mikko Airavaara
- Neural Protection and Regeneration Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Department of Health and Social Services, Baltimore, Maryland21224, USA
| | | | | | | | | | | |
Collapse
|
69
|
Anastasía A, Wojnacki J, de Erausquin GA, Mascó DH. Glial cell-line derived neurotrophic factor is essential for electroconvulsive shock-induced neuroprotection in an animal model of Parkinson's disease. Neuroscience 2011; 195:100-11. [PMID: 21871541 DOI: 10.1016/j.neuroscience.2011.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/18/2011] [Accepted: 08/09/2011] [Indexed: 01/25/2023]
Abstract
Sustained motor improvement in human patients with idiopathic Parkinson's disease has been described following electroconvulsive shock (ECS) treatment. In rats, ECS stimulates the expression of various trophic factors (TFs), some of which have been proposed to exert neuroprotective actions. We previously reported that ECS protects the integrity of the rat nigrostriatal dopaminergic system against 6-hydroxydopamine (6-OHDA)-induced toxicity; in order to shed light into its neuroprotective mechanism, we studied glial cell-line derived neurotrophic factor (GDNF) levels (the most efficient TF for dopaminergic neurons) in the substantia nigra (SN) and striatum of 6-OHDA-injected animals with or without ECS treatment. 6-OHDA injection decreased GDNF levels in the SN control animals, but not in those receiving chronic ECS, suggesting that changes in GDNF expression may participate in the ECS neuroprotective mechanism. To evaluate this possibility, we inhibit GDNF by infusion of GDNF function blocking antibodies in the SN of 6-OHDA-injected animals treated with ECS (or sham ECS). Animals were sacrificed 7 days after 6-OHDA infusion, and the integrity of the nigrostriatal system was studied by tyrosine hydroxylase immunohistochemistry and Cresyl Violet staining. Neuroprotection observed in ECS-treated animals was inhibited by GDNF antibodies in the SN. These results robustly demonstrate that GDNF is essential for the ECS neuroprotective effect observed in 6-OHDA-injected animals.
Collapse
Affiliation(s)
- A Anastasía
- Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Biología Celular y Molecular, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, ZC: X5016GCA, Córdoba, Argentina
| | | | | | | |
Collapse
|
70
|
Lanfranconi S, Locatelli F, Corti S, Candelise L, Comi GP, Baron PL, Strazzer S, Bresolin N, Bersano A. Growth factors in ischemic stroke. J Cell Mol Med 2011; 15:1645-87. [PMID: 20015202 PMCID: PMC4373358 DOI: 10.1111/j.1582-4934.2009.00987.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 11/26/2009] [Indexed: 12/31/2022] Open
Abstract
Data from pre-clinical and clinical studies provide evidence that colony-stimulating factors (CSFs) and other growth factors (GFs) can improve stroke outcome by reducing stroke damage through their anti-apoptotic and anti-inflammatory effects, and by promoting angiogenesis and neurogenesis. This review provides a critical and up-to-date literature review on CSF use in stroke. We searched for experimental and clinical studies on haemopoietic GFs such as granulocyte CSF, erythropoietin, granulocyte-macrophage colony-stimulating factor, stem cell factor (SCF), vascular endothelial GF, stromal cell-derived factor-1α and SCF in ischemic stroke. We also considered studies on insulin-like growth factor-1 and neurotrophins. Despite promising results from animal models, the lack of data in human beings hampers efficacy assessments of GFs on stroke outcome. We provide a comprehensive and critical view of the present knowledge about GFs and stroke, and an overview of ongoing and future prospects.
Collapse
Affiliation(s)
- S Lanfranconi
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - F Locatelli
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - S Corti
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - L Candelise
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - G P Comi
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - P L Baron
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - S Strazzer
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - N Bresolin
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - A Bersano
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| |
Collapse
|
71
|
Hoffer BJ. Commentary on chronic infusion of CDNF prevents 6-OHDA-induced deficits in a rat model of Parkinson's disease. Merja H. Voutilainen et al. Exp Neurol 2011; 230:162-6. [DOI: 10.1016/j.expneurol.2011.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/05/2011] [Accepted: 04/14/2011] [Indexed: 01/12/2023]
|
72
|
Feng CY, Wiggins LM, von Bartheld CS. The locus ceruleus responds to signaling molecules obtained from the CSF by transfer through tanycytes. J Neurosci 2011; 31:9147-58. [PMID: 21697366 PMCID: PMC4050199 DOI: 10.1523/jneurosci.5018-10.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 05/02/2011] [Accepted: 05/04/2011] [Indexed: 12/15/2022] Open
Abstract
Neurons can access signaling molecules through two principal pathways: synaptic transmission ("wiring transmission") and nonsynaptic transmission ("volume transmission"). Wiring transmission is usually considered the far more important mode of neuronal signaling. Using embryonic chick locus ceruleus (LoC) as a model, we quantified and compared routes of delivery of the neurotrophin nerve growth factor (NGF), either through a multisynaptic axonal pathway or via the CSF. We now show that the axonal pathway from the eye to the LoC involves axo-axonic transfer of NGF with receptor switching (p75 to trkA) in the optic tectum. In addition to the axonal pathway, the LoC of chick embryos has privileged access to the CSF through a specialized glial/ependymal cell type, the tanycyte. The avian LoC internalizes from the CSF in a highly specific fashion both NGF and the hormone urotensin (corticotropin-releasing factor family ligand). Quantitative autoradiography at the ultrastructural level shows that tanycytes transcytose and deliver NGF to LoC neurons via synaptoid contacts. The LoC-associated tanycytes express both p75 and trkA receptors. The NGF extracted by tanycytes from the CSF has physiological effects on LoC neurons, as evidenced by significantly altered nuclear diameters in both gain-of-function and loss-of-function experiments. Quantification of NGF extraction shows that, compared with multisynaptic axonal routes of NGF trafficking to LoC, the tanycyte route is significantly more effective. We conclude that some clinically important neuronal populations such as the LoC can use a highly efficient "back door" interface to the CSF and can receive signals via this tanycyte-controlled pathway.
Collapse
Affiliation(s)
- Cheng-Yuan Feng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557
| | - Larisa M. Wiggins
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557
| | | |
Collapse
|
73
|
Li BC, Li Y, Chen LF, Chang JY, Duan ZX. Olfactory ensheathing cells can reduce the tissue loss but not the cavity formation in contused spinal cord of rats. J Neurol Sci 2011; 303:67-74. [DOI: 10.1016/j.jns.2011.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 01/06/2011] [Accepted: 01/12/2011] [Indexed: 01/26/2023]
|
74
|
Deng LX, Hu J, Liu N, Wang X, Smith GM, Wen X, Xu XM. GDNF modifies reactive astrogliosis allowing robust axonal regeneration through Schwann cell-seeded guidance channels after spinal cord injury. Exp Neurol 2011; 229:238-50. [PMID: 21316362 DOI: 10.1016/j.expneurol.2011.02.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/28/2011] [Accepted: 02/03/2011] [Indexed: 01/19/2023]
Abstract
Reactive astrogliosis impedes axonal regeneration after injuries to the mammalian central nervous system (CNS). Here we report that glial cell line-derived neurotrophic factor (GDNF), combined with transplanted Schwann cells (SCs), effectively reversed the inhibitory properties of astrocytes at graft-host interfaces allowing robust axonal regeneration, concomitant with vigorous migration of host astrocytes into SC-seeded semi-permeable guidance channels implanted into a right-sided spinal cord hemisection at the 10th thoracic (T10) level. Within the graft, migrated host astrocytes were in close association with regenerated axons. Astrocyte processes extended parallel to the axons, implying that the migrated astrocytes were not inhibitory and might have promoted directional growth of regenerated axons. In vitro, GDNF induced migration of SCs and astrocytes toward each other in an astrocyte-SC confrontation assay. GDNF also enhanced migration of astrocytes on a SC monolayer in an inverted coverslip migration assay, suggesting that this effect is mediated by direct cell-cell contact between the two cell types. Morphologically, GDNF administration reduced astrocyte hypertrophy and induced elongated process extension of these cells, similar to what was observed in vivo. Notably, GDNF treatment significantly reduced production of glial fibrillary acidic protein (GFAP) and chondroitin sulfate proteoglycans (CSPGs), two hallmarks of astrogliosis, in both the in vivo and in vitro models. Thus, our study demonstrates a novel role of GDNF in modifying spinal cord injury (SCI)-induced astrogliosis resulting in robust axonal regeneration in adult rats.
Collapse
Affiliation(s)
- Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1380-99. [PMID: 21145878 DOI: 10.1016/j.bbamem.2010.12.001] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 02/06/2023]
Abstract
Adenosine acts in parallel as a neuromodulator and as a homeostatic modulator in the central nervous system. Its neuromodulatory role relies on a balanced activation of inhibitory A(1) receptors (A1R) and facilitatory A(2A) receptors (A2AR), mostly controlling excitatory glutamatergic synapses: A1R impose a tonic brake on excitatory transmission, whereas A2AR are selectively engaged to promote synaptic plasticity phenomena. This neuromodulatory role of adenosine is strikingly similar to the role of adenosine in the control of brain disorders; thus, A1R mostly act as a hurdle that needs to be overcame to begin neurodegeneration and, accordingly, A1R only effectively control neurodegeneration if activated in the temporal vicinity of brain insults; in contrast, the blockade of A2AR alleviates the long-term burden of brain disorders in different neurodegenerative conditions such as ischemia, epilepsy, Parkinson's or Alzheimer's disease and also seem to afford benefits in some psychiatric conditions. In spite of this qualitative agreement between neuromodulation and neuroprotection by A1R and A2AR, it is still unclear if the role of A1R and A2AR in the control of neuroprotection is mostly due to the control of glutamatergic transmission, or if it is instead due to the different homeostatic roles of these receptors related with the control of metabolism, of neuron-glia communication, of neuroinflammation, of neurogenesis or of the control of action of growth factors. In spite of this current mechanistic uncertainty, it seems evident that targeting adenosine receptors might indeed constitute a novel strategy to control the demise of different neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Catarina V Gomes
- Center for Neurosciences of Coimbra, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
76
|
Young A, Assey KS, Sturkie CD, West FD, Machacek DW, Stice SL. Glial cell line-derived neurotrophic factor enhances in vitro differentiation of mid-/hindbrain neural progenitor cells to dopaminergic-like neurons. J Neurosci Res 2010; 88:3222-32. [DOI: 10.1002/jnr.22499] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
77
|
Shen LH, Li Y, Chopp M. Astrocytic endogenous glial cell derived neurotrophic factor production is enhanced by bone marrow stromal cell transplantation in the ischemic boundary zone after stroke in adult rats. Glia 2010; 58:1074-81. [PMID: 20468049 DOI: 10.1002/glia.20988] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bone marrow stromal cells (BMSCs) facilitate functional recovery in rats after focal ischemic attack. Growing evidence suggests that the secretion of various bioactive factors underlies BMSCs' beneficial effects. This study investigates the expression of glial cell derived neurotrophic factor (GDNF) in the ischemic hemisphere with or without BMSC administration. Adult male Wistar rats were subjected to 2 h of middle cerebral artery occlusion followed by an injection of 3 x 10(6) BMSCs (n = 11) or phosphate-buffered saline (n = 10) into the tail vein 24 h later. Animals were sacrificed seven days later. Single and double immunohistochemical staining was performed to measure GDNF, Ki67, doublecortin, and glial fibrillary acidic protein expression as well as the number of apoptotic cells along the ischemic boundary zone (IBZ) and/or in the subventricular zone (SVZ). BMSC treatment significantly increased GDNF expression and decreased the number of apoptotic cells in the IBZ (P < 0.05). GDNF expression was colocalized with GFAP. Meanwhile, BMSCs increased the number of Ki-67 positive cells and the density of DCX positive migrating neuroblasts (P < 0.05). GDNF expression was significantly increased in single astrocytes collected from animals treated with BMSCs, and in astrocytes cocultured with BMSCs after OGD (P < 0.05). Our data suggest that BMSCs increase GDNF levels in the ischemic hemisphere; the major source of GDNF protein is reactive astrocytes. We propose that the increase of GDNF in response to BMSC administration creates a hospitable environment for local cellular repair as well as for migrating neuroblasts from the SVZ, and thus contributes to the functional improvement.
Collapse
Affiliation(s)
- L H Shen
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
78
|
Magill CK, Moore AM, Yan Y, Tong AY, MacEwan MR, Yee A, Hayashi A, Hunter DA, Ray WZ, Johnson PJ, Parsadanian A, Myckatyn TM, Mackinnon SE. The differential effects of pathway- versus target-derived glial cell line-derived neurotrophic factor on peripheral nerve regeneration. J Neurosurg 2010; 113:102-9. [PMID: 19943736 DOI: 10.3171/2009.10.jns091092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECT Glial cell line-derived neurotrophic factor (GDNF) has potent survival effects on central and peripheral nerve populations. The authors examined the differential effects of GDNF following either a sciatic nerve crush injury in mice that overexpressed GDNF in the central or peripheral nervous systems (glial fibrillary acidic protein [GFAP]-GDNF) or in the muscle target (Myo-GDNF). METHODS Adult mice (GFAP-GDNF, Myo-GDNF, or wild-type [WT] animals) underwent sciatic nerve crush and were evaluated using histomorphometry and muscle force and power testing. Uninjured WT animals served as controls. RESULTS In the sciatic nerve crush, the Myo-GDNF mice demonstrated a higher number of nerve fibers, fiber density, and nerve percentage (p < 0.05) at 2 weeks. The early regenerative response did not result in superlative functional recovery. At 3 weeks, GFAP-GDNF animals exhibit fewer nerve fibers, decreased fiber width, and decreased nerve percentage compared with WT and Myo-GDNF mice (p < 0.05). By 6 weeks, there were no significant differences between groups. CONCLUSIONS Peripheral delivery of GDNF resulted in earlier regeneration following sciatic nerve crush injuries than that with central GDNF delivery. Treatment with neurotrophic factors such as GDNF may offer new possibilities for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Christina K Magill
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Neurodegeneration in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors. J Neurosci 2010; 30:6236-46. [PMID: 20445049 DOI: 10.1523/jneurosci.0567-10.2010] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by striatonigral degeneration and olivo-pontocerebellar atrophy. Neuronal degeneration is accompanied by primarily oligodendrocytic accumulation of alpha-synuclein (alphasyn) as opposed to the neuronal inclusions more commonly found in other alpha-synucleinopathies such as Parkinson's disease. It is unclear how alphasyn accumulation in oligodendrocytes may lead to the extensive neurodegeneration observed in MSA; we hypothesize that the altered expression of oligodendrocyte-derived neurotrophic factors by alphasyn may be involved. In this context, the expression of a number neurotrophic factors reportedly expressed by oligodendrocytes [glial-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor 1 (IGF-1), as well as basic fibroblast growth factor 2 (bFGF2), reportedly astrocyte derived] were examined in transgenic mouse models expressing human alphasyn (halphasyn) under the control of either neuronal (PDGFbeta or mThy1) or oligodendrocytic (MBP) promoters. Although protein levels of BDNF and IGF-1 were altered in all the alphasyn transgenic mice regardless of promoter type, a specific decrease in GDNF protein expression was observed in the MBP-halphasyn transgenic mice. Intracerebroventricular infusion of GDNF improved behavioral deficits and ameliorated neurodegenerative pathology in the MBP-halphasyn transgenic mice. Consistent with the studies in the MBP-halphasyn transgenic mice, analysis of GDNF expression levels in human MSA samples demonstrated a decrease in the white frontal cortex and to a lesser degree in the cerebellum compared with controls. These results suggest a mechanism in which alphasyn expression in oligodendrocytes impacts on the trophic support provided by these cells for neurons, perhaps contributing to neurodegeneration.
Collapse
|
80
|
The differential axonal degradation of Ret accounts for cell-type-specific function of glial cell line-derived neurotrophic factor as a retrograde survival factor. J Neurosci 2010; 30:5149-58. [PMID: 20392937 DOI: 10.1523/jneurosci.5246-09.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a neuronal growth factor critical for the development and maintenance of central and peripheral neurons. GDNF is expressed in targets of innervation and provides support to several populations of large, projection neurons. To determine whether GDNF promotes retrograde survival over long axonal distances to cell bodies, we used a compartmentalized culture system. GDNF supported only modest and transient survival of postnatal sympathetic neurons when applied to their distal axons, in contrast to dorsal root ganglion (DRG) sensory neurons in which GDNF promoted survival equally well from either distal axons or cell bodies. Ret, the receptor tyrosine kinase for GDNF, underwent rapid proteasomal degradation in the axons of sympathetic neurons. Interestingly, the level of activated Ret in DRG neurons was sustained in the axons and also appeared in the cell bodies, suggesting that Ret was not degraded in sensory axons and was retrogradely transported. Pharmacologic inhibition of proteasomes only in the distal axons of sympathetic neurons caused an accumulation of activated Ret in both the axons and cell bodies during GDNF stimulation. Furthermore, exposure of the distal axons of sympathetic neurons to both GDNF and proteasome inhibitors, but neither one alone, promoted robust survival, identical to GDNF applied directly to the cell bodies. This differential responsiveness of sympathetic and sensory neurons to target-derived GDNF was attributable to the differential expression and degradation of the Ret9 and Ret51 isoforms. Therefore, the local degradation of Ret in axons dictates whether GDNF family ligands act as retrograde survival factors.
Collapse
|
81
|
Production of highly pure human glycosylated GDNF in a mammalian cell line. Int J Pharm 2010; 385:6-11. [DOI: 10.1016/j.ijpharm.2009.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/01/2009] [Accepted: 10/03/2009] [Indexed: 11/23/2022]
|
82
|
Boscia F, Esposito CL, Di Crisci A, de Franciscis V, Annunziato L, Cerchia L. GDNF selectively induces microglial activation and neuronal survival in CA1/CA3 hippocampal regions exposed to NMDA insult through Ret/ERK signalling. PLoS One 2009; 4:e6486. [PMID: 19649251 PMCID: PMC2715099 DOI: 10.1371/journal.pone.0006486] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 06/29/2009] [Indexed: 11/18/2022] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for several neuronal populations in different brain regions, including the hippocampus. However, no information is available on the: (1) hippocampal subregions involved in the GDNF-neuroprotective actions upon excitotoxicity, (2) identity of GDNF-responsive hippocampal cells, (3) transduction pathways involved in the GDNF-mediated neuroprotection in the hippocampus. We addressed these questions in organotypic hippocampal slices exposed to GDNF in presence of N-methyl-D-aspartate (NMDA) by immunoblotting, immunohistochemistry, and confocal analysis. In hippocampal slices GDNF acts through the activation of the tyrosine kinase receptor, Ret, without involving the NCAM-mediated pathway. Both Ret and ERK phosphorylation mainly occurred in the CA3 region where the two activated proteins co-localized. GDNF protected in a greater extent CA3 rather than CA1 following NMDA exposure. This neuroprotective effect targeted preferentially neurons, as assessed by NeuN staining. GDNF neuroprotection was associated with a significant increase of Ret phosphorylation in both CA3 and CA1. Interestingly, confocal images revealed that upon NMDA exposure, Ret activation occurred in microglial cells in the CA3 and CA1 following GDNF exposure. Collectively, this study shows that CA3 and CA1 hippocampal regions are highly responsive to GDNF-induced Ret activation and neuroprotection, and suggest that, upon excitotoxicity, such neuroprotection involves a GDNF modulation of microglial cell activity.
Collapse
Affiliation(s)
- Francesca Boscia
- Dipartimento di Neuroscienze, Sezione di Farmacologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Carla Lucia Esposito
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR “G. Salvatore”, Naples, Italy
| | - Antonella Di Crisci
- Dipartimento di Neuroscienze, Sezione di Farmacologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Vittorio de Franciscis
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR “G. Salvatore”, Naples, Italy
| | - Lucio Annunziato
- Dipartimento di Neuroscienze, Sezione di Farmacologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, Naples, Italy
- * E-mail: (LA); (LC)
| | - Laura Cerchia
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR “G. Salvatore”, Naples, Italy
- * E-mail: (LA); (LC)
| |
Collapse
|
83
|
Ullrich C, Humpel C. The pro-apoptotic substance thapsigargin selectively stimulates re-growth of brain capillaries. Curr Neurovasc Res 2009; 6:171-80. [PMID: 19534719 PMCID: PMC4311392 DOI: 10.2174/156720209788970063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 06/09/2009] [Indexed: 11/22/2022]
Abstract
Thapsigargin is a pro-apoptotic chemical, which has been shown to be useful to study cell death of cholinergic or dopaminergic neurons, or cells, which degenerate in Alzheimer's disease or Parkinson's disease, respectively. The aim of the present work was to study the effects of thapsigargin in the well established organotypic brain co-slice model composed of the basal nucleus of Meynert (nBM), ventral mesencephalon (vMes), dorsal striatum (dStr) and parietal cortex (Ctx). Cholinergic acetyltransferase-positive neurons in the nBM and dStr and dopaminergic tyrosine hydroxylase-positive neurons in the vMes survived, when cultured for 4 weeks with nerve growth factor and glial cell line-derived neurotrophic factor. Nerve fibers of cholinergic nBM neurons grew into the cortex and dopaminergic nerve fibers sprouted into dopamine D2 receptor-positive dStr. The whole co-slice contained a dense laminin-positive capillary network. Treatment of co-cultures with 3 microM thapsigargin for 24 hr significantly decreased the number of cholinergic neurons and dopaminergic neurons. This cell death displayed apoptotic DAPI-positive malformed nuclei and enhanced TUNEL-positive cells. Thapsigargin selectively stimulated the laminin-positive capillary growth between the nBM and Ctx. In conclusion, the induced cell death of cholinergic and dopaminergic neurons may be accompanied by enhanced angiogenic activity.
Collapse
Affiliation(s)
- Celine Ullrich
- Laboratory of Psychiatry and Exp. Alzheime’s Research, Department of Psychiatry, Innsbruck Medical University, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Exp. Alzheime’s Research, Department of Psychiatry, Innsbruck Medical University, Austria
| |
Collapse
|
84
|
Abstract
The receptor tyrosine kinase RET is expressed in a number of neuroblastoma tissues and cell lines, but its role in neuroblastoma remains to be determined. In this study, we examined the roles of RET protein in neuroblastoma by the RNA interference technique using the NB-39-nu neuroblastoma cell line. NB-39-nu neuroblastoma cells show high expression and elevated tyrosine phosphorylation of RET, although short interfering RNA against RET (RET siRNA) did not significantly inhibit cell proliferation or suppression of basal levels of phosphorylation of extracellular regulated kinase (ERK)1/2 or protein kinase B (AKT). By the addition of glial cell line-derived neurotrophic factor (GDNF), both the expression and phosphorylation of RET and the phosphorylation of ERK1/2 and AKT were further increased, whereas cell proliferation was not stimulated under normal culture conditions. However, proliferation of cells cultured under non-adherent conditions was significantly increased by GDNF. The increased proliferation was suppressed by RET siRNA, which also caused inhibition of the phosphorylation of ERK1/2 and AKT. These results suggest that RET signaling plays an important role in GDNF-induced enhancement of non-adherent proliferation of NB-39-nu cells, which might contribute to the metastasis of neuroblastoma.
Collapse
Affiliation(s)
- Hitoyasu Futami
- Growth Factor Division, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0044, Japan
| | | |
Collapse
|
85
|
Bolliet C, Bohn MC, Spector M. Non-viral delivery of the gene for glial cell line-derived neurotrophic factor to mesenchymal stem cells in vitro via a collagen scaffold. Tissue Eng Part C Methods 2009; 14:207-19. [PMID: 18721070 DOI: 10.1089/ten.tec.2008.0168] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent advances in tissue engineering that combine an extracellular matrix-like scaffold with therapeutic molecules, cells, DNA encoding therapeutic proteins, or a combination of the three hold promise for treating defects in the brain resulting from a penetrating injury or tumor resection. The purpose of this study was to investigate a porous sponge-like collagen scaffold for non-viral delivery of a plasmid encoding for glial cell line-derived neurotrophic factor (pGDNF) to rat marrow stromal stem cells (also referred to as mesenchymal stem cells, MSCs). The effects of the following parameters on GDNF synthesis in the three-dimensional (3D) constructs were evaluated and compared with results in monolayer culture: initial plasmid load (2-50 microg pGDNF), ratio of a lipid transfection reagent to plasmid (5:10), culture environment during the transfection (static and dynamic), and cell density. The level of gene expression in the collagen scaffolds achieved therapeutic levels that had previously been found to support survival of dopaminergic and trigeminal neurons in vitro. For the highest loading of plasmid (50 microg), the level of GDNF protein remained six to seven times above the control level after 2 weeks, a significant difference. Cell density in the scaffold was of importance for an early increase in GDNF production, with accumulated GDNF being approximately 60% greater after 9 days of culture when scaffolds were initially seeded with 2 million rat MSCs compared to 500,000 cells. Application of orbital shaking during the 4 h of transfection had a positive effect on the production of GDNF on 3D constructs but not of the same magnitude as reported in monolayer studies. Overall, these results demonstrate that the combination of tissue engineering and non-viral transfection of MSCs for the over-expression of GDNF is a promising approach for the long-term production of GDNF and probably for neurotrophic factors in general.
Collapse
Affiliation(s)
- Catherine Bolliet
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
86
|
The neurogenic niche in the carotid body and its applicability to antiparkinsonian cell therapy. J Neural Transm (Vienna) 2009; 116:975-82. [DOI: 10.1007/s00702-009-0201-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 02/12/2009] [Indexed: 11/27/2022]
|
87
|
Kanter-Schlifke I, Fjord-Larsen L, Kusk P, Angehagen M, Wahlberg L, Kokaia M. GDNF released from encapsulated cells suppresses seizure activity in the epileptic hippocampus. Exp Neurol 2009; 216:413-9. [PMID: 19162016 DOI: 10.1016/j.expneurol.2008.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 12/06/2008] [Accepted: 12/21/2008] [Indexed: 11/29/2022]
Abstract
To date, a variety of pharmacological treatments exists for patients suffering epilepsy, but systemically administered drugs offer only symptomatic relief and often cause unwanted side effects. Moreover, available drugs are not effective in one third of the patients. Thus, more local and more effective treatment strategies need to be developed. Gene therapy-based expression of endogenous anti-epileptic agents represents a novel approach that could interfere with the disease process and result in stable and long-term suppression of seizures in epilepsy patients. We have reported earlier that direct in vivo viral vector-mediated overexpression of the glial cell line-derived neurotrophic factor (GDNF) in the rat hippocampus suppressed seizures in different animal models of epilepsy. Here we explored whether transplantation of encapsulated cells that release GDNF in the hippocampus could also exert a seizure-suppressant effect. Such ex vivo gene therapy approach represents a novel, more clinically safe approach, since the treatment could be terminated by retrieving the transplants from the brain. We demonstrate here that encapsulated cells, which are genetically modified to produce and release GDNF, can suppress recurrent generalized seizures when implanted into the hippocampus of kindled rats.
Collapse
Affiliation(s)
- Irene Kanter-Schlifke
- Experimental Epilepsy Group, Wallenberg Neuroscience Center, BMC A-11, Lund University Hospital, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
88
|
Apel C, Forlenza OV, de Paula VJR, Talib LL, Denecke B, Eduardo CP, Gattaz WF. The neuroprotective effect of dental pulp cells in models of Alzheimer's and Parkinson's disease. J Neural Transm (Vienna) 2008; 116:71-8. [PMID: 18972063 DOI: 10.1007/s00702-008-0135-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 10/05/2008] [Indexed: 11/28/2022]
Abstract
Aim of the present study was to investigate the neuroprotective effect of dental pulp cells (DPCs) in in vitro models of Alzheimer and Parkinson disease. Primary cultures of hippocampal and ventral mesencephalic neurons were treated for 24 h with amyloid beta (Abeta(1-42)) peptide 1-42 and 6-OHDA, respectively. DPCs isolated from adult rat incisors were previously cultured in tissue culture inserts and added to the neuron cultures 2 days prior to neurotoxin treatment. Cell viability was assessed by the MTT assay. The co-culture with DPCs significantly attenuated 6-OHDA and Abeta(1-42)-induced toxicity in primary cultures of mesencephalic and hippocampal neurons, and lead to an increase in neuronal viability in untreated cultures, suggesting a neurotrophic effect in both models. Furthermore, human dental pulp cells expressed a neuronal phenotype and produced the neurotrophic factors NGF, GDNF, BDNF, and BMP2 shown by microarray screening and antibody staining for the representative proteins. DPCs protected primary neurons in in vitro models of Alzheimer's and Parkinson's disease and can be viewed as possible candidates for studies on cell-based therapy.
Collapse
Affiliation(s)
- C Apel
- Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
89
|
|
90
|
CD2AP and Cbl-3/Cbl-c constitute a critical checkpoint in the regulation of ret signal transduction. J Neurosci 2008; 28:8789-800. [PMID: 18753381 DOI: 10.1523/jneurosci.2738-08.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are critical for nervous system development and maintenance. GFLs promote survival and growth via activation of the receptor tyrosine kinase (RTK) Ret. In sympathetic neurons, the duration of Ret signaling is governed by how rapidly Ret is degraded after its activation. In an effort to elucidate mechanisms that control the half-life of Ret, we have identified two novel Ret interactors, CD2-associated protein (CD2AP) and Cbl-3. CD2AP, an adaptor molecule involved in the internalization of ubiquitinated RTKs, is associated with Ret under basal, unstimulated conditions in neurons. After Ret activation by GDNF, CD2AP dissociates. Similarly, the E3-ligase Cbl-3 interacts with unphosphorylated Ret and dissociates from Ret after Ret activation. In contrast to their dissociation from autophosphorylated Ret, an interaction between CD2AP and Cbl-3 is induced by GDNF stimulation of sympathetic neurons, suggesting that CD2AP and Cbl-3 dissociate from Ret as a complex. In neurons, the overexpression of CD2AP enhances the degradation of Ret and inhibits GDNF-dependent survival, and gene silencing of CD2AP blocks Ret degradation and promotes GDNF-mediated survival. Surprisingly, Cbl-3 overexpression dramatically stabilizes activated Ret and enhances neuronal survival, even though Cbl-family E3 ligases normally function to trigger RTK downregulation. In combination with CD2AP, however, Cbl-3 promotes Ret degradation rapidly and almost completely blocks survival promotion by GDNF, suggesting that Cbl-3 acts as a switch that is triggered by CD2AP and oscillates between inhibition and promotion of Ret degradation. Consistent with the hypothesis, Cbl-3 silencing in neurons only inhibited Ret degradation and enhanced neuronal survival in combination with CD2AP silencing. CD2AP and Cbl-3, therefore, constitute a checkpoint that controls the extent of Ret downregulation and, thereby, the sensitivity of neurons to GFLs.
Collapse
|
91
|
Saavedra A, Baltazar G, Duarte EP. Driving GDNF expression: the green and the red traffic lights. Prog Neurobiol 2008; 86:186-215. [PMID: 18824211 DOI: 10.1016/j.pneurobio.2008.09.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 06/18/2008] [Accepted: 09/03/2008] [Indexed: 01/28/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is widely recognized as a potent survival factor for dopaminergic neurons of the nigrostriatal pathway that degenerate in Parkinson's disease (PD). In animal models of PD, GDNF delivery to the striatum or the substantia nigra protects dopaminergic neurons against subsequent toxin-induced injury and rescues previously damaged neurons, promoting recovery of the motor function. Thus, GDNF was proposed as a potential therapy to PD aimed at slowing down, halting or reversing neurodegeneration, an issue addressed in previous reviews. However, the use of GDNF as a therapeutic agent for PD is hampered by the difficulty in delivering it to the brain. Another potential strategy is to stimulate the endogenous expression of GDNF, but in order to do that we need to understand how GDNF expression is regulated. The aim of this review is to do a comprehensive analysis of the state of the art on the control of endogenous GDNF expression in the nervous system, focusing mainly on the nigrostriatal pathway. We address the control of GDNF expression during development, in the adult brain and after injury, and how damaged neurons signal glial cells to up-regulate GDNF. Pharmacological agents or natural molecules that increase GDNF expression and show neuroprotective activity in animal models of PD are reviewed. We also provide an integrated overview of the signalling pathways linking receptors for these molecules to the induction of GDNF gene, which might also become targets for neuroprotective therapies in PD.
Collapse
Affiliation(s)
- Ana Saavedra
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Carrer Casanova 143, 08036 Barcelona, Spain.
| | | | | |
Collapse
|
92
|
Pertusa M, García-Matas S, Mammeri H, Adell A, Rodrigo T, Mallet J, Cristòfol R, Sarkis C, Sanfeliu C. Expression of GDNF transgene in astrocytes improves cognitive deficits in aged rats. Neurobiol Aging 2008; 29:1366-79. [PMID: 17399854 DOI: 10.1016/j.neurobiolaging.2007.02.026] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 02/14/2007] [Accepted: 02/20/2007] [Indexed: 01/25/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) was assayed for its neurotrophic effects against the neuronal atrophy that causes cognitive deficits in old age. Aged Fisher 344 rats with impairment in the Morris water maze received intrahippocampal injections at the dorsal CA1 area of either a lentiviral vector encoding human GDNF or the same vector encoding human green fluorescent protein as a control. Recombinant lentiviral vectors constructed with human cytomegalovirus promotor and pseudotyped with lyssavirus Mokola glycoprotein specifically transduced the astrocytes in vivo. Astrocyte-secreted GDNF enhanced neuron function as shown by local increases in synthesis of the neurotransmitters acetylcholine, dopamine and serotonin. This neurotrophic effect led to cognitive improvement of the rats as early as 2 weeks after gene transduction. Spatial learning and memory testing showed a significant gain in cognitive abilities due to GDNF exposure, whereas control-transduced rats kept their performance at the chance level. These results confirm the broad spectrum of the neurotrophic action of GDNF and open new gene therapy possibilities for reducing age-related neurodegeneration.
Collapse
Affiliation(s)
- M Pertusa
- Departament de Farmacologia i Toxicologia, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC-IDIBAPS, Rosselló 161, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Lo WC, Hsu CH, Wu ATH, Yang LY, Chen WH, Chiu WT, Lai WF, Wu CH, Gelovani JG, Deng WP. A novel cell-based therapy for contusion spinal cord injury using GDNF-delivering NIH3T3 cells with dual reporter genes monitored by molecular imaging. J Nucl Med 2008; 49:1512-9. [PMID: 18703596 DOI: 10.2967/jnumed.108.051896] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED This aim of our study was to evaluate a novel cell-based therapy for contusion spinal cord injury (SCI) using embryonic-derived NIH3T3 cells, which endogenously express glial cell line-derived neurotrophic factor (GDNF). METHODS Proliferation and differentiation of transplanted NIH3T3 cells and their anti-apoptotic effects were examined after their engraftment into the spinal cords of Long-Evans rats subjected to acute SCI at the T10 vertebral level by a New York University impactor device. NIH3T3 cells were initially engineered to contain dual reporter genes, namely thymidine kinase (T) and enhanced green fluorescence protein (G), for in vivo cell tracking by both nuclear and fluorescence imaging modalities. RESULTS Planar and fluorescence imaging demonstrated that transplanted NIH3T3-TG cells at the L1 vertebral level migrated 2 cm distal to the injury site as early as 2 h, and the signals persisted for 48 h after SCI. The expression of GDNF by NIH3T3-TG cells was then confirmed by immunohistochemical analysis both in vitro and in vivo. GDNF-secreting NIH3T3-TG transplant provided anti-apoptotic effects in the injured cord over the period of 3 wk. Finally, NIH3T3-TG cells cultured under neuronal differentiation medium exhibited both morphologic and genetic resemblance to neuronal cells. CONCLUSION GDNF-secreting NIH3T3-TG cells in combination with molecular imaging could be a platform for developing therapeutic tools for acute SCI.
Collapse
Affiliation(s)
- Wen-Cheng Lo
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Lindholm P, Peränen J, Andressoo JO, Kalkkinen N, Kokaia Z, Lindvall O, Timmusk T, Saarma M. MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain. Mol Cell Neurosci 2008; 39:356-71. [PMID: 18718866 DOI: 10.1016/j.mcn.2008.07.016] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 07/14/2008] [Indexed: 12/27/2022] Open
Abstract
The mesencephalic astrocyte-derived neurotrophic factor (MANF) has been described as a survival factor for dopaminergic neurons in vitro, but its expression in mammalian tissues is poorly known. MANF and a homologous protein, the conserved dopamine neurotrophic factor (CDNF), form a novel evolutionary conserved family of neurotrophic factors. Here we used in situ hybridization and immunohistochemistry to characterize MANF expression in developing and adult mouse. MANF expression was widespread in the nervous system and non-neuronal tissues. In the brain, relatively high MANF levels were detected in the cerebral cortex, hippocampus and cerebellar Purkinje cells. After status epilepticus, Manf mRNA expression was transiently increased in the dentate granule cell layer of hippocampus, thalamic reticular nucleus and in several cortical areas. In contrast, following global forebrain ischemia changes in Manf expression were widespread in the hippocampal formation and more restricted in cerebral cortex. The widespread expression of MANF together with its evolutionary conserved nature and regulation by brain insults suggest that it has important functions both under normal and pathological conditions in many tissue types.
Collapse
Affiliation(s)
- Päivi Lindholm
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Stewart AL, Anderson RB, Kobayashi K, Young HM. Effects of NGF, NT-3 and GDNF family members on neurite outgrowth and migration from pelvic ganglia from embryonic and newborn mice. BMC DEVELOPMENTAL BIOLOGY 2008; 8:73. [PMID: 18657279 PMCID: PMC2515305 DOI: 10.1186/1471-213x-8-73] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 07/25/2008] [Indexed: 01/09/2023]
Abstract
Background Pelvic ganglia are derived from the sacral neural crest and contain both sympathetic and parasympathetic neurons. Various members of the neurotrophin and GDNF families of neurotrophic factors have been shown to play important roles in the development of a variety of peripheral sympathetic and parasympathetic neurons; however, to date, the role of these factors in the development of pelvic ganglia has been limited to postnatal and older ages. We examined the effects of NGF, NT-3, GDNF, neurturin and artemin on cell migration and neurite outgrowth from explants of the pelvic ganglia from embryonic and newborn mice grown on collagen gels, and correlated the responses with the immunohistochemical localization of the relevant receptors in fixed tissue. Results Cell migration assays showed that GDNF strongly stimulated migration of tyrosine hydroxylase (TH) cells of pelvic ganglia from E11.5, E14.5 and P0 mice. Other factors also promoted TH cell migration, although to a lesser extent and only at discrete developmental stages. The cells and neurites of the pelvic ganglia were responsive to each of the GDNF family ligands – GDNF, neurturin and artemin – from E11.5 onwards. In contrast, NGF and NT-3 did not elicit a significant neurite outgrowth effect until E14.5 onwards. Artemin and NGF promoted significant outgrowth of sympathetic (TH+) neurites only, whereas neurturin affected primarily parasympathetic (TH-negative) neurite outgrowth, and GDNF and NT-3 enhanced both sympathetic and parasympathetic neurite outgrowth. In comparison, collagen gel assays using gut explants from E11.5 and E14.5 mice showed neurite outgrowth only in response to GDNF at E11.5 and to neurturin only in E14.5 mice. Conclusion Our data show that there are both age-dependent and neuron type-dependent differences in the responsiveness of embryonic and neo-natal pelvic ganglion neurons to growth factors.
Collapse
Affiliation(s)
- Ashley L Stewart
- Department of Anatomy and Cell Biology, University of Melbourne, 3010, Australia.
| | | | | | | |
Collapse
|
96
|
Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 2008; 11:755-61. [DOI: 10.1038/nn.2136] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 05/12/2008] [Indexed: 11/08/2022]
|
97
|
Wang YQ, Bian GL, Wei LC, Cao R, Peng YF, Chen LW. Nigrostriatal neurons in rat express the glial cell line-derived neurotrophic factor receptor subunit c-RET. Anat Rec (Hoboken) 2008; 291:49-54. [PMID: 18085609 DOI: 10.1002/ar.20618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The substantia nigra neurons expressing c-RET, a glial cell line-derived neurotrophic factor (GDNF) receptor intracellular tyrosine kinase subunit, were investigated in rats by using a double labeling method which combined retrograde horseradish peroxidase (HRP) labeling after injection into the striatum with immunohistochemistry to c-RET. It was revealed that the distribution of c-RET-immunoreactive neurons and HRP-labeled nigrostriatal neurons overlapped. Numerous double-labeled HRP/c-RET neurons were found in the substantia nigra pars compacta with predominate distribution ipsilateral to the injected striatum. Semiquantitative cell count indicated that a large percentage (97%) of HRP-labeled neurons showed c-RET immunoreactivity. Furthermore, double-labeled HRP/c-RET ones constituted only 61% of total c-RET-immunoreactive neurons in the substantia nigra ipsolateral to the injected striatum. Taken together with previous observations on glial cell line-derived neurotrophic factor in the basal ganglia, this study provides evidence that the c-RET protein may mediate biological activity of GDNF family ligands in most of projecting neurons in the substantia nigra pars compacta where the dopaminergic neurons are numerously distributed. Specially, it suggests that c-RET-mediating signaling cascades may play important roles in neuron-glial interaction that support and sustain nigrostriatal neuronal circuits in the basal ganglia.
Collapse
Affiliation(s)
- Yan-Qin Wang
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | |
Collapse
|
98
|
Adly MA, Assaf HA, Pertile P, Hussein MR, Paus R. Expression patterns of the glial cell line–derived neurotrophic factor, neurturin, their cognate receptors GFRα-1, GFRα-2, and a common signal transduction element c-Ret in the human skin hair follicles. J Am Acad Dermatol 2008; 58:238-50. [DOI: 10.1016/j.jaad.2007.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/11/2007] [Accepted: 10/09/2007] [Indexed: 01/03/2023]
|
99
|
RET signaling does not modulate MPTP toxicity but is required for regeneration of dopaminergic axon terminals. Proc Natl Acad Sci U S A 2007; 104:20049-54. [PMID: 18056810 DOI: 10.1073/pnas.0706177104] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Activation of the RET (rearranged during transfection) receptor by glial cell-line-derived neurotrophic factor (GDNF) has been identified as an important differentiation and survival factor for dopaminergic neurons of the midbrain in preclinical experiments. These encouraging results have led to clinical trials of GDNF in patients with Parkinson's disease, which have resulted in conflicting findings. To investigate the potential benefit of Ret-dependent signaling on the challenged dopaminergic system, we tested the effect of tissue-selective ablation of the Ret gene on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in mice, the most widely used animal model for Parkinson's disease. Ablation of Ret did not modify the MPTP-induced loss of dopaminergic neurons in the substantia nigra pars compacta and the dopaminergic innervation of the striatum at 14 days. However, Ret ablation abolished the regeneration of dopaminergic fibers and terminals, as well as the partial recovery of striatal dopamine concentrations, that was observed in control mice between days 14 and 90 after MPTP treatment. We therefore conclude that RET signaling has no influence on the survival of dopaminergic neurons in the MPTP model of Parkinson's disease but rather facilitates the regeneration of dopaminergic axon terminals.
Collapse
|
100
|
Abstract
The mainstays of Parkinson's disease (PD) treatment remain symptomatic, including initial dopamine replacement and subsequent deep brain stimulation, however, neither of these approaches is neuroprotective. Neurotrophic factors - proteins that activate cell signalling pathways regulating neuronal survival, differentiation, growth and regeneration - represent an alternative for treating dopaminergic neurons in PD but are difficult to administer clinically because they do not pass through the blood-brain barrier. Glial cell line-derived neurotrophic factor (GDNF) has potent neurotrophic effects particularly but not exclusively on dopaminergic neurons; in animal models of PD, it has consistently demonstrated both neuroprotective and neuroregenerative effects when provided continuously, either by means of a viral vector or through continuous infusion either into the cerebral ventricles (ICV) or directly into the denervated putamen. This led to a human PD study in which GDNF was administered by monthly bolus intracerebroventricular injections, however, no clinical benefit resulted, probably because of the limited penetration to the target brain areas, and instead significant side effects occurred. In an open-label study of continuous intraputamenal GDNF infusion in five patients (one unilaterally and four bilaterally), we reported excellent tolerance, few side effects and clinical benefit evident within three months of the commencement of treatment. The clinical improvement was sustained and progressive, and by 24-months patients demonstrated a 57 and 63% improvement in their off-medication motor and activities of daily living UPDRS subscores, respectively, with clear benefit in dyskinesias. The benefit was associated with a significant increase in putamenal 18F-dopa uptake on positron emission tomography (PET), and in one patient coming to autopsy after 43 months of unilateral infusion there was evident increased tyrosine hydroxylase immunopositive nerve fibres in the infused putamen. A second open trial in 10 patients using unilateral intraputamenal GDNF infusions has also demonstrated a greater than 30% bilateral benefit in both on- and off-medication scores at 24 weeks. Based on our 6-month results, a randomized controlled clinical trial was conducted to confirm the open-label results, however, GDNF infusion over 6-months did not confer the predetermined level of clinical benefit to patients with PD despite increased 18F-dopa uptake surrounding the catheter tip. It is possible that technical differences between this trial and the positive open label studies contributed to this negative outcome.
Collapse
Affiliation(s)
- N K Patel
- Institute of Neurosciences, Frenchay Hospital, Bristol, UK
| | | |
Collapse
|