51
|
Extinction of Contextual Cocaine Memories Requires Ca v1.2 within D1R-Expressing Cells and Recruits Hippocampal Ca v1.2-Dependent Signaling Mechanisms. J Neurosci 2017; 37:11894-11911. [PMID: 29089442 DOI: 10.1523/jneurosci.2397-17.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/03/2017] [Accepted: 10/25/2017] [Indexed: 11/21/2022] Open
Abstract
Exposure to cocaine-associated contextual cues contributes significantly to relapse. Extinction of these contextual associations, which involves a new form of learning, reduces cocaine-seeking behavior; however, the molecular mechanisms underlying this process remain largely unknown. We report that extinction, but not acquisition, of cocaine conditioned place preference (CPP) in male mice increased Cav1.2 L-type Ca2+ channel mRNA and protein in postsynaptic density (PSD) fractions of the hippocampus, a brain region involved in drug-context associations. Moreover, viral-mediated deletion of Cav1.2 in the dorsal hippocampus attenuated extinction of cocaine CPP. Molecular studies examining downstream Cav1.2 targets revealed that extinction recruited calcium/calmodulin (Ca2+/CaMK)-dependent protein kinase II (CaMKII) to the hippocampal PSD. This occurred in parallel with an increase in phosphorylation of the AMPA GluA1 receptor subunit at serine 831 (S831), a CaMKII site, along with an increase in total PSD GluA1. The necessity of S831 GluA1 was further demonstrated by the lack of extinction in S831A GluA1 phosphomutant mice. Of note hippocampal GluA1 levels remained unaltered at the PSD, but were reduced near the PSD and at perisynaptic sites of dendritic spines in extinction-resistant S831A mutant mice. Finally, conditional knock-out of Cav1.2 in dopamine D1 receptor (D1R)-expressing cells resulted in attenuation of cocaine CPP extinction and lack of extinction-dependent changes in hippocampal PSD CaMKII expression and S831 GluA1 phosphorylation. In summary, we demonstrate an essential role for the hippocampal Cav1.2/CaMKII/S831 GluA1 pathway in cocaine CPP extinction, with data supporting contribution of hippocampal D1R-expressing cells in this process. These findings demonstrate a novel role for Cav1.2 channels in extinction of contextual cocaine-associated memories.SIGNIFICANCE STATEMENT Continued drug-seeking behavior, a defining characteristic of cocaine addiction, can be precipitated by contextual cues, yet the molecular mechanisms required for extinction of these context-specific memories remain poorly understood. Here, we have uncovered a novel and selective role of the Cav1.2 L-type Ca2+ channel and its downstream signaling pathway in the hippocampus that mediate extinction of cocaine conditioned place preference (CPP). We additionally provide evidence that supports a role of Cav1.2 within dopamine D1 receptor-expressing cells of the hippocampus for extinction of cocaine CPP. Therefore, these findings reveal a previously unknown role of Cav1.2 channels within the hippocampus and in D1 receptor-expressing cells in extinction of cocaine-associated memories, providing a framework for further exploration of mechanisms underlying extinction of cocaine-seeking behavior.
Collapse
|
52
|
Rangel-Barajas C, Rebec GV. Dysregulation of Corticostriatal Connectivity in Huntington's Disease: A Role for Dopamine Modulation. J Huntingtons Dis 2017; 5:303-331. [PMID: 27983564 PMCID: PMC5181679 DOI: 10.3233/jhd-160221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aberrant communication between striatum, the main information processing unit of the basal ganglia, and cerebral cortex plays a critical role in the emergence of Huntington’s disease (HD), a fatal monogenetic condition that typically strikes in the prime of life. Although both striatum and cortex undergo substantial cell loss over the course of HD, corticostriatal circuits become dysfunctional long before neurons die. Understanding the dysfunction is key to developing effective strategies for treating a progressively worsening triad of motor, cognitive, and psychiatric symptoms. Cortical output neurons drive striatal activity through the release of glutamate, an excitatory amino acid. Striatal outputs, in turn, release γ-amino butyric acid (GABA) and exert inhibitory control over downstream basal ganglia targets. Ample evidence from transgenic rodent models points to dysregulation of corticostriatal glutamate transmission along with corresponding changes in striatal GABA release as underlying factors in the HD behavioral phenotype. Another contributor is dysregulation of dopamine (DA), a modulator of both glutamate and GABA transmission. In fact, pharmacological manipulation of DA is the only currently available treatment for HD symptoms. Here, we review data from animal models and human patients to evaluate the role of DA in HD, including DA interactions with glutamate and GABA within the context of dysfunctional corticostriatal circuitry.
Collapse
Affiliation(s)
| | - George V. Rebec
- Correspondence to: George V. Rebec, PhD, Department of Psychological and Brain Sciences, Program in
Neuroscience, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405-7007, USA. Tel.: +1 812 855 4832;
Fax: +1 812 855 4520; E-mail:
| |
Collapse
|
53
|
Özkan M, Johnson NW, Sehirli US, Woodhall GL, Stanford IM. Dopamine acting at D1-like, D2-like and α1-adrenergic receptors differentially modulates theta and gamma oscillatory activity in primary motor cortex. PLoS One 2017; 12:e0181633. [PMID: 28732063 PMCID: PMC5521821 DOI: 10.1371/journal.pone.0181633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/04/2017] [Indexed: 11/30/2022] Open
Abstract
The loss of dopamine (DA) in Parkinson’s is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1.
Collapse
Affiliation(s)
- Mazhar Özkan
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, United Kingdom
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey
| | - Nicholas W. Johnson
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, United Kingdom
| | - Umit S. Sehirli
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey
| | - Gavin L. Woodhall
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, United Kingdom
| | - Ian M. Stanford
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
54
|
Anhydroecgonine methyl ester, a cocaine pyrolysis product, may contribute to cocaine behavioral sensitization. Toxicology 2017; 376:44-50. [DOI: 10.1016/j.tox.2016.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/09/2016] [Accepted: 04/25/2016] [Indexed: 11/22/2022]
|
55
|
Li Y, Chen X, Dzakpasu R, Conant K. Dopamine-dependent effects on basal and glutamate stimulated network dynamics in cultured hippocampal neurons. J Neurochem 2017; 140:550-560. [PMID: 27925199 DOI: 10.1111/jnc.13915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 01/15/2023]
Abstract
Oscillatory activity occurs in cortical and hippocampal networks with specific frequency ranges thought to be critical to working memory, attention, differentiation of neuronal precursors, and memory trace replay. Synchronized activity within relatively large neuronal populations is influenced by firing and bursting frequency within individual cells, and the latter is modulated by changes in intrinsic membrane excitability and synaptic transmission. Published work suggests that dopamine, a potent modulator of learning and memory, acts on dopamine receptor 1-like dopamine receptors to influence the phosphorylation and trafficking of glutamate receptor subunits, along with long-term potentiation of excitatory synaptic transmission in striatum and prefrontal cortex. Prior studies also suggest that dopamine can influence voltage gated ion channel function and membrane excitability in these regions. Fewer studies have examined dopamine's effect on related endpoints in hippocampus, or potential consequences in terms of network burst dynamics. In this study, we record action potential activity using a microelectrode array system to examine the ability of dopamine to modulate baseline and glutamate-stimulated bursting activity in an in vitro network of cultured murine hippocampal neurons. We show that dopamine stimulates a dopamine type-1 receptor-dependent increase in number of overall bursts within minutes of its application. Notably, however, at the concentration used herein, dopamine did not increase the overall synchrony of bursts between electrodes. Although the number of bursts normalizes by 40 min, bursting in response to a subsequent glutamate challenge is enhanced by dopamine pretreatment. Dopamine-dependent potentiation of glutamate-stimulated bursting was not observed when the two modulators were administered concurrently. In parallel, pretreatment of murine hippocampal cultures with dopamine stimulated lasting increases in the phosphorylation of the glutamate receptor subunit GluA1 at serine 845. This effect is consistent with the possibility that enhanced membrane insertion of GluAs may contribute to a more slowly evolving dopamine-dependent potentiation of glutamate-stimulated bursting. Together, these results are consistent with the possibility that dopamine can influence hippocampal bursting by at least two temporally distinct mechanisms, contributing to an emerging appreciation of dopamine-dependent effects on network activity in the hippocampus.
Collapse
Affiliation(s)
- Yan Li
- Department of Neuroscience, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Xin Chen
- Department of Physics, Georgetown University, Washington, District of Columbia, USA
| | - Rhonda Dzakpasu
- Department of Physics, Georgetown University, Washington, District of Columbia, USA.,Department of Pharmacology, Georgetown University School of Medicine, Washington, District of Columbia, USA.,Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Katherine Conant
- Department of Neuroscience, Georgetown University School of Medicine, Washington, District of Columbia, USA.,Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
56
|
Geerts H, Spiros A, Roberts P. Phosphodiesterase 10 inhibitors in clinical development for CNS disorders. Expert Rev Neurother 2016; 17:553-560. [DOI: 10.1080/14737175.2017.1268531] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences Perelman School of Medicine, University of Pennsylvania, Berwyn, PA, USA
| | - Athan Spiros
- In Silico Biosciences Perelman School of Medicine, University of Pennsylvania, Berwyn, PA, USA
| | - Patrick Roberts
- In Silico Biosciences Perelman School of Medicine, University of Pennsylvania, Berwyn, PA, USA
| |
Collapse
|
57
|
Jennings A, Tyurikova O, Bard L, Zheng K, Semyanov A, Henneberger C, Rusakov DA. Dopamine elevates and lowers astroglial Ca 2+ through distinct pathways depending on local synaptic circuitry. Glia 2016; 65:447-459. [PMID: 27896839 PMCID: PMC5299530 DOI: 10.1002/glia.23103] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022]
Abstract
Whilst astrocytes in culture invariably respond to dopamine with cytosolic Ca2+ rises, the dopamine sensitivity of astroglia in situ and its physiological roles remain unknown. To minimize effects of experimental manipulations on astroglial physiology, here we monitored Ca2+ in cells connected via gap junctions to astrocytes loaded whole‐cell with cytosolic indicators in area CA1 of acute hippocampal slices. Aiming at high sensitivity of [Ca2+] measurements, we also employed life‐time imaging of the Ca2+ indicator Oregon Green BAPTA‐1. We found that dopamine triggered a dose‐dependent, bidirectional Ca2+ response in stratum radiatum astroglia, a jagged elevation accompanied and followed by below‐baseline decreases. The elevation depended on D1/D2 receptors and engaged intracellular Ca2+ storage and removal whereas the dopamine‐induced [Ca2+] decrease involved D2 receptors only and was sensitive to Ca2+ channel blockade. In contrast, the stratum lacunosum moleculare astroglia generated higher‐threshold dopamine‐induced Ca2+ responses which did not depend on dopamine receptors and were uncoupled from the prominent inhibitory action of dopamine on local perforant path synapses. Our findings thus suggest that a single neurotransmitter—dopamine—could either elevate or decrease astrocyte [Ca2+] depending on the receptors involved, that such actions are specific to the regional neural circuitry and that they may be causally uncoupled from dopamine actions on local synapses. The results also indicate that [Ca2+] elevations commonly detected in astroglia can represent the variety of distinct mechanisms acting on the microscopic scale. GLIA 2017;65:447–459
Collapse
Affiliation(s)
- Alistair Jennings
- UCL Institute of Neurology, University College London, London, United Kingdom
| | - Olga Tyurikova
- UCL Institute of Neurology, University College London, London, United Kingdom.,Institute of Neuroscience, University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Lucie Bard
- UCL Institute of Neurology, University College London, London, United Kingdom
| | - Kaiyu Zheng
- UCL Institute of Neurology, University College London, London, United Kingdom
| | - Alexey Semyanov
- Institute of Neuroscience, University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia.,RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Christian Henneberger
- UCL Institute of Neurology, University College London, London, United Kingdom.,Institute of Cellular Neurosciences, University of Bonn Medical School, Germany.,German Center of Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College London, London, United Kingdom.,Institute of Neuroscience, University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
58
|
Han C, Nie S, Chen G, Ma K, Xiong N, Zhang Z, Xu Y, Wang T, Papa SM, Cao X. Intrastriatal injection of ionomycin profoundly changes motor response to l-DOPA and its underlying molecular mechanisms. Neuroscience 2016; 340:23-33. [PMID: 27771532 DOI: 10.1016/j.neuroscience.2016.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
Long-term l-DOPA treatment of Parkinson's disease is accompanied with fluctuations of motor responses and l-DOPA-induced dyskinesia (LID). Phosphorylation of the dopamine and c-AMP regulated phosphoprotein of 32kDa (DARPP-32) plays a role in the pathogenesis of LID, and thus dephosphorylation of this protein by activated calcineurin may help reduce LID. One important activator of calcineurin is the Ca2+ ionophore ionomycin. Here, we investigated whether intrastriatal injection of ionomycin to hemiparkinsonian rats produced changes in l-DOPA responses including LID. We also analyzed the effects of ionomycin on key molecular mediators of LID. Results confirmed our hypothesis that ionomycin could downregulate the phosphorylation of DARPP32 at Thr-34 and reduce LID. Besides, ionomycin decreased two established molecular markers of LID, FosB/ΔFosB and phosphorylated ERK1/2. Ionomycin also decreased the phosphorylation of three main subunits of the NMDA receptor, NR1 phosphorylated at ser896, NR2A phosphorylated at Tyr-1325, and NR2B phosphorylated at Tyr-1472. Furthermore, the anti-LID effect of striatally injected ionomycin was not accompanied by reduction of the antiparkinsonian action of l-DOPA. These data indicate that ionomycin largely interacts with striatal mechanisms that are critical to the l-DOPA motor response highlighting the role of protein dephosphorylation by calcineurin.
Collapse
Affiliation(s)
- Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuke Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guiqin Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Stella M Papa
- Yerkes National Primate Research Center, Department of Neurology, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
59
|
Nagai T, Yoshimoto J, Kannon T, Kuroda K, Kaibuchi K. Phosphorylation Signals in Striatal Medium Spiny Neurons. Trends Pharmacol Sci 2016; 37:858-871. [DOI: 10.1016/j.tips.2016.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022]
|
60
|
Reappraising striatal D1- and D2-neurons in reward and aversion. Neurosci Biobehav Rev 2016; 68:370-386. [PMID: 27235078 DOI: 10.1016/j.neubiorev.2016.05.021] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/16/2016] [Accepted: 05/22/2016] [Indexed: 12/31/2022]
Abstract
The striatum has been involved in complex behaviors such as motor control, learning, decision-making, reward and aversion. The striatum is mainly composed of medium spiny neurons (MSNs), typically divided into those expressing dopamine receptor D1, forming the so-called direct pathway, and those expressing D2 receptor (indirect pathway). For decades it has been proposed that these two populations exhibit opposing control over motor output, and recently, the same dichotomy has been proposed for valenced behaviors. Whereas D1-MSNs mediate reinforcement and reward, D2-MSNs have been associated with punishment and aversion. In this review we will discuss pharmacological, genetic and optogenetic studies that indicate that there is still controversy to what concerns the role of striatal D1- and D2-MSNs in this type of behaviors, highlighting the need to reconsider the early view that they mediate solely opposing aspects of valenced behaviour.
Collapse
|
61
|
González B, Rivero-Echeto C, Muñiz JA, Cadet JL, García-Rill E, Urbano FJ, Bisagno V. Methamphetamine blunts Ca(2+) currents and excitatory synaptic transmission through D1/5 receptor-mediated mechanisms in the mouse medial prefrontal cortex. Addict Biol 2016; 21:589-602. [PMID: 25871318 DOI: 10.1111/adb.12249] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Psychostimulant addiction is associated with dysfunctions in frontal cortex. Previous data demonstrated that repeated exposure to methamphetamine (METH) can alter prefrontal cortex (PFC)-dependent functions. Here, we show that withdrawal from repetitive non-contingent METH administration (7 days, 1 mg/kg) depressed voltage-dependent calcium currents (ICa ) and increased hyperpolarization-activated cation current (IH ) amplitude and the paired-pulse ratio of evoked excitatory postsynaptic currents (EPSCs) in deep-layer pyramidal mPFC neurons. Most of these effects were blocked by systemic co-administration of the D1/D5 receptor antagonist SCH23390 (0.5 and 0.05 mg/kg). In vitro METH (i.e. bath-applied to slices from naïve-treated animals) was able to emulate its systemic effects on ICa and evoked EPSCs paired-pulse ratio. We also provide evidence of altered mRNA expression of (1) voltage-gated calcium channels P/Q-type Cacna1a (Cav 2.1), N-type Cacna1b (Cav 2.2), T-type Cav 3.1 Cacna1g, Cav 3.2 Cacna1h, Cav 3.3 Cacna1i and the auxiliary subunit Cacna2d1 (α2δ1); (2) hyperpolarization-activated cyclic nucleotide-gated channels Hcn1 and Hcn2; and (3) glutamate receptors subunits AMPA-type Gria1, NMDA-type Grin1 and metabotropic Grm1 in the mouse mPFC after repeated METH treatment. Moreover, we show that some of these changes in mRNA expression were sensitive D1/5 receptor blockade. Altogether, these altered mechanisms affecting synaptic physiology and transcriptional regulation may underlie PFC functional alterations that could lead to PFC impairments observed in METH-addicted individuals.
Collapse
Affiliation(s)
- Betina González
- Instituto de Investigaciones Farmacológicas; Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
| | - Celeste Rivero-Echeto
- Laboratorio de Fisiología y Biología Molecular; Instituto de Fisiología, Biología Molecular y Neurociencias; Departamento de Fisiología, Biología Molecular y Celular ‘Dr. Hector Maldonado’ (DFBMC); Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
| | - Javier A. Muñiz
- Instituto de Investigaciones Farmacológicas; Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch; NIH/NIDA Intramural Research Program; Baltimore MD USA
| | - Edgar García-Rill
- Center for Translational Neuroscience; Department of Neurobiology and Developmental Sciences; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - Francisco J. Urbano
- Laboratorio de Fisiología y Biología Molecular; Instituto de Fisiología, Biología Molecular y Neurociencias; Departamento de Fisiología, Biología Molecular y Celular ‘Dr. Hector Maldonado’ (DFBMC); Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
| | - Verónica Bisagno
- Instituto de Investigaciones Farmacológicas; Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
| |
Collapse
|
62
|
Abstract
UNLABELLED The senses of hearing and balance are subject to modulation by efferent signaling, including the release of dopamine (DA). How DA influences the activity of the auditory and vestibular systems and its site of action are not well understood. Here we show that dopaminergic efferent fibers innervate the acousticolateralis epithelium of the zebrafish during development but do not directly form synapses with hair cells. However, a member of the D1-like receptor family, D1b, tightly localizes to ribbon synapses in inner ear and lateral-line hair cells. To assess modulation of hair-cell activity, we reversibly activated or inhibited D1-like receptors (D1Rs) in lateral-line hair cells. In extracellular recordings from hair cells, we observed that D1R agonist SKF-38393 increased microphonic potentials, whereas D1R antagonist SCH-23390 decreased microphonic potentials. Using ratiometric calcium imaging, we found that increased D1R activity resulted in larger calcium transients in hair cells. The increase of intracellular calcium requires Cav1.3a channels, as a Cav1 calcium channel antagonist, isradipine, blocked the increase in calcium transients elicited by the agonist SKF-38393. Collectively, our results suggest that DA is released in a paracrine fashion and acts at ribbon synapses, likely enhancing the activity of presynaptic Cav1.3a channels and thereby increasing neurotransmission. SIGNIFICANCE STATEMENT The neurotransmitter dopamine acts in a paracrine fashion (diffusion over a short distance) in several tissues and bodily organs, influencing and regulating their activity. The cellular target and mechanism of the action of dopamine in mechanosensory organs, such as the inner ear and lateral-line organ, is not clearly understood. Here we demonstrate that dopamine receptors are present in sensory hair cells at synaptic sites that are required for signaling to the brain. When nearby neurons release dopamine, activation of the dopamine receptors increases the activity of these mechanosensitive cells. The mechanism of dopamine activation requires voltage-gated calcium channels that are also present at hair-cell synapses.
Collapse
|
63
|
Yu SJ, Wu KJ, Bae EK, Hsu MJ, Richie CT, Harvey BK, Wang Y. Methamphetamine induces a rapid increase of intracellular Ca(++) levels in neurons overexpressing GCaMP5. Addict Biol 2016; 21:255-66. [PMID: 25377775 DOI: 10.1111/adb.12193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, methamphetamine (Meth)- and glutamate (Glu)-mediated intracellular Ca(++) (Ca(++) i) signals were examined in real time in primary cortical neurons overexpressing an intracellular Ca(++) probe, GCaMP5, by adeno-associated viral (AAV) serotype 1. Binding of Ca(++) to GCaMP increased green fluorescence intensity in cells. Both Meth and Glu induced a rapid increase in Ca(++) i, which was blocked by MK801, suggesting that Meth enhanced Ca(++) i through Glu receptor in neurons. The Meth-mediated Ca(++) signal was also blocked by Mg(++) , low Ca(++) or the L-type Ca(++) channel inhibitor nifedipine. The ryanodine receptor inhibitor dantrolene did not alter the initial Ca(++) influx but partially reduced the peak of Ca(++) i. These data suggest that Meth enhanced Ca(++) influx through membrane Ca(++) channels, which then triggered the release of Ca(++) from the endoplasmic reticulum in the cytosol. AAV-GCaMP5 was also injected to the parietal cortex of adult rats. Administration of Meth enhanced fluorescence in the ipsilateral cortex. Using immunohistochemistry, Meth-induced green fluorescence was found in the NeuN-containing cells in the cortex, suggesting that Meth increased Ca(++) in neurons in vivo. In conclusion, we have used in vitro and in vivo techniques to demonstrate a rapid increase of Ca(++) i by Meth in cortical neurons through overexpression of GCaMP5. As Meth induces behavioral responses and neurotoxicity through Ca(++) i, modulation of Ca(++) i may be useful to reduce Meth-related reactions.
Collapse
Affiliation(s)
- Seong-Jin Yu
- Center for Neuropsychiatric Research; National Health Research Institutes; Taiwan
| | - Kou-Jen Wu
- Center for Neuropsychiatric Research; National Health Research Institutes; Taiwan
| | - Eun K. Bae
- Center for Neuropsychiatric Research; National Health Research Institutes; Taiwan
| | - Man-Jung Hsu
- Center for Neuropsychiatric Research; National Health Research Institutes; Taiwan
| | | | | | - Yun Wang
- Center for Neuropsychiatric Research; National Health Research Institutes; Taiwan
| |
Collapse
|
64
|
Li Y, Partridge J, Berger C, Sepulveda-Rodriguez A, Vicini S, Conant K. Dopamine increases NMDA-stimulated calcium flux in striatopallidal neurons through a matrix metalloproteinase-dependent mechanism. Eur J Neurosci 2016; 43:194-203. [PMID: 26660285 PMCID: PMC6047748 DOI: 10.1111/ejn.13146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 02/05/2023]
Abstract
Dopamine (DA) is a potent neuromodulator known to influence glutamatergic transmission in striatal medium spiny neurons (MSNs). It acts on D1- and D2-like DA receptors that are expressed on two distinct subpopulations. MSNs projecting to the substantia nigra express D1 receptors (D1Rs), while those projecting to the lateral globus pallidus express D2 receptors (D2Rs). D1R signalling in particular can increase excitatory transmission through varied protein kinase A-dependent, cell-autonomous pathways. Mechanisms by which D1R signalling could increase excitatory transmission in D2R-bearing MSNs have been relatively less explored. Herein, the possibility is considered that D1R agonists increase levels of soluble factors that subsequently influence N-methyl-D-aspartate (NMDA)-stimulated calcium flux in D2R neurons. This study focuses on matrix metalloproteinases (MMPs) and MMP-generated integrin binding ligands, important soluble effectors of glutamatergic transmission that may be elevated in the setting of excess DA. It was observed that DA and a D1R agonist, SKF81297, increase MMP activity in extracts from striatal slices, as determined by cleavage of the substrate β-dystroglycan. Using mice engineered to express the calcium indicator GCaMP3 in striatopallidal D2R-bearing neurons, it was also observed that SKF81297 pretreatment of slices (60 min) potentiates NMDA-stimulated calcium increases in this subpopulation. Effects are diminished by pretreatment with an antagonist of MMP activity or an inhibitor of integrin-dependent signalling. Together, results suggest that DA signalling can increase excitatory transmission in D2R neurons through an MMP-dependent mechanism. Future studies may be warranted to determine whether D1R-stimulated MMP-dependent processes contribute to behaviours in which increased activity in striatopallidal MSNs plays a role.
Collapse
Affiliation(s)
- Yan Li
- Departments of Neuroscience and Pharmacology, Georgetown University, 3970 Reservoir Road, Washington, DC, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - John Partridge
- Departments of Neuroscience and Pharmacology, Georgetown University, 3970 Reservoir Road, Washington, DC, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Carissa Berger
- Departments of Neuroscience and Pharmacology, Georgetown University, 3970 Reservoir Road, Washington, DC, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Alberto Sepulveda-Rodriguez
- Departments of Neuroscience and Pharmacology, Georgetown University, 3970 Reservoir Road, Washington, DC, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Stefano Vicini
- Departments of Neuroscience and Pharmacology, Georgetown University, 3970 Reservoir Road, Washington, DC, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Katherine Conant
- Departments of Neuroscience and Pharmacology, Georgetown University, 3970 Reservoir Road, Washington, DC, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
65
|
Rangel-Barajas C, Coronel I, Florán B. Dopamine Receptors and Neurodegeneration. Aging Dis 2015; 6:349-68. [PMID: 26425390 DOI: 10.14336/ad.2015.0330] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/30/2015] [Indexed: 01/19/2023] Open
Abstract
Dopamine (DA) is one of the major neurotransmitters and participates in a number of functions such as motor coordination, emotions, memory, reward mechanism, neuroendocrine regulation etc. DA exerts its effects through five DA receptors that are subdivided in 2 families: D1-like DA receptors (D1 and D5) and the D2-like (D2, D3 and D4). All DA receptors are widely expressed in the central nervous system (CNS) and play an important role in not only in physiological conditions but also pathological scenarios. Abnormalities in the DAergic system and its receptors in the basal ganglia structures are the basis Parkinson's disease (PD), however DA also participates in other neurodegenerative disorders such as Huntington disease (HD) and multiple sclerosis (MS). Under pathological conditions reorganization of DAergic system has been observed and most of the times, those changes occur as a mechanism of compensation, but in some cases contributes to worsening the alterations. Here we review the changes that occur on DA transmission and DA receptors (DARs) at both levels expression and signals transduction pathways as a result of neurotoxicity, inflammation and in neurodegenerative processes. The better understanding of the role of DA receptors in neuropathological conditions is crucial for development of novel therapeutic approaches to treat alterations related to neurodegenerative diseases.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- 1Department of Psychological and Brain Sciences Program in Neurosciences, Indiana University Bloomington, Bloomington, IN 47405, USA ; 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Israel Coronel
- 3Health Sciences Faculty, Anahuac University, Mexico Norte, State of Mexico, Mexico
| | - Benjamín Florán
- 4Department of Physiology, Biophysics and Neurosciences CINVESTAV-IPN, Mexico
| |
Collapse
|
66
|
Abstract
Drug-associated cues have profound effects on an addict's emotional state and drug-seeking behavior. Although this influence must involve the motivational neural system that initiates and encodes the drug-seeking act, surprisingly little is known about the nature of such physiological events and their motivational consequences. Three experiments investigated the effect of a cocaine-predictive stimulus on dopamine signaling, neuronal activity, and reinstatement of cocaine seeking. In all experiments, rats were divided into two groups (paired and unpaired), and trained to self-administer cocaine in the presence of a tone that signaled the immediate availability of the drug. For rats in the paired group, self-administration sessions were preceded by a taste cue that signaled delayed drug availability. Assessments of hedonic responses indicated that this delay cue became aversive during training. Both the self-administration behavior and the immediate cue were subsequently extinguished in the absence of cocaine. After extinction of self-administration behavior, the presentation of the aversive delay cue reinstated drug seeking. In vivo electrophysiology and voltammetry recordings in the nucleus accumbens measured the neural responses to both the delay and immediate drug cues after extinction. Interestingly, the presentation of the delay cue simultaneously decreased dopamine signaling and increased excitatory encoding of the immediate cue. Most importantly, the delay cue selectively enhanced the baseline activity of neurons that would later encode drug seeking. Together these observations reveal how cocaine cues can modulate not only affective state, but also the neurochemical and downstream neurophysiological environment of striatal circuits in a manner that promotes drug seeking.
Collapse
|
67
|
Roberts-Crowley ML, Rittenhouse AR. Characterization of ST14A Cells for Studying Modulation of Voltage-Gated Calcium Channels. PLoS One 2015; 10:e0132469. [PMID: 26147123 PMCID: PMC4492559 DOI: 10.1371/journal.pone.0132469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/15/2015] [Indexed: 11/19/2022] Open
Abstract
In medium spiny neurons (MSNs) of the striatum, dopamine D2 receptors (D2Rs) specifically inhibit the Cav1.3 subtype of L-type Ca2+ channels (LTCs). MSNs are heterogeneous in their expression of dopamine receptors making the study of D2R pathways difficult in primary neurons. Here, we employed the ST14A cell line, derived from embryonic striatum and characterized to have properties of MSNs, to study Cav1.3 current and its modulation by neurotransmitters. Round, undifferentiated ST14A cells exhibited little to no endogenous Ca2+ current while differentiated ST14A cells expressed endogenous Ca2+ current. Transfection with LTC subunits produced functional Cav1.3 current from round cells, providing a homogeneous model system compared to native MSNs for studying D2R pathways. However, neither endogenous nor recombinant Cav1.3 current was modulated by the D2R agonist quinpirole. We confirmed D2R expression in ST14A cells and also detected D1Rs, D4Rs, D5Rs, Gq, calcineurin and phospholipase A2 using RT-PCR and/or Western blot analysis. Phospholipase C β-1 (PLCβ-1) expression was not detected by Western blot analysis which may account for the lack of LTC modulation by D2Rs. These findings raise caution about the assumption that the presence of G-protein coupled receptors in cell lines indicates the presence of complete signaling cascades. However, exogenous arachidonic acid inhibited recombinant Cav1.3 current indicating that channels expressed in ST14A cells are capable of modulation since they respond to a known signaling molecule downstream of D2Rs. Thus, ST14A cells provide a MSN-like cell line for studying channel modulation and signaling pathways that do not involve activation of PLCβ-1.
Collapse
Affiliation(s)
- Mandy L. Roberts-Crowley
- Department of Physiology, Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ann R. Rittenhouse
- Department of Physiology, Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
68
|
Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex. PLoS One 2015; 10:e0131948. [PMID: 26133167 PMCID: PMC4489908 DOI: 10.1371/journal.pone.0131948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI)-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3) receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36) completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is likely dependent upon both DAG and enhanced intracellular Ca2+. These signaling pathways may collaborate to enhance sensory and mnemonic function in the entorhinal cortex during tonic release of dopamine.
Collapse
|
69
|
Cone JJ, Roitman JD, Roitman MF. Ghrelin regulates phasic dopamine and nucleus accumbens signaling evoked by food-predictive stimuli. J Neurochem 2015; 133:844-56. [PMID: 25708523 PMCID: PMC4464979 DOI: 10.1111/jnc.13080] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 12/24/2022]
Abstract
Environmental stimuli that signal food availability hold powerful sway over motivated behavior and promote feeding, in part, by activating the mesolimbic system. These food-predictive cues evoke brief (phasic) changes in nucleus accumbens (NAc) dopamine concentration and in the activity of individual NAc neurons. Phasic fluctuations in mesolimbic signaling have been directly linked to goal-directed behaviors, including behaviors elicited by food-predictive cues. Food-seeking behavior is also strongly influenced by physiological state (i.e., hunger vs. satiety). Ghrelin, a stomach hormone that crosses the blood-brain barrier, is linked to the perception of hunger and drives food intake, including intake potentiated by environmental cues. Notwithstanding, whether ghrelin regulates phasic mesolimbic signaling evoked by food-predictive stimuli is unknown. Here, rats underwent Pavlovian conditioning in which one cue predicted the delivery of rewarding food (CS+) and a second cue predicted nothing (CS-). After training, we measured the effect of ghrelin infused into the lateral ventricle (LV) on sub-second fluctuations in NAc dopamine using fast-scan cyclic voltammetry and individual NAc neuron activity using in vivo electrophysiology in separate groups of rats. LV ghrelin augmented both phasic dopamine and phasic increases in the activity of NAc neurons evoked by the CS+. Importantly, ghrelin did not affect the dopamine nor NAc neuron response to the CS-, suggesting that ghrelin selectively modulated mesolimbic signaling evoked by motivationally significant stimuli. These data demonstrate that ghrelin, a hunger signal linked to physiological state, can regulate cue-evoked mesolimbic signals that underlie food-directed behaviors. Cues that predict food availability powerfully regulate food-seeking behavior. Here we show that cue-evoked changes in both nucleus accumbens (NAc) dopamine (DA) and NAc cell activity are modulated by intra-cranial infusions of the stomach hormone ghrelin--a hormone known to act centrally to promote food intake. These data demonstrate that hormones associated with physiological state (i.e., hunger) can affect encoding of food-predictive cues in brain regions that drive food-motivated behavior.
Collapse
Affiliation(s)
- Jackson J. Cone
- Graduate Program in Neuroscience, University of Illinois at Chicago, 60612
| | - Jamie D. Roitman
- Department of Psychology, University of Illinois at Chicago, 60607
| | - Mitchell F. Roitman
- Graduate Program in Neuroscience, University of Illinois at Chicago, 60612
- Department of Psychology, University of Illinois at Chicago, 60607
| |
Collapse
|
70
|
Ibáñez-Sandoval O, Xenias HS, Tepper JM, Koós T. Dopaminergic and cholinergic modulation of striatal tyrosine hydroxylase interneurons. Neuropharmacology 2015; 95:468-76. [PMID: 25908399 DOI: 10.1016/j.neuropharm.2015.03.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 03/17/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
The recent electrophysiological characterization of TH-expressing GABAergic interneurons (THINs) in the neostriatum revealed an unexpected degree of diversity of interneurons in this brain area (Ibáñez-Sandoval et al., 2010, Unal et al., 2011, 2015). Despite being relatively few in number, THINs may play a significant role in transmitting and distributing extra- and intrastriatal neuromodulatory signals in the striatal circuitry. Here we investigated the dopaminergic and cholinergic regulation of THINs in vitro. We found that the dominant effect of dopamine was a dramatic enhancement of the ability of THINs to generate long-lasting depolarizing plateau potentials (PPs). Interestingly, the same effect could also be elicited by amphetamine-induced release of endogenous dopamine suggesting that THINs may exhibit similar responses to changes in extracellular dopamine concentration in vivo. The enhancement of PPs in THINs is perhaps the most pronounced effect of dopamine on the intrinsic excitability of neostriatal neurons described to date. Further, we demonstrate that all subtypes of THINSs tested also express nicotinic cholinergic receptors. All THIS responded, albeit differentially, with depolarization, PPs and spiking to brief application of nicotinic agonists. Powerful modulation of the nonlinear integrative properties of THINs by dopamine and the direct depolarization of these neurons by acetylcholine may play important roles in mediating the effects of these neuromodulators in the neostriatum with potentially important implications for understanding the mechanisms of neuropsychiatric disorders affecting the basal ganglia.
Collapse
Affiliation(s)
- Osvaldo Ibáñez-Sandoval
- Center for Molecular and Behavioral Neuroscience, Rutgers The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | - Harry S Xenias
- Center for Molecular and Behavioral Neuroscience, Rutgers The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | - James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA.
| | - Tibor Koós
- Center for Molecular and Behavioral Neuroscience, Rutgers The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA.
| |
Collapse
|
71
|
Enhanced dopamine-dependent hippocampal plasticity after single MK-801 application. Neuropsychopharmacology 2015; 40:987-95. [PMID: 25315194 PMCID: PMC4330513 DOI: 10.1038/npp.2014.276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 11/09/2022]
Abstract
Dopaminergic hyperfunction and N-methyl-D-aspartate receptor (NMDAR) hypofunction have both been implicated in psychosis. Dopamine-releasing drugs and NMDAR antagonists replicate symptoms associated with psychosis in healthy humans and exacerbate symptoms in patients with schizophrenia. Though hippocampal dysfunction contributes to psychosis, the impact of NMDAR hypofunction on hippocampal plasticity remains poorly understood. Here, we used an NMDAR antagonist rodent model of psychosis to investigate hippocampal long-term potentiation (LTP). We found that single systemic NMDAR antagonism results in a region-specific, presynaptic LTP at hippocampal CA1-subiculum synapses that is induced by activation of D1/D5 dopamine receptors and modulated by L-type voltage-gated Ca(2+) channels. Thereby, our findings may provide a cellular mechanism how NMDAR antagonism can lead to an enhanced hippocampal output causing activation of the hippocampus-ventral tegmental area-loop and overdrive of the dopamine system.
Collapse
|
72
|
Evans RC, Herin GA, Hawes SL, Blackwell KT. Calcium-dependent inactivation of calcium channels in the medial striatum increases at eye opening. J Neurophysiol 2015; 113:2979-86. [PMID: 25673739 DOI: 10.1152/jn.00818.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/06/2015] [Indexed: 01/12/2023] Open
Abstract
Influx of calcium through voltage-gated calcium channels (VGCCs) is essential for striatal function and plasticity. VGCCs expressed in striatal neurons have varying kinetics, voltage dependences, and densities resulting in heterogeneous subcellular calcium dynamics. One factor that determines the calcium dynamics in striatal medium spiny neurons is inactivation of VGCCs. Aside from voltage-dependent inactivation, VGCCs undergo calcium-dependent inactivation (CDI): inactivating in response to an influx of calcium. CDI is a negative feedback control mechanism; however, its contribution to striatal neuron function is unknown. Furthermore, although the density of VGCC expression changes with development, it is unclear whether CDI changes with development. Because calcium influx through L-type calcium channels is required for striatal synaptic depression, a change in CDI could contribute to age-dependent changes in striatal synaptic plasticity. Here we use whole cell voltage clamp to characterize CDI over developmental stages and across striatal regions. We find that CDI increases at the age of eye opening in the medial striatum but not the lateral striatum. The developmental increase in CDI mostly involves L-type channels, although calcium influx through non-L-type channels contributes to the CDI in both age groups. Agents that enhance protein kinase A (PKA) phosphorylation of calcium channels reduce the magnitude of CDI after eye opening, suggesting that the developmental increase in CDI may be related to a reduction in the phosphorylation state of the L-type calcium channel. These results are the first to show that modifications in striatal neuron properties correlate with changes to sensory input.
Collapse
Affiliation(s)
- R C Evans
- George Mason University, The Krasnow Institute for Advanced Studies, Fairfax, Virginia; and
| | - G A Herin
- Eastern Mennonite University, Harrisonburg, Virginia
| | - S L Hawes
- George Mason University, The Krasnow Institute for Advanced Studies, Fairfax, Virginia; and
| | - K T Blackwell
- George Mason University, The Krasnow Institute for Advanced Studies, Fairfax, Virginia; and
| |
Collapse
|
73
|
Modulation of direct pathway striatal projection neurons by muscarinic M4-type receptors. Neuropharmacology 2015; 89:232-44. [DOI: 10.1016/j.neuropharm.2014.09.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/12/2014] [Accepted: 09/23/2014] [Indexed: 12/29/2022]
|
74
|
Ruiz-DeDiego I, Mellstrom B, Vallejo M, Naranjo JR, Moratalla R. Activation of DREAM (downstream regulatory element antagonistic modulator), a calcium-binding protein, reduces L-DOPA-induced dyskinesias in mice. Biol Psychiatry 2015; 77:95-105. [PMID: 24857398 DOI: 10.1016/j.biopsych.2014.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/05/2014] [Accepted: 03/20/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Previous studies have implicated the cyclic adenosine monophosphate/protein kinase A pathway as well as FosB and dynorphin-B expression mediated by dopamine D1 receptor stimulation in the development of 3,4-dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia. The magnitude of these molecular changes correlates with the intensity of dyskinesias. The calcium-binding protein downstream regulatory element antagonistic modulator (DREAM) binds to regulatory element sites called DRE in the DNA and represses transcription of target genes such as c-fos, fos-related antigen-2 (fra-2), and prodynorphin. This repression is released by calcium and protein kinase A activation. Dominant-active DREAM transgenic mice (daDREAM) and DREAM knockout mice (DREAM(-/-)) were used to define the involvement of DREAM in dyskinesias. METHODS Dyskinesias were evaluated twice a week in mice with 6-hydroxydopamine lesions during long-term L-DOPA (25 mg/kg) treatment. The impact of DREAM on L-DOPA efficacy was evaluated using the rotarod and the cylinder test after the establishment of dyskinesia and the molecular changes by immunohistochemistry and Western blot. RESULTS In daDREAM mice, L-DOPA-induced dyskinesia was decreased throughout the entire treatment. In correlation with these behavioral results, daDREAM mice showed a decrease in FosB, phosphoacetylated histone H3, dynorphin-B, and phosphorylated glutamate receptor subunit, type 1 expression. Conversely, genetic inactivation of DREAM potentiated the intensity of dyskinesia, and DREAM(-/-) mice exhibited an increase in expression of molecular markers associated with dyskinesias. The DREAM modifications did not affect the kinetic profile or antiparkinsonian efficacy of L-DOPA therapy. CONCLUSIONS The protein DREAM decreases development of L-DOPA-induced dyskinesia in mice and reduces L-DOPA-induced expression of FosB, phosphoacetylated histone H3, and dynorphin-B in the striatum. These data suggest that therapeutic approaches that activate DREAM may be useful to alleviate L-DOPA-induced dyskinesia without interfering with the therapeutic motor effects of L-DOPA.
Collapse
Affiliation(s)
- Irene Ruiz-DeDiego
- Cajal Institute, Madrid, Spain; Centro Nacional de Biotecnología, Madrid, Spain
| | - Britt Mellstrom
- Centro Nacional de Biotecnología, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols all part of Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mario Vallejo
- CIBERNED, Madrid, Spain; CIBERDEM, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jose R Naranjo
- Centro Nacional de Biotecnología, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols all part of Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Rosario Moratalla
- Cajal Institute, Madrid, Spain; Centro Nacional de Biotecnología, Madrid, Spain.
| |
Collapse
|
75
|
Wang JY, Wang CY, Tan CH, Chao TT, Huang YS, Lee CC. Effect of different antipsychotic drugs on short-term mortality in stroke patients. Medicine (Baltimore) 2014; 93:e170. [PMID: 25437033 PMCID: PMC4616374 DOI: 10.1097/md.0000000000000170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The safety, tolerability, and efficacy data for antipsychotic drugs used in the acute phase of stroke are limited. The primary aim of this study was to examine the effectiveness and safety of typical and atypical antipsychotics on acute ischemic stroke mortality.This observational study was conducted in a retrospective cohort of patients selected from the 2010-2011 National Health Research Institute database in Taiwan. Patients were tracked for 1 month from the time of their first hospitalization for acute ischemic stroke. A nested case-control analysis was used to estimate the odds ratio (OR) of 30-day mortality associated with antipsychotic drug, adjusted for age, gender, disease severity, and comorbidities.The study cohort included 47,225 subjects with ischemic stroke, including 9445 mortality cases and 37,780 matched controls. After adjustment for the covariates, antipsychotics users before ischemic stroke are associated with a 73% decrease in the rate of mortality (OR 0.27; 95% CI 0.23-0.31). After ischemic stroke, the use of antipsychotics is associated with 87% decrease in the rate of mortality (OR 0.13; 95% CI 0.1-0.16). The users of conventional antipsychotics are associated with a 78% decrease in the rate of mortality (OR 0.22; 95% CI 0.18-0.26). The users of atypical antipsychotics are also associated with a 86% decrease in the rate of mortality (OR 0.14; 95% CI 0.12-0.17).We found that 1-month mortality among acute stroke patients treated with antipsychotics is significantly lower. The benefit on lower mortality was found not only among ischemic stroke patients who had received antipsychotics previously but also among patients who start antipsychotics after their stroke.
Collapse
Affiliation(s)
- Jen-Yu Wang
- From the Department of Internal Medicine (J-YW,C-YW, C-HT) and Medical Research Center (T-TC), Cardinal Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City; Department of Neurology (Y-SH) and Department of Otolaryngology (C-CL), Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi; and School of Medicine (CCL), Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | |
Collapse
|
76
|
Ji X, Martin GE. BK channels mediate dopamine inhibition of firing in a subpopulation of core nucleus accumbens medium spiny neurons. Brain Res 2014; 1588:1-16. [PMID: 25219484 DOI: 10.1016/j.brainres.2014.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/25/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
Abstract
Dopamine, a key neurotransmitter mediating the rewarding properties of drugs of abuse, is widely believed to exert some of its effects by modulating neuronal activity of nucleus accumbens (NAcc) medium spiny neurons (MSNs). Although its effects on synaptic transmission have been well documented, its regulation of intrinsic neuronal excitability is less understood. In this study, we examined the cellular mechanisms of acute dopamine effects on core accumbens MSNs evoked firing. We found that 0.5 µM A-77636 and 10 µM quinpirole, dopamine D1 (DR1s) and D2 receptor (D2Rs) agonists, respectively, markedly inhibited MSN evoked action potentials. This effect, observed only in about 25% of all neurons, was associated with spike-timing-dependent (STDP) long-term potentiation (tLTP), but not long-term depression (tLTD). Dopamine inhibits evoked firing by compromising subthreshold depolarization, not by altering action potentials themselves. Recordings in voltage-clamp mode revealed that all MSNs expressed fast (IA), slowly inactivating delayed rectifier (Idr), and large conductance voltage- and calcium-activated potassium (BKs) channels. Although A-77636 and quinpirole enhanced IA, its selective blockade by 0.5 µM phrixotoxin-1 had no effect on evoked firing. In contrast, exposing tissue to low TEA concentrations and to 10 µM paxilline, a selective BK channel blocker, prevented D1R agonist from inhibiting MSN firing. This result indicates that dopamine inhibits MSN firing through BK channels in a subpopulation of core accumbens MSNs exclusively associated with spike-timing-dependent long-term potentiation.
Collapse
Affiliation(s)
- Xincai Ji
- University of Massachusetts Medical School, The Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 303 Belmont Street, Worcester, MA 01604
| | - Gilles E Martin
- University of Massachusetts Medical School, The Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 303 Belmont Street, Worcester, MA 01604.
| |
Collapse
|
77
|
Atwood BK, Lovinger DM, Mathur BN. Presynaptic long-term depression mediated by Gi/o-coupled receptors. Trends Neurosci 2014; 37:663-73. [PMID: 25160683 DOI: 10.1016/j.tins.2014.07.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/09/2014] [Accepted: 07/25/2014] [Indexed: 01/20/2023]
Abstract
Long-term depression (LTD) of the efficacy of synaptic transmission is now recognized as an important mechanism for the regulation of information storage and the control of actions, as well as for synapse, neuron, and circuit development. Studies of LTD mechanisms have focused mainly on postsynaptic AMPA-type glutamate receptor trafficking. However, the focus has now expanded to include presynaptically expressed plasticity, the predominant form being initiated by presynaptically expressed Gi/o-coupled metabotropic receptor (Gi/o-GPCR) activation. Several forms of LTD involving activation of different presynaptic Gi/o-GPCRs as a 'common pathway' are described. We review here the literature on presynaptic Gi/o-GPCR-mediated LTD, discuss known mechanisms, gaps in our knowledge, and evaluate whether all Gi/o-GPCRs are capable of inducing presynaptic LTD.
Collapse
Affiliation(s)
- Brady K Atwood
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, 5625 Fishers Lane, MSC 9411, Bethesda, MD 20852-9411, USA
| | - David M Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, 5625 Fishers Lane, MSC 9411, Bethesda, MD 20852-9411, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
78
|
Zhang L, Liu L, Thompson R, Chan C. CREB modulates calcium signaling in cAMP-induced bone marrow stromal cells (BMSCs). Cell Calcium 2014; 56:257-68. [PMID: 25154887 DOI: 10.1016/j.ceca.2014.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/30/2022]
Abstract
Calcium signaling has a versatile role in many important cellular functions. Despite its importance, regulation of calcium signaling in bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) has not been explored extensively. Our previous study revealed that cyclic adenosine monophosphate (cAMP) enabled BMSCs to generate calcium signal upon stimulation by dopamine, KCl and glutamate. Concurrently, cAMP transiently activated the transcription factor cAMP response element binding protein (CREB) in BMSCs. Activity of CREB can be modulated by the calcium/calmodulin-dependent kinase signaling pathway, however, whether the calcium signaling observed in cAMP-induced BMSCs requires CREB has not been investigated. In an effort to uncover the role of CREB in the generation of calcium signaling in response to modulators such as dopamine and KCl, we knocked down CREB activity in BMSCs. Our study indicated that BMSCs, but not its close relative fibroblasts, are responsive to dopamine and KCl after cAMP treatment. Calcium signal elicited by dopamine depends, in part, on calcium influx whereas that elicited by KCl depends completely on calcium influx. Knock-down of CREB activity significantly reduced or abolished the cAMP-induced calcium response, and reintroducing a constitutively active CREB partially restored the calcium response.
Collapse
Affiliation(s)
- Linxia Zhang
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, United States
| | - Li Liu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, United States
| | - Ryan Thompson
- Cellular and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, United States
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, United States; Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
79
|
Wanjerkhede SM, Bapi RS, Mytri VD. Reinforcement learning and dopamine in the striatum: A modeling perspective. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2013.02.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
80
|
Sun Y, Shi N, Li H, Liu K, Zhang Y, Chen W, Sun X. Ghrelin suppresses Purkinje neuron P-type Ca(2+) channels via growth hormone secretagogue type 1a receptor, the βγ subunits of Go-protein, and protein kinase a pathway. Cell Signal 2014; 26:2530-8. [PMID: 25049077 DOI: 10.1016/j.cellsig.2014.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/09/2014] [Indexed: 12/22/2022]
Abstract
Although ghrelin receptors have been demonstrated to be widely expressed in the central nervous system and peripheral tissues of mammals, it is still unknown whether ghrelin functions in cerebellar Purkinje neurons. In this study, we identified a novel functional role for ghrelin in modulating P-type Ca(2+) channel (P-type channel) currents (IBa) as well as action-potential firing in rat Purkinje neurons. Our results show that ghrelin at 0.1μM reversibly decreased IBa by ~32.3%. This effect was growth hormone secretagogue receptor 1a (GHS-R1a)-dependent and was associated with a hyperpolarizing shift in the voltage-dependence of inactivation. Intracellular application of GDP-β-S and pretreatment with pertussis toxin abolished the inhibitory effects of ghrelin. Dialysis of cells with the peptide QEHA (but not the scrambled peptide SKEE), and a selective antibody raised against the G-protein αo subunit both blocked the ghrelin-induced response. Ghrelin markedly increased protein kinase A (PKA) activity, and intracellular application of PKI 5-24 as well as pretreatment of the cells with the PKA inhibitor KT-5720 abolished ghrelin-induced IBa decrease, while inhibition of PKC had no such effects. At the cellular level, ghrelin induced a significant increase in action-potential firing, and blockade of GHS-R1a by BIM-28163 abolished the ghrelin-induced hyperexcitability. In summary, these results suggest that ghrelin markedly decreases IBa via the activation of GHS-R1a, which is coupled sequentially to the activities of Go-protein βγ subunits and the downstream PKA pathway. This could contribute to its physiological functions, including the spontaneous firing of action potentials in cerebellar Purkinje neurons.
Collapse
Affiliation(s)
- Yameng Sun
- Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Nan Shi
- Department of Neurology, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201138, PR China
| | - Hua Li
- National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai 201203, PR China
| | - Kangyong Liu
- Department of Neurology, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201138, PR China.
| | - Yan Zhang
- Department of Neurology, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201138, PR China
| | - Wenqi Chen
- Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Xiaojiang Sun
- Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China.
| |
Collapse
|
81
|
Agosti F, López Soto EJ, Cabral A, Castrogiovanni D, Schioth HB, Perelló M, Raingo J. Melanocortin 4 receptor activation inhibits presynaptic N-type calcium channels in amygdaloid complex neurons. Eur J Neurosci 2014; 40:2755-65. [PMID: 24943127 DOI: 10.1111/ejn.12650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor involved in food intake and energy expenditure regulation. MC4R activation modifies neuronal activity but the molecular mechanisms by which this regulation occurs remain unclear. Here, we tested the hypothesis that MC4R activation regulates the activity of voltage-gated calcium channels and, as a consequence, synaptic activity. We also tested whether the proposed effect occurs in the amygdala, a brain area known to mediate the anorexigenic actions of MC4R signaling. Using the patch-clamp technique, we found that the activation of MC4R with its agonist melanotan II specifically inhibited 34.5 ± 1.5% of N-type calcium currents in transiently transfected HEK293 cells. This inhibition was concentration-dependent, voltage-independent and occluded by the Gαs pathway inhibitor cholera toxin. Moreover, we found that melanotan II specifically inhibited 25.9 ± 2.0% of native N-type calcium currents and 55.4 ± 14.4% of evoked inhibitory postsynaptic currents in mouse cultured amygdala neurons. In vivo, we found that the MC4R agonist RO27-3225 increased the marker of cellular activity c-Fos in several components of the amygdala, whereas the N-type channel blocker ω conotoxin GVIA increased c-Fos expression exclusively in the central subdivision of the amygdala. Thus, MC4R specifically inhibited the presynaptic N-type channel subtype, and this inhibition may be important for the effects of melanocortin in the central subdivision of the amygdala.
Collapse
Affiliation(s)
- Francina Agosti
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology (IMBICE), Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
82
|
Siekmeier PJ, vanMaanen DP. Dopaminergic contributions to hippocampal pathophysiology in schizophrenia: a computational study. Neuropsychopharmacology 2014; 39:1713-21. [PMID: 24469592 PMCID: PMC4023145 DOI: 10.1038/npp.2014.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 01/11/2023]
Abstract
Since the original formulation of the dopamine hypothesis, a number of other cellular-level abnormalities--eg, NMDA receptor hypofunction, GABA system dysfunction, neural connectivity disturbances--have been identified in schizophrenia, but the manner in which these potentially interact with hyperdopaminergia to lead to schizophrenic symptomatology remains uncertain. Previously, we created a neuroanatomically detailed, biophysically realistic computational model of hippocampus in the control (unaffected) and schizophrenic conditions, implemented on a 72-processor supercomputer platform. In the current study, we apply the effects of dopamine (DA), dose-dependently, to both models on the basis of an exhaustive review of the neurophysiologic literature on DA's ion channel and synaptic level effects. To index schizophrenic behavior, we use the specific inability of the model to attune to the 40 Hz (gamma band) frequency, a finding that has been well replicated in the clinical electroencephalography (EEG) and magnetoencephalography literature. In trials using 20 'simulated patients', we find that DA applied to the control model produces modest increases in 40 Hz activity, similar to experimental studies. However, in the schizophrenic model, increasing DA induces a decrement in 40 Hz resonance. This modeling work is significant in that it suggests that DA's effects may vary based on the neural substrate on which it acts, and--via simulated EEG recordings-points to the neurophysiologic mechanisms by which this may occur. We also feel that it makes a methodological contribution, as it exhibits a process by which a large amount of neurobiological data can be integrated to run pharmacologically relevant in silico experiments, using a systems biology approach.
Collapse
Affiliation(s)
- Peter J Siekmeier
- Laboratory for Computational Neuroscience, McLean Hospital, Belmont, MA, USA,Harvard Medical School, Boston, MA, USA,Laboratory for Computational Neuroscience, McLean Hospital, 115 Mill Street, deMarneffe #239, Belmont, MA 02478, USA, Tel: +1 617 855 3588, Fax: +1 617 855 4231, E-mail:
| | - David P vanMaanen
- Laboratory for Computational Neuroscience, McLean Hospital, Belmont, MA, USA,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
83
|
Mechanisms of dopamine D1 receptor-mediated ERK1/2 activation in the parkinsonian striatum and their modulation by metabotropic glutamate receptor type 5. J Neurosci 2014; 34:4728-40. [PMID: 24672017 DOI: 10.1523/jneurosci.2702-13.2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In animal models of Parkinson's disease, striatal overactivation of ERK1/2 via dopamine (DA) D1 receptors is the hallmark of a supersensitive molecular response associated with dyskinetic behaviors. Here we investigate the pathways involved in D1 receptor-dependent ERK1/2 activation using acute striatal slices from rodents with unilateral 6-hydroxydopamine (6-OHDA) lesions. Application of the dopamine D1-like receptor agonist SKF38393 induced ERK1/2 phosphorylation and downstream signaling in the DA-denervated but not the intact striatum. This response was mediated through a canonical D1R/PKA/MEK1/2 pathway and independent of ionotropic glutamate receptors but blocked by antagonists of L-type calcium channels. Coapplication of an antagonist of metabotropic glutamate receptor type 5 (mGluR5) or its downstream signaling molecules (PLC, PKC, IP3 receptors) markedly attenuated SKF38393-induced ERK1/2 activation. The role of striatal mGluR5 in D1-dependent ERK1/2 activation was confirmed in vivo in 6-OHDA-lesioned animals treated systemically with SKF38393. In one experiment, local infusion of the mGluR5 antagonist MTEP in the DA-denervated rat striatum attenuated the activation of ERK1/2 signaling by SKF38393. In another experiment, 6-OHDA lesions were applied to transgenic mice with a cell-specific knockdown of mGluR5 in D1 receptor-expressing neurons. These mice showed a blunted striatal ERK1/2 activation in response to SFK38393 treatment. Our results reveal that D1-dependent ERK1/2 activation in the DA-denervated striatum depends on a complex interaction between PKA- and Ca(2+)-dependent signaling pathways that is critically modulated by striatal mGluR5.
Collapse
|
84
|
Calcium signaling in Parkinson's disease. Cell Tissue Res 2014; 357:439-54. [PMID: 24781149 DOI: 10.1007/s00441-014-1866-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/06/2014] [Indexed: 12/16/2022]
Abstract
Calcium (Ca(2+)) is an almost universal second messenger that regulates important activities of all eukaryotic cells. It is of critical importance to neurons, which have developed extensive and intricate pathways to couple the Ca(2+) signal to their biochemical machinery. In particular, Ca(2+) participates in the transmission of the depolarizing signal and contributes to synaptic activity. During aging and in neurodegenerative disease processes, the ability of neurons to maintain an adequate energy level can be compromised, thus impacting on Ca(2+) homeostasis. In Parkinson's disease (PD), many signs of neurodegeneration result from compromised mitochondrial function attributable to specific effects of toxins on the mitochondrial respiratory chain and/or to genetic mutations. Despite these effects being present in almost all cell types, a distinguishing feature of PD is the extreme selectivity of cell loss, which is restricted to the dopaminergic neurons in the ventral portion of the substantia nigra pars compacta. Many hypotheses have been proposed to explain such selectivity, but only recently it has been convincingly shown that the innate autonomous activity of these neurons, which is sustained by their specific Cav1.3 L-type channel pore-forming subunit, is responsible for the generation of basal metabolic stress that, under physiological conditions, is compensated by mitochondrial buffering. However, when mitochondria function becomes even partially compromised (because of aging, exposure to environmental factors or genetic mutations), the metabolic stress overwhelms the protective mechanisms, and the process of neurodegeneration is engaged. The characteristics of Ca(2+) handling in neurons of the substantia nigra pars compacta and the possible involvement of PD-related proteins in the control of Ca(2+) homeostasis will be discussed in this review.
Collapse
|
85
|
Ávila-Ruiz T, Carranza V, Gustavo LL, Limón DI, Martínez I, Flores G, Flores-Hernández J. Chronic administration of nicotine enhances NMDA-activated currents in the prefrontal cortex and core part of the nucleus accumbens of rats. Synapse 2014; 68:248-56. [PMID: 24549882 DOI: 10.1002/syn.21726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 12/28/2022]
Abstract
Nicotine is an addictive substance of tobacco. It has been suggested that nicotine acts on glutamatergic (N-methyl-d-aspartate, NMDA) neurotransmission affecting dopamine release in the mesocorticolimbic system. This effect is reflected in neuroadaptative changes that can modulate neurotransmission in the prefrontal cortex (PFC) and nucleus accumbens (NAcc) core (cNAcc) and shell (sNAcc) regions. We evaluated the effect of chronic administration of nicotine (4.23 mg/kg/day for 14 days) on NMDA activated currents in dissociated neurons from the PFC, and NAcc (from core and shell regions). We assessed nicotine blood levels by mass spectrophotometry and we confirmed that nicotine increases locomotor activity. An electrophysiological study showed an increase in NMDA currents in neurons from the PFC and core part of the NAcc in animals treated with nicotine compared to those of control rats. No change was observed in neurons from the shell part of the NAcc. The enhanced glutamatergic activity observed in the neurons of rats with chronic administration of nicotine may explain the increased locomotive activity also observed in such rats. To assess one of the possible causes of increased NMDA currents, we used magnesium, to block NMDA receptor that contains the NR2B subunit. If there is a change in percent block of NMDA currents, it means that there is a possible change in expression of NMDA receptor subunits. Our results showed that there is no difference in the blocking effect of magnesium on the NMDA currents. The magnesium lacks of effect after nicotinic treatment suggests that there is no change in expression of NR2B subunit of NMDA receptors, then, the effect of nicotine treatment on amplitude of NMDA currents may be due to an increase in the quantity of receptors or to a change in the unitary conductance, rather than a change in the expression of the subunits that constitute it.
Collapse
Affiliation(s)
- Tania Ávila-Ruiz
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, CP 72570, Puebla, Puebla, México
| | | | | | | | | | | | | |
Collapse
|
86
|
Cahill E, Salery M, Vanhoutte P, Caboche J. Convergence of dopamine and glutamate signaling onto striatal ERK activation in response to drugs of abuse. Front Pharmacol 2014; 4:172. [PMID: 24409148 PMCID: PMC3884214 DOI: 10.3389/fphar.2013.00172] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/19/2013] [Indexed: 12/31/2022] Open
Abstract
Despite their distinct targets, all addictive drugs commonly abused by humans evoke increases in dopamine (DA) concentration within the striatum. The main DA Guanine nucleotide binding protein couple receptors (GPCRs) expressed by medium-sized spiny neurons of the striatum are the D1R and D2R, which are positively and negatively coupled to cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling, respectively. These two DA GPCRs are largely segregated into distinct neuronal populations, where they are co-expressed with glutamate receptors in dendritic spines. Direct and indirect interactions between DA GPCRs and glutamate receptors are the molecular basis by which DA modulates glutamate transmission and controls striatal plasticity and behavior induced by drugs of abuse. A major downstream target of striatal D1R is the extracellular signal-regulated kinase (ERK) kinase pathway. ERK activation by drugs of abuse behaves as a key integrator of D1R and glutamate NMDAR signaling. Once activated, ERK can trigger chromatin remodeling and induce gene expression that permits long-term cellular alterations and drug-induced morphological and behavioral changes. Besides the classical cAMP/PKA pathway, downstream of D1R, recent evidence implicates a cAMP-independent crosstalk mechanism by which the D1R potentiates NMDAR-mediated calcium influx and ERK activation. The mounting evidence of reciprocal modulation of DA and glutamate receptors adds further intricacy to striatal synaptic signaling and is liable to prove relevant for addictive drug-induced signaling, plasticity, and behavior. Herein, we review the evidence that built our understanding of the consequences of this synergistic signaling for the actions of drugs of abuse.
Collapse
Affiliation(s)
- Emma Cahill
- UMRS 952, INSERM, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; UMR7224, CNRS, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; University Pierre and Marie Curie-Paris 6 Paris, France
| | - Marine Salery
- UMRS 952, INSERM, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; UMR7224, CNRS, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; University Pierre and Marie Curie-Paris 6 Paris, France
| | - Peter Vanhoutte
- UMRS 952, INSERM, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; UMR7224, CNRS, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; University Pierre and Marie Curie-Paris 6 Paris, France
| | - Jocelyne Caboche
- UMRS 952, INSERM, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; UMR7224, CNRS, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; University Pierre and Marie Curie-Paris 6 Paris, France
| |
Collapse
|
87
|
L-type Ca2+ channel activity determines modulation of GABA release by dopamine in the substantia nigra reticulata and the globus pallidus of the rat. Neuroscience 2014; 256:292-301. [DOI: 10.1016/j.neuroscience.2013.10.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
88
|
Leyton V, Goles NI, Fuenzalida-Uribe N, Campusano JM. Octopamine and Dopamine differentially modulate the nicotine-induced calcium response in Drosophila Mushroom Body Kenyon Cells. Neurosci Lett 2013; 560:16-20. [PMID: 24334164 DOI: 10.1016/j.neulet.2013.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
In Drosophila associative olfactory learning, an odor, the conditioned stimulus (CS), is paired to an unconditioned stimulus (US). The CS and US information arrive at the Mushroom Bodies (MB), a Drosophila brain region that processes the information to generate new memories. It has been shown that olfactory information is conveyed through cholinergic inputs that activate nicotinic acetylcholine receptors (nAChRs) in the MB, while the US is coded by biogenic amine (BA) systems that innervate the MB. In this regard, the MB acts as a coincidence detector. A better understanding of the properties of the responses gated by nicotinic and BA receptors is required to get insights on the cellular and molecular mechanisms responsible for memory formation. In recent years, information has become available on the properties of the responses induced by nAChR activation in Kenyon Cells (KCs), the main neuronal MB population. However, very little information exists on the responses induced by aminergic systems in fly MB. Here we have evaluated some of the properties of the calcium responses gated by Dopamine (DA) and Octopamine (Oct) in identified KCs in culture. We report that exposure to BAs induces a fast but rather modest increase in intracellular calcium levels in cultured KCs. The responses to Oct and DA are fully blocked by a VGCC blocker, while they are differentially modulated by cAMP. Moreover, co-application of BAs and nicotine has different effects on intracellular calcium levels: while DA and nicotine effects are additive, Oct and nicotine induce a synergistic increase in calcium levels. These results suggest that a differential modulation of nicotine-induced calcium increase by DA and Oct could contribute to the events leading to learning and memory in flies.
Collapse
Affiliation(s)
- V Leyton
- Laboratorio Neurogenética de la Conducta, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - N I Goles
- Laboratorio Neurogenética de la Conducta, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - N Fuenzalida-Uribe
- Laboratorio Neurogenética de la Conducta, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J M Campusano
- Laboratorio Neurogenética de la Conducta, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
89
|
TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABA(A) receptors. J Neurosci 2013; 33:15879-93. [PMID: 24089494 DOI: 10.1523/jneurosci.0530-13.2013] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inflammation has been implicated in the progression of neurological disease, yet precisely how inflammation affects neuronal function remains unclear. Tumor necrosis factor-α (TNFα) is a proinflammatory cytokine that regulates synapse function by controlling neurotransmitter receptor trafficking and homeostatic synaptic plasticity. Here we characterize the mechanisms through which TNFα regulates inhibitory synapse function in mature rat and mouse hippocampal neurons. Acute application of TNFα induces a rapid and persistent decrease of inhibitory synaptic strength and downregulation of cell-surface levels of GABA(A)Rs containing α1, α2, β2/3, and γ2 subunits. We show that trafficking of GABA(A)Rs in response to TNFα is mediated by neuronally expressed TNF receptor 1 and requires activation of p38 MAPK, phosphatidylinositol 3-kinase, protein phosphatase 1 (PP1), and dynamin GTPase. Furthermore, TNFα enhances the association of PP1 with GABA(A)R β3 subunits and dephosphorylates a site on β3 known to regulate phospho-dependent interactions with the endocytic machinery. Conversely, we find that calcineurin and PP2A are not essential components of the signaling pathway and that clustering of the scaffolding protein gephyrin is only reduced after the initial receptor endocytosis. Together, these findings demonstrate a distinct mechanism of regulated GABA(A)R endocytosis that may contribute to the disruption of circuit homeostasis under neuroinflammatory conditions.
Collapse
|
90
|
Nakano T, Yoshimoto J, Doya K. A model-based prediction of the calcium responses in the striatal synaptic spines depending on the timing of cortical and dopaminergic inputs and post-synaptic spikes. Front Comput Neurosci 2013; 7:119. [PMID: 24062681 PMCID: PMC3772324 DOI: 10.3389/fncom.2013.00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/09/2013] [Indexed: 11/13/2022] Open
Abstract
The dopamine-dependent plasticity of the cortico-striatal synapses is considered as the cellular mechanism crucial for reinforcement learning. The dopaminergic inputs and the calcium responses affect the synaptic plasticity by way of the signaling cascades within the synaptic spines. The calcium concentration within synaptic spines, however, is dependent on multiple factors including the calcium influx through ionotropic glutamate receptors, the intracellular calcium release by activation of metabotropic glutamate receptors, and the opening of calcium channels by EPSPs and back-propagating action potentials. Furthermore, dopamine is known to modulate the efficacies of NMDA receptors, some of the calcium channels, and sodium and potassium channels that affect the back propagation of action potentials. Here we construct an electric compartment model of the striatal medium spiny neuron with a realistic morphology and predict the calcium responses in the synaptic spines with variable timings of the glutamatergic and dopaminergic inputs and the postsynaptic action potentials. The model was validated by reproducing the responses to current inputs and could predict the electric and calcium responses to glutamatergic inputs and back-propagating action potential in the proximal and distal synaptic spines during up- and down-states. We investigated the calcium responses by systematically varying the timings of the glutamatergic and dopaminergic inputs relative to the action potential and found that the calcium response and the subsequent synaptic potentiation is maximal when the dopamine input precedes glutamate input and action potential. The prediction is not consistent with the hypothesis that the dopamine input provides the reward prediction error for reinforcement learning. The finding suggests that there is an unknown learning mechanisms at the network level or an unknown cellular mechanism for calcium dynamics and signaling cascades.
Collapse
Affiliation(s)
- Takashi Nakano
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| | | | | |
Collapse
|
91
|
Implication of dopaminergic modulation in operant reward learning and the induction of compulsive-like feeding behavior in Aplysia. Learn Mem 2013; 20:318-27. [PMID: 23685764 DOI: 10.1101/lm.029140.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Feeding in Aplysia provides an amenable model system for analyzing the neuronal substrates of motivated behavior and its adaptability by associative reward learning and neuromodulation. Among such learning processes, appetitive operant conditioning that leads to a compulsive-like expression of feeding actions is known to be associated with changes in the membrane properties and electrical coupling of essential action-initiating B63 neurons in the buccal central pattern generator (CPG). Moreover, the food-reward signal for this learning is conveyed in the esophageal nerve (En), an input nerve rich in dopamine-containing fibers. Here, to investigate whether dopamine (DA) is involved in this learning-induced plasticity, we used an in vitro analog of operant conditioning in which electrical stimulation of En substituted the contingent reinforcement of biting movements in vivo. Our data indicate that contingent En stimulation does, indeed, replicate the operant learning-induced changes in CPG output and the underlying membrane and synaptic properties of B63. Significantly, moreover, this network and cellular plasticity was blocked when the input nerve was stimulated in the presence of the DA receptor antagonist cis-flupenthixol. These results therefore suggest that En-derived dopaminergic modulation of CPG circuitry contributes to the operant reward-dependent emergence of a compulsive-like expression of Aplysia's feeding behavior.
Collapse
|
92
|
Ogata G, Stradleigh TW, Partida GJ, Ishida AT. Dopamine and full-field illumination activate D1 and D2-D5-type receptors in adult rat retinal ganglion cells. J Comp Neurol 2013; 520:4032-49. [PMID: 22678972 DOI: 10.1002/cne.23159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dopamine can regulate signal generation and transmission by activating multiple receptors and signaling cascades, especially in striatum, hippocampus, and cerebral cortex. Dopamine modulates an even larger variety of cellular properties in retina, yet has been reported to do so by only D1 receptor-driven cyclic adenosine monophosphate (cAMP) increases or D2 receptor-driven cAMP decreases. Here, we test the possibility that dopamine operates differently on retinal ganglion cells, because the ganglion cell layer binds D1 and D2 receptor ligands, and displays changes in signaling components other than cAMP under illumination that should release dopamine. In adult rat retinal ganglion cells, based on patch-clamp recordings, Ca(2+) imaging, and immunohistochemistry, we find that 1) spike firing is inhibited by dopamine and SKF 83959 (an agonist that does not activate homomeric D1 receptors or alter cAMP levels in other systems); 2) D1 and D2 receptor antagonists (SCH 23390, eticlopride, raclopride) counteract these effects; 3) these antagonists also block light-induced rises in cAMP, light-induced activation of Ca(2+) /calmodulin-dependent protein kinase II, and dopamine-induced Ca(2+) influx; and 4) the Ca(2+) rise is markedly reduced by removing extracellular Ca(2+) and by an IP3 receptor antagonist (2-APB). These results provide the first evidence that dopamine activates a receptor in adult mammalian retinal neurons that is distinct from classical D1 and D2 receptors, and that dopamine can activate mechanisms in addition to cAMP and cAMP-dependent protein kinase to modulate retinal ganglion cell excitability.
Collapse
Affiliation(s)
- Genki Ogata
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
93
|
Roggenhofer E, Fidzinski P, Shor O, Behr J. Reduced threshold for induction of LTP by activation of dopamine D1/D5 receptors at hippocampal CA1-subiculum synapses. PLoS One 2013; 8:e62520. [PMID: 23626827 PMCID: PMC3633881 DOI: 10.1371/journal.pone.0062520] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/21/2013] [Indexed: 11/18/2022] Open
Abstract
The phasic release of dopamine in the hippocampal formation has been shown to facilitate the encoding of novel information. There is evidence that the subiculum operates as a detector and distributor of sensory information, which incorporates the novelty and relevance of signals received from CA1. The subiculum acts as the final hippocampal relay station for outgoing information. Subicular pyramidal cells have been classified as regular- and burst-spiking neurons. The goal of the present study was to study the effect of dopamine D1/D5 receptor activation on synaptic transmission and plasticity in the subicular regular-spiking neurons of 4–6 week old Wistar rats. We demonstrate that prior activation of D1/D5 receptors reduces the threshold for the induction of long-term potentiation (LTP) in subicular regular-spiking neurons. Our results indicate that D1/D5 receptor activation facilitates a postsynaptic form of LTP in subicular regular-spiking cells that is NMDA receptor-dependent, relies on postsynaptic Ca2+ signaling, and requires the activation of protein kinase A. The enhanced propensity of subicular regular-spiking cells to express postsynaptic LTP after activation of D1/D5 receptors provides an intriguing mechanism for the encoding of hippocampal output information.
Collapse
Affiliation(s)
- Elisabeth Roggenhofer
- Department of Psychiatry and Psychotherapy, Charite, Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
94
|
Garza-López E, González-Ramírez R, Gandini MA, Sandoval A, Felix R. The familial hemiplegic migraine type 1 mutation K1336E affects direct G protein-mediated regulation of neuronal P/Q-type Ca2+ channels. Cephalalgia 2013; 33:398-407. [PMID: 23430985 DOI: 10.1177/0333102412475236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Familial hemiplegic migraine type 1 (FHM-1) is an autosomal dominant form of migraine with aura characterized by recurrent migraine, hemiparesis and ataxia. FHM-1 has been linked to missense mutations in the CACNA1A gene encoding the pore-forming subunit of the neuronal voltage-gated P/Q-type Ca(2+) channel (CaV2.1α1). METHODS Here, we explored the effects of the FHM-1 K1336E mutation on G protein-dependent modulation of the recombinant P/Q-type channel. The mutation was introduced into the human CaV2.1α1 subunit and its functional consequences investigated after heterologous expression in HEK-293 cells using patch-clamp recordings. RESULTS Functional analysis of the K1336E mutation revealed a reduction of Ca(2+) current densities, a ∼10 mV left-shift in the current-voltage relationship, and the slowing of current inactivation kinetics. When co-expressed along with the human μ-opioid receptor, application of the agonist DAMGO inhibited whole-cell currents through both the wild-type and the mutant channels. Prepulse facilitation was also reduced by the K1336E mutation. Likewise, the kinetic analysis of the onset and decay of facilitation showed that the mutation affects the apparent dissociation and reassociation rates of the Gβγ dimer from the channel complex. CONCLUSIONS These results suggest that the extent of G-protein-mediated inhibition is significantly reduced in the K1336E mutant CaV2.1 Ca(2+) channels. This alteration would contribute to render the neuronal network hyperexcitable, possibly as a consequence of reduced presynaptic inhibition, and may help to explain some aspects of the FHM-1 pathophysiology.
Collapse
Affiliation(s)
- Edgar Garza-López
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute Cinvestav-IPN, Mexico
| | | | | | | | | |
Collapse
|
95
|
Abstract
Among the many neuromodulators used by the mammalian brain to regulate circuit function and plasticity, dopamine (DA) stands out as one of the most behaviorally powerful. Perturbations of DA signaling are implicated in the pathogenesis or exploited in the treatment of many neuropsychiatric diseases, including Parkinson's disease (PD), addiction, schizophrenia, obsessive compulsive disorder, and Tourette's syndrome. Although the precise mechanisms employed by DA to exert its control over behavior are not fully understood, DA is known to regulate many electrical and biochemical aspects of neuronal function including excitability, synaptic transmission, integration and plasticity, protein trafficking, and gene transcription. In this Review, we discuss the actions of DA on ionic and synaptic signaling in neurons of the prefrontal cortex and striatum, brain areas in which dopaminergic dysfunction is thought to be central to disease.
Collapse
Affiliation(s)
- Nicolas X Tritsch
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
96
|
Abstract
The prefrontal cortex (PFC) utilizes working memory to guide behavior and to release the organism from dependence on environmental cues and is commonly disrupted in neuropsychiatric disorders, normal aging, or exposure to uncontrollable stress. This review posits that the PFC is very sensitive to changes in the neuromodulatory inputs it receives from norepinephrine (NE) and dopamine (DA) systems and that this sensitivity can lead to marked changes in the working-memory functions of the PFC. While NE and DA have important beneficial influences on processing in this area, very high levels of catecholamine release, for example, during exposure to uncontrollable stress, disrupt the cognitive functions of the PFC. This fresh understanding of the neurochemical influences on PFC function has led to new treatments for cognitive disorders such as Attention Deficit Hyperactivity Disorder (ADHD), and may help to elucidate the prevalence of PFC dysfunction in other mental disorders.
Collapse
Affiliation(s)
- A F Arnsten
- Section of Neurobiology, Yale Medical School, New Haven, CT 06520-8001, USA
| |
Collapse
|
97
|
Ji X, Martin GE. New rules governing synaptic plasticity in core nucleus accumbens medium spiny neurons. Eur J Neurosci 2012; 36:3615-27. [PMID: 23013293 DOI: 10.1111/ejn.12002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 08/08/2012] [Accepted: 08/15/2012] [Indexed: 11/29/2022]
Abstract
The nucleus accumbens is a forebrain region responsible for drug reward and goal-directed behaviors. It has long been believed that drugs of abuse exert their addictive properties on behavior by altering the strength of synaptic communication over long periods of time. To date, attempts at understanding the relationship between drugs of abuse and synaptic plasticity have relied on the high-frequency long-term potentiation model of T.V. Bliss & T. Lømo [(1973) Journal of Physiology, 232, 331-356]. We examined synaptic plasticity using spike-timing-dependent plasticity, a stimulation paradigm that reflects more closely the in vivo firing patterns of mouse core nucleus accumbens medium spiny neurons and their afferents. In contrast to other brain regions, the same stimulation paradigm evoked bidirectional long-term plasticity. The magnitude of spike-timing-dependent long-term potentiation (tLTP) changed with the delay between action potentials and excitatory post-synaptic potentials, and frequency, whereas that of spike-timing-dependent long-term depression (tLTD) remained unchanged. We showed that tLTP depended on N-methyl-d-aspartate receptors, whereas tLTD relied on action potentials. Importantly, the intracellular calcium signaling pathways mobilised during tLTP and tLTD were different. Thus, calcium-induced calcium release underlies tLTD but not tLTP. Finally, we found that the firing pattern of a subset of medium spiny neurons was strongly inhibited by dopamine receptor agonists. Surprisingly, these neurons were exclusively associated with tLTP but not with tLTD. Taken together, these data point to the existence of two subgroups of medium spiny neurons with distinct properties, each displaying unique abilities to undergo synaptic plasticity.
Collapse
Affiliation(s)
- Xincai Ji
- Department of Psychiatry, University of Massachusetts Medical School, The Brudnick Neuropsychiatric Research Institute, 303 Belmont Street, Worcester, MA 01604, USA
| | | |
Collapse
|
98
|
Mahapatra S, Marcantoni A, Zuccotti A, Carabelli V, Carbone E. Equal sensitivity of Cav1.2 and Cav1.3 channels to the opposing modulations of PKA and PKG in mouse chromaffin cells. J Physiol 2012; 590:5053-73. [PMID: 22826131 DOI: 10.1113/jphysiol.2012.236729] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mouse chromaffin cells (MCCs) express high densities of L-type Ca2+ channels (LTCCs), which control pacemaking activity and catecholamine secretion proportionally to their density of expression. In vivo phosphorylation of LTCCs by cAMP-PKA and cGMP–PKG, regulate LTCC gating in two opposing ways: the cAMP-PKA pathway potentiates while the cGMP–PKG cascade inhibits LTCCs. Despite this, no attempts have been made to answer three key questions related to the two Cav1 isoforms expressed in MCCs (Cav1.2 and Cav1.3): (i) how much are the two Cav1 channels basally modulated by PKA and PKG?, (ii) to what extent can Cav1.2 and Cav1.3 be further regulated by PKA or PKG activation?, and (iii) are the effects of both kinases cumulative when simultaneously active? Here, by comparing the size of L-type currents of wild-type (WT; Cav1.2+Cav1.3) and Cav1.3−/− KO (Cav1.2) MCCs, we provide new evidence that both PKA and PKG pathways affect Cav1.2 and Cav1.3 to the same extent either under basal conditions or induced stimulation. Inhibition of PKA by H89 (5 μM) reduced the L-type current in WT and KO MCCs by∼60%,while inhibition of PKG by KT 5823 (1 μM) increased by∼40% the same current in both cell types. Given that Cav1.2 and Cav1.3 carry the same quantity of Ca2+ currents, this suggests equal sensitivity of Cav1.2 and Cav1.3 to the two basal modulatory pathways. Maximal stimulation of cAMP–PKA by forskolin (100 μM) and activation of cGMP–PKG by pCPT-cGMP (1mM) uncovered a∼25% increase of L-type currents in the first case and∼65% inhibition in the second case in both WT and KO MCCs, suggesting equal sensitivity of Cav1.2 and Cav1.3 during maximal PKA or PKG stimulation. The effects of PKA and PKG were cumulative and most evident when one pathway was activated and the other was inhibited. The two extreme combinations(PKA activation–PKG inhibition vs. PKG activation-PKA inhibition) varied the size of L-type currents by one order of magnitude (from 180% to 18% of control size). Taken together our data suggest that: (i) Cav1.2 and Cav1.3 are equally sensitive to PKA and PKG action under both basal conditions and maximal stimulation, and (ii) PKA and PKG act independently on both Cav1.2 and Cav1.3, producing cumulative effects when opposingly activated. These extreme Cav1 channel modulations may occur either during high-frequency sympathetic stimulation to sustain prolonged catecholamine release (maximal L-type current) or following activation of the NO–cGMP–PKG signalling pathway (minimal L-type current) to limit the steady release of catecholamines.
Collapse
|
99
|
Wigestrand MB, Fonnum F, Ivar Walaas S. Subunit-specific modulation of [3H]MK-801 binding to NMDA receptors mediated by dopamine receptor ligands in rodent brain. Neurochem Int 2012; 61:266-76. [DOI: 10.1016/j.neuint.2012.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 11/27/2022]
|
100
|
Effects of protein kinase A inhibitor and activator on rewarding effects of SKF-82958 microinjected into nucleus accumbens shell of ad libitum fed and food-restricted rats. Psychopharmacology (Berl) 2012; 221:589-99. [PMID: 22143580 PMCID: PMC3310955 DOI: 10.1007/s00213-011-2602-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 11/27/2011] [Indexed: 10/14/2022]
Abstract
RATIONALE Previous studies indicate that the rewarding effect of D-1 dopamine receptor stimulation in nucleus accumbens (NAc) shell is greater in food-restricted (FR) than in ad libitum fed (AL) rats. The D-1 receptor is positively coupled to adenylyl cyclase and activates protein kinase A (PKA). OBJECTIVES The purpose of this study was to determine whether PKA is involved in the rewarding effect of D-1 receptor stimulation and, if so, whether it is involved in the enhanced response of FR rats. MATERIALS AND METHODS Rats were stereotaxically implanted with microinjection cannulae in NAc shell and a stimulating electrode in lateral hypothalamus. The rewarding effects of SKF-82958 (1.5 or 3.0 μg, bilaterally) in the presence and absence of PKA inhibitor, Rp-cAMPS (8.9 μg), and PKA activator, Sp-cAMPS (8.9 μg), were assessed using the curve-shift method of intracranial self-stimulation (ICSS). Basal NAc levels of DARPP-32 phosphorylated on Thr34 and Thr75 were measured. RESULTS Rp-cAMPS increased the rewarding effect of SKF-82958 in AL but not FR rats, doubling the ICSS threshold-lowering effect of the 3.0-μg dose. Sp-cAMPS decreased the rewarding effect of SKF-82958 in FR but not AL rats. Levels of phospho-DARPP-32 (Thr75), which inhibits PKA, were higher in FR than AL rats. CONCLUSIONS Results indicate that inhibition of PKA enhances the unconditioned rewarding effect of D-1 receptor stimulation and that decreased PKA may be involved in the effect of FR on drug reward. Evidence for involvement of D-2 receptor-expressing neurons in the enhancing effect of PKA inhibition is discussed.
Collapse
|