51
|
Ješina P, Tesařová M, Fornůsková D, Vojtíšková A, Pecina P, Kaplanová V, Hansíková H, Zeman J, Houštěk J. Diminished synthesis of subunit a (ATP6) and altered function of ATP synthase and cytochrome c oxidase due to the mtDNA 2 bp microdeletion of TA at positions 9205 and 9206. Biochem J 2005; 383:561-71. [PMID: 15265003 PMCID: PMC1133750 DOI: 10.1042/bj20040407] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dysfunction of mitochondrial ATPase (F1F(o)-ATP synthase) due to missense mutations in ATP6 [mtDNA (mitochondrial DNA)-encoded subunit a] is a frequent cause of severe mitochondrial encephalomyopathies. We have investigated a rare mtDNA mutation, i.e. a 2 bp deletion of TA at positions 9205 and 9206 (9205DeltaTA), which affects the STOP codon of the ATP6 gene and the cleavage site between the RNAs for ATP6 and COX3 (cytochrome c oxidase 3). The mutation was present at increasing load in a three-generation family (in blood: 16%/82%/>98%). In the affected boy with severe encephalopathy, a homoplasmic mutation was present in blood, fibroblasts and muscle. The fibroblasts from the patient showed normal aurovertin-sensitive ATPase hydrolytic activity, a 70% decrease in ATP synthesis and an 85% decrease in COX activity. ADP-stimulated respiration and the ADP-induced decrease in the mitochondrial membrane potential at state 4 were decreased by 50%. The content of subunit a was decreased 10-fold compared with other ATPase subunits, and [35S]-methionine labelling showed a 9-fold decrease in subunit a biosynthesis. The content of COX subunits 1, 4 and 6c was decreased by 30-60%. Northern Blot and quantitative real-time reverse transcription-PCR analysis further demonstrated that the primary ATP6--COX3 transcript is cleaved to the ATP6 and COX3 mRNAs 2-3-fold less efficiently. Structural studies by Blue-Native and two-dimensional electrophoresis revealed an altered pattern of COX assembly and instability of the ATPase complex, which dissociated into subcomplexes. The results indicate that the 9205DeltaTA mutation prevents the synthesis of ATPase subunit a, and causes the formation of incomplete ATPase complexes that are capable of ATP hydrolysis but not ATP synthesis. The mutation also affects the biogenesis of COX, which is present in a decreased amount in cells from affected individuals.
Collapse
Affiliation(s)
- Pavel Ješina
- *Department of Bioenergetics, Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Markéta Tesařová
- †Department of Pediatrics and Institute for Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Daniela Fornůsková
- †Department of Pediatrics and Institute for Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Alena Vojtíšková
- *Department of Bioenergetics, Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Petr Pecina
- *Department of Bioenergetics, Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Vilma Kaplanová
- *Department of Bioenergetics, Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Hana Hansíková
- †Department of Pediatrics and Institute for Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Jiří Zeman
- †Department of Pediatrics and Institute for Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Josef Houštěk
- *Department of Bioenergetics, Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
- To whom correspondence should be addressed (email )
| |
Collapse
|
52
|
Shidara Y, Yamagata K, Kanamori T, Nakano K, Kwong JQ, Manfredi G, Oda H, Ohta S. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res 2005; 65:1655-63. [PMID: 15753359 DOI: 10.1158/0008-5472.can-04-2012] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of mitochondrial dysfunction in cancer has been a subject of great interest and much ongoing investigation. Although most cancer cells harbor somatic mutations in mitochondrial DNA (mtDNA), the question of whether such mutations contribute to the promotion of carcinomas remains unsolved. Here we used trans-mitochondrial hybrids (cybrids) containing a common HeLa nucleus and mtDNA of interest to compare the role of mtDNA against the common nuclear background. We constructed cybrids with or without a homoplasmic pathogenic point mutation at nucleotide position 8,993 or 9,176 in the mtDNA ATP synthase subunit 6 gene (MTATP6) derived from patients with mitochondrial encephalomyopathy. When the cybrids were transplanted into nude mice, the MTATP6 mutations conferred an advantage in the early stage of tumor growth. The mutant cybrids also increased faster than wild type in culture. To complement the mtDNA mutations, we transfected a wild-type nuclear version of MTATP, whose codons were converted to the universal genetic codes containing a mitochondrial target sequence, into the nucleus of cybrids carrying mutant MTATP6. The restoration of MTATP slowed down the growth of tumor in transplantation. Conversely, expression of a mutant nuclear version of MTATP6 in the wild-type cybrids declined respiration and accelerated the tumor growth. These findings showed that the advantage in tumor growth depended upon the MTATP6 function but was not due to secondary nuclear mutations caused by the mutant mitochondria. Because apoptosis occurred less frequently in the mutant versus wild-type cybrids in cultures and tumors, the pathogenic mtDNA mutations seem to promote tumors by preventing apoptosis.
Collapse
Affiliation(s)
- Yujiro Shidara
- Department of Pathology, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Houstek J, Mrácek T, Vojtísková A, Zeman J. Mitochondrial diseases and ATPase defects of nuclear origin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:115-21. [PMID: 15282182 DOI: 10.1016/j.bbabio.2004.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 04/01/2004] [Accepted: 04/20/2004] [Indexed: 10/26/2022]
Abstract
Dysfunctions of the F(1)F(o)-ATPase complex cause severe mitochondrial diseases affecting primarily the paediatric population. While in the maternally inherited ATPase defects due to mtDNA mutations in the ATP6 gene the enzyme is structurally and functionally modified, in ATPase defects of nuclear origin mitochondria contain a decreased amount of otherwise normal enzyme. In this case biosynthesis of ATPase is down-regulated due to a block at the early stage of enzyme assembly-formation of the F(1) catalytic part. The pathogenetic mechanism implicates dysfunction of Atp12 or other F(1)-specific assembly factors. For cellular energetics, however, the negative consequences may be quite similar irrespective of whether the ATPase dysfunction is of mitochondrial or nuclear origin.
Collapse
Affiliation(s)
- Josef Houstek
- Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídenská 1083, CZ 142 20 Prague 4-Krc, Czech Republic.
| | | | | | | |
Collapse
|
54
|
Mayr JA, Paul J, Pecina P, Kurnik P, Förster H, Fötschl U, Sperl W, Houstek J. Reduced respiratory control with ADP and changed pattern of respiratory chain enzymes as a result of selective deficiency of the mitochondrial ATP synthase. Pediatr Res 2004; 55:988-94. [PMID: 15155867 DOI: 10.1203/01.pdr.0000127016.67809.6b] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The F(o)F(1)-ATPase, a multisubunit protein complex of the inner mitochondrial membrane, produces most of the ATP in mammalian cells. Mitochondrial diseases as a result of a dysfunction of ATPase can be caused by mutations in mitochondrial DNA-encoded ATPase subunit a or rarely by an ATPase defect of nuclear origin. Here we present a detailed functional and immunochemical analysis of a new case of selective and generalized ATPase deficiency found in an Austrian patient. The defect manifested with developmental delay, muscle hypotonia, failure to thrive, ptosis, and varying lactic acidemia (up to 12 mmol/L) beginning from the neonatal period. A low-degree dilated cardiomyopathy of the left ventricle developed between the age of 1 and 2 y. A >90% decrease in oligomycin-sensitive ATPase activity and an 86% decrease in the content of the ATPase complex was found in muscle mitochondria. It was associated with a significant decrease of ADP-stimulated respiration of succinate (1.5-fold) and respiratory control with ADP (1.7-fold) in permeabilized muscle fibers, and with a slight decrease of the respiratory chain complex I and compensatory increase in the content of complexes III and IV. The same ATPase deficiency without an increase in respiratory chain complexes was found in fibroblasts, suggesting a generalized defect with tissue-specific manifestation. Absence of any mutations in mitochondrial ATP6 and ATP8 genes indicates a nuclear origin of the defect.
Collapse
Affiliation(s)
- Johannes A Mayr
- Department of Pediatrics, General Hospital Salzburg, Austria
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Dubot A, Godinot C, Dumur V, Sablonnière B, Stojkovic T, Cuisset JM, Vojtiskova A, Pecina P, Jesina P, Houstek J. GUG is an efficient initiation codon to translate the human mitochondrial ATP6 gene. Biochem Biophys Res Commun 2004; 313:687-93. [PMID: 14697245 DOI: 10.1016/j.bbrc.2003.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A maternally inherited and practically homoplasmic mitochondrial (mtDNA) mutation, 8527A>G, changing the initiation codon AUG into GUG, normally coding for a valine, was observed in the ATP6 gene encoding the ATPase subunit a. No alternate Met codon could replace the normal translational initiator. The patient harboring this mutation exhibited clinical symptoms suggesting a mitochondrial disease but his mother who carried the same mtDNA mutation was healthy. The mutation was absent from 100 controls and occurred once amongst 44 patients suspected of Leber Hereditary Optic Neuropathy (LHON) but devoid of typical LHON mutations. In patient fibroblasts, no effect of 8527A>G mutation could be demonstrated on the biosynthesis of mtDNA-encoded proteins, on size and the content of ATPase subunit a, on ATP hydrolysis and on mitochondrial membrane potential. In addition, ATP synthesis was barely decreased. Therefore, GUG is a functional initiation codon for the human ATP6 gene.
Collapse
Affiliation(s)
- A Dubot
- Centre National de la Recherche Scientifique, Université Claude Bernard de Lyon I, 69622 Villeurbanne France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Thyagarajan D, Byrne E. Mitochondrial disorders of the nervous system: clinical, biochemical, and molecular genetic features. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:93-144. [PMID: 12512338 DOI: 10.1016/s0074-7742(02)53005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Dominic Thyagarajan
- Department of Neurology, Flinders Medical Centre, Bedford Park, South Australia 5042, Australia
| | | |
Collapse
|
57
|
Manfredi G, Spinazzola A, Checcarelli N, Naini A. Assay of mitochondrial ATP synthesis in animal cells. Methods Cell Biol 2002; 65:133-45. [PMID: 11381590 DOI: 10.1016/s0091-679x(01)65008-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- G Manfredi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | |
Collapse
|
58
|
Chapter 3 Molecular Genetic Basis of the Mitochondrial Encephalomyopathies. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1877-3419(09)70062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
59
|
Schon EA, Santra S, Pallotti F, Girvin ME. Pathogenesis of primary defects in mitochondrial ATP synthesis. Semin Cell Dev Biol 2001; 12:441-8. [PMID: 11735378 DOI: 10.1006/scdb.2001.0281] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternally inherited mutations in the mtDNA-encoded ATPase 6 subunit of complex V (ATP synthase) of the respiratory chain/oxidative phosphorylation system are responsible for a subgroup of severe and often-fatal disorders characterized predominantly by lesions in the brain, particularly in the striatum. These include NARP (neuropathy, ataxia, and retinitis pigmentosa), MILS (maternally inherited Leigh syndrome), and FBSN (familial bilateral striatal necrosis). Of the five known pathogenic mutations causing these disorders, four are located at two codons (156 and 217), each of which can suffer mutations converting a conserved leucine to either an arginine or a proline. Based on the accumulating data on both the structure of ATP synthase and the mechanism by which rotary catalysis couples proton flow to ATP synthesis, we propose a model that may help explain why mutations at codons 156 and 217 are pathogenic.
Collapse
Affiliation(s)
- E A Schon
- Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | | | | | | |
Collapse
|
60
|
Nijtmans LG, Henderson NS, Attardi G, Holt IJ. Impaired ATP synthase assembly associated with a mutation in the human ATP synthase subunit 6 gene. J Biol Chem 2001; 276:6755-62. [PMID: 11076946 DOI: 10.1074/jbc.m008114200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in human mitochondrial DNA are a well recognized cause of disease. A mutation at nucleotide position 8993 of human mitochondrial DNA, located within the gene for ATP synthase subunit 6, is associated with the neurological muscle weakness, ataxia, and retinitis pigmentosa (NARP) syndrome. To enable analysis of this mutation in control nuclear backgrounds, two different cell lines were transformed with mitochondria carrying NARP mutant mitochondrial DNA. Transformant cell lines had decreased ATP synthesis capacity, and many also had abnormally high levels of two ATP synthase sub-complexes, one of which was F(1)-ATPase. A combination of metabolic labeling and immunoblotting experiments indicated that assembly of ATP synthase was slowed and that the assembled holoenzyme was unstable in cells carrying NARP mutant mitochondrial DNA compared with control cells. These findings indicate that altered assembly and stability of ATP synthase are underlying molecular defects associated with the NARP mutation in subunit 6 of ATP synthase, yet intrinsic enzyme activity is also compromised.
Collapse
Affiliation(s)
- L G Nijtmans
- Department of Molecular Pathology, University of Dundee, Ninewells Medical School, Dundee DD1 9SY, United Kingdom
| | | | | | | |
Collapse
|
61
|
García JJ, Ogilvie I, Robinson BH, Capaldi RA. Structure, functioning, and assembly of the ATP synthase in cells from patients with the T8993G mitochondrial DNA mutation. Comparison with the enzyme in Rho(0) cells completely lacking mtdna. J Biol Chem 2000; 275:11075-81. [PMID: 10753912 DOI: 10.1074/jbc.275.15.11075] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure and functioning of the ATP synthase of human fibroblast cell lines with 91 and 100%, respectively, of the T8993G mutation have been studied, with MRC5 human fibroblasts and Rho(0) cells derived from this cell line as controls. ATP hydrolysis was normal but ATP synthesis was reduced by 60% in the 100% mutants. Both activities were highly oligomycin-sensitive. The levels of F(1)F(0) were close to normal, and the enzyme was stable. It is concluded that the loss of ATP synthesis is because of disruption of the proton translocation step within the F(0) part. This is supported by membrane potential measurements using the dye JC-1. Cells with a 91% mutation load grew well and showed only a 25% loss in ATP synthesis. This much reduced effect for only a 9% difference in mutation load mirrors the reduced pathogenicity in patients. F(1)F(0) has been purified for the first time from human cell lines. A partial complex was obtained from Rho(0) cells containing the F(1) subunits associated with several stalk, as well as F(0) subunits, including oligomycin sensitivity conferring protein, b, and c subunits. This partial complex no longer binds inhibitor protein.
Collapse
Affiliation(s)
- J J García
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | | | |
Collapse
|
62
|
Baracca A, Barogi S, Carelli V, Lenaz G, Solaini G. Catalytic activities of mitochondrial ATP synthase in patients with mitochondrial DNA T8993G mutation in the ATPase 6 gene encoding subunit a. J Biol Chem 2000; 275:4177-82. [PMID: 10660580 DOI: 10.1074/jbc.275.6.4177] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the biochemical phenotype of the mtDNA T8993G point mutation in the ATPase 6 gene, associated with neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in three patients from two unrelated families. All three carried >80% mutant genome in platelets and were manifesting clinically various degrees of the NARP phenotype. Coupled submitochondrial particles prepared from platelets capable of succinate-sustained ATP synthesis were studied using very sensitive and rapid luminometric and fluorescence methods. A sharp decrease (>95%) in the succinate-sustained ATP synthesis rate of the particles was found, but both the ATP hydrolysis rate and ATP-driven proton translocation (when the protons flow from the matrix to the cytosol) were minimally affected. The T8993G mutation changes the highly conserved residue Leu(156) to Arg in the ATPase 6 subunit (subunit a). This subunit, together with subunit c, is thought to cooperatively catalyze proton translocation and rotate, one with respect to the other, during the catalytic cycle of the F(1)F(0) complex. Our results suggest that the T8993G mutation induces a structural defect in human F(1)F(0)-ATPase that causes a severe impairment of ATP synthesis. This is possibly due to a defect in either the vectorial proton transport from the cytosol to the mitochondrial matrix or the coupling of proton flow through F(0) to ATP synthesis in F(1). Whatever mechanism is involved, this leads to impaired ATP synthesis. On the other hand, ATP hydrolysis that involves proton flow from the matrix to the cytosol is essentially unaffected.
Collapse
Affiliation(s)
- A Baracca
- Dipartimento di Biochimica, Università di Bologna, 48026 Bologna, Italy
| | | | | | | | | |
Collapse
|
63
|
Kagawa Y, Cha SH, Hasegawa K, Hamamoto T, Endo H. Regulation of energy metabolism in human cells in aging and diabetes: FoF(1), mtDNA, UCP, and ROS. Biochem Biophys Res Commun 1999; 266:662-76. [PMID: 10603304 DOI: 10.1006/bbrc.1999.1884] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in bioenergetics consist of discoveries related to rotational coupling in ATP synthase (FoF(1)), uncoupling proteins (UCP), reactive oxygen species (ROS) and mitochondrial DNA (mtDNA). As shown in cloned sheep, mammalian genomes are composed of both nuclear DNA (nDNA) and maternal mtDNA. Oxidative phosphorylation (oxphos) varies greatly depending on cellular activities, and is regulated by both gene expression and the electrochemical potential difference of H(+) (Delta muH(+)). The expression of both mtDNA (by mtTFA) and nDNA for oxphos and UCP (by NRFs, etc.) is coordinated by a factor called PGC-1. The Delta muH(+) rotates an axis in FoF(1) that is regulated by inhibitors and ATP-sensitive K(+)-channels. We cultured human rho(o) cells (cells without mtDNA) in synthetic media and elucidated relationships among mtDNA, nDNA, Delta muH(+), UCPs, ROS, and apoptosis. These cells lack oxphos-dependent ROS formation and survive under conditions of high O(2). Cells cultured in the absence of ROS scavengers have proliferated for 40 years. UCPs lower Delta muH(+) and prevent ROS formation and resulting apoptosis. These results were applied to diabetology and gerontology. The pancreatic rho(o) cells did not secrete insulin, and mtDNA mutations caused diabetes, owing to the deficient Delta muH(+). Insulin resistance was closely related to UCPs and other energy regulators. The resulting high-glucose environment caused glycation of proteins and ROS-mediated apoptosis in vascular cells involved in diabetic complications. Telomeres, oxphos, and ROS are determinants in cellular aging. Cell division and ROS shortened telomeres and accelerated aging. In aged cells, Delta muH(+) was reduced by the slow respiration, and this change induced apoptosis. Cybrids made from aged cytoplasts and rho(o) cells showed that both decreased expression of nDNA, and somatic mutations of mtDNA are involved in the slowing of respiration in aged cells.
Collapse
Affiliation(s)
- Y Kagawa
- Department of Biochemistry, Jichi Medical School, Tochigi-ken, 329-0498, Japan.
| | | | | | | | | |
Collapse
|
64
|
White SL, Shanske S, McGill JJ, Mountain H, Geraghty MT, DiMauro S, Dahl HH, Thorburn DR. Mitochondrial DNA mutations at nucleotide 8993 show a lack of tissue- or age-related variation. J Inherit Metab Dis 1999; 22:899-914. [PMID: 10604142 DOI: 10.1023/a:1005639407166] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two pathogenic mitochondrial DNA mutations, a T-to-G substitution (8993T > G) and a T-to-C substitution (8993T > C), at nucleotide 8993 have been reported. We describe 13 pedigrees with mitochondrial DNA mutations at nucleotide 8993; 10 pedigrees with the 8993T > G mutation and three with the 8993T > C mutation. Prenatal diagnosis of the nucleotide 8993 mutations is technically possible. However, there are three major concerns: (i) that there is variation in mutant loads among tissues; (ii) that the mutant load in a tissue may change over time; and (iii) that the genotype-phenotype correlation is not clearly understood. We have used the 13 pedigrees to determine specifically the extent of tissue- and age-related variation of the two mutations at nucleotide 8993 in the mitochondrial DNA. The tissue variation was investigated by analysing two or more different tissues from a total of 18 individuals. The age-related variation of the mutation was investigated by comparing the amount of both mutations in blood taken at birth and at a later age. No substantial tissue variation was found, nor was there any substantial change in the proportion of either mutation over periods of 8-23 years in the four individuals studied. In addition, we noted that two features were remarkably common in families with nucleotide 8993 mutations, namely (i) unexplained infant death (8 cases in 13 pedigrees); and (ii) de novo mutations (5 of the 10 8993T > G pedigrees).
Collapse
Affiliation(s)
- S L White
- Murdoch Institute, Royal Children's Hospital, Melbourne, Australia
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Brini M, Pinton P, King MP, Davidson M, Schon EA, Rizzuto R. A calcium signaling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency. Nat Med 1999; 5:951-4. [PMID: 10426322 DOI: 10.1038/11396] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, genetic defects of the mitochondrial genome (mtDNA) were shown to be associated with a heterogeneous group of disorders, known as mitochondrial diseases, but the cellular events deriving from the molecular lesions and the mechanistic basis of the specificity of the syndromes are still incompletely understood. Mitochondrial calcium (Ca2+) homeostasis depends on close contacts with the endoplasmic reticulum and is essential in modulating organelle function. Given the strong dependence of mitochondrial Ca2+ uptake on the membrane potential and the intracellular distribution of the organelle, both of which may be altered in mitochondrial diseases, we investigated the occurrence of defects in mitochondrial Ca2+ handling in living cells with either the tRNALys mutation of MERRF (myoclonic epilepsy with ragged-red fibers) or the ATPase mutation of NARP (neurogenic muscle weakness, ataxia and retinitis pigmentosa). There was a derangement of mitochondrial Ca2+ homeostasis in MERRF, but not in NARP cells, whereas cytosolic Ca2+ responses were normal in both cell types. Treatment of MERRF cells with drugs affecting organellar Ca2+ transport mostly restored both the agonist-dependent mitochondrial Ca2+ uptake and the ensuing stimulation of ATP production. These results emphasize the differences in the cellular pathogenesis of the various mtDNA defects and indicate specific pharmacological approaches to the treatment of some mitochondrial diseases.
Collapse
Affiliation(s)
- M Brini
- Department of Biochemistry, University of Padova, Italy
| | | | | | | | | | | |
Collapse
|
66
|
White SL, Collins VR, Wolfe R, Cleary MA, Shanske S, DiMauro S, Dahl HH, Thorburn DR. Genetic counseling and prenatal diagnosis for the mitochondrial DNA mutations at nucleotide 8993. Am J Hum Genet 1999; 65:474-82. [PMID: 10417290 PMCID: PMC1377946 DOI: 10.1086/302488] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mitochondrial genetics is complicated by heteroplasmy, or mutant load, which may be from 1%-99%, and thus may produce a gene dosage-type effect. Limited data are available for genotype/phenotype correlations in disorders caused by mtDNA mutations; therefore, prenatal diagnosis for mtDNA mutations has been hindered by an inability to predict accurately the clinical severity expected from a mutant load measured in fetal tissue. After reviewing 44 published and 12 unpublished pedigrees, we considered the possibility of prenatal diagnosis for two common mtDNA mutations at nucleotide 8993. We related the severity of symptoms to the mutant load and predicted the clinical outcome of a given mutant load. We also used the available data to generate empirical recurrence risks for genetic counseling, which may be used in conjunction with prenatal diagnosis.
Collapse
Affiliation(s)
- S L White
- The Murdoch Institute, Royal Children's Hospital, Melbourne, Australia
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Ogilvie I, Capaldi RA. Mutation of the mitochrondrially encoded ATPase 6 gene modeled in the ATP synthase of Escherichia coli. FEBS Lett 1999; 453:179-82. [PMID: 10403398 DOI: 10.1016/s0014-5793(99)00605-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Defects of respiratory chain protein complexes and the ATP synthase are becoming increasingly implicated in human disease. Recently, mutations in the ATPase 6 gene have been shown to cause several different neurological disorders. The product of this gene is homologous to the a subunit of the ATP synthase of Escherichia coli. Here, mutations equivalent to those described in humans have been introduced into the a subunit of E. coli by site-directed mutagenesis, and the effects of these mutations on the ATPase activity, ATP synthesis and ability of the enzyme to pump protons studied in detail. The effects of the mutations varied considerably. The mutation L262P (9185 T-C equivalent) caused a 70% loss of ATP synthesis activity, reduced DCCD sensitivity, and lowered proton pumping activity. The L207P (8993 T-C equivalent) reduced ATP synthesis by 50%, affected DCCD sensitivity, while proton pumping was only marginally affected when measured by the standard AMCA quenching assay. The other mutations studied affected the functioning of the ATP synthase much less. The results confirm that modeling of these point mutations in the E. coli enzyme is a useful approach to determining how alterations in the ATPase 6 gene affect enzyme function and, therefore, how a pathogenic effect can be exerted.
Collapse
Affiliation(s)
- I Ogilvie
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA
| | | |
Collapse
|
68
|
Houstek J, Klement P, Hermanská J, Antonická H, Houstková H, Stratilová L, Wanders RJ, Zeman J. Complex approach to prenatal diagnosis of cytochrome c oxidase deficiencies. Prenat Diagn 1999; 19:552-8. [PMID: 10416972 DOI: 10.1002/(sici)1097-0223(199906)19:6<552::aid-pd588>3.0.co;2-c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Different severe disorders of cytochrome c oxidase (COX) have been described in children, but only the defects with autosomal inheritance are suitable for prenatal diagnosis. To perform prenatal diagnosis of fatal infantile COX deficiency a complex approach has been used which combined determination of the genetic origin of the defect, and detailed analysis of the function, content and subunit composition of the enzyme in cultured fetal cells. The tissues and cultured fibroblasts of the patient with Leigh's syndrome showed a COX deficiency of systemic character. The decrease of COX activity to 5-11 per cent was accompanied by proportionally decreased content of the assembled COX enzyme. With the help of transmitochondrial cybrids derived from patient fibroblasts it was proven that the COX defect was of nuclear origin. In a successive pregnancy, the function of oxidative phosphorylation (OXPHOS) was analysed in cultured amniocytes by substrate-stimulated ATP production and COX activity was compared with the activity of citrate synthase. The amount and composition of OXPHOS complexes was estimated by two-dimensional (Blue Native/SDS) polyacrylamide gel electrophoresis and was verified immunochemically with specific antibodies. Three independent lines of evidence provided us with reliable data on the function of COX and OXPHOS in fetal cells which were sufficient to rule out the expected enzymatic defect within three weeks after amniocentesis.
Collapse
Affiliation(s)
- J Houstek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Vázquez-Memije ME, Shanske S, Santorelli FM, Kranz-Eble P, DeVivo DC, DiMauro S. Comparative biochemical studies of ATPases in cells from patients with the T8993G or T8993C mitochondrial DNA mutations. J Inherit Metab Dis 1998; 21:829-36. [PMID: 9870208 DOI: 10.1023/a:1005418718299] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We performed comparative biochemical studies in cultured fibroblast mitochondria from patients with the T8993G or the T8993C point mutations in the ATPase 6 gene of mitochondrial DNA. We found that ATP production was much more severely decreased in cells from patients with the T8993G mutation than in those from patients with the T8993C mutation. Kinetic studies suggest that both mutations affect only the F0 sector of the mitochondrial ATPase complex. We conclude that these two mutations, which result in the substitution of different amino acids at the same site of the ATPase, result in an enzyme with different biochemical characteristics.
Collapse
Affiliation(s)
- M E Vázquez-Memije
- Unidad de Investigación en Genética Humana, Hospital de Pediatría, Centro Médico Nacional-IMSS, México, D.F
| | | | | | | | | | | |
Collapse
|
70
|
Abstract
Mitochondrial respiration, the most efficient metabolic pathway devoted to energy production, is at the crosspoint of 2 quite different genetic systems, the nuclear genome and the mitochondrial genome (mitochondrial DNA, mtDNA). The latter encodes a few essential components of the mitochondrial respiratory chain and has unique molecular and genetic properties that account for some of the peculiar features of mitochondrial disorders. However, the perpetuation, propagation, and expression of mtDNA, the majority of the subunits of the respiratory complexes, as well as a number of genes involved in their assembly and turnover, are contained in the nuclear genome. Although mitochondrial disorders have been known for more than 30 years, a major breakthrough in their understanding has come much later, with the discovery of an impressive, ever-increasing number of mutations of mitochondrial DNA. Partial deletions or duplications of mtDNA, or maternally inherited point mutations, have been associated with well-defined clinical syndromes. However, phenotypes transmitted as mendelian traits have also been identified. These include clinical entities defined on the basis of specific biochemical defects, and also a few autosomal dominant or recessive syndromes associated with multiple deletions or tissue-specific depletion of mtDNA. Given the complexity of mitochondrial genetics and biochemistry, the clinical manifestations of mitochondrial disorders are extremely heterogenous. They range from lesions of single tissues or structures, such as the optic nerve in Leber hereditary optic neuropathy or the cochlea in maternally inherited nonsyndromic deafness, to more widespread lesions including myopathies, encephalomyopathies, cardiopathies, or complex multisystem syndromes. The recent advances in genetic studies provide both diagnostic tools and new pathogenetic insights in this rapidly expanding area of human pathology.
Collapse
Affiliation(s)
- M Zeviani
- Division of Biochemistry and Genetics, National Neurological Institute-IRCCS C. Besta, Milan, Italy.
| | | | | |
Collapse
|
71
|
Abstract
Approximately there years ago, this journal published a review on the clinical and molecular analysis of mitochondrial encephalomyopathies, with emphasis on defects in mitochondrial DNA (mtDNA). At the time, approximately 30 point mutations associated with a variety of maternally-inherited (or rarely, sporadic) disorders had been described. Since that time, almost twenty new pathogenic mtDNA point mutations have been described, and the pace of discovery of such mutations shows no signs of abating. This accumulating body of data has begun to reveal some patterns that may be relevant to pathogenesis.
Collapse
Affiliation(s)
- E A Schon
- Department of Neurology, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
72
|
Vázquez-Memije ME, Beltrán C, Tuena de Gómez-Puyou M. Isolation and comparative studies of mitochondrial F1-ATPase from rat testis and beef heart. Comp Biochem Physiol B Biochem Mol Biol 1997; 116:303-9. [PMID: 9114489 DOI: 10.1016/s0305-0491(96)00207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The isolation and properties of F1-mitochondrial ATPase from rat testis are described. The isolation medium involves a chloroform extraction, and it is suitable even with small amounts of starting material that have a relatively low specific activity as in the case of rat testis submitochondrial particles. The isolated enzyme from rat testis had a specific activity of 30-45 mumol Pi/min/mg protein, which could be increased up to 90 mumol Pi/min/mg protein only in the presence of bicarbonate and maleate. The isolated enzyme represented less than 0.6% of the initial membrane proteins. It exhibited a typical five-band pattern in sodium dodecyl sulfate gel electrophoresis. However, it showed a ratio of subunits alpha:beta higher than the heart enzyme; its significance is unknown. The purified enzyme was cold labile and inhibited by natural ATPase inhibitor protein from bovine heart mitochondria and by dicyclohexylcarbodiimide. The results presented suggest that the low ATPase activity of testis submitochondrial particles is due to a reduced content of the F1-ATPase.
Collapse
Affiliation(s)
- M E Vázquez-Memije
- Unidad de Investigación Médica en Genética Humana, Centro Médico Nacional, IMSS, México, D.F., México
| | | | | |
Collapse
|
73
|
Advances in Human Mitochondrial Diseases Molecular Genetic Analysis of Pathogenic mtDNA Mutations. Trends Cardiovasc Med 1997; 7:16-24. [DOI: 10.1016/s1050-1738(96)00122-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
74
|
Schägger H, Bentlage H, Ruitenbeek W, Pfeiffer K, Rotter S, Rother C, Böttcher-Purkl A, Lodemann E. Electrophoretic separation of multiprotein complexes from blood platelets and cell lines: technique for the analysis of diseases with defects in oxidative phosphorylation. Electrophoresis 1996; 17:709-14. [PMID: 8738332 DOI: 10.1002/elps.1150170415] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A two-dimensional electrophoretic technique combining blue native polyacrylamide gel electrophoresis (BN-PAGE) with Tricine sodium dodecyl sulfate (SDS)-PAGE was previously used for the localization of oxidative phosphorylation (OXPHOS) defects in human diseases starting from biopsy or autopsy tissues (Schägger, H., Electrophoresis 1995, 16, 763-770). In the present work the technique was extended for the resolution of OXPHOS enzymes from platelets and tissue-cultured cells. Silver staining is required to detect the protein subunits of OXPHOS complexes in two-dimensional gels. However, the use of cultured cells has major implications for patients with mitochondrial encephalomyopathies since it will reduce the number of invasive muscle biopsies. The ease of isolating the platelet membrane glycoprotein complex from a few milliliters of blood makes it possible to analyze this complex and its protein subunits in bleeding disorders like Glanzmann's thrombasthenia.
Collapse
Affiliation(s)
- H Schägger
- Zentrum der Biologischen Chemie, Universitätsklinikum Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Nijtmans LG, Klement P, Houstĕk J, van den Bogert C. Assembly of mitochondrial ATP synthase in cultured human cells: implications for mitochondrial diseases. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1272:190-8. [PMID: 8541352 DOI: 10.1016/0925-4439(95)00087-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To study the assembly of mitochondrial F1F0 ATP synthase, cultured human cells were labeled with [35S]methionine in pulse-chase experiments. Next, two-dimensional electrophoresis and fluorography were used to analyze the assembly pattern. Two assembly intermediates could be demonstrated. First the F1 part appeared to be assembled, and next an intermediate product that contained F1 and subunit c. This product probably also contained subunits b, F6 and OSCP, but not the mitochondrially encoded subunits a and A6L. Both intermediate complexes accumulated when mitochondrial protein synthesis was inhibited, suggesting that mitochondrially encoded subunits are indispensable for the formation of a fully assembled ATP synthase complex, but not for the formation of the intermediate complexes. The results and methods described in this study offer an approach to study the effects of mutations in subunits of mitochondrial ATP synthase on the assembly of this complex. This might be of value for a better understanding of deficiencies of ATP synthase activity in mitochrondrial diseases.
Collapse
Affiliation(s)
- L G Nijtmans
- Department of Neurology, University of Amsterdam, Academic Medical Center, The Netherlands
| | | | | | | |
Collapse
|