51
|
Abstract
Experimental studies have shown a great potential for periodontal regeneration. The limitations of periodontal regeneration largely depend on the regenerative potential at the root surface. Cellular intrinsic fiber cementum (CIFC), so-called bone-like tissue, may form instead of the desired acellular extrinsic fiber cementum (AEFC), and the interfacial tissue bonding may be weak. The periodontal ligament harbors progenitor cells that can differentiate into periodontal ligament fibroblasts, osteoblasts, and cementoblasts, but their precise location is unknown. It is also not known whether osteoblasts and cementoblasts arise from a common precursor cell line, or whether distinct precursor cell lines exist. Thus, there is limited knowledge about how cell diversity evolves in the space between the developing root and the alveolar bone. This review supports the hypothesis that AEFC is a unique tissue, while CIFC and bone share some similarities. Morphologically, functionally, and biochemically, however, CIFC is distinctly different from any bone type. There are several lines of evidence to propose that cementoblasts that produce both AEFC and CIFC are unique phenotypes that are unrelated to osteoblasts. Cementum attachment protein appears to be cementum-specific, and the expression of two proteoglycans, fibromodulin and lumican, appears to be stronger in CIFC than in bone. A theory is presented that may help explain how cell diversity evolves in the periodontal ligament. It proposes that Hertwig’s epithelial root sheath and cells derived from it play an essential role in the development and maintenance of the periodontium. The role of enamel matrix proteins in cementoblast and osteoblast differentiation and their potential use for tissue engineering are discussed.
Collapse
Affiliation(s)
- D D Bosshardt
- Department of Periodontology and Fixed Prosthodontics, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH-3010 Berne, Switzerland.
| |
Collapse
|
52
|
Cicvaric A, Yang J, Krieger S, Khan D, Kim EJ, Dominguez-Rodriguez M, Cabatic M, Molz B, Acevedo Aguilar JP, Milicevic R, Smani T, Breuss JM, Kerjaschki D, Pollak DD, Uhrin P, Monje FJ. The brain-tumor related protein podoplanin regulates synaptic plasticity and hippocampus-dependent learning and memory. Ann Med 2016; 48:652-668. [PMID: 27558977 PMCID: PMC5125287 DOI: 10.1080/07853890.2016.1219455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Podoplanin is a cell-surface glycoprotein constitutively expressed in the brain and implicated in human brain tumorigenesis. The intrinsic function of podoplanin in brain neurons remains however uncharacterized. MATERIALS AND METHODS Using an established podoplanin-knockout mouse model and electrophysiological, biochemical, and behavioral approaches, we investigated the brain neuronal role of podoplanin. RESULTS Ex-vivo electrophysiology showed that podoplanin deletion impairs dentate gyrus synaptic strengthening. In vivo, podoplanin deletion selectively impaired hippocampus-dependent spatial learning and memory without affecting amygdala-dependent cued fear conditioning. In vitro, neuronal overexpression of podoplanin promoted synaptic activity and neuritic outgrowth whereas podoplanin-deficient neurons exhibited stunted outgrowth and lower levels of p-Ezrin, TrkA, and CREB in response to nerve growth factor (NGF). Surface Plasmon Resonance data further indicated a physical interaction between podoplanin and NGF. DISCUSSION This work proposes podoplanin as a novel component of the neuronal machinery underlying neuritogenesis, synaptic plasticity, and hippocampus-dependent memory functions. The existence of a relevant cross-talk between podoplanin and the NGF/TrkA signaling pathway is also for the first time proposed here, thus providing a novel molecular complex as a target for future multidisciplinary studies of the brain function in the physiology and the pathology. Key messages Podoplanin, a protein linked to the promotion of human brain tumors, is required in vivo for proper hippocampus-dependent learning and memory functions. Deletion of podoplanin selectively impairs activity-dependent synaptic strengthening at the neurogenic dentate-gyrus and hampers neuritogenesis and phospho Ezrin, TrkA and CREB protein levels upon NGF stimulation. Surface plasmon resonance data indicates a physical interaction between podoplanin and NGF. On these grounds, a relevant cross-talk between podoplanin and NGF as well as a role for podoplanin in plasticity-related brain neuronal functions is here proposed.
Collapse
Affiliation(s)
- Ana Cicvaric
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna,
Vienna,
Austria
| | - Jiaye Yang
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna,
Vienna,
Austria
| | - Sigurd Krieger
- Clinical Institute of Pathology, Medical University of Vienna,
Vienna,
Austria
| | - Deeba Khan
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna,
Vienna,
Austria
| | - Eun-Jung Kim
- Paik Institute for Clinical Research, Inje University College of Medicine,
Busan,
Republic of Korea
| | - Manuel Dominguez-Rodriguez
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna,
Vienna,
Austria
| | - Maureen Cabatic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna,
Vienna,
Austria
| | - Barbara Molz
- Psychology University of York,
Heslington York,
UK
| | - Juan Pablo Acevedo Aguilar
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna,
Vienna,
Austria
| | - Radoslav Milicevic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna,
Vienna,
Austria
| | - Tarik Smani
- Grupo de Fisiopatología Cardiovascular, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla,
Seville,
Spain
| | - Johannes M. Breuss
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna,
Vienna,
Austria
| | - Dontscho Kerjaschki
- Clinical Institute of Pathology, Medical University of Vienna,
Vienna,
Austria
| | - Daniela D. Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna,
Vienna,
Austria
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna,
Vienna,
Austria
| | - Francisco J. Monje
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna,
Vienna,
Austria
| |
Collapse
|
53
|
Abstract
Osteocytes are differentiated osteoblasts that become surrounded by matrix during the process of bone formation. Acquisition of the osteocyte phenotype is achieved by profound changes in gene expression that facilitate adaptation to the changing cellular environment and constitute the molecular signature of osteocytes. During osteocytogenesis, the expression of genes that are characteristic of the osteoblast are altered and the expression of genes and/or proteins that impart dendritic cellular morphology, regulate matrix mineralization and control the function of cells at the bone surface are ordely modulated. The discovery of mutations in human osteocytic genes has contributed, in a large part, to our understanding of the role of osteocytes in bone homeostasis. Osteocytes are targets of the mechanical force imposed on the skeleton and have a critical role in integrating mechanosensory pathways with the action of hormones, which thereby leads to the orchestrated response of bone to environmental cues. Current, therapeutic approaches harness this accumulating knowledge by targeting osteocytic signalling pathways and messengers to improve skeletal health.
Collapse
Affiliation(s)
- Lilian I. Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| |
Collapse
|
54
|
Deluiz D, Santos Oliveira L, Ramôa Pires F, Reiner T, Armada L, Nunes MA, Muniz Barretto Tinoco E. Incorporation and Remodeling of Bone Block Allografts in the Maxillary Reconstruction: A Randomized Clinical Trial. Clin Implant Dent Relat Res 2016; 19:180-194. [DOI: 10.1111/cid.12441] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Daniel Deluiz
- Postdoctoral researcher, Department of Periodontology; State University of Rio de Janeiro; RJ, Rio de Janeiro Brazil
| | - Luciano Santos Oliveira
- Professor, Department of Implantology; Pontifical Catholic University of Rio de Janeiro; Rio de Janeiro RJ Brazil
| | - Fábio Ramôa Pires
- Professor, Department of Stomatology, Estácio de Sá University; Rio de Janeiro RJ Brazil
| | - Teresita Reiner
- Investigator, Geriatric Research, Education and Clinical Center - Bruce W. Carter Veterans Affairs Medical Center; Miami FL USA
| | - Luciana Armada
- Professor, Department of Endodontics, Estácio de Sá University; Rio de Janeiro RJ Brazil
| | - Marcus A. Nunes
- Professor, Department of Statistics, Federal University of Rio Grande do Norte; Natal RN Brazil
| | | |
Collapse
|
55
|
Osteogenic signaling on silk-based matrices. Biomaterials 2016; 97:133-53. [DOI: 10.1016/j.biomaterials.2016.04.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
|
56
|
Sasaki S, Baba T, Nishimura T, Hayakawa Y, Hashimoto SI, Gotoh N, Mukaida N. Essential roles of the interaction between cancer cell-derived chemokine, CCL4, and intra-bone CCR5-expressing fibroblasts in breast cancer bone metastasis. Cancer Lett 2016; 378:23-32. [PMID: 27177471 DOI: 10.1016/j.canlet.2016.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/16/2022]
Abstract
From a murine breast cancer cell line, 4T1, we established a subclone, 4T1.3, which consistently metastasizes to bone upon its injection into the mammary fat pad. 4T1.3 clone exhibited similar proliferation rate and migration capacity as the parental clone. However, the intra-bone injection of 4T1.3 clone caused larger tumors than that of the parental cells, accompanied with increases in fibroblast, but not osteoclast or osteoblast numbers. 4T1.3 clone displayed an enhanced expression of a chemokine, CCL4, but not its specific receptor, CCR5. CCL4 shRNA-transfection of 4T1.3 clone had few effects on its in vitro properties, but reduced the tumorigenicity arising from the intra-bone injection. Moreover, intra-bone injection of 4T1.3 clone caused smaller tumors in mice deficient in CCR5 or those receiving CCR5 antagonist than in wild-type mice. The reduced tumor formation was associated with attenuated accumulation of CCR5-positive fibroblasts expressing connective tissue growth factor (CTGF)/CCN2. Tumor cell-derived CCL4 could induce fibroblasts to express CTGF/CCN2, which could support 4T1.3 clone proliferation under hypoxic culture conditions. Thus, the CCL4-CCR5 axis can contribute to breast cancer metastasis to bone by mediating the interaction between cancer cells and fibroblasts in bone cavity.
Collapse
Affiliation(s)
- Soichiro Sasaki
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Tatsunori Nishimura
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shin-Ichi Hashimoto
- Division of Nephrology, Department of Laboratory Medicine, Kanazawa University, Kanazawa 920-8641, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
57
|
Strassburg S, Torio-Padron N, Finkenzeller G, Frankenschmidt A, Stark G. Adipose-Derived Stem Cells Support Lymphangiogenic Parameters In Vitro. J Cell Biochem 2016; 117:2620-9. [DOI: 10.1002/jcb.25557] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/24/2016] [Indexed: 12/12/2022]
Affiliation(s)
- S. Strassburg
- Department of Plastic and Hand Surgery; University of Freiburg Medical Center; Hugstetter Str. 55 Freiburg 79106 Germany
| | - N. Torio-Padron
- Department of Plastic and Hand Surgery; University of Freiburg Medical Center; Hugstetter Str. 55 Freiburg 79106 Germany
| | - G. Finkenzeller
- Department of Plastic and Hand Surgery; University of Freiburg Medical Center; Hugstetter Str. 55 Freiburg 79106 Germany
| | - A. Frankenschmidt
- Department of Urologie; University of Freiburg Medical Center; Hugstetter Str. 55 Freiburg 79106 Germany
| | - G.B. Stark
- Department of Plastic and Hand Surgery; University of Freiburg Medical Center; Hugstetter Str. 55 Freiburg 79106 Germany
| |
Collapse
|
58
|
Abstract
Cementum is a mineralized tissue covering the tooth root that functions in tooth attachment and posteruptive adjustment of tooth position. During formation of the apically located cellular cementum, some cementoblasts become embedded in the cementoid matrix and become cementocytes. As apparently terminally differentiated cells embedded in a mineralized extracellular matrix, cementocytes are part of a select group of specialized cells, also including osteocytes, hypertrophic chondrocytes, and odontoblasts. The differentiation and potential function(s) of cementocytes are virtually unknown, and the question may be posed whether the cementocyte is a dynamic actor in cementum in comparable fashion with the osteocyte in the skeleton, responding to changing tooth functions and endocrine signals and actively directing local cementum metabolism. This review summarizes the literature with regard to cementocytes, comparing them to their closest "cousins," the osteocytes, where insights gained from osteocyte studies serve to inform the critical examination of cementocytes. The review identifies important unanswered questions about these cells regarding their origins, differentiation, morphology and lacuno-canalicular system, selective markers, and potential functions.
Collapse
Affiliation(s)
- N Zhao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai No. 9 Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - L F Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
59
|
Honma R, Fujii Y, Ogasawara S, Oki H, Liu X, Nakamura T, Kaneko MK, Takagi M, Kato Y. Establishment of Novel Monoclonal Antibody PMab-32 Against Rabbit Podoplanin. Monoclon Antib Immunodiagn Immunother 2016; 35:41-7. [DOI: 10.1089/mab.2015.0066] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ryusuke Honma
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yuki Fujii
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Satoshi Ogasawara
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Hiroharu Oki
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Xing Liu
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takuro Nakamura
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Mika K. Kaneko
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yukinari Kato
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| |
Collapse
|
60
|
Zhao N, Nociti FH, Duan P, Prideaux M, Zhao H, Foster BL, Somerman MJ, Bonewald LF. Isolation and Functional Analysis of an Immortalized Murine Cementocyte Cell Line, IDG-CM6. J Bone Miner Res 2016; 31:430-442. [PMID: 26274352 PMCID: PMC4827449 DOI: 10.1002/jbmr.2690] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 12/30/2022]
Abstract
The dental cementum covering the tooth root is similar to bone in several respects but remains poorly understood in terms of development and differentiation of cementoblasts, as well as the potential function(s) of cementocytes residing in the cellular cementum. It is not known if the cementocyte is a dynamic actor in cementum metabolism, comparable to the osteocyte in the bone. Cementocytes exhibit irregular spacing and lacunar shape, with fewer canalicular connections compared with osteocytes. Immunohistochemistry and quantitative PCR (qPCR) revealed that the in vivo expression profile of cementocytes paralleled that of osteocytes, including expression of dentin matrix protein 1 (Dmp1/DMP1), Sost/sclerostin, E11/gp38/podoplanin, Tnfrsf11b (osteoprotegerin [OPG]), and Tnfsf11 (receptor activator of NF-κB ligand [RANKL]). We used the Immortomouse(+/-); Dmp1-GFP(+/-) mice to isolate cementocytes as Dmp1-expressing cells followed by immortalization using the interferon (IFN)-γ-inducible promoter driving expression of a thermolabile large T antigen to create the first immortalized line of cementocytes, IDG-CM6. This cell line reproduced the expression profile of cementocytes observed in vivo, including alkaline phosphatase activity and mineralization. IDG-CM6 cells expressed higher levels of Tnfrsf11b and lower levels of Tnfsf11 compared with IDG-SW3 osteocytes, and under fluid flow shear stress, IDG-CM6 cells significantly increased OPG while decreasing RANKL, leading to a significantly increased OPG/RANKL ratio, which would inhibit osteoclast activation. These studies indicate similarities yet potentially important differences in the function of cementocytes compared with osteocytes and support cementocytes as mechanically responsive cells.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA.,Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai No. 9 Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Francisco H Nociti
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA.,Department of Prosthodontics and Periodontics, Division of Periodontics, School of Dentistry at Piracicaba, Piracicaba, Sao Paulo, Brazil
| | - Peipei Duan
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA.,Department of Orthodontics, State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Matthew Prideaux
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA.,Bone Cell Biology Group, Centre for Orthopaedic & Trauma Research, University of Adelaide, Adelaide, Australia
| | - Hong Zhao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Brian L Foster
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA.,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Martha J Somerman
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lynda F Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
61
|
Fink DM, Steele MM, Hollingsworth MA. The lymphatic system and pancreatic cancer. Cancer Lett 2015; 381:217-36. [PMID: 26742462 DOI: 10.1016/j.canlet.2015.11.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
This review summarizes current knowledge of the biology, pathology and clinical understanding of lymphatic invasion and metastasis in pancreatic cancer. We discuss the clinical and biological consequences of lymphatic invasion and metastasis, including paraneoplastic effects on immune responses and consider the possible benefit of therapies to treat tumors that are localized to lymphatics. A review of current techniques and methods to study interactions between tumors and lymphatics is presented.
Collapse
Affiliation(s)
- Darci M Fink
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | |
Collapse
|
62
|
Staines KA, Prideaux M, Allen S, Buttle DJ, Pitsillides AA, Farquharson C. E11/Podoplanin Protein Stabilization Through Inhibition of the Proteasome Promotes Osteocyte Differentiation in Murine in Vitro Models. J Cell Physiol 2015; 231:1392-404. [PMID: 26639105 PMCID: PMC4832367 DOI: 10.1002/jcp.25282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/04/2015] [Indexed: 11/08/2022]
Abstract
The transmembrane glycoprotein E11 is considered critical in early osteoblast-osteocyte transitions (osteocytogenesis), however its function and regulatory mechanisms are still unknown. Using the late osteoblast MLO-A5 cell line we reveal increased E11 protein/mRNA expression (P < 0.001) concomitant with extensive osteocyte dendrite formation and matrix mineralization (P < 0.001). Transfection with E11 significantly increased mRNA levels (P < 0.001), but immunoblotting failed to detect any correlative increases in E11 protein levels, suggestive of post-translational degradation. We found that exogenous treatment of MLO-A5 and osteocytic IDG-SW3 cells with 10 μM ALLN (calpain and proteasome inhibitor) stabilized E11 protein levels and induced a profound increase in osteocytic dendrite formation (P < 0.001). Treatment with other calpain inhibitors failed to promote similar osteocytogenic changes, suggesting that these effects of ALLN rely upon its proteasome inhibitor actions. Accordingly we found that proteasome-selective inhibitors (MG132/lactacystin/ Bortezomib/Withaferin-A) produced similar dose-dependent increases in E11 protein levels in MLO-A5 and primary osteoblast cells. This proteasomal targeting was confirmed by immunoprecipitation of ubiquitinylated proteins, which included E11, and by increased levels of ubiquitinylated E11 protein upon addition of the proteasome inhibitors MG132/Bortezomib. Activation of RhoA, the small GTPase, was found to be increased concomitant with the peak in E11 levels and its downstream signaling was also observed to promote MLO-A5 cell dendrite formation. Our data indicate that a mechanism reliant upon blockade of proteasome-mediated E11 destabilization contributes to osteocytogenesis and that this may involve downstream targeting of RhoA. This work adds to our mechanistic understanding of the factors regulating bone homeostasis, which may lead to future therapeutic approaches.
Collapse
Affiliation(s)
- Katherine A Staines
- Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Matt Prideaux
- The University of Adelaide, North Terrace, Adelaide, Australia
| | - Steve Allen
- Royal Veterinary College, Royal College Street, London, United Kingdom
| | - David J Buttle
- Department of Infection and Immunity, The University of Sheffield Medical School, Beech Hill Road, Sheffield, United Kingdom
| | | | - Colin Farquharson
- Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
63
|
Yang JF, Walia A, Huang YH, Han KY, Rosenblatt MI, Azar DT, Chang JH. Understanding lymphangiogenesis in knockout models, the cornea, and ocular diseases for the development of therapeutic interventions. Surv Ophthalmol 2015; 61:272-96. [PMID: 26706194 DOI: 10.1016/j.survophthal.2015.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/05/2023]
Abstract
A major focus of cancer research for several decades has been understand the ability of tumors to induce new blood vessel formation, a process known as angiogenesis. Unfortunately, only limited success has been achieved in the clinical application of angiogenesis inhibitors. We now know that lymphangiogenesis, the growth of lymphatic vessels, likely also plays a major role in tumor progression. Thus, therapeutic strategies targeting lymphangiogenesis or both lymphangiogenesis and angiogenesis may represent promising approaches for treating cancer and other diseases. Importantly, research progress toward understanding lymphangiogenesis is significantly behind that related to angiogenesis. A PubMed search of "angiogenesis" returns nearly 80,000 articles, whereas a search of "lymphangiogenesis" returns 2,635 articles. This stark contrast can be explained by the lack of molecular markers for identifying the invisible lymphatic vasculature that persisted until less than 2 decades ago, combined with the intensity of research interest in angiogenesis during the past half century. Still, significant strides have been made in developing strategies to modulate lymphangiogenesis, largely using ocular disease models. Here we review the current knowledge of lymphangiogenesis in the context of knockout models, ocular diseases, the biology of activators and inhibitors, and the potential for therapeutic interventions targeting this process.
Collapse
Affiliation(s)
- Jessica F Yang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amit Walia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yu-hui Huang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyu-yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
64
|
Nassiri N, Rootman J, Rootman DB, Goldberg RA. Orbital lymphaticovenous malformations: Current and future treatments. Surv Ophthalmol 2015; 60:383-405. [DOI: 10.1016/j.survophthal.2015.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/02/2015] [Accepted: 03/06/2015] [Indexed: 12/23/2022]
|
65
|
Lowe KL, Navarro-Núñez L, Bénézech C, Nayar S, Kingston BL, Nieswandt B, Barone F, Watson SP, Buckley CD, Desanti GE. The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state. Eur J Immunol 2015; 45:2484-93. [PMID: 26173808 PMCID: PMC4737233 DOI: 10.1002/eji.201445314] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 07/06/2015] [Accepted: 07/10/2015] [Indexed: 11/08/2022]
Abstract
Expression of mouse C-type lectin-like receptor 2 (CLEC-2) has been reported on circulating CD11b(high) Gr-1(high) myeloid cells and dendritic cells (DCs) under basal conditions, as well as on a variety of leucocyte subsets following inflammatory stimuli or in vitro cell culture. However, previous studies assessing CLEC-2 expression failed to use CLEC-2-deficient mice as negative controls and instead relied heavily on single antibody clones. Here, we generated CLEC-2-deficient adult mice using two independent approaches and employed two anti-mouse CLEC-2 antibody clones to investigate surface expression on hematopoietic cells from peripheral blood and secondary lymphoid organs. We rule out constitutive CLEC-2 expression on resting DCs and show that CLEC-2 is upregulated in response to LPS-induced systemic inflammation in a small subset of activated DCs isolated from the mesenteric lymph nodes but not the spleen. Moreover, we demonstrate for the first time that peripheral blood B lymphocytes present exogenously derived CLEC-2 and suggest that both circulating B lymphocytes and CD11b(high) Gr-1(high) myeloid cells lose CLEC-2 following entry into secondary lymphoid organs. These results have significant implications for our understanding of CLEC-2 physiological functions.
Collapse
Affiliation(s)
- Kate L Lowe
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Leyre Navarro-Núñez
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Cécile Bénézech
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | - Saba Nayar
- Centre for Translational Inflammation Research, Rheumatology Research Group, University of Birmingham, Birmingham, UK
| | - Bethany L Kingston
- Centre for Translational Inflammation Research, Rheumatology Research Group, University of Birmingham, Birmingham, UK.,Medical School, University of Oxford, Oxford, UK
| | - Bernhard Nieswandt
- Department of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Francesca Barone
- Centre for Translational Inflammation Research, Rheumatology Research Group, University of Birmingham, Birmingham, UK
| | - Steve P Watson
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Christopher D Buckley
- Centre for Translational Inflammation Research, Rheumatology Research Group, University of Birmingham, Birmingham, UK
| | - Guillaume E Desanti
- Centre for Translational Inflammation Research, Rheumatology Research Group, University of Birmingham, Birmingham, UK
| |
Collapse
|
66
|
Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:421746. [PMID: 26247020 PMCID: PMC4515490 DOI: 10.1155/2015/421746] [Citation(s) in RCA: 1036] [Impact Index Per Article: 103.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023]
Abstract
Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.
Collapse
|
67
|
Kamel-ElSayed SA, Tiede-Lewis LM, Lu Y, Veno PA, Dallas SL. Novel approaches for two and three dimensional multiplexed imaging of osteocytes. Bone 2015; 76:129-40. [PMID: 25794783 PMCID: PMC4591054 DOI: 10.1016/j.bone.2015.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 01/20/2023]
Abstract
Although osteocytes have historically been viewed as quiescent cells, it is now clear that they are highly active cells in bone and play key regulatory roles in diverse skeletal functions, including mechanotransduction, phosphate homeostasis and regulation of osteoblast and osteoclast activity. Three dimensional imaging of embedded osteocytes and their dendritic connections within intact bone specimens can be quite challenging and many of the currently available methods are actually imaging the lacunocanalicular network rather than the osteocytes themselves. With the explosion of interest in the field of osteocyte biology, there is an increased need for reliable ways to image these cells in live and fixed bone specimens. Here we report the development of reproducible methods for 2D and 3D imaging of osteocytes in situ using multiplexed imaging approaches in which the osteocyte cell membrane, nucleus, cytoskeleton and extracellular matrix can be imaged simultaneously in various combinations. We also present a new transgenic mouse line expressing a membrane targeted-GFP variant selectively in osteocytes as a novel tool for in situ imaging of osteocytes and their dendrites in fixed or living bone specimens. These methods have been multiplexed with a novel method for labeling of the lacunocanalicular network using fixable dextran, which enables aspects of the osteocyte cell structure and lacunocanalicular system to be simultaneously imaged. The application of these comprehensive approaches for imaging of osteocytes in situ should advance research into osteocyte biology and function in health and disease.
Collapse
Affiliation(s)
- Suzan A Kamel-ElSayed
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 615 E. 25th Street, Kansas City, MO 64108, USA; Biomedical Sciences Department, Oakland University William Beaumont School of Medicine, 414 O'Dowd Hall, Rochester MI, 48309, USA; Medical Physiology Department, Assiut University School of Medicine, 71516 Asyut, Egypt
| | - LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 615 E. 25th Street, Kansas City, MO 64108, USA
| | - Yongbo Lu
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 615 E. 25th Street, Kansas City, MO 64108, USA; Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, 3302 Gaston Ave., Dallas, TX 75246, USA
| | - Patricia A Veno
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 615 E. 25th Street, Kansas City, MO 64108, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 615 E. 25th Street, Kansas City, MO 64108, USA.
| |
Collapse
|
68
|
Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Sci Rep 2015; 5:11019. [PMID: 26066093 PMCID: PMC4464258 DOI: 10.1038/srep11019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) have emerged as an important source for cell therapy. However, to date, no studies demonstrated generation of purified hPSC-derived lymphatic endothelial cells (LECs) and tested their therapeutic potential in disease models. Here we sought to differentiate hPSCs into the LEC lineage, purify them with LEC markers, and evaluate their therapeutic effects. We found that an OP9-assisted culture system reinforced by addition of VEGF-A, VEGF-C, and EGF most efficiently generated LECs, which were then isolated via FACS-sorting with LYVE-1 and PODOPLANIN. These hPSC-derived LYVE-1+PODOPLANIN+cells showed a pure committed LEC phenotype, formed new lymphatic vessels, and expressed lymphangiogenic factors at high levels. These hPSC-derived LECs enhanced wound healing through lymphangiogenesis and lymphvasculogenesis. Here we report, for the first time, that LECs can be selectively isolated from differentiating hPSCs, and that these cells are potent for lymphatic vessel formation in vivo and wound healing. This system and the purified hPSC-derived LECs can serve as a new platform for studying LEC development as well as for cell therapy.
Collapse
|
69
|
Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms. PLoS One 2015; 10:e0125731. [PMID: 25942444 PMCID: PMC4420268 DOI: 10.1371/journal.pone.0125731] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/25/2015] [Indexed: 12/17/2022] Open
Abstract
Parathyroid Hormone (PTH) can exert both anabolic and catabolic effects on the skeleton, potentially through expression of the PTH type1 receptor (PTH1R), which is highly expressed in osteocytes. To determine the cellular and molecular mechanisms responsible, we examined the effects of PTH on osteoblast to osteocyte differentiation using primary osteocytes and the IDG-SW3 murine cell line, which differentiate from osteoblast to osteocyte-like cells in vitro and express GFP under control of the dentin matrix 1 (Dmp1) promoter. PTH treatment resulted in an increase in some osteoblast and early osteocyte markers and a decrease in mature osteocyte marker expression. The gene expression profile of PTH-treated Day 28 IDG-SW3 cells was similar to PTH treated primary osteocytes. PTH treatment induced striking changes in the morphology of the Dmp1-GFP positive cells in IDG-SW3 cultures and primary cells from Dmp1-GFP transgenic mice. The cells changed from a more dendritic to an elongated morphology and showed increased cell motility. E11/gp38 has been shown to be important for cell migration, however, deletion of the E11/gp38/podoplanin gene had no effect on PTH-induced motility. The effects of PTH on motility were reproduced using cAMP, but not with protein kinase A (PKA), exchange proteins activated by cAMP (Epac), protein kinase C (PKC) or phosphatidylinositol-4,5-bisphosphonate 3-kinase (Pi3K) agonists nor were they blocked by their antagonists. However, the effects of PTH were mediated through calcium signaling, specifically through L-type channels normally expressed in osteoblasts but decreased in osteocytes. PTH was shown to increase expression of this channel, but decrease the T-type channel that is normally more highly expressed in osteocytes. Inhibition of L-type calcium channel activity attenuated the effects of PTH on cell morphology and motility but did not prevent the downregulation of mature osteocyte marker expression. Taken together, these results show that PTH induces loss of the mature osteocyte phenotype and promotes the motility of these cells. These two effects are mediated through different mechanisms. The loss of phenotype effect is independent and the cell motility effect is dependent on calcium signaling.
Collapse
|
70
|
Moustou AE, Alexandrou P, Stratigos AJ, Giannopoulou I, Vergou T, Katsambas A, Antoniou C. Expression of lymphatic markers and lymphatic growth factors in psoriasis before and after anti-TNF treatment. An Bras Dermatol 2015; 89:891-7. [PMID: 25387493 PMCID: PMC4230657 DOI: 10.1590/abd1806-4841.20143210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/27/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Angiogenesis is an early stage of psoriatic lesion development, but less is known
about lymphagiogenesis and its role in the development of psoriasis. OBJECTIVE To examine the expression of specific lymphatic markers and lymphatic growth
factors in untreated psoriatic skin, in the unaffected skin of patients and skin
of healthy volunteers, as well as their alteration after treatment with an
anti-TNF agent. METHODS Immunohistochemistry for the lymphatic markers D2-40 and LYVE-1, in addition to
the VEGF-C and VEGF-D growth factors, was performed in the skin biopsies of
psoriatic lesions and adjacent non-psoriatic skin of 19 patients before and after
treatment with etanercept, as well as in the skin biopsies of 10 healthy
volunteers. RESULTS The expressions of D2-40, VEGF-C and VEGF-D on lymphatic vessels underwent
statistically significant increases in untreated psoriatic skin compared with
non-lesional skin, in contrast to LYVE-1, which did not involve significant
increase in expression in psoriatic skin. VEGF-C expression on lymphatic vessels
diminished after treatment with etanercept. Moreover VEGF-C and VEGF-D staining on
fibroblasts presented with higher expression in lesional skin than in non-lesional
adjacent skin. CONCLUSION Remodeling of lymphatic vessels possibly occurs during psoriatic lesion
development, parallel to blood vessel formation. The exact role of this alteration
is not yet clear and more studies are necessary to confirm these results.
Collapse
|
71
|
de Rooij KE, van der Velde M, de Wilt E, Deckers MML, Bezemer M, Waarsing JH, Que I, Chan AB, Kaijzel EL, Löwik CWGM. Identification of receptor-type protein tyrosine phosphatase μ as a new marker for osteocytes. Histochem Cell Biol 2015; 144:1-11. [PMID: 25850409 PMCID: PMC4468792 DOI: 10.1007/s00418-015-1319-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2015] [Indexed: 12/17/2022]
Abstract
Osteocytes are the predominant cells in bone, where they form a cellular network and display important functions in bone homeostasis, phosphate metabolism and mechanical transduction. Several proteins strongly expressed by osteocytes are involved in these processes, e.g., sclerostin, DMP-1, PHEX, FGF23 and MEPE, while others are upregulated during differentiation of osteoblasts into osteocytes, e.g., osteocalcin and E11. The receptor-type protein tyrosine phosphatase µ (RPTPμ) has been described to be expressed in cells which display a cellular network, e.g., endothelial and neuronal cells, and is implied in mechanotransduction. In a capillary outgrowth assay using metatarsals derived from RPTPμ-knock-out/LacZ knock-in mice, we observed that the capillary structures grown out of the metatarsals were stained blue, as expected. Surprisingly, cells within the metatarsal bone tissue were positive for LacZ activity as well, indicating that RPTPμ is also expressed by osteocytes. Subsequent histochemical analysis showed that within bone, RPTPμ is expressed exclusively in early-stage osteocytes. Analysis of bone marrow cell cultures revealed that osteocytes are present in the nodules and an enzymatic assay enabled the quantification of the amount of osteocytes. No apparent bone phenotype was observed when tibiae of RPTPμ-knock-out/LacZ knock-in mice were analyzed by μCT at several time points during aging, although a significant reduction in cortical bone was observed in RPTPμ-knock-out/LacZ knock-in mice at 20 weeks. Changes in trabecular bone were more subtle. Our data show that RPTPμ is a new marker for osteocytes.
Collapse
Affiliation(s)
- Karien E de Rooij
- Experimental Molecular Imaging, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Renart J, Carrasco-Ramírez P, Fernández-Muñoz B, Martín-Villar E, Montero L, Yurrita MM, Quintanilla M. New insights into the role of podoplanin in epithelial-mesenchymal transition. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:185-239. [PMID: 26008786 DOI: 10.1016/bs.ircmb.2015.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Podoplanin is a small mucin-like transmembrane protein expressed in several adult tissues and with an important role during embryogenesis. It is needed for the proper development of kidneys and lungs as well as accurate formation of the lymphatic vascular system. In addition, it is involved in the physiology of the immune system. A wide variety of tumors express podoplanin, both in the malignant cells and in the stroma. Although there are exceptions, the presence of podoplanin results in poor prognosis. The main consequence of forced podoplanin expression in established and tumor-derived cell lines is an increase in cell migration and, eventually, the triggering of an epithelial-mesenchymal transition, whereby cells acquire a fibroblastoid phenotype and increased motility. We will examine the current status of the role of podoplanin in the induction of epithelial-mesenchymal transition as well as the different interactions that lead to this program.
Collapse
Affiliation(s)
- Jaime Renart
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | | | - Ester Martín-Villar
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Lucía Montero
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - María M Yurrita
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| |
Collapse
|
73
|
Vazquez M, Evans BAJ, Riccardi D, Evans SL, Ralphs JR, Dillingham CM, Mason DJ. A new method to investigate how mechanical loading of osteocytes controls osteoblasts. Front Endocrinol (Lausanne) 2014; 5:208. [PMID: 25538684 PMCID: PMC4260042 DOI: 10.3389/fendo.2014.00208] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/18/2014] [Indexed: 01/08/2023] Open
Abstract
Mechanical loading, a potent stimulator of bone formation, is governed by osteocyte regulation of osteoblasts. We developed a three-dimensional (3D) in vitro co-culture system to investigate the effect of loading on osteocyte-osteoblast interactions. MLO-Y4 cells were embedded in type I collagen gels and MC3T3-E1(14) or MG63 cells layered on top. Ethidium homodimer staining of 3D co-cultures showed 100% osteoblasts and 86% osteocytes were viable after 7 days. Microscopy revealed osteoblasts and osteocytes maintain their respective ovoid/pyriform and dendritic morphologies in 3D co-cultures. Reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) of messenger ribonucleic acid (mRNA) extracted separately from osteoblasts and osteocytes, showed that podoplanin (E11), osteocalcin, and runt-related transcription factor 2 mRNAs were expressed in both cell types. Type I collagen (Col1a1) mRNA expression was higher in osteoblasts (P < 0.001), whereas, alkaline phosphatase mRNA was higher in osteocytes (P = 0.001). Immunohistochemistry revealed osteoblasts and osteocytes express E11, type I pro-collagen, and connexin 43 proteins. In preliminary experiments to assess osteogenic responses, co-cultures were treated with human recombinant bone morphogenetic protein 2 (BMP-2) or mechanical loading using a custom built loading device. BMP-2 treatment significantly increased osteoblast Col1a1 mRNA synthesis (P = 0.031) in MLO-Y4/MG63 co-cultures after 5 days treatment. A 16-well silicone plate, loaded (5 min, 10 Hz, 2.5 N) to induce 4000-4500 με cyclic compression within gels increased prostaglandin E2 (PGE2) release 0.5 h post-load in MLO-Y4 cells pre-cultured in 3D collagen gels for 48, 72 h, or 7 days. Mechanical loading of 3D co-cultures increased type I pro-collagen release 1 and 5 days later. These methods reveal a new osteocyte-osteoblast co-culture model that may be useful for investigating mechanically induced osteocyte control of osteoblast bone formation.
Collapse
Affiliation(s)
- Marisol Vazquez
- Arthritis Research UK Biomechanics and Bioengineering Centre, School of Biosciences, Cardiff University, Cardiff, UK
| | - Bronwen A. J. Evans
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - Daniela Riccardi
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, UK
| | - Sam L. Evans
- Institute of Mechanical and Manufacturing Engineering, School of Engineering, Cardiff University, Cardiff, UK
| | - Jim R. Ralphs
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Deborah J. Mason
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
74
|
Podoplanin: a novel regulator of tumor invasion and metastasis. Med Oncol 2014; 31:24. [PMID: 25142945 DOI: 10.1007/s12032-014-0024-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/05/2014] [Indexed: 12/17/2022]
Abstract
Podoplanin, a small mucin-type sialoglycoprotein, was recently shown to be involved in tumor progression. Podoplanin is overexpressed in cancer cells of various human malignancies, and recently, it is also detected in intratumoral stromal cells. We now appreciate that podoplanin plays a dual role in cancer: it can not only suppress tumor growth but also promote tumor progression. Researchers have identified several potential pathways invoked by podoplanin, which participate in the epithelial-to-mesenchymal transition, collective-cell migration, platelet activation and aggregation, and lymphangiogenesis, and thus regulate the tumor invasion and metastasis. Here, we discuss the current experimental and human clinical data on podoplanin to validate the multiple context-dependent functions in different microenvironments and to delineate the diverse regulatory mechanisms.
Collapse
|
75
|
Rudzińska M, Gaweł D, Sikorska J, Karpińska KM, Kiedrowski M, Stępień T, Marchlewska M, Czarnocka B. The role of podoplanin in the biology of differentiated thyroid cancers. PLoS One 2014; 9:e96541. [PMID: 24797369 PMCID: PMC4010536 DOI: 10.1371/journal.pone.0096541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/09/2014] [Indexed: 01/04/2023] Open
Abstract
Podoplanin (PDPN), a mucin-type transmembrane glycoprotein specific to the lymphatic system is expressed in a variety of human cancers, and is regarded as a factor promoting tumor progression. The purpose of this study was to elucidate the molecular role of PDPN in the biology of thyroid cancer cells. PDPN expression was evaluated in primary thyroid carcinomas and thyroid carcinoma cell lines by RT-qPCR, Western blotting, IF and IHC. To examine the role of podoplanin in determining a cell's malignant potential (cellular migration, invasion, proliferation, adhesion, motility, apoptosis), a thyroid cancer cell line with silenced PDPN expression was used. We observed that PDPN was solely expressed in the cancer cells of 40% of papillary thyroid carcinoma (PTC) tissues. Moreover, PDPN mRNA and protein were highly expressed in PTC-derived TPC1 and BcPAP cell lines but were not detected in follicular thyroid cancer derived cell lines. PDPN knock-down significantly decreased cellular invasion, and modestly reduced cell migration, while proliferation and adhesion were not affected. Our results demonstrate that PDPN mediates the invasive properties of cells derived from papillary thyroid carcinomas, suggesting that podoplanin might promote PTC progression.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Damian Gaweł
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Justyna Sikorska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Kamila M. Karpińska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Mirosław Kiedrowski
- Department of Pathology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Tomasz Stępień
- Department of General and Endocrinological Surgery, Copernicus Memorial Hospital, Łódź, Poland
| | - Magdalena Marchlewska
- Department of General and Endocrinological Surgery, Copernicus Memorial Hospital, Łódź, Poland
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
- * E-mail:
| |
Collapse
|
76
|
Expression of caveolin-1 and podocalyxin in rat lungs challenged with 2-kDa macrophage-activating lipopeptide and Flt3L. Cell Tissue Res 2014; 356:207-16. [PMID: 24419512 DOI: 10.1007/s00441-013-1771-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/14/2013] [Indexed: 10/25/2022]
Abstract
Caveolin-1 is one of the important regulators of vascular permeability in inflamed lungs. Podocalyxin is a CD34 protein expressed on vascular endothelium and has a role in podocyte development in the kidney. Few data are available on the expression of caveolin-1 and podocalyxin in lungs challenged with Toll-like receptor 2 (TLR2) agonists such as mycoplasma-derived macrophage activating lipopeptide or with immune modulators such as Fms-like tyrosine kinase receptor-3 ligand (Flt3L), which expands dendritic cell populations in the lung. Because of the significance of pathogen-derived molecules that act through TLR2 and of the role of immune modulators in lung physiology, we examine the immunohistochemical expression of caveolin-1 and podocalyxin in lungs from rats challenged with a 2-kDa macrophage-activating lipopeptide (MALP-2) and Flt3L. Normal rat lungs expressed caveolin-1 in alveolar septa, vascular endothelium and airway epithelium, especially along the lateral borders of epithelial cells but not in alveolar macrophages. MALP-2 and Flt3L decreased and increased, respectively, the expression of caveolin-1. Caveolin-1 expression seemed to increase in microvessels in bronchiole-associated lymphoid tissue (BALT) in Flt3L-challenged lungs but not in normal or MALP-2-treated lungs. Podocalyxin was absent in the epithelium and alveolar macrophages but was present in the vasculature of control, Flt3L- and MALP-2-treated rats. Compared with control and MALP-2-treated rats, Flt3L-treated lungs showed greater expression of podocalyxin in BALT vasculature and at the interface of monocytes and the endothelium. These immunohistochemical data describing the altered expression of caveolin-1 and podocalyxin in lungs treated with MALP-2 or Flt3L encourage further mechanistic studies on the role of podocalyxin and caveolin-1 in lung inflammation.
Collapse
|
77
|
Tomooka M, Kaji C, Kojima H, Sawa Y. Distribution of podoplanin-expressing cells in the mouse nervous systems. Acta Histochem Cytochem 2013; 46:171-7. [PMID: 24610964 PMCID: PMC3929615 DOI: 10.1267/ahc.13035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/26/2013] [Indexed: 11/22/2022] Open
Abstract
Podoplanin is a mucin-type glycoprotein which was first identified in podocytes. Recently, podoplanin has been successively reported as a marker for brain and peripheral nerve tumors, however, the distribution of podoplanin-expressing cells in normal nerves has not been fully investigated. This study aims to examine the podoplanin-expressing cell distribution in the mouse head and nervous systems. An immunohistochemical study showed that the podoplanin-positive areas in the mouse peripheral nerve and spinal cord are perineurial fibroblasts, satellite cells in the dorsal root ganglion, glia cells in the ventral and dorsal horns, and schwann cells in the ventral and dorsal roots; in the cranial meninges the dura mater, arachnoid, and pia mater; in the eye the optic nerve, retinal pigment epithelium, chorioidea, sclera, iris, lens epithelium, corneal epithelium, and conjunctival epithelium. In the mouse brain choroid plexus and ependyma were podoplanin-positive, and there were podoplanin-expressing brain parenchymal cells in the nuclei and cortex. The podoplanin-expressing cells were astrocyte marker GFAP-positive and there were no differences in the double positive cell distribution of several portions in the brain parenchyma except for the fornix. The results suggest that podoplanin may play a common role in nervous system support cells and eye constituents.
Collapse
Affiliation(s)
- Miwa Tomooka
- Department of Oral Growth & Development, Fukuoka Dental College
| | - Chiaki Kaji
- Department of Oral Growth & Development, Fukuoka Dental College
| | - Hiroshi Kojima
- Department of Oral Growth & Development, Fukuoka Dental College
| | - Yoshihiko Sawa
- Department of Morphological Biology, Fukuoka Dental College
| |
Collapse
|
78
|
Lips KS, Kauschke V, Hartmann S, Thormann U, Ray S, Kampschulte M, Langheinrich A, Schumacher M, Gelinsky M, Heinemann S, Hanke T, Kautz AR, Schnabelrauch M, Schnettler R, Heiss C, Alt V, Kilian O. Podoplanin immunopositive lymphatic vessels at the implant interface in a rat model of osteoporotic fractures. PLoS One 2013; 8:e77259. [PMID: 24130867 PMCID: PMC3793947 DOI: 10.1371/journal.pone.0077259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/31/2013] [Indexed: 12/26/2022] Open
Abstract
Insertion of bone substitution materials accelerates healing of osteoporotic fractures. Biodegradable materials are preferred for application in osteoporotic patients to avoid a second surgery for implant replacement. Degraded implant fragments are often absorbed by macrophages that are removed from the fracture side via passage through veins or lymphatic vessels. We investigated if lymphatic vessels occur in osteoporotic bone defects and whether they are regulated by the use of different materials. To address this issue osteoporosis was induced in rats using the classical method of bilateral ovariectomy and additional calcium and vitamin deficient diet. In addition, wedge-shaped defects of 3, 4, or 5 mm were generated in the distal metaphyseal area of femur via osteotomy. The 4 mm defects were subsequently used for implantation studies where bone substitution materials of calcium phosphate cement, composites of collagen and silica, and iron foams with interconnecting pores were inserted. Different materials were partly additionally functionalized by strontium or bisphosphonate whose positive effects in osteoporosis treatment are well known. The lymphatic vessels were identified by immunohistochemistry using an antibody against podoplanin. Podoplanin immunopositive lymphatic vessels were detected in the granulation tissue filling the fracture gap, surrounding the implant and growing into the iron foam through its interconnected pores. Significant more lymphatic capillaries were counted at the implant interface of composite, strontium and bisphosphonate functionalized iron foam. A significant increase was also observed in the number of lymphatics situated in the pores of strontium coated iron foam. In conclusion, our results indicate the occurrence of lymphatic vessels in osteoporotic bone. Our results show that lymphatic vessels are localized at the implant interface and in the fracture gap where they might be involved in the removal of lymphocytes, macrophages, debris and the implants degradation products. Therefore the lymphatic vessels are involved in implant integration and fracture healing.
Collapse
Affiliation(s)
- Katrin Susanne Lips
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Gießen, Germany
- * E-mail:
| | - Vivien Kauschke
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Gießen, Germany
| | - Sonja Hartmann
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Gießen, Germany
| | - Ulrich Thormann
- Department of Trauma Surgery Gießen, University Hospital of Gießen, Marburg, Justus-Liebig University, Gießen, Germany
| | - Seemun Ray
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Gießen, Germany
| | | | - Alexander Langheinrich
- Department of Diagnostic and Interventional Radiology, BG Trauma Hospital, Frankfurt/Main, Germany
| | - Matthias Schumacher
- Centre for Translational Bone, Joint, and Soft Tissue Research, Medical Faculty and University Hospital, Technische Universität, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint, and Soft Tissue Research, Medical Faculty and University Hospital, Technische Universität, Dresden, Germany
| | - Sascha Heinemann
- Max-Bergmann-Center of Biomaterials and Institute of Material Science, Technische Universität, Dresden, Germany
| | - Thomas Hanke
- Max-Bergmann-Center of Biomaterials and Institute of Material Science, Technische Universität, Dresden, Germany
| | | | | | - Reinhard Schnettler
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Gießen, Germany
- Department of Trauma Surgery Gießen, University Hospital of Gießen, Marburg, Justus-Liebig University, Gießen, Germany
| | - Christian Heiss
- Department of Trauma Surgery Gießen, University Hospital of Gießen, Marburg, Justus-Liebig University, Gießen, Germany
| | - Volker Alt
- Department of Trauma Surgery Gießen, University Hospital of Gießen, Marburg, Justus-Liebig University, Gießen, Germany
| | - Olaf Kilian
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Gießen, Germany
- Department of Orthopedics and Trauma, Zentralklinik, Bad Berka, Germany
| |
Collapse
|
79
|
Abstract
Few investigators think of bone as an endocrine gland, even after the discovery that osteocytes produce circulating fibroblast growth factor 23 that targets the kidney and potentially other organs. In fact, until the last few years, osteocytes were perceived by many as passive, metabolically inactive cells. However, exciting recent discoveries have shown that osteocytes encased within mineralized bone matrix are actually multifunctional cells with many key regulatory roles in bone and mineral homeostasis. In addition to serving as endocrine cells and regulators of phosphate homeostasis, these cells control bone remodeling through regulation of both osteoclasts and osteoblasts, are mechanosensory cells that coordinate adaptive responses of the skeleton to mechanical loading, and also serve as a manager of the bone's reservoir of calcium. Osteocytes must survive for decades within the bone matrix, making them one of the longest lived cells in the body. Viability and survival are therefore extremely important to ensure optimal function of the osteocyte network. As we continue to search for new therapeutics, in addition to the osteoclast and the osteoblast, the osteocyte should be considered in new strategies to prevent and treat bone disease.
Collapse
Affiliation(s)
- Sarah L Dallas
- PhD, Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 East 25th Street, Kansas City, Missouri 64108.
| | | | | |
Collapse
|
80
|
Chen Z, Wu C, Yuen J, Klein T, Crawford R, Xiao Y. Influence of osteocytes in thein vitroandin vivoβ-tricalcium phosphate-stimulated osteogenesis. J Biomed Mater Res A 2013; 102:2813-23. [DOI: 10.1002/jbm.a.34954] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Zetao Chen
- Institute of Health and Biomedical Innovation, Queensland University of Technology; Brisbane, Brisbane Queensland 4059 Australia
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Jones Yuen
- Institute of Health and Biomedical Innovation, Queensland University of Technology; Brisbane, Brisbane Queensland 4059 Australia
| | - Travis Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology; Brisbane, Brisbane Queensland 4059 Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology; Brisbane, Brisbane Queensland 4059 Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology; Brisbane, Brisbane Queensland 4059 Australia
| |
Collapse
|
81
|
Choi I, Lee S, Hong YK. The new era of the lymphatic system: no longer secondary to the blood vascular system. Cold Spring Harb Perspect Med 2013; 2:a006445. [PMID: 22474611 DOI: 10.1101/cshperspect.a006445] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The blood and lymphatic systems are the two major circulatory systems in our body. Although the blood system has been studied extensively, the lymphatic system has received much less scientific and medical attention because of its elusive morphology and mysterious pathophysiology. However, a series of landmark discoveries made in the past decade has begun to change the previous misconception of the lymphatic system to be secondary to the more essential blood vascular system. In this article, we review the current understanding of the development and pathology of the lymphatic system. We hope to convince readers that the lymphatic system is no less essential than the blood circulatory system for human health and well-being.
Collapse
Affiliation(s)
- Inho Choi
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
82
|
Pula B, Witkiewicz W, Dziegiel P, Podhorska-Okolow M. Significance of podoplanin expression in cancer-associated fibroblasts: a comprehensive review. Int J Oncol 2013; 42:1849-57. [PMID: 23588876 DOI: 10.3892/ijo.2013.1887] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/14/2013] [Indexed: 11/05/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are well-known to be part of the tumor microenvironment. This heterogeneous population of cells of the tumor microenvironment via secretion of various growth factors and cytokines was shown to contribute to increased cancer cell proliferation rate, migration, invasiveness and other key processes such as angiogenesis and lymphangiogenesis. Recent studies identified podoplanin as a marker of CAFs in various malignancies and its expression in these cells was shown to influence cancer progression. In some studies it yielded a prognostic impact on patient survival which was strongly dependent on the entity of the tumor. This review summarizes recent findings concerning the biology of podoplanin in cancer progression with particular emphasis on its expression in CAFs.
Collapse
Affiliation(s)
- Bartosz Pula
- Regional Specialist Hospital, Research and Development Center, 51-124 Wroclaw, Poland
| | | | | | | |
Collapse
|
83
|
Schwabe P, Greiner S, Ganzert R, Eberhart J, Dähn K, Stemberger A, Plank C, Schmidmaier G, Wildemann B. Effect of a novel nonviral gene delivery of BMP-2 on bone healing. ScientificWorldJournal 2012; 2012:560142. [PMID: 23213289 PMCID: PMC3504401 DOI: 10.1100/2012/560142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/30/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Gene therapeutic drug delivery approaches have been introduced to improve the efficiency of growth factors at the site of interest. This study investigated the efficacy and safety of a new nonviral copolymer-protected gene vector (COPROG) for the stimulation of bone healing. METHODS In vitro, rat osteoblasts were transfected with COPROG + luciferase plasmid or COPROG + hBMP-2 plasmid. In vivo, rat tibial fractures were intramedullary stabilized with uncoated versus COPROG+hBMP-2-plasmid-coated titanium K-wires. The tibiae were prepared for biomechanical and histological analyses at days 28 and 42 and for transfection/safety study at days 2, 4, 7, 28, and 42. RESULTS In vitro results showed luciferase expression until day 21, and hBMP-2-protein was measured from day 2 - day 10. In vivo, the local application of hBMP-2-plasmid showed a significantly higher maximum load after 42 days compared to that in the control. The histomorphometric analysis revealed a significantly less mineralized periosteal callus area in the BMP-2 group compared to the control at day 28. The rt-PCR showed no systemic biodistribution of luciferase RNA. CONCLUSION A positive effect on fracture healing by nonviral BMP-2 plasmid application from COPROG-coated implants could be shown in this study; however, the effect of the vector may be improved with higher plasmid concentrations. Transfection showed no biodistribution to distant organs and was considered to be safe.
Collapse
Affiliation(s)
- P Schwabe
- Center for Musculoskeletal Surgery and Julius Wolff Institute, Charité-University Medicine Berlin, Campus Virchow, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Tyrrell C, McKechnie SR, Beers MF, Mitchell TJ, McElroy MC. Differential alveolar epithelial injury and protein expression in pneumococcal pneumonia. Exp Lung Res 2012; 38:266-76. [PMID: 22563685 DOI: 10.3109/01902148.2012.683321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The integrity of the alveolar epithelium is a key factor in the outcome of acute lung injury. Here, we investigate alveolar epithelial injury and the expression of epithelial-selective markers in Streptococcus pneumoniae-induced acute lung injury. S. pneumoniae was instilled into rat lungs and alveolar type I (RTI(40)/podoplanin, MMC6 antigen) and alveolar type II (MMC4 antigen, surfactant protein D, pro-surfactant protein C, RTII(70)) cell markers were quantified in lavage fluid and lung tissue at 24 and 72 hours. The alveolar epithelium was also examined using electron, confocal, and light microscopy. S. pneumoniae induced an acute inflammatory response as assessed by increased total protein, SP-D, and neutrophils in lavage fluid. Biochemical and morphological studies demonstrated morphologic injury to type II cells but not type I cells. In particular, the expression of RTI(40)/podoplanin was dramatically reduced, on the surface of type I cells, in the absence of morphologic injury. These data demonstrate that type II cell damage can occur in the absence of type I cell injury without affecting the ability of the lung to return to a normal morphology. These data also demonstrate that RTI(40)/podoplanin is not a type I cell phenotypic marker in experimental acute lung injury caused by S. pneumoniae. Given that RTI(40)/podoplanin is an endogenous ligand for the C-type lectin receptor and this receptor plays a role in platelet aggregation and neutrophil activation, we hypothesize that the reduction of RTI(40)/podoplanin on type I cells might be important for the regulation of platelet and/or neutrophil function in experimental acute lung injury.
Collapse
Affiliation(s)
- Christine Tyrrell
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | | | | | | | | |
Collapse
|
85
|
Astarita JL, Acton SE, Turley SJ. Podoplanin: emerging functions in development, the immune system, and cancer. Front Immunol 2012; 3:283. [PMID: 22988448 PMCID: PMC3439854 DOI: 10.3389/fimmu.2012.00283] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022] Open
Abstract
Podoplanin (PDPN) is a well-conserved, mucin-type transmembrane protein expressed in multiple tissues during ontogeny and in adult animals, including the brain, heart, kidney, lungs, osteoblasts, and lymphoid organs. Studies of PDPN-deficient mice have demonstrated that this molecule plays a critical role in development of the heart, lungs, and lymphatic system. PDPN is widely used as a marker for lymphatic endothelial cells and fibroblastic reticular cells of lymphoid organs and for lymphatics in the skin and tumor microenvironment. Much of the mechanistic insight into PDPN biology has been gleaned from studies of tumor cells; tumor cells often upregulate PDPN as they undergo epithelial-mesenchymal transition and this upregulation is correlated with increased motility and metastasis. The physiological role of PDPN that has been most studied is its ability to aggregate and activate CLEC-2-expressing platelets, as PDPN is the only known endogenous ligand for CLEC-2. However, more recent studies have revealed that PDPN also plays crucial roles in the biology of immune cells, including T cells and dendritic cells. This review will provide a comprehensive overview of the diverse roles of PDPN in development, immunology, and cancer.
Collapse
Affiliation(s)
- Jillian L Astarita
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute Boston, MA, USA ; Division of Medical Sciences, Harvard Medical School Boston, MA, USA
| | | | | |
Collapse
|
86
|
Abstract
A relatively large number of new endothelial markers that can assist in the diagnosis and classification of endothelial and vascular neoplasms have become available over the past few years. The expression of these markers, however, differs considerably among the various tumors. A selection of markers that have potential diagnostic utility or are of current interest among pathologists are reviewed and compared with some of the more traditional markers that have been employed in diagnostic pathology.
Collapse
|
87
|
Kaji C, Tsujimoto Y, Kato Kaneko M, Kato Y, Sawa Y. Immunohistochemical Examination of Novel Rat Monoclonal Antibodies against Mouse and Human Podoplanin. Acta Histochem Cytochem 2012; 45:227-37. [PMID: 23012488 PMCID: PMC3445762 DOI: 10.1267/ahc.12008] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/14/2012] [Indexed: 01/06/2023] Open
Abstract
This study aims to develop new monoclonal antibodies (mAbs) against mouse and human podoplanin. Rats were immunized with synthetic peptides, corresponding to amino acids 38–51 of mouse podoplanin or human podoplanin which is 100% homologous to the same site of monkey podoplanin; anti-mouse podoplanin mAb PMab-1 (IgG2a) and anti-human mAb NZ-1.2 (IgG2a) were established. In immunocytochemistry, the mouse melanoma B16-F10 and mouse podoplanin (mPDPN)-expressed CHO transfectant were stained by PMab-1; human lymphatic endothelial cells (LEC) and human podoplanin (hPDPN)-expressed squamous cell carcinoma HSC3 transfectant, were stained by NZ-1.2. Western-blot analysis detected an about 40-kDa protein in CHO-mPDPN and B16-F10 by PMab-1, and in HSC3-hPDPN and LEC by NZ-1.2. In frozen sections, PMab-1 reacted with mouse kidney, pulmonary alveoli, pulmonary pleura, and salivary gland myoepithelial cells while NZ-1.2 reacted to the human salivary gland myoepithelial cells. The immunostaining of paraffin-embedded sections also showed the reaction of PMab-1 or NZ-1.2 to the mouse or monkey kidney glomerulus, pulmonary alveoli, and lung lymphatic vessels. These results indicate that the two novel rat mAbs to the mouse and human/monkey podoplanin are useful for Western-blot and immunostaining of somatic tissues on paraffin-embedded sections as well as frozen sections.
Collapse
Affiliation(s)
- Chiaki Kaji
- Department of Morphological Biology, Fukuoka Dental College
- Department of Morphological Biology, Fukuoka Dental College
| | - Yuta Tsujimoto
- Molecular Tumor Marker Research Team, Yamagata University Global COE Program, Yamagata University Faculty of Medicine
- Molecular Tumor Marker Research Team, Yamagata University Global COE Program, Yamagata University Faculty of Medicine
| | - Mika Kato Kaneko
- Molecular Tumor Marker Research Team, Yamagata University Global COE Program, Yamagata University Faculty of Medicine
- Molecular Tumor Marker Research Team, Yamagata University Global COE Program, Yamagata University Faculty of Medicine
| | - Yukinari Kato
- Molecular Tumor Marker Research Team, Yamagata University Global COE Program, Yamagata University Faculty of Medicine
- Molecular Tumor Marker Research Team, Yamagata University Global COE Program, Yamagata University Faculty of Medicine
| | - Yoshihiko Sawa
- Department of Morphological Biology, Fukuoka Dental College
- Department of Morphological Biology, Fukuoka Dental College
| |
Collapse
|
88
|
Abstract
Osteocytes were the forgotten bone cell until the bone community could become convinced that these cells do serve an important role in bone function and maintenance. In this review we trace the history of osteocyte characterization and present some of the major observations that are leading to the conclusion that these cells are not passive placeholders residing in the bone matrix, but are indeed, major orchestrators of bone remodeling.
Collapse
Affiliation(s)
- Dayong Guo
- University of Missouri, Kansas City, MO, USA
| | | |
Collapse
|
89
|
Tjioe KC, Oliveira DT, Soares CT, Lauris JRP, Damante JH. Is podoplanin expression associated with the proliferative activity of ameloblastomas? Oral Dis 2012; 18:673-9. [DOI: 10.1111/j.1601-0825.2012.01924.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
90
|
Abstract
Osteocytes can be isolated from chicken calvaria using mild EDTA treatment alternating with collagenase treatment. The cell population obtained contains both osteoblasts and osteocytes. A pure population of osteocytes is obtained following immunomagnetic separation with the osteocyte-specific monoclonal antibody MAb OB7.3.
Collapse
|
91
|
Kaji C, Tomooka M, Kato Y, Kojima H, Sawa Y. The expression of podoplanin and classic cadherins in the mouse brain. J Anat 2012; 220:435-46. [PMID: 22352427 DOI: 10.1111/j.1469-7580.2012.01484.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Podoplanin is a transmembrane glycoprotein indirectly linked to classic cadherins through ezrin-actin networks. Recently, the overexpression of podoplanin in high-grade malignancy brain tumors has been reported. The aim of this study was to investigate the expression of podoplanin and classic cadherins in the mouse brain. Immunohistochemistry showed that podoplanin was expressed on ependymal cells and choroid plexus epithelial cells at the ventricle side of the cell surface and at the cell-cell junctions, and on retinal pigment epithelial cells and in the pia mater; P-cadherin between choroid plexus epithelial cells and endothelial cells at the basement membrane side of cell surface, and between retinal pigment epithelial cells; VE-cadherin on the PECAM-1 positive-choroid plexus endothelial cells of the fibrovascular core; and N-cadherin on the cell surface and at the cell-cell junctions of ependymal cells, and in the pia mater. The regions expressing podoplanin, P-cadherin, and VE-cadherin did not coincide. In real-time PCR analysis, the amounts of podoplanin and P- and N-cadherin mRNA were larger in the ventricular wall with choroid plexus than in the abdominal aorta and cerebrum. In the RT-PCR analysis, the intensities of amplicon for VE-cadherin mRNA were the same for the abdominal aorta, cerebrum, and ventricular wall with the choroid plexus, suggesting that mouse ependymal cells, choroid plexus epithelial cells, and glial cells under the pia mater have the ability to express podoplanin and P- and N-cadherins. Glial cells and retinal pigment epithelial cells may create barriers by podoplanin and classic cadherins as a rate-determining step for transmission of blood components.
Collapse
Affiliation(s)
- Chiaki Kaji
- Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
92
|
Granero-Moltó F, Myers TJ, Weis JA, Longobardi L, Li T, Yan Y, Case N, Rubin J, Spagnoli A. Mesenchymal stem cells expressing insulin-like growth factor-I (MSCIGF) promote fracture healing and restore new bone formation in Irs1 knockout mice: analyses of MSCIGF autocrine and paracrine regenerative effects. Stem Cells 2012; 29:1537-48. [PMID: 21786367 DOI: 10.1002/stem.697] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Failures of fracture repair (nonunions) occur in 10% of all fractures. The use of mesenchymal stem cells (MSC) in tissue regeneration appears to be rationale, safe, and feasible. The contributions of MSC to the reparative process can occur through autocrine and paracrine effects. The primary objective of this study is to find a novel mean, by transplanting primary cultures of bone marrow-derived MSCs expressing insulin-like growth factor-I (MSC(IGF)), to promote these seed-and-soil actions of MSC to fully implement their regenerative abilities in fracture repair and nonunions. MSC(IGF) or traceable MSC(IGF)-Lac-Z were transplanted into wild-type or insulin-receptor-substrate knockout (Irs1(-/-)) mice with a stabilized tibia fracture. Healing was assessed using biomechanical testing, microcomputed tomography (μCT), and histological analyses. We found that systemically transplanted MSC(IGF) through autocrine and paracrine actions improved the fracture mechanical strength and increased new bone content while accelerating mineralization. We determined that IGF-I adapted the response of transplanted MSC(IGF) to promote their differentiation into osteoblasts. In vitro and in vivo studies showed that IGF-I-induced osteoglastogenesis in MSCs was dependent of an intact IRS1-PI3K signaling. Furthermore, using Irs1(-/-) mice as a nonunion fracture model through altered IGF signaling, we demonstrated that the autocrine effect of IGF-I on MSC restored the fracture new bone formation and promoted the occurrence of a well-organized callus that bridged the gap. A callus that was basically absent in Irs1(-/-) left untransplanted or transplanted with MSCs. We provided evidence of effects and mechanisms for transplanted MSC(IGF) in fracture repair and potentially to treat nonunions.
Collapse
Affiliation(s)
- Froilán Granero-Moltó
- Department of Pediatrics, Division of Pediatric Endocrinology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Kikuchi K, Ito S, Inoue H, Gonz^|^aacute;lez-Alva P, Miyazaki Y, Sakashita H, Yoshino A, Katayama Y, Terui T, Ide F, Kusama K. Immunohistochemical expression of podoplanin in so-called hard ^|^alpha;-keratin-expressing tumors, including calcifying cystic odontogenic tumor, craniopharyngioma, and pilomatrixoma. J Oral Sci 2012; 54:165-75. [DOI: 10.2334/josnusd.54.165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
94
|
Inoue H, Miyazaki Y, Kikuchi K, Yoshida N, Ide F, Ohmori Y, Tomomura A, Sakashita H, Kusama K. Podoplanin expression during dysplasia–carcinoma sequence in the oral cavity. Tumour Biol 2011; 33:183-94. [DOI: 10.1007/s13277-011-0261-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/25/2011] [Indexed: 01/22/2023] Open
|
95
|
Atkins GJ, Rowe PS, Lim HP, Welldon KJ, Ormsby R, Wijenayaka AR, Zelenchuk L, Evdokiou A, Findlay DM. Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism. J Bone Miner Res 2011; 26:1425-36. [PMID: 21312267 PMCID: PMC3358926 DOI: 10.1002/jbmr.345] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The identity of the cell type responsive to sclerostin, a negative regulator of bone mass, is unknown. Since sclerostin is expressed in vivo by mineral-embedded osteocytes, we tested the hypothesis that sclerostin would regulate the behavior of cells actively involved in mineralization in adult bone, the preosteocyte. Differentiating cultures of human primary osteoblasts exposed to recombinant human sclerostin (rhSCL) for 35 days displayed dose- and time-dependent inhibition of in vitro mineralization, with late cultures being most responsive in terms of mineralization and gene expression. Treatment of advanced (day 35) cultures with rhSCL markedly increased the expression of the preosteocyte marker E11 and decreased the expression of mature markers DMP1 and SOST. Concomitantly, matrix extracellular phosphoglycoprotein (MEPE) expression was increased by rhSCL at both the mRNA and protein levels, whereas PHEX was decreased, implying regulation through the MEPE-ASARM axis. We confirmed that mineralization by human osteoblasts is exquisitely sensitive to the triphosphorylated ASARM-PO4 peptide. Immunostaining revealed that rhSCL increased the endogenous levels of MEPE-ASARM. Importantly, antibody-mediated neutralization of endogenous MEPE-ASARM antagonized the effect of rhSCL on mineralization, as did the PHEX synthetic peptide SPR4. Finally, we found elevated Sost mRNA expression in the long bones of HYP mice, suggesting that sclerostin may drive the increased MEPE-ASARM levels and mineralization defect in this genotype. Our results suggest that sclerostin acts through regulation of the PHEX/MEPE axis at the preosteocyte stage and serves as a master regulator of physiologic bone mineralization, consistent with its localization in vivo and its established role in the inhibition of bone formation.
Collapse
Affiliation(s)
- Gerald J Atkins
- Bone Cell Biology Group, Discipline of Orthopaedics and Trauma, University of Adelaide, and the Hanson Institute, Adelaide, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Zhu D, Mackenzie NCW, Millán JL, Farquharson C, MacRae VE. The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS One 2011; 6:e19595. [PMID: 21611184 PMCID: PMC3096630 DOI: 10.1371/journal.pone.0019595] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/01/2011] [Indexed: 02/02/2023] Open
Abstract
Background Vascular calcification is an indicator of elevated cardiovascular risk. Vascular smooth muscle cells (VSMCs), the predominant cell type involved in medial vascular calcification, can undergo phenotypic transition to both osteoblastic and chondrocytic cells within a calcifying environment. Methodology/Principal Findings In the present study, using in vitro VSMC calcification studies in conjunction with ex vivo analyses of a mouse model of medial calcification, we show that vascular calcification is also associated with the expression of osteocyte phenotype markers. As controls, the terminal differentiation of murine calvarial osteoblasts into osteocytes was induced in vitro in the presence of calcifying medium (containing ß-glycerophosphate and ascorbic acid), as determined by increased expression of the osteocyte markers DMP-1, E11 and sclerostin. Culture of murine aortic VSMCs under identical conditions confirmed that the calcification of these cells can also be induced in similar calcifying medium. Calcified VSMCs had increased alkaline phosphatase activity and PiT-1 expression, which are recognized markers of vascular calcification. Expression of DMP-1, E11 and sclerostin was up-regulated during VSMC calcification in vitro. Increased protein expression of E11, an early osteocyte marker, and sclerostin, expressed by more mature osteocytes was also observed in the calcified media of Enpp1−/− mouse aortic tissue. Conclusions/Significance This study has demonstrated the up-regulation of key osteocytic molecules during the vascular calcification process. A fuller understanding of the functional role of osteocyte formation and specifically sclerostin and E11 expression in the vascular calcification process may identify novel potential therapeutic strategies for clinical intervention.
Collapse
Affiliation(s)
- Dongxing Zhu
- The Roslin Institute, The University of Edinburgh, Roslin, Midlothian, Scotland, United Kingdom
| | | | - José Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Colin Farquharson
- The Roslin Institute, The University of Edinburgh, Roslin, Midlothian, Scotland, United Kingdom
| | - Vicky Elizabeth MacRae
- The Roslin Institute, The University of Edinburgh, Roslin, Midlothian, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
97
|
Bai Y, Wu B, Terada N, Ohno N, Saitoh S, Saitoh Y, Ohno S. Histological study and LYVE-1 immunolocalization of mouse mesenteric lymph nodes with "In Vivo Cryotechnique". Acta Histochem Cytochem 2011; 44:81-90. [PMID: 21614169 PMCID: PMC3096085 DOI: 10.1267/ahc.11002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/08/2011] [Indexed: 11/22/2022] Open
Abstract
The “in vivo cryotechnique” (IVCT) is a powerful tool to directly freeze living animal organs in order to maintain biological components in frozen tissues, reflecting their native states. In this study, mesenteric lymph nodes of living mice were directly frozen with IVCT, and we did morphological studies and immunohistochemical analyses on a hyaluronic acid receptor, LYVE-1. In lymph nodes, widely open lymphatic sinuses were observed, and many lymphocytes adhered to inner endothelial cells along subcapsular sinuses. The LYVE-1 was clearly immunolocalized at inner endothelial cells of subcapsular sinuses, as well as those of medullary sinuses. Conventional pre-embedding electron microscopy also showed LYVE-1 immunolocalization along both the apical and basal sides of cell membranes of inner endothelial cells. By triple-immunostaining for LYVE-1, smooth muscle actin, and type IV collagen, the LYVE-1 was immunolocalized only in the inner endothelial cells, but not in outer ones which were surrounded by collagen matrix and smooth muscle cells. Thus, the functional morphology of lymph nodes in vivo was demonstrated and LYVE-1 immunolocalization in inner endothelial cells of subcapsular sinuses suggests hyaluronic acid incorporation into lymph node parenchyma.
Collapse
Affiliation(s)
- Yuqin Bai
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Bao Wu
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Nobuo Terada
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Nobuhiko Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Sei Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Yurika Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Shinichi Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| |
Collapse
|
98
|
Kashima TG, Dongre A, Flanagan AM, Hogendoorn PCW, Taylor R, Athanasou NA. Podoplanin expression in adamantinoma of long bones and osteofibrous dysplasia. Virchows Arch 2011; 459:41-6. [DOI: 10.1007/s00428-011-1081-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/08/2011] [Accepted: 04/03/2011] [Indexed: 11/30/2022]
|
99
|
Smith SM, Melrose J. Podoplanin is expressed by a sub-population of human foetal rib and knee joint rudiment chondrocytes. Tissue Cell 2011; 43:39-44. [DOI: 10.1016/j.tice.2010.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 11/16/2022]
|
100
|
Abstract
The last decade has provided a virtual explosion of data on the molecular biology and function of osteocytes. Far from being the "passive placeholder in bone," this cell has been found to have numerous functions, such as acting as an orchestrator of bone remodeling through regulation of both osteoclast and osteoblast activity and also functioning as an endocrine cell. The osteocyte is a source of soluble factors not only to target cells on the bone surface but also to target distant organs, such as kidney, muscle, and other tissues. This cell plays a role in both phosphate metabolism and calcium availability and can remodel its perilacunar matrix. Osteocytes compose 90% to 95% of all bone cells in adult bone and are the longest lived bone cell, up to decades within their mineralized environment. As we age, these cells die, leaving behind empty lacunae that frequently micropetrose. In aged bone such as osteonecrotic bone, empty lacunae are associated with reduced remodeling. Inflammatory factors such as tumor necrosis factor and glucocorticoids used to treat inflammatory disease induce osteocyte cell death, but by different mechanisms with potentially different outcomes. Therefore, healthy, viable osteocytes are necessary for proper functionality of bone and other organs.
Collapse
Affiliation(s)
- Lynda F Bonewald
- Department of Oral Biology, University of Missouri-Kansas City, Kansas City, MO 64108-2784, USA.
| |
Collapse
|