51
|
Henriksen NNSE, Lindqvist LL, Wibowo M, Sonnenschein EC, Bentzon-Tilia M, Gram L. Role is in the eye of the beholder-the multiple functions of the antibacterial compound tropodithietic acid produced by marine Rhodobacteraceae. FEMS Microbiol Rev 2022; 46:fuac007. [PMID: 35099011 PMCID: PMC9075582 DOI: 10.1093/femsre/fuac007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Many microbial secondary metabolites have been studied for decades primarily because of their antimicrobial properties. However, several of these metabolites also possess nonantimicrobial functions, both influencing the physiology of the producer and their ecological neighbors. An example of a versatile bacterial secondary metabolite with multiple functions is the tropone derivative tropodithietic acid (TDA). TDA is a broad-spectrum antimicrobial compound produced by several members of the Rhodobacteraceae family, a major marine bacterial lineage, within the genera Phaeobacter, Tritonibacter, and Pseudovibrio. The production of TDA is governed by the mode of growth and influenced by the availability of nutrient sources. The antibacterial effect of TDA is caused by disruption of the proton motive force of target microorganisms and, potentially, by its iron-chelating properties. TDA also acts as a signaling molecule, affecting gene expression in other bacteria, and altering phenotypic traits such as motility, biofilm formation, and antibiotic production in the producer. In microbial communities, TDA-producing bacteria cause a reduction of the relative abundance of closely related species and some fast-growing heterotrophic bacteria. Here, we summarize the current understanding of the chemical ecology of TDA, including the environmental niches of TDA-producing bacteria, and the molecular mechanisms governing the function and regulation of TDA.
Collapse
Affiliation(s)
- Nathalie N S E Henriksen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Laura L Lindqvist
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
52
|
Bates KA, Higgins C, Neiman M, King KC. Turning the tide on sex and the microbiota in aquatic animals. HYDROBIOLOGIA 2022; 850:3823-3835. [PMID: 37662671 PMCID: PMC10468917 DOI: 10.1007/s10750-022-04862-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 09/05/2023]
Abstract
Sex-based differences in animal microbiota are increasingly recognized as of biological importance. While most animal biomass is found in aquatic ecosystems and many water-dwelling species are of high economic and ecological value, biological sex is rarely included as an explanatory variable in studies of the aquatic animal microbiota. In this opinion piece, we argue for greater consideration of host sex in studying the microbiota of aquatic animals, emphasizing the many advancements that this information could provide in the life sciences, from the evolution of sex to aquaculture.
Collapse
Affiliation(s)
- Kieran A. Bates
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ UK
| | - Chelsea Higgins
- Department of Biology, University of Iowa, Iowa City, IW 52245 USA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IW 52245 USA
- Department of Gender, Women’s, and Sexuality Studies, University of Iowa, Iowa City, IW 52245 USA
| | - Kayla C. King
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ UK
| |
Collapse
|
53
|
Docando F, Nuñez-Ortiz N, Serra CR, Arense P, Enes P, Oliva-Teles A, Díaz-Rosales P, Tafalla C. Mucosal and systemic immune effects of Bacillus subtilis in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2022; 124:142-155. [PMID: 35367376 DOI: 10.1016/j.fsi.2022.03.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Bacillus spp. are well known for their probiotic properties. Hence, the long-term feeding of Bacillus spp. strains to different fish species has been proved to confer beneficial effects regarding growth or pathogen resistance, among others. However, whether these strains could function as mucosal adjuvants, up-regulating immune responses after a single administration, has not yet been investigated in fish. Thus, in the current work, we have performed a series of experiments in rainbow trout (Oncorhynchus mykiss) aimed at establishing the potential of two Bacillus subtilis spore-forming strains, designated as ABP1 and ABP2, as oral adjuvants/immunostimulants. As an initial step, we evaluated their transcriptional effects on the rainbow trout intestinal epithelial cell line RTgutGC, and in gut tissue explants incubated ex vivo with the two strains. Their capacity to adhere to RTgutGC cells was also evaluated by flow cytometry. Although both strains had the capacity to modulate the transcription of several genes related to innate and adaptive immune responses, it was the ABP1 strain that led to stronger transcriptional effects, also exerting a higher binding capacity to intestinal epithelial cells. Consequently, we selected this strain to establish its effects on splenic B cells upon in vitro exposure as well as to determine the transcriptional effects exerted in the spleen, kidney, and gut after a single oral administration of the bacteria. Our results showed that B. subtilis ABP1 had the capacity to modulate the proliferation, IgM secreting capacity and MHC II surface expression of splenic B cells. Finally, we confirmed that this strain also induced the transcription of genes involved in inflammation, antimicrobial genes, and genes involved in T cell responses upon a single oral administration. Our results provide valuable information regarding how B. subtilis modulates the immune response of rainbow trout, pointing to the usefulness of the ABP1 strain to design novel oral vaccination strategies for aquaculture.
Collapse
Affiliation(s)
- F Docando
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain; Autonomous University of Madrid, Madrid, Spain
| | - N Nuñez-Ortiz
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain
| | - C R Serra
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - P Arense
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain
| | - P Enes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - A Oliva-Teles
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - P Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain.
| | - C Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain.
| |
Collapse
|
54
|
Licona-Jain A, Racotta I, Angulo C, Luna-González A, Escamilla-Montes R, Cortés-Jacinto E, Morelos-Castro RM, Campa-Córdova ÁI. Combined administration routes of marine yeasts enhanced immune-related genes and protection of white shrimp (Penaeus vannamei) against Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:192-200. [PMID: 35398528 DOI: 10.1016/j.fsi.2022.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/22/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic usage to control infectious diseases in shrimp aquaculture has led to serious problems on antimicrobial resistance. An alternative to mitigate this issue is the use of probiotics, which can be easily administered by feed and water. This study examines immunomodulatory and protective effects of the marine yeasts Debaryomyces hansenii CBS8339 (Dh) and Yarrowia lipolytica Yl-N6 (Yl) -alone and mixed-in white shrimp Penaeus vannamei post-larvae. Administration routes (fed and water alone or in combination), supplementation frequency and time elapsed after the last dietary supplement were tested on growth and gene expression of penaeidin, lectin, lysozyme, superoxide dismutase, catalase, and peroxidase, as well as survival upon Vibrio parahaemolyticus IPNGS16 challenge. Penaeidin and lectin genes were upregulated in post-larvae fed orally with Yl or combined Dh + Yl. Higher growth and survival for yeast supplementation treatments were observed compared to the control group, mainly when yeasts (Dh + Yl) and administration routes (feed and water) were combined. In conclusion, mixed yeast and combined administration routes improved growth and immunity against V. parahaemolyticus.
Collapse
Affiliation(s)
- Alan Licona-Jain
- Grupo de Inmunología y Vacunología. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Ilie Racotta
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Carlos Angulo
- Grupo de Inmunología y Vacunología. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Antonio Luna-González
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Instituto Politécnico Nacional, Juan de Dios Bátiz Paredes #250, Guasave, Sinaloa, 81100, Mexico
| | - Ruth Escamilla-Montes
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Instituto Politécnico Nacional, Juan de Dios Bátiz Paredes #250, Guasave, Sinaloa, 81100, Mexico
| | - Edilmar Cortés-Jacinto
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Rosa M Morelos-Castro
- CONACYT, Unidad Nayarit del Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle Dos #23, Ciudad del Conocimiento, C. P. 63175, Tepic, Nayarit, Mexico
| | - Ángel I Campa-Córdova
- Grupo de Inmunología y Vacunología. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico.
| |
Collapse
|
55
|
Eissa ESH, Baghdady ES, Gaafar AY, El-Badawi AA, Bazina WK, Abd Al-Kareem OM, Abd El-Hamed NNB. Assessing the Influence of Dietary Pediococcus acidilactici Probiotic Supplementation in the Feed of European Sea Bass (Dicentrarchus labrax L.) (Linnaeus, 1758) on Farm Water Quality, Growth, Feed Utilization, Survival Rate, Body Composition, Blood Biochemical Parameters, and Intestinal Histology. AQUACULTURE NUTRITION 2022; 2022:1-11. [DOI: 10.1155/2022/5841220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The probiotics are being used as ecofriendly and bioremediation tools for developing sustainability to aquaculture. The present study was conducted to explore the practical capability of using dietary lactic acid bacteria (Pediococcus acidilactici) probiotics and see how its dose variation affected the water quality, growth performance, survival rate, body composition, blood biochemical parameters, and intestinal histology of European sea bass (Dicentrarchus labrax L.). A total of 120 fingerlings with an initial weight of
g were divided into four groups, each with three replicates. The feeding experiment lasted for 60 days. In addition to the control (without probiotics) (T0), fish were fed diets containing (T1) 2.0, (T2) 2.5, and (T3) 3.0 g of probiotics per kg of diet twice a day. When compared to the control, sea bass fed probiotic-supplemented diets had significantly higher growth parameters, fish body “crude lipid,” and villi height (
,
, and
). The P. acidilactici probiotic treatments improved survival rate, feed conversion ratio, body composition, and blood biochemical markers, but not statistically significant (
). Also, in regard to water quality, P. acidilactici drastically reduced ammonia and pH levels. In this experiment, fish fed with a dosage of 3.0 g of this commercial probiotic per kg of probiotics performed better. The study found that including probiotics in the diets of European sea bass improved growth, body composition, survival rate, blood biochemical markers, intestinal histology, and some water quality parameters.
Collapse
Affiliation(s)
| | - Elsayed S. Baghdady
- Department of Aquaculture, Faculty of Fish & Fisheries Technology, Aswan University, Egypt
| | - Alkhateib Y. Gaafar
- Hydrobiology Department, Veterinary Research Institute, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt
| | - Ashraf A. El-Badawi
- Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharkia, Egypt
- Biology Department, University College, Umm-Al Qura University, Makkah, Saudi Arabia
| | - Walaa K. Bazina
- Fish Rearing and Aquaculture Department, National Institute of Oceanography and Fisheries, Egypt
| | - Omayma M. Abd Al-Kareem
- Department of Fish Health and Diseases, Faculty of Fish & Fisheries Technology, Aswan University, Egypt
| | | |
Collapse
|
56
|
Hamid NKA, Somdare PO, Md Harashid KA, Othman NA, Kari ZA, Wei LS, Dawood MA. Effect of papaya (Carica papaya) leaf extract as dietary growth promoter supplement in red hybrid tilapia (Oreochromis mossambicus × Oreochromis niloticus) diet. Saudi J Biol Sci 2022; 29:3911-3917. [PMID: 35844420 PMCID: PMC9280224 DOI: 10.1016/j.sjbs.2022.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
The purpose of this experiment was to examine the potential use of Carica papaya leaf extract as a supplement to promote growth and improve feed utilization in red hybrid tilapia. Five diets were formulated containing isolipidic (80 g/kg) and isonitrogenic (350 g/kg) levels. All feeds contained similar types and amounts of raw materials but differed in the inclusion of papaya leaf extract (0, 5, 10, 20 and 40 g/kg feed). The initial size of fish used was 2.3 ± 0.01 g. Each diet was performed in triplicate tanks, and the feeding period was 12 weeks. Fish fed diet containing 2% papaya leaf extract (PLE) had the highest final weight, 31.14 ± 1.47 g, followed by 1% PLE (27.27 ± 1.75 g). These two diets (1% and 2%) were also showed significant improvements of weight gain, SGR, and feed efficiency of the red hybrid tilapia (p < 0.05). However, papaya leaf extract did not affect the HSI, VSI, PER, digestive enzymes activity, blood composition, and survival rate. Supplementing the diets with papaya leaf extract lowered serum urea. Findings of this research suggest that adding papaya leaf extract to the diet of red hybrid tilapia improves growth and feed efficiency without adversely affecting blood parameters. Therefore, an inclusion level between 1% and 2% of the papaya leaf extract is recommended as a feed additive to promote red hybrid tilapia fry growth.
Collapse
Affiliation(s)
- Noor Khalidah Abdul Hamid
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
- Corresponding author.
| | - Peace Onas Somdare
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
- Department of Zoology, Federal University Lokoja, P.M.B. 1154 Lokoja, Nigeria
| | | | - Nurul Ain Othman
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600 Jeli, Kelantan, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600 Jeli, Kelantan, Malaysia
| | - Mahmoud A.O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835 Cairo, Egypt
| |
Collapse
|
57
|
Hong NTX, Linh NTH, Baruah K, Thuy DTB, Phuoc NN. The Combined Use of Pediococcus pentosaceus and Fructooligosaccharide Improves Growth Performance, Immune Response, and Resistance of Whiteleg Shrimp Litopenaeus vannamei Against Vibrio parahaemolyticus. Front Microbiol 2022; 13:826151. [PMID: 35283820 PMCID: PMC8914372 DOI: 10.3389/fmicb.2022.826151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 01/12/2023] Open
Abstract
In this study, we evaluated the effect of probiotic bacteria Pediococcus pentosaceus supplemented at different inclusion levels in a control diet [basal diet containing 0.5% fructooligosaccharide (FOS)] on the growth performance, feed conversion ratio, immune response, and the disease resistance of whiteleg shrimp Litopenaeus vannamei juveniles against Vibrio parahaemolyticus. A control diet with 0.5% FOS but without P. pentosaceus supplementation (Control) was prepared. In addition, three other test diets were also formulated: control diet supplemented with P. pentosaceus at (i) 1 × 106 cfu g-1 diet (P1), (ii) 1 × 107 cfu g-1 diet (P2), or (iii) 1 × 108 cfu g-1 diet (P3). After a 60-day feeding trial, the experimental shrimps were challenged with V. parahaemolyticus. The results showed that dietary supplementation of P. pentosaceus significantly improved the growth performance and immune responses of L. vannamei juveniles. The juveniles that were fed with a P2 or P3 diet recorded the maximum increase in the final body weight, final length, weight gain, and survival rate. The total hemocyte counts, phenoloxidase, and lysozyme activity of shrimp fed with either of these two diets were significantly enhanced. The results also showed that juveniles fed with a P2 or P3 diet exhibited significantly lower mortality when challenged with V. parahaemolyticus. Overall results suggested that a combination of P. pentosaceus at the inclusion level of 1 × 107 cfu g-1 diet (P2) and 0.5% FOS could be considered as a potential synbiotic formulation for improving the growth, health, and robustness of L. vannamei.
Collapse
Affiliation(s)
- Nguyen Thi Xuan Hong
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Nguyen Thi Hue Linh
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Kartik Baruah
- Department of Animal Nutrition and Management, Aquaculture Nutraceuticals Research Group, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Do Thi Bich Thuy
- Faculty of Engineering and Food Technology, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Nguyen Ngoc Phuoc
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| |
Collapse
|
58
|
Probiotic Potentiality from Versatile Lactiplantibacillus plantarum Strains as Resource to Enhance Freshwater Fish Health. Microorganisms 2022; 10:microorganisms10020463. [PMID: 35208917 PMCID: PMC8877946 DOI: 10.3390/microorganisms10020463] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Dietary probiotic supplementation has the potential to enhance the health of fish and their disease resistance. In this study, some properties of ten Lactiplantibacillus plantarum strains have been evaluated, for their potential use as probiotics in freshwater fish diet. In particular, antimicrobial activity, antioxidant activity, the potentiality to survive the gastrointestinal transit and persist in the intestine, were evaluated in vitro. The experimental tests were carried out at 15 °C and 30 °C to determine the suitability of these lactic acid bacteria to be used as probiotics in the diet of fish grown at different temperatures. The results demonstrated that the evaluated Lp. plantarum strains, which often have significant differences among themselves, are characterized by important functional characteristics such as cell surface properties (auto-aggregation and hydrophobicity), ability to produce antioxidant substances, capacity to survive in the presence of 0.3% bile salts and acidic environment (2.5 pH), antagonistic activity against some fish opportunistic pathogens (A. salmonicida, Ps. aeruginosa, E. coli and C. freundii) and other unwanted bacteria present in fish products (S. aureus and L. innocua). The outcomes suggest that these Lp. plantarum strains may be candidates as probiotics in warm- and cold-water aquaculture.
Collapse
|
59
|
Chen M, Liu C, Dai M, Wang Q, Li C, Hung W. Bifidobacterium lactis BL-99 modulates intestinal inflammation and functions in zebrafish models. PLoS One 2022; 17:e0262942. [PMID: 35171916 PMCID: PMC9126502 DOI: 10.1371/journal.pone.0262942] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
This study was designed to explore the therapeutics and the mechanisms of a patented and marked gastric acid and intestine juice-resistant probiotics Bifidobacterium lactis BL-99 (B. lactis BL-99) on the intestinal inflammation and functions in the zebrafish models. After feeding for 6 hours, B. lactis BL-99 was fully retained in the larval zebrafish intestinal tract and stayed for over 24 hours. B. lactis BL-99 promoted the intestinal motility and effectively alleviated aluminum sulfate-induced larval zebrafish constipation (p < 0.01). Irregular high glucose diet induced adult zebrafish intestinal functional and metabolic disorders. After fed with B. lactis BL-99, IL-1β gene expression was significantly down-regulated, and IL-10 and IL-12 gene levels were markedly up-regulated in this model (p < 0.05). The intestinal lipase activity was elevated in the adult zebrafish intestinal functional disorder model after B. lactis BL-99 treatment (p < 0.05), but tryptase content had no statistical changes (p > 0.05). B. lactis BL-99 improved the histopathology of the adult zebrafish intestinal inflammation, increased the goblet cell numbers, and up-and-down metabolites were markedly recovered after treatment of B. lactis BL-99 (p < 0.05). These results suggest that B. lactis BL-99 could relieve intestinal inflammation and promote intestinal functions, at least in part, through modulating intestinal and microbial metabolism to maintain intestinal health.
Collapse
Affiliation(s)
- Meng Chen
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot,
China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd.,
Hohhot, China
| | - Chinfeng Liu
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot,
China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd.,
Hohhot, China
| | - Mingzhu Dai
- Hunter Biotechnology, Inc., F1A, Hangzhou, China
| | - Qinwen Wang
- Hunter Biotechnology, Inc., F1A, Hangzhou, China
| | - Chunqi Li
- Hunter Biotechnology, Inc., F1A, Hangzhou, China
| | - Weilian Hung
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot,
China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd.,
Hohhot, China
| |
Collapse
|
60
|
Khushi SS, Sumon MS, Ahmmed MK, Hasan Zilani MN, Ahmmed F, Giteru SG, Sarower MG. Potential probiotic and health fostering effect of host gut-derived Enterococcus faecalis on freshwater prawn, Macrobrachium rosenbergii. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2020.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
61
|
Azwar E, Wan Mahari WA, Rastegari H, Tabatabaei M, Peng W, Tsang YF, Park YK, Chen WH, Lam SS. Progress in thermochemical conversion of aquatic weeds in shellfish aquaculture for biofuel generation: Technical and economic perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126202. [PMID: 34710598 DOI: 10.1016/j.biortech.2021.126202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Rapid growth of aquatic weeds in treatment pond poses undesirable challenge to shellfish aquaculture, requiring the farmers to dispose these weeds on a regular basis. This article reviews the potential and application of various aquatic weeds for generation of biofuels using recent thermochemical technologies (torrefaction, hydrothermal carbonization/liquefaction, pyrolysis, gasification). The influence of key operational parameters for optimising the aquatic weed conversion efficiency was discussed, including the advantages, drawbacks and techno-economic aspects of the thermochemical technologies, and their viability for large-scale application. Via extensive study in small and large scale operation, and the economic benefits derived, pyrolysis is identified as a promising thermochemical technology for aquatic weed conversion. The perspectives, challenges and future directions in thermochemical conversion of aquatic weeds to biofuels were also reviewed. This review provides useful information to promote circular economy by integrating shellfish aquaculture with thermochemical biorefinery of aquatic weeds rather than disposing them in landfills.
Collapse
Affiliation(s)
- Elfina Azwar
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Wan Adibah Wan Mahari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Hajar Rastegari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.
| |
Collapse
|
62
|
Production and economics of probiotics treated Macrobrachium rosenbergii at different stocking densities. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
63
|
Ushakova NA, Pravdin VG, Kravtsova LZ, Ponomarev SV, Gridina TS, Ponomareva EN, Rudoy DV, Chikindas ML. Complex Bioactive Supplements for Aquaculture-Evolutionary Development of Probiotic Concepts. Probiotics Antimicrob Proteins 2021; 13:1696-1708. [PMID: 34427880 DOI: 10.1007/s12602-021-09835-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 01/01/2023]
Abstract
The use of novel and effective probiotic-based immunostimulating preparations, prebiotics, metabiotics, and phytobiotics is considered as a promising direction for the creation of new complex feed additives for aquaculture enterprises to increase the health and productivity of the cultivated hydrobionts. The information on the products of anaerobic solid-phase fermentation of plant substrates is presented as the basis for new probiotic-based additives for aquacultures. Biologically active feed additives ProStor and GerbaStor containing probiotics and medicinal herbs and their effects on aquaculture are discussed. Specific features of their application in aquatic environments with targeted action on hydrobionts are analyzed.
Collapse
Affiliation(s)
- Nina A Ushakova
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Valery G Pravdin
- Scientific Technical Centre of Biotechnologies in Agriculture - NTC BIO, LLC, Shebekino, 309292, Belgorod Region, Russia
| | - Lyubov Z Kravtsova
- Scientific Technical Centre of Biotechnologies in Agriculture - NTC BIO, LLC, Shebekino, 309292, Belgorod Region, Russia
| | | | - Tatyana S Gridina
- Astrakhan State Technical University, Astrakhan, 414056, Russia.,Federal Research Center, Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| | - Elena N Ponomareva
- Federal Research Center, Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia. .,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don 344002, Russia.
| | - Dmitry V Rudoy
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don 344002, Russia
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don 344002, Russia.,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, 08904, USA.,I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| |
Collapse
|
64
|
Diwan AD, Harke SN, Gopalkrishna, Panche AN. Aquaculture industry prospective from gut microbiome of fish and shellfish: An overview. J Anim Physiol Anim Nutr (Berl) 2021; 106:441-469. [PMID: 34355428 DOI: 10.1111/jpn.13619] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022]
Abstract
The microbiome actually deals with micro-organisms that are associated with indigenous body parts and the entire gut system in all animals, including human beings. These microbes are linked with roles involving hereditary traits, defence against diseases and strengthening overall immunity, which determines the health status of an organism. Considerable efforts have been made to find out the microbiome diversity and their taxonomic identification in finfish and shellfish and its importance has been correlated with various physiological functions and activities. In recent past due to the availability of advanced molecular tools, some efforts have also been made on DNA sequencing of these microbes to understand the environmental impact and other stress factors on their genomic structural profile. There are reports on the use of next-generation sequencing (NGS) technology, including amplicon and shot-gun approaches, and associated bioinformatics tools to count and classify commensal microbiome at the species level. The microbiome present in the whole body, particularly in the gut systems of finfish and shellfish, not only contributes to digestion but also has an impact on nutrition, growth, reproduction, immune system and vulnerability of the host fish to diseases. Therefore, the study of such microbial communities is highly relevant for the development of new and innovative bio-products which will be a vital source to build bio and pharmaceutical industries, including aquaculture. In recent years, attempts have been made to discover the chemical ingredients present in these microbes in the form of biomolecules/bioactive compounds with their functions and usefulness for various health benefits, particularly for the treatment of different types of disorders in animals. Therefore, it has been speculated that microbiomes hold great promise not only as a cure for ailments but also as a preventive measure for the number of infectious diseases. This kind of exploration of new breeds of microbes with their miraculous ingredients will definitely help to accelerate the development of the drugs, pharmaceutical and other biological related industries. Probiotic research and bioinformatics skills will further escalate these opportunities in the sector. In the present review, efforts have been made to collect comprehensive information on the finfish and shellfish microbiome, their diversity and functional properties, relationship with diseases, health status, data on species-specific metagenomics, probiotic research and bioinformatics skills. Further, emphasis has also been made to carry out microbiome research on priority basis not only to keep healthy environment of the fish farming sector but also for the sustainable growth of biological related industries, including aquaculture.
Collapse
Affiliation(s)
- Arvind D Diwan
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| | - Sanjay N Harke
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| | - Gopalkrishna
- Central Institute of Fisheries Education (CIFE, Deemed University), ICAR, Mumbai, India
| | - Archana N Panche
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| |
Collapse
|
65
|
Probiotics Improve Eating Disorders in Mandarin Fish ( Siniperca chuatsi) Induced by a Pellet Feed Diet via Stimulating Immunity and Regulating Gut Microbiota. Microorganisms 2021; 9:microorganisms9061288. [PMID: 34204793 PMCID: PMC8231599 DOI: 10.3390/microorganisms9061288] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Eating disorders are directly or indirectly influenced by gut microbiota and innate immunity. Probiotics have been shown to regulate gut microbiota and stimulate immunity in a variety of species. In this study, three kinds of probiotics, namely, Lactobacillus plantarum, Lactobacillus rhamnosus and Clostridium butyricum, were selected for the experiment. The results showed that the addition of three probiotics at a concentration of 108 colony forming unit/mL to the culture water significantly increased the ratio of the pellet feed recipients and survival rate of mandarin fish (Siniperca chuatsi) under pellet-feed feeding. In addition, the three kinds of probiotics reversed the decrease in serum lysozyme and immunoglobulin M content, the decrease in the activity of antioxidant enzymes glutathione and catalase and the decrease in the expression of the appetite-stimulating regulator agouti gene-related protein of mandarin fish caused by pellet-feed feeding. In terms of intestinal health, the three probiotics reduced the abundance of pathogenic bacteria Aeromonas in the gut microbiota and increased the height of intestinal villi and the thickness of foregut basement membrane of mandarin fish under pellet-feed feeding. In general, the addition of the three probiotics can significantly improve eating disorders of mandarin fish caused by pellet feeding.
Collapse
|
66
|
Ahmad A, Sheikh Abdullah SR, Hasan HA, Othman AR, Ismail N'I. Aquaculture industry: Supply and demand, best practices, effluent and its current issues and treatment technology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112271. [PMID: 33706093 DOI: 10.1016/j.jenvman.2021.112271] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The aquaculture industry has become increasingly important and is rapidly growing in terms of providing a protein food source for human consumption. With the increase in the global population, demand for aquaculture is high and is estimated to reach 62% of the total global production by 2030. In 2018, it was reported that the demand for aquaculture was 46% of the total production, and with the current positive trends, it may be possible to increase tremendously in the coming years. China is still one of the main players in global aquaculture production. Due to high demand, aquaculture production generates large volumes of effluent, posing a great danger to the environment. Aquaculture effluent comprises solid waste and dissolved constituents, including nutrients and contaminants of emerging concern, thereby bringing detrimental impacts such as eutrophication, chemical toxicity, and food insecurity. Waste can be removed through culture systems, constructed wetlands, biofloc, and other treatment technologies. Some methods have the potential to be applied as zero-waste discharge treatment. Thus, this article analyses the supply and demand for aquaculture products, the best practices adopted in the aquaculture industry, effluent characteristics, current issues, and effluent treatment technology.
Collapse
Affiliation(s)
- Azmi Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Department of Polytechnic Education and Community College, Ministry of Higher Education, 62100, Putrajaya, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Nur 'Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
67
|
The Effect of Lactococcus lactis subsp. lactis PTCC 1403 on the Growth Performance, Digestive Enzymes Activity, Antioxidative Status, Immune Response, and Disease Resistance of Rainbow Trout (Oncorhynchus mykiss). Probiotics Antimicrob Proteins 2021; 13:1723-1733. [PMID: 34002350 DOI: 10.1007/s12602-021-09787-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
The effect of Lactococcus lactis subsp. lactis strain PTCC 1403 as a potential probiotic was investigated on the growth, hematobiochemical, immune responses, and resistance to Yersinia ruckeri infection in rainbow trout. A total of 240 fish were distributed into 12 fiberglass tanks representing four groups (× 3 replicates). Each tank was stocked with 20 fish (average initial weight: 11.81 ± 0.32 g) and fed L. lactis subsp. lactis PTCC 1403 at 0 (control, T0), 1 × 109 (T1), 2 × 109 (T2), and 3 × 109 (T3) CFU/g feed for 8 weeks. The results showed enhanced protein efficiency ratio and reduced feed conversion ratio in the fish-fed T2 diet. Further, fish-fed T2 and T3 diets showed a significantly higher survival rate than the control (p < 0.05). Trypsin, lipase, and protease activities were increased in fish-fed L. lactis subsp. lactis PTCC 1403 compared to the control (p < 0.05). Fish fed with a T2 diet showed significantly (p < 0.05) lower glucose content than other groups. The blood lysozyme activity and IgM showed significantly (p < 0.05) higher values in fish-fed T2 and T3 diets than in other groups. The antioxidative responses were increased in fish-fed T2 and T3 diets (p < 0.05). After 7 days post-Y. ruckeri challenge, the cumulative mortality rate showed the lowest value in fish fed with T1 and T2 diets, while the highest value was recorded in the control group. In conclusion, the results revealed beneficial effects of L. lactis subsp. lactis PTCC 1403 on the feed efficiency, immune response, and resistance to Y. ruckeri infection in rainbow trout.
Collapse
|
68
|
Li Y, Yang Y, Song L, Wang J, Hu Y, Yang Q, Cheng P, Li J. Effects of dietary supplementation of Lactobacillus plantarum and Bacillus subtilis on growth performance, survival, immune response, antioxidant capacity and digestive enzyme activity in olive flounder (Paralichthys olivaceus). AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
69
|
Lv B, Jiang T, Wei H, Tian W, Han Y, Chen L, Zhang D, Cui Y. Transfer of antibiotic-resistant bacteria via ballast water with a special focus on multiple antibiotic-resistant bacteria: A survey from an inland port in the Yangtze River. MARINE POLLUTION BULLETIN 2021; 166:112166. [PMID: 33636642 DOI: 10.1016/j.marpolbul.2021.112166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Ship ballast water can transfer harmful organisms, including antibiotic-resistant bacteria (ARB), among geographically isolated waters. In this study, the presence and composition of ARB and multiple ARB (MARB) were investigated in the ballast waters of 30 vessels sailing to the Port of Jiangyin (Jiangsu Province, China). ARB were detected in 83.3% of the ship's ballast water samples. Moreover, penicillin- and cephalothin-resistant bacteria were the most and least prevalent ARB in the ballast waters, respectively. Oxytetracycline-, chloramphenicol-, tetracycline-, and vancomycin-resistant bacteria were also detected at high concentrations. The multiple antibiotic resistance index demonstrated the presence of MARB, which exceeded 200% in the ballast waters of five ships. Furthermore, 15 species, including the human opportunistic pathogens Vibrio alginolyticus and Serratia nematodiphila, were resistant to at least three antibiotics. Therefore, the potential ecological risk of ARB warrants further attention because of their effective invasion by ballast water.
Collapse
Affiliation(s)
- Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, China.
| | - Ting Jiang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Huawei Wei
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wen Tian
- Jiangyin Customs, Jiangyin 214400, China
| | | | - Lisu Chen
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Di Zhang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Yuxue Cui
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
70
|
Pathak A, Stothard P, Chauhan A. Comparative Genomic Analysis of Three Pseudomonas Species Isolated from the Eastern Oyster ( Crassostrea virginica) Tissues, Mantle Fluid, and the Overlying Estuarine Water Column. Microorganisms 2021; 9:490. [PMID: 33673397 PMCID: PMC7996774 DOI: 10.3390/microorganisms9030490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 01/10/2023] Open
Abstract
The eastern oysters serve as important keystone species in the United States, especially in the Gulf of Mexico estuarine waters, and at the same time, provide unparalleled economic, ecological, environmental, and cultural services. One ecosystem service that has garnered recent attention is the ability of oysters to sequester impurities and nutrients, such as nitrogen (N), from the estuarine water that feeds them, via their exceptional filtration mechanism coupled with microbially-mediated denitrification processes. It is the oyster-associated microbiomes that essentially provide these myriads of ecological functions, yet not much is known on these microbiota at the genomic scale, especially from warm temperate and tropical water habitats. Among the suite of bacterial genera that appear to interplay with the oyster host species, pseudomonads deserve further assessment because of their immense metabolic and ecological potential. To obtain a comprehensive understanding on this aspect, we previously reported on the isolation and preliminary genomic characterization of three Pseudomonas species isolated from minced oyster tissue (P. alcaligenes strain OT69); oyster mantle fluid (P. stutzeri strain MF28) and the water collected from top of the oyster reef (P. aeruginosa strain WC55), respectively. In this comparative genomic analysis study conducted on these three targeted pseudomonads, native to the eastern oyster and its surrounding environment, provided further insights into their unique functional traits, conserved gene pools between the selected pseudomonads, as well as genes that render unique characteristics in context to metabolic traits recruited during their evolutionary history via horizontal gene transfer events as well as phage-mediated incorporation of genes. Moreover, the strains also supported extensively developed resistomes, which suggests that environmental microorganisms native to relatively pristine environments, such as Apalachicola Bay, Florida, have also recruited an arsenal of antibiotic resistant gene determinants, thus posing an emerging public health concern.
Collapse
Affiliation(s)
- Ashish Pathak
- Environmental Biotechnology Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada;
| | - Ashvini Chauhan
- Environmental Biotechnology Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
71
|
The Roseobacter-Group Bacterium Phaeobacter as a Safe Probiotic Solution for Aquaculture. Appl Environ Microbiol 2021; 87:e0258120. [PMID: 33310713 DOI: 10.1128/aem.02581-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phaeobacter inhibens has been assessed as a probiotic bacterium for application in aquaculture. Studies addressing the efficacy and safety indicate that P. inhibens maintains its antagonistic activity against pathogenic vibrios in aquaculture live cultures (live feed and fish egg/larvae) while having no or a positive effect on the host organisms and a minor impact on the host microbiomes. While P. inhibens produces antibacterial and algicidal compounds, no study has so far found a virulent phenotype of P. inhibens cells against higher organisms. Additionally, an in silico search for antibiotic resistance genes using published genomes of representative strains did not raise concerns regarding the risk for antimicrobial resistance. P. inhibens occurs naturally in aquaculture systems, supporting its safe usage in this environment. In conclusion, at the current state of knowledge, P. inhibens is a "safe-to-use" organism.
Collapse
|
72
|
Modak TH, Gomez-Chiarri M. Contrasting Immunomodulatory Effects of Probiotic and Pathogenic Bacteria on Eastern Oyster, Crassostrea Virginica, Larvae. Vaccines (Basel) 2020; 8:vaccines8040588. [PMID: 33036213 PMCID: PMC7720132 DOI: 10.3390/vaccines8040588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022] Open
Abstract
Several Vibrio spp. cause acute and severe mortality events in hatcheries where larvae of bivalve mollusks are reared, potentially leading to subsequent shortage of bivalve seed for the grow-out industry. In particular, strains of Vibrio coralliilyticus have been identified as a major cause of disease in Pacific, Crassostrea gigas, and eastern, C. virginica, oyster hatcheries in the United States of America. Probiotic bacteria are an inexpensive, practical, and natural method of disease control. Previous research shows that pretreatment of larval oysters with probiotic bacteria Bacillus pumilus RI06-95 (RI) and Phaeobacter inhibens S4 (S4) significantly decreases mortality caused by experimental challenge with the bacterial pathogen V. coralliilyticus RE22 (RE22). This study aims to characterize the immune response of 6-10-day-old eastern oyster larvae to experimental challenge with pathogen V. coralliilyticus RE22 and probionts RI and S4. Treatments included (a) pathogen and probiont exposure at a concentration of 5 × 104 CFU per mL (~2500 bacterial cells per larva) for a duration of 6 h, (b) probiont exposure at the same concentration for a duration of 24 h, and (c) probiont RI daily treatment of larvae in the hatchery for 4, 11, and 15 days. Differential gene expression analysis compared pathogen or probiotic-treated transcriptomes to unexposed controls. Probiotic and pathogen treatment led to upregulation of transcripts coding for several immune pattern recognition receptors (PRRs) involved in environmental sensing and detection of microbes in oyster larvae. Larval oyster responses to pathogen RE22 suggested suppression of expression of genes in immune signaling pathways (myd88, tak1, nkap), failure in upregulation of immune effector genes, high metabolic demand, and oxidative stress that potentially contributed to mortality. On the other hand, the transcriptomic response to probiotic bacteria RI and S4 suggested activation of immune signaling pathways and expression of immune effectors (e.g., Cv-spi2, mucins and perforin-2). These key features of the host immune response to probiotic bacteria were shared despite the length of probiotic exposure, probiotic species, and the type of environment in which exposures were conducted. This study suggests that pre-exposure of eastern oyster larvae to probiotics for 6-24 h prior to pathogenic challenge leads to a robust and effective immune response that may contribute to protecting larvae from subsequent challenge with V. coralliilyticus RE22. This research provides new insights into host-microbe interactions in larval oysters that could be applied in the management of vibriosis in bivalve hatcheries.
Collapse
Affiliation(s)
- Tejashree H. Modak
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA;
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence:
| |
Collapse
|
73
|
Microbiota of the Digestive Gland of Red Abalone ( Haliotis rufescens) Is Affected by Withering Syndrome. Microorganisms 2020; 8:microorganisms8091411. [PMID: 32933183 PMCID: PMC7565822 DOI: 10.3390/microorganisms8091411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022] Open
Abstract
Withering syndrome (WS), an infectious disease caused by intracellular bacteria Candidatus Xenohaliotis californiensis, has provoked significant economic losses in abalone aquaculture. The pathogen infects gastroenteric epithelia, including digestive gland, disrupting the digestive system and causing a progressive wilting in abalone. Nonetheless, our knowledge about WS implications in digestive gland microbiota, and its role in diseases progress remains largely unknown. This study aims to determine whether digestive gland-associated microbiota differs between healthy red abalone (Haliotis rufescens) and red abalone affected with WS. Using high-throughput sequencing of the V4 region of the 16S rRNA gene, our results revealed differences in microbiota between groups. Bacterial genera, including Mycoplasma, Lactobacillus, Cocleimonas and Tateyamaria were significantly more abundant in healthy abalones, whilst Candidatus Xenohaliotis californiensis and Marinomonas were more abundant in WS-affected abalones. Whilst Mycoplasma was the dominant genus in the healthy group, Candidatus Xenohaliotis californiensis was dominant in the WS group. However, Candidatus Xenohaliotis californiensis was present in two healthy specimens, and thus the Mycoplasma/Candidatus Xenohaliotis californiensis ratio appears to be more determinant in specimens affected with WS. Further research to elucidate the role of digestive gland microbiota ecology in WS pathogenesis is required.
Collapse
|
74
|
Uengwetwanit T, Uawisetwathana U, Arayamethakorn S, Khudet J, Chaiyapechara S, Karoonuthaisiri N, Rungrassamee W. Multi-omics analysis to examine microbiota, host gene expression and metabolites in the intestine of black tiger shrimp ( Penaeus monodon) with different growth performance. PeerJ 2020; 8:e9646. [PMID: 32864208 PMCID: PMC7430268 DOI: 10.7717/peerj.9646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding the correlation between shrimp growth and their intestinal bacteria would be necessary to optimize animal's growth performance. Here, we compared the bacterial profiles along with the shrimp's gene expression responses and metabolites in the intestines between the Top and the Bottom weight groups. Black tiger shrimp (Penaeus monodon) were collected from the same population and rearing environments. The two weight groups, the Top-weight group with an average weight of 36.82 ± 0.41 g and the Bottom-weight group with an average weight of 17.80 ± 11.81 g, were selected. Intestines were aseptically collected and subjected to microbiota, transcriptomic and metabolomic profile analyses. The weighted-principal coordinates analysis (PCoA) based on UniFrac distances showed similar bacterial profiles between the two groups, suggesting similar relative composition of the overall bacterial community structures. This observed similarity was likely due to the fact that shrimp were from the same genetic background and reared under the same habitat and diets. On the other hand, the unweighted-distance matrix revealed that the bacterial profiles associated in intestines of the Top-weight group were clustered distinctly from those of the Bottom-weight shrimp, suggesting that some unique non-dominant bacterial genera were found associated with either group. The key bacterial members associated to the Top-weight shrimp were mostly from Firmicutes (Brevibacillus and Fusibacter) and Bacteroidetes (Spongiimonas), both of which were found in significantly higher abundance than those of the Bottom-weight shrimp. Transcriptomic profile of shrimp intestines found significant upregulation of genes mostly involved in nutrient metabolisms and energy storage in the Top-weight shrimp. In addition to significantly expressed metabolic-related genes, the Bottom-weight shrimp also showed significant upregulation of stress and immune-related genes, suggesting that these pathways might contribute to different degrees of shrimp growth performance. A non-targeted metabolome analysis from shrimp intestines revealed different metabolic responsive patterns, in which the Top-weight shrimp contained significantly higher levels of short chain fatty acids, lipids and organic compounds than the Bottom-weight shrimp. The identified metabolites included those that were known to be produced by intestinal bacteria such as butyric acid, 4-indolecarbaldehyde and L-3-phenyllactic acid as well as those produced by shrimp such as acyl-carnitines and lysophosphatidylcholine. The functions of these metabolites were related to nutrient absorption and metabolisms. Our findings provide the first report utilizing multi-omics integration approach to investigate microbiota, metabolic and transcriptomics profiles of the host shrimp and their potential roles and relationship to shrimp growth performance.
Collapse
Affiliation(s)
- Tanaporn Uengwetwanit
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Umaporn Uawisetwathana
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Sopacha Arayamethakorn
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Juthatip Khudet
- Shrimp Genetic Improvement Center, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Sage Chaiyapechara
- Aquaculture Service Development Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Nitsara Karoonuthaisiri
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Wanilada Rungrassamee
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| |
Collapse
|
75
|
Wang R, Guo Z, Tang Y, Kuang J, Duan Y, Lin H, Jiang S, Shu H, Huang J. Effects on development and microbial community of shrimp Litopenaeus vannamei larvae with probiotics treatment. AMB Express 2020; 10:109. [PMID: 32504358 PMCID: PMC7275112 DOI: 10.1186/s13568-020-01041-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 12/30/2022] Open
Abstract
Shrimp production is the second ranked of the most-traded production in these decades and the whiteleg shrimp Litopenaeus vannamei is the sixth most cultured species. Probiotics are alternative strategy for the promotion of growth and prevention of diseases in aquaculture. To confirm the effects of the probiotics on development and microbial community of L. vannamei larvae during different development stages, five kinds of probiotics (108 ~ 109 CFU/g) were added into the rearing environment of shrimp larvae, and the effects of probiotics on bacterial community and water quality, larval growth and immune index were determined from nauplius larval stage to post larval stage. Results suggested that probiotics treated groups showed larger survival rate than the control groups from Z1 stage to P5 stage. Lactobacillus could improve the larvae's survival ability, especially in the larval stages M2, M3, P1, P5 stage. It was confirmed that probiotics could promote the growth and development of shrimp larvae and prevent the incomplete molting in their growing process, particularly for EM-treated group. Results suggested that all the probiotics-treated groups had shown significant decreasing trend in the quantity of vibrios, except for the SA-treated group. And different probiotics could inhibit vibrios during different life periods. Among these probiotics, LA, EM and PB had shown the best effects, including improving survival rate of the larvae, promoting the larval metamorphosis, reducing the quantity of vibrios and NH4-N and NO2-N levels, and increasing bacterial diversity.
Collapse
|
76
|
Ringø E, Van Doan H, Lee SH, Soltani M, Hoseinifar SH, Harikrishnan R, Song SK. Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. J Appl Microbiol 2020; 129:116-136. [PMID: 32141152 DOI: 10.1111/jam.14628] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
Probiotics administration in aquafeed is known to increase feed consumption and absorption due to their capacity to release a wide range of digestive enzymes and nutrients which can participate in digestion process and feed utilization, along with the absorption of diet components led to an increase in host's health and well-being. Furthermore, probiotics improve gut maturation, prevention of intestinal disorders, predigestion of antinutrient factors found in the feed ingredients, gut microbiota, disease resistance against pathogens and metabolism. The beneficial immune effects of probiotics are well established in finfish. However, in comparison, similar studies are less abundant in the shellfish. In this review, the discussions will mainly focus on studies reported the last 2 years. In recent studies, native probiotic bacteria were isolated and fed back to their hosts. Although beneficial effects were demonstrated, some studies showed adverse effects when treated with a high concentration. This adverse effect may be due to the imbalance of the gut microbiota caused by the replenished commensal probiotics. Probiotics revealed greatest effect on the shrimp digestive system particularly in the larval and early post-larval stages, and stimulate the production of endogenous enzymes in shrimp and contribute with improved the enzyme activities in the gut, as well as disease resistance.
Collapse
Affiliation(s)
- E Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - H Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - S H Lee
- School of Life Science, Handong University, Pohang, Republic of Korea
| | - M Soltani
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, WA, Australia.,Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - S H Hoseinifar
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - R Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Tamil Nadu, Kanchipuram, India
| | - S K Song
- School of Life Science, Handong University, Pohang, Republic of Korea
| |
Collapse
|