51
|
Challenges and disparities in the application of personalized genomic medicine to populations with African ancestry. Nat Commun 2016; 7:12521. [PMID: 27725664 PMCID: PMC5062569 DOI: 10.1038/ncomms12521] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/12/2016] [Indexed: 12/16/2022] Open
Abstract
To characterize the extent and impact of ancestry-related biases in precision genomic medicine, we use 642 whole-genome sequences from the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) project to evaluate typical filters and databases. We find significant correlations between estimated African ancestry proportions and the number of variants per individual in all variant classification sets but one. The source of these correlations is highlighted in more detail by looking at the interaction between filtering criteria and the ClinVar and Human Gene Mutation databases. ClinVar's correlation, representing African ancestry-related bias, has changed over time amidst monthly updates, with the most extreme switch happening between March and April of 2014 (r=0.733 to r=-0.683). We identify 68 SNPs as the major drivers of this change in correlation. As long as ancestry-related bias when using these clinical databases is minimally recognized, the genetics community will face challenges with implementation, interpretation and cost-effectiveness when treating minority populations.
Collapse
|
52
|
Mathias RA, Taub MA, Gignoux CR, Fu W, Musharoff S, O'Connor TD, Vergara C, Torgerson DG, Pino-Yanes M, Shringarpure SS, Huang L, Rafaels N, Boorgula MP, Johnston HR, Ortega VE, Levin AM, Song W, Torres R, Padhukasahasram B, Eng C, Mejia-Mejia DA, Ferguson T, Qin ZS, Scott AF, Yazdanbakhsh M, Wilson JG, Marrugo J, Lange LA, Kumar R, Avila PC, Williams LK, Watson H, Ware LB, Olopade C, Olopade O, Oliveira R, Ober C, Nicolae DL, Meyers D, Mayorga A, Knight-Madden J, Hartert T, Hansel NN, Foreman MG, Ford JG, Faruque MU, Dunston GM, Caraballo L, Burchard EG, Bleecker E, Araujo MI, Herrera-Paz EF, Gietzen K, Grus WE, Bamshad M, Bustamante CD, Kenny EE, Hernandez RD, Beaty TH, Ruczinski I, Akey J, Barnes KC. A continuum of admixture in the Western Hemisphere revealed by the African Diaspora genome. Nat Commun 2016; 7:12522. [PMID: 27725671 PMCID: PMC5062574 DOI: 10.1038/ncomms12522] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/12/2016] [Indexed: 01/20/2023] Open
Abstract
The African Diaspora in the Western Hemisphere represents one of the largest forced migrations in history and had a profound impact on genetic diversity in modern populations. To date, the fine-scale population structure of descendants of the African Diaspora remains largely uncharacterized. Here we present genetic variation from deeply sequenced genomes of 642 individuals from North and South American, Caribbean and West African populations, substantially increasing the lexicon of human genomic variation and suggesting much variation remains to be discovered in African-admixed populations in the Americas. We summarize genetic variation in these populations, quantifying the postcolonial sex-biased European gene flow across multiple regions. Moreover, we refine estimates on the burden of deleterious variants carried across populations and how this varies with African ancestry. Our data are an important resource for empowering disease mapping studies in African-admixed individuals and will facilitate gene discovery for diseases disproportionately affecting individuals of African ancestry.
Collapse
Affiliation(s)
- Rasika Ann Mathias
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224, USA
- Department of Epidemiology, Bloomberg School of Public Health, JHU, Baltimore, Maryland 21205, USA
| | - Margaret A. Taub
- Department of Biostatistics, Bloomberg School of Public Health, JHU, Baltimore, Maryland 21205, USA
| | - Christopher R. Gignoux
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Wenqing Fu
- Department of Genomic Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Shaila Musharoff
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Timothy D. O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Candelaria Vergara
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224, USA
| | - Dara G. Torgerson
- Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | - Maria Pino-Yanes
- Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Suyash S. Shringarpure
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lili Huang
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224, USA
| | - Nicholas Rafaels
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224, USA
| | | | - Henry Richard Johnston
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia 30322, USA
| | - Victor E. Ortega
- Center for Human Genomics and Personalized Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Albert M. Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan 48202, USA
| | - Wei Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Raul Torres
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California 94158, USA
| | - Badri Padhukasahasram
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, Michigan 48202, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | - Delmy-Aracely Mejia-Mejia
- Centro de Neumologia y Alergias, San Pedro Sula 21102, Honduras
- Faculty of Medicine, Centro Medico de la Familia, San Pedro Sula 21102, Honduras
| | - Trevor Ferguson
- Tropical Medicine Research Institute, The University of the West Indies, St. Michael BB11115, Barbados
| | - Zhaohui S. Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia 30322, USA
| | - Alan F. Scott
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224, USA
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Javier Marrugo
- Instituto de Investigaciones Immunologicas, Universidad de Cartagena, Cartagena 130000, Colombia
| | - Leslie A. Lange
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Rajesh Kumar
- Department of Pediatrics, Northwestern University, Chicago, Illinois 60637, USA
- The Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60637, USA
| | - Pedro C. Avila
- Department of Medicine, Northwestern University, Chicago, Illinois 60637, USA
| | - L. Keoki Williams
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, Michigan 48202, USA
- Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan 48202, USA
| | - Harold Watson
- Faculty of Medical Sciences Cave Hill Campus, The University of the West Indies, Bridgetown BB11000, Barbados
- Queen Elizabeth Hospital, The University of the West Indies, St. Michael BB11115, Barbados
| | - Lorraine B. Ware
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Christopher Olopade
- Department of Medicine and Center for Global Health, University of Chicago, Chicago, Illinois 60637, USA
| | | | - Ricardo Oliveira
- Laboratório de Patologia Experimental, Centro de Pesquisas Gonçalo Moniz, Salvador 40296-710, Brazil
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Dan L. Nicolae
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
- Department of Statistics, University of Chicago, Chicago, Illinois 60637, USA
| | - Deborah Meyers
- Center for Human Genomics and Personalized Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Alvaro Mayorga
- Centro de Neumologia y Alergias, San Pedro Sula 21102, Honduras
| | - Jennifer Knight-Madden
- Tropical Medicine Research Institute, The University of the West Indies, St. Michael BB11115, Barbados
| | - Tina Hartert
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Nadia N. Hansel
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224, USA
| | - Marilyn G. Foreman
- Pulmonary and Critical Care Medicine, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | - Jean G. Ford
- Department of Epidemiology, Bloomberg School of Public Health, JHU, Baltimore, Maryland 21205, USA
- Department of Medicine, The Brooklyn Hospital Center, Brooklyn, New York 11201, USA
| | - Mezbah U. Faruque
- National Human Genome Center, Howard University College of Medicine, Washington DC 20059, USA
| | - Georgia M. Dunston
- National Human Genome Center, Howard University College of Medicine, Washington DC 20059, USA
- Department of Microbiology, Howard University College of Medicine, Washington DC 20059, USA
| | - Luis Caraballo
- Institute for Immunological Research, Universidad de Cartagena, Cartagena 130000, Colombia
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, USA
| | - Eugene Bleecker
- Center for Human Genomics and Personalized Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Maria Ilma Araujo
- Immunology Service, Universidade Federal da Bahia, Salvador 401110170, Brazil
| | - Edwin Francisco Herrera-Paz
- Centro de Neumologia y Alergias, San Pedro Sula 21102, Honduras
- Faculty of Medicine, Centro Medico de la Familia, San Pedro Sula 21102, Honduras
- Facultad de Medicina, Universidad Catolica de Honduras, San Pedro Sula 21102, Honduras
| | | | | | - Michael Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Carlos D. Bustamante
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Eimear E. Kenny
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ryan D. Hernandez
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California 94143, USA
- California Institute for Quantitative Biosciences, University of California, San Francisco, California 94143, USA
| | - Terri H. Beaty
- Department of Epidemiology, Bloomberg School of Public Health, JHU, Baltimore, Maryland 21205, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, JHU, Baltimore, Maryland 21205, USA
| | - Joshua Akey
- Department of Genomic Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Kathleen C. Barnes
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224, USA
- Department of Epidemiology, Bloomberg School of Public Health, JHU, Baltimore, Maryland 21205, USA
| |
Collapse
|
53
|
Family-Specific Variants and the Limits of Human Genetics. Trends Mol Med 2016; 22:925-934. [PMID: 27742414 DOI: 10.1016/j.molmed.2016.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 01/28/2023]
Abstract
Every single-nucleotide change compatible with life is present in the human population today. Understanding these rare human variants defines an extraordinary challenge for genetics and medicine. The new clinical practice of sequencing many genes for hereditary cancer risk has illustrated the utility of clinical next-generation sequencing in adults, identifying more medically actionable variants than single-gene testing. However, it has also revealed a linear relationship between the length of DNA evaluated and the number of rare 'variants of uncertain significance' reported. We propose that careful approaches to phenotype-genotype inference, distinguishing between diagnostic and screening intent, in conjunction with expanded use of family-scale genetics studies as a source of information on family-specific variants, will reduce variants of uncertain significance reported to patients.
Collapse
|
54
|
Harlalka GV, McEntagart ME, Gupta N, Skrzypiec AE, Mucha MW, Chioza BA, Simpson MA, Sreekantan-Nair A, Pereira A, Günther S, Jahic A, Modarres H, Moore-Barton H, Trembath RC, Kabra M, Baple EL, Thakur S, Patton MA, Beetz C, Pawlak R, Crosby AH. Novel Genetic, Clinical, and Pathomechanistic Insights into TFG-Associated Hereditary Spastic Paraplegia. Hum Mutat 2016; 37:1157-1161. [PMID: 27492651 DOI: 10.1002/humu.23060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/30/2016] [Indexed: 11/05/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are genetically and clinically heterogeneous axonopathies primarily affecting upper motor neurons and, in complex forms, additional neurons. Here, we report two families with distinct recessive mutations in TFG, previously suggested to cause HSP based on findings in a single small family with complex HSP. The first carried a homozygous c.317G>A (p.R106H) variant and presented with pure HSP. The second carried the same homozygous c.316C>T (p.R106C) variant previously reported and displayed a similarly complex phenotype including optic atrophy. Haplotyping and bisulfate sequencing revealed evidence for a c.316C>T founder allele, as well as for a c.316_317 mutation hotspot. Expression of mutant TFG proteins in cultured neurons revealed mitochondrial fragmentation, the extent of which correlated with clinical severity. Our findings confirm the causal nature of bi-allelic TFG mutations for HSP, broaden the clinical and mutational spectra, and suggest mitochondrial impairment to represent a pathomechanistic link to other neurodegenerative conditions.
Collapse
Affiliation(s)
- Gaurav V Harlalka
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Meriel E McEntagart
- Medical Genetics Unit, Floor 0, Jenner Wing, St. George's University of London, Cranmer Terrace, London, UK
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, Old O.T. Block, All India Institute of Medical Sciences, New Delhi, India
| | - Anna E Skrzypiec
- Laboratory of Neuronal Plasticity and Behaviour, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Mariusz W Mucha
- Laboratory of Neuronal Plasticity and Behaviour, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Barry A Chioza
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Michael A Simpson
- Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London, UK
| | - Ajith Sreekantan-Nair
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Anthony Pereira
- Department of Neurology, Atkinson Morley Wing, St. George's Hospital, Tooting, London, UK
| | - Sven Günther
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Amir Jahic
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Hamid Modarres
- Department of Neurology, Atkinson Morley Wing, St. George's Hospital, Tooting, London, UK
| | - Heather Moore-Barton
- Medical Genetics Unit, Floor 0, Jenner Wing, St. George's University of London, Cranmer Terrace, London, UK
| | - Richard C Trembath
- Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London, UK
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, Old O.T. Block, All India Institute of Medical Sciences, New Delhi, India
| | - Emma L Baple
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Seema Thakur
- Department of Genetics and Fetal Medicine, Fortis La femme, S-549, New Delhi, India
| | - Michael A Patton
- Medical Genetics Unit, Floor 0, Jenner Wing, St. George's University of London, Cranmer Terrace, London, UK
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany.
| | - Robert Pawlak
- Laboratory of Neuronal Plasticity and Behaviour, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Andrew H Crosby
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| |
Collapse
|
55
|
Zhang M, Zhou L, Bawa R, Suren H, Holliday J. Recombination Rate Variation, Hitchhiking, and Demographic History Shape Deleterious Load in Poplar. Mol Biol Evol 2016; 33:2899-2910. [DOI: 10.1093/molbev/msw169] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
56
|
Andersen MK, Pedersen CET, Moltke I, Hansen T, Albrechtsen A, Grarup N. Genetics of Type 2 Diabetes: the Power of Isolated Populations. Curr Diab Rep 2016; 16:65. [PMID: 27189761 DOI: 10.1007/s11892-016-0757-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes (T2D) affects millions of people worldwide. Improving the understanding of the underlying mechanisms and ultimately improving the treatment strategies are, thus, of great interest. To achieve this, identification of genetic variation predisposing to T2D is important. A large number of variants have been identified in large outbred populations, mainly from Europe and Asia. However, to elucidate additional variation, isolated populations have a number of advantageous properties, including increased amounts of linkage disequilibrium, and increased probability for presence of high frequency disease-associated variants due to genetic drift. Collectively, this increases the statistical power to detect association signals in isolated populations compared to large outbred populations. In this review, we elaborate on why isolated populations are a powerful resource for the identification of complex disease variants and describe their contributions to the understanding of the genetics of T2D.
Collapse
Affiliation(s)
- Mette Korre Andersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark
| | - Casper-Emil Tingskov Pedersen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Ida Moltke
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark, J.B. Winsløws Vej 19, 3, 5000, Odense, Denmark
| | - Anders Albrechtsen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark.
| |
Collapse
|
57
|
A flexible method for estimating the fraction of fitness influencing mutations from large sequencing data sets. Genome Res 2016; 26:834-43. [PMID: 27197222 PMCID: PMC4889975 DOI: 10.1101/gr.203059.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/14/2016] [Indexed: 01/07/2023]
Abstract
A continuing challenge in the analysis of massively large sequencing data sets is quantifying and interpreting non-neutrally evolving mutations. Here, we describe a flexible and robust approach based on the site frequency spectrum to estimate the fraction of deleterious and adaptive variants from large-scale sequencing data sets. We applied our method to approximately 1 million single nucleotide variants (SNVs) identified in high-coverage exome sequences of 6515 individuals. We estimate that the fraction of deleterious nonsynonymous SNVs is higher than previously reported; quantify the effects of genomic context, codon bias, chromatin accessibility, and number of protein-protein interactions on deleterious protein-coding SNVs; and identify pathways and networks that have likely been influenced by positive selection. Furthermore, we show that the fraction of deleterious nonsynonymous SNVs is significantly higher for Mendelian versus complex disease loci and in exons harboring dominant versus recessive Mendelian mutations. In summary, as genome-scale sequencing data accumulate in progressively larger sample sizes, our method will enable increasingly high-resolution inferences into the characteristics and determinants of non-neutral variation.
Collapse
|
58
|
Narasimhan VM, Xue Y, Tyler-Smith C. Human Knockout Carriers: Dead, Diseased, Healthy, or Improved? Trends Mol Med 2016; 22:341-351. [PMID: 26988438 PMCID: PMC4826344 DOI: 10.1016/j.molmed.2016.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 01/11/2023]
Abstract
Whole-genome and whole-exome sequence data from large numbers of individuals reveal that we all carry many variants predicted to inactivate genes (knockouts). This discovery raises questions about the phenotypic consequences of these knockouts and potentially allows us to study human gene function through the investigation of homozygous loss-of-function carriers. Here, we discuss strategies, recent results, and future prospects for large-scale human knockout studies. We examine their relevance to studying gene function, population genetics, and importantly, the implications for accurate clinical interpretations.
Collapse
Affiliation(s)
| | - Yali Xue
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | |
Collapse
|
59
|
Abstract
Deleterious alleles can reach high frequency in small populations because of random fluctuations in allele frequency. This may lead, over time, to reduced average fitness. In this sense, selection is more "effective" in larger populations. Recent studies have considered whether the different demographic histories across human populations have resulted in differences in the number, distribution, and severity of deleterious variants, leading to an animated debate. This article first seeks to clarify some terms of the debate by identifying differences in definitions and assumptions used in recent studies. We argue that variants of Morton, Crow, and Muller's "total mutational damage" provide the soundest and most practical basis for such comparisons. Using simulations, analytical calculations, and 1000 Genomes Project data, we provide an intuitive and quantitative explanation for the observed similarity in genetic load across populations. We show that recent demography has likely modulated the effect of selection and still affects it, but the net result of the accumulated differences is small. Direct observation of differential efficacy of selection for specific allele classes is nevertheless possible with contemporary data sets. By contrast, identifying average genome-wide differences in the efficacy of selection across populations will require many modeling assumptions and is unlikely to provide much biological insight about human populations.
Collapse
|
60
|
Brandvain Y, Wright SI. The Limits of Natural Selection in a Nonequilibrium World. Trends Genet 2016; 32:201-210. [PMID: 26874998 DOI: 10.1016/j.tig.2016.01.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/23/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
Abstract
Evolutionary theory predicts that factors such as a small population size or low recombination rate can limit the action of natural selection. The emerging field of comparative population genomics offers an opportunity to evaluate these hypotheses. However, classical theoretical predictions assume that populations are at demographic equilibrium. This assumption is likely to be violated in the very populations researchers use to evaluate selection's limits: populations that have experienced a recent shift in population size and/or effective recombination rates. Here we highlight theory and data analyses concerning limitations on the action of natural selection in nonequilibrial populations and argue that substantial care is needed to appropriately test whether species and populations show meaningful differences in selection efficacy. A move toward model-based inferences that explicitly incorporate nonequilibrium dynamics provides a promising approach to more accurately contrast selection efficacy across populations and interpret its significance.
Collapse
Affiliation(s)
- Yaniv Brandvain
- Department of Plant Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
61
|
Shirts BH, Casadei S, Jacobson AL, Lee MK, Gulsuner S, Bennett RL, Miller M, Hall SA, Hampel H, Hisama FM, Naylor LV, Goetsch C, Leppig K, Tait JF, Scroggins SM, Turner EH, Livingston R, Salipante SJ, King MC, Walsh T, Pritchard CC. Improving performance of multigene panels for genomic analysis of cancer predisposition. Genet Med 2016; 18:974-81. [PMID: 26845104 DOI: 10.1038/gim.2015.212] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/11/2015] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Screening multiple genes for inherited cancer predisposition expands opportunities for cancer prevention; however, reports of variants of uncertain significance (VUS) may limit clinical usefulness. We used an expert-driven approach, exploiting all available information, to evaluate multigene panels for inherited cancer predisposition in a clinical series that included multiple cancer types and complex family histories. METHODS For 1,462 sequential patients referred for testing by BROCA or ColoSeq multigene panels, genomic DNA was sequenced and variants were interpreted by multiple experts using International Agency for Research on Cancer guidelines and incorporating evolutionary conservation, known and predicted variant consequences, and personal and family cancer history. Diagnostic yield was evaluated for various presenting conditions and family-history profiles. RESULTS Of 1,462 patients, 12% carried damaging mutations in established cancer genes. Diagnostic yield varied by clinical presentation. Actionable results were identified for 13% of breast and colorectal cancer patients and for 4% of cancer-free subjects, based on their family histories of cancer. Incidental findings explaining cancer in neither the patient nor the family were present in 1.7% of subjects. Less than 1% of patients carried VUS in BRCA1 or BRCA2. For all genes combined, initial reports contained VUS for 10.5% of patients, which declined to 7.5% of patients after reclassification based on additional information. CONCLUSIONS Individualized interpretation of gene panels is a complex medical activity. Interpretation by multiple experts in the context of personal and family histories maximizes actionable results and minimizes reports of VUS.Genet Med 18 10, 974-981.
Collapse
Affiliation(s)
- Brian H Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Silvia Casadei
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Angela L Jacobson
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Ming K Lee
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Suleyman Gulsuner
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Robin L Bennett
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Sarah A Hall
- Kadlec Regional Medical Center, Richland, Washington, USA
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, Ohio State University, Columbus, Ohio, USA
| | - Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Lorraine V Naylor
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Kathleen Leppig
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA.,Clinical Genetics, Group Health Cooperative, Seattle, Washington, USA
| | - Jonathan F Tait
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Sheena M Scroggins
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Emily H Turner
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Robert Livingston
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Mary-Claire King
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA.,Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Tom Walsh
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
62
|
Patterns of deleterious variation between human populations reveal an unbalanced load. Proc Natl Acad Sci U S A 2016; 113:809-11. [PMID: 26787891 DOI: 10.1073/pnas.1524016113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
63
|
Marsden CD, Ortega-Del Vecchyo D, O'Brien DP, Taylor JF, Ramirez O, Vilà C, Marques-Bonet T, Schnabel RD, Wayne RK, Lohmueller KE. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc Natl Acad Sci U S A 2016; 113:152-7. [PMID: 26699508 PMCID: PMC4711855 DOI: 10.1073/pnas.1512501113] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Population bottlenecks, inbreeding, and artificial selection can all, in principle, influence levels of deleterious genetic variation. However, the relative importance of each of these effects on genome-wide patterns of deleterious variation remains controversial. Domestic and wild canids offer a powerful system to address the role of these factors in influencing deleterious variation because their history is dominated by known bottlenecks and intense artificial selection. Here, we assess genome-wide patterns of deleterious variation in 90 whole-genome sequences from breed dogs, village dogs, and gray wolves. We find that the ratio of amino acid changing heterozygosity to silent heterozygosity is higher in dogs than in wolves and, on average, dogs have 2-3% higher genetic load than gray wolves. Multiple lines of evidence indicate this pattern is driven by less efficient natural selection due to bottlenecks associated with domestication and breed formation, rather than recent inbreeding. Further, we find regions of the genome implicated in selective sweeps are enriched for amino acid changing variants and Mendelian disease genes. To our knowledge, these results provide the first quantitative estimates of the increased burden of deleterious variants directly associated with domestication and have important implications for selective breeding programs and the conservation of rare and endangered species. Specifically, they highlight the costs associated with selective breeding and question the practice favoring the breeding of individuals that best fit breed standards. Our results also suggest that maintaining a large population size, rather than just avoiding inbreeding, is a critical factor for preventing the accumulation of deleterious variants.
Collapse
Affiliation(s)
- Clare D Marsden
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| | | | - Dennis P O'Brien
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Oscar Ramirez
- Institut Catala de Recerca i Estudis Avançats, Institut de Biologia Evolutiva (Centro Superior de Investigaciones Cientificas-Universitat Pompeu Fabra), 08003 Barcelona, Spain
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana-Consejo Superior de Investigaciones Cientificas, 41092, Seville, Spain
| | - Tomas Marques-Bonet
- Institut Catala de Recerca i Estudis Avançats, Institut de Biologia Evolutiva (Centro Superior de Investigaciones Cientificas-Universitat Pompeu Fabra), 08003 Barcelona, Spain; Centro Nacional Analasis Genomico, 08023, Barcelona, Spain
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211; Informatics Institute, University of Missouri, Columbia, MO 65211
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095; Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA 90095; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
64
|
Distance from sub-Saharan Africa predicts mutational load in diverse human genomes. Proc Natl Acad Sci U S A 2015; 113:E440-9. [PMID: 26712023 DOI: 10.1073/pnas.1510805112] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Out-of-Africa (OOA) dispersal ∼ 50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive.
Collapse
|
65
|
Selective Strolls: Fixation and Extinction in Diploids Are Slower for Weakly Selected Mutations Than for Neutral Ones. Genetics 2015; 201:1581-9. [PMID: 26500260 DOI: 10.1534/genetics.115.178160] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/14/2015] [Indexed: 01/07/2023] Open
Abstract
In finite populations, an allele disappears or reaches fixation due to two main forces, selection and drift. Selection is generally thought to accelerate the process: a selected mutation will reach fixation faster than a neutral one, and a disadvantageous one will quickly disappear from the population. We show that even in simple diploid populations, this is often not true. Dominance and recessivity unexpectedly slow down the evolutionary process for weakly selected alleles. In particular, slightly advantageous dominant and mildly deleterious recessive mutations reach fixation slightly more slowly than neutral ones (at most 5%). This phenomenon determines genetic signatures opposite to those expected under strong selection, such as increased instead of decreased genetic diversity around the selected site. Furthermore, we characterize a new phenomenon: mildly deleterious recessive alleles, thought to represent a wide fraction of newly arising mutations, on average survive in a population slightly longer than neutral ones, before getting lost. Consequently, these mutations are on average slightly older than neutral ones, in contrast with previous expectations. Furthermore, they slightly increase the amount of weakly deleterious polymorphisms, as a consequence of the longer unconditional sojourn times compared to neutral mutations.
Collapse
|
66
|
Gu W, Gurguis CI, Zhou JJ, Zhu Y, Ko EA, Ko JH, Wang T, Zhou T. Functional and Structural Consequence of Rare Exonic Single Nucleotide Polymorphisms: One Story, Two Tales. Genome Biol Evol 2015; 7:2929-40. [PMID: 26454016 PMCID: PMC4684694 DOI: 10.1093/gbe/evv191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 01/01/2023] Open
Abstract
Genetic variation arising from single nucleotide polymorphisms (SNPs) is ubiquitously found among human populations. While disease-causing variants are known in some cases, identifying functional or causative variants for most human diseases remains a challenging task. Rare SNPs, rather than common ones, are thought to be more important in the pathology of most human diseases. We propose that rare SNPs should be divided into two categories dependent on whether the minor alleles are derived or ancestral. Derived alleles are less likely to have been purified by evolutionary processes and may be more likely to induce deleterious effects. We therefore hypothesized that the rare SNPs with derived minor alleles would be more important for human diseases and predicted that these variants would have larger functional or structural consequences relative to the rare variants for which the minor alleles are ancestral. We systematically investigated the consequences of the exonic SNPs on protein function, mRNA structure, and translation. We found that the functional and structural consequences are more significant for the rare exonic variants for which the minor alleles are derived. However, this pattern is reversed when the minor alleles are ancestral. Thus, the rare exonic SNPs with derived minor alleles are more likely to be deleterious. Age estimation of rare SNPs confirms that these potentially deleterious SNPs are recently evolved in the human population. These results have important implications for understanding the function of genetic variations in human exonic regions and for prioritizing functional SNPs in genome-wide association studies of human diseases.
Collapse
Affiliation(s)
- Wanjun Gu
- Research Center for Learning Sciences, Southeast University, Nanjing, Jiangsu, China
| | | | - Jin J Zhou
- Department of Epidemiology and Biostatistics, The University of Arizona
| | - Yihua Zhu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China College of Information Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Eun-A Ko
- Department of Pharmacology, The University of Nevada School of Medicine, Reno
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Ting Wang
- Department of Medicine, The University of Arizona
| | - Tong Zhou
- Department of Medicine, The University of Arizona
| |
Collapse
|
67
|
Edge MD, Rosenberg NA. A General Model of the Relationship between the Apportionment of Human Genetic Diversity and the Apportionment of Human Phenotypic Diversity. Hum Biol 2015; 87:313-337. [PMID: 27737590 PMCID: PMC8504698 DOI: 10.13110/humanbiology.87.4.0313] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Models that examine genetic differences between populations alongside a genotype-phenotype map can provide insight about phenotypic variation among groups. We generalize a simple model of a completely heritable, additive, selectively neutral quantitative trait to examine the relationship between single-locus genetic differentiation and phenotypic differentiation on quantitative traits. In agreement with similar efforts using different models, we show that the expected degree to which two groups differ on a neutral quantitative trait is not strongly affected by the number of genetic loci that influence the trait: neutral trait differences are expected to have a magnitude comparable to the genetic differences at a single neutral locus. We discuss this result with respect to population differences in disease phenotypes, arguing that although neutral genetic differences between populations can contribute to specific differences between populations in health outcomes, systematic patterns of difference that run in the same direction for many genetically independent health conditions are unlikely to be explained by neutral genetic differentiation.
Collapse
Affiliation(s)
- Michael D. Edge
- Department of Biology, Stanford University, Stanford, California
| | | |
Collapse
|
68
|
Sudmant PH, Mallick S, Nelson BJ, Hormozdiari F, Krumm N, Huddleston J, Coe BP, Baker C, Nordenfelt S, Bamshad M, Jorde LB, Posukh OL, Sahakyan H, Watkins WS, Yepiskoposyan L, Abdullah MS, Bravi CM, Capelli C, Hervig T, Wee JTS, Tyler-Smith C, van Driem G, Romero IG, Jha AR, Karachanak-Yankova S, Toncheva D, Comas D, Henn B, Kivisild T, Ruiz-Linares A, Sajantila A, Metspalu E, Parik J, Villems R, Starikovskaya EB, Ayodo G, Beall CM, Di Rienzo A, Hammer MF, Khusainova R, Khusnutdinova E, Klitz W, Winkler C, Labuda D, Metspalu M, Tishkoff SA, Dryomov S, Sukernik R, Patterson N, Reich D, Eichler EE. Global diversity, population stratification, and selection of human copy-number variation. Science 2015; 349:aab3761. [PMID: 26249230 PMCID: PMC4568308 DOI: 10.1126/science.aab3761] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/29/2015] [Indexed: 12/14/2022]
Abstract
In order to explore the diversity and selective signatures of duplication and deletion human copy-number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single-nucleotide-variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load.
Collapse
Affiliation(s)
- Peter H Sudmant
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Swapan Mallick
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Bradley J Nelson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Niklas Krumm
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - John Huddleston
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Bradley P Coe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Carl Baker
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Susanne Nordenfelt
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98119, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Olga L Posukh
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia. Novosibirsk State University, Novosibirsk 630090, Russia
| | - Hovhannes Sahakyan
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia. Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - W Scott Watkins
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Levon Yepiskoposyan
- Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - M Syafiq Abdullah
- Raja Isteri Pengiran Anak Saleha (RIPAS) Hospital, Bandar Seri Begawan, Brunei Darussalam
| | - Claudio M Bravi
- Laboratorio de Genética Molecular Poblacional, Instituto Multidisciplinario de Biología Celular (IMBICE), Centro Científico y Tecnológico-Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET) and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), La Plata B1906APO, Argentina
| | | | - Tor Hervig
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | | | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - George van Driem
- Institute of Linguistics, University of Bern, Bern CH-3012, Switzerland
| | | | - Aashish R Jha
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Sena Karachanak-Yankova
- Department of Medical Genetics, National Human Genome Center, Medical University Sofia, Sofia 1431, Bulgaria
| | - Draga Toncheva
- Department of Medical Genetics, National Human Genome Center, Medical University Sofia, Sofia 1431, Bulgaria
| | - David Comas
- Institut de Biologia Evolutiva [Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra (CSIC-UPF)], Departament de Ciències Experimentals i de la Salut, UPF, Barcelona 08003, Spain
| | - Brenna Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Toomas Kivisild
- Division of Biological Anthropology, University of Cambridge, Fitzwilliam Street, Cambridge CB2 1QH, UK
| | - Andres Ruiz-Linares
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, UK
| | - Antti Sajantila
- University of Helsinki, Department of Forensic Medicine, Helsinki 00014, Finland
| | - Ene Metspalu
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia. University of Tartu, Department of Evolutionary Biology, Tartu 5101, Estonia
| | - Jüri Parik
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia
| | - Richard Villems
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia
| | - Elena B Starikovskaya
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - George Ayodo
- Center for Global Health and Child Development, Kisumu 40100, Kenya
| | - Cynthia M Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, OH 44106-7125, USA
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Michael F Hammer
- Arizona Research Laboratories Division of Biotechnology, University of Arizona, Tucson, AZ 85721, USA
| | - Rita Khusainova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, Ufa 450054, Russia. Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa 450074, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, Ufa 450054, Russia. Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa 450074, Russia
| | - William Klitz
- Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - Cheryl Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Incorporated, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Damian Labuda
- Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, QC H3T 1C5, Canada
| | - Mait Metspalu
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia
| | - Sarah A Tishkoff
- Departments of Biology and Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stanislav Dryomov
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia. Department of Paleolithic Archaeology, Institute of Archaeology and Ethnography, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Rem Sukernik
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia. Altai State University, Barnaul 656000, Russia
| | - Nick Patterson
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David Reich
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
69
|
Cavadas B, Soares P, Camacho R, Brandão A, Costa MD, Fernandes V, Pereira JB, Rito T, Samuels DC, Pereira L. Fine Time Scaling of Purifying Selection on Human Nonsynonymous mtDNA Mutations Based on the Worldwide Population Tree and Mother-Child Pairs. Hum Mutat 2015; 36:1100-11. [DOI: 10.1002/humu.22849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/20/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Bruno Cavadas
- Instituto de Investigação e Inovação em Saúde (i3S); Universidade do Porto; Porto 4200-135 Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
| | - Pedro Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
- Department of Biology; CBMA (Centre of Molecular and Environmental Biology); University of Minho; Braga 4704-553 Portugal
| | - Rui Camacho
- INESC TEC; Porto 4200-465 Portugal
- Departamento de Engenharia Informática; Faculdade de Engenharia da Universidade do Porto; Porto 4200-465 Portugal
| | - Andreia Brandão
- Instituto de Investigação e Inovação em Saúde (i3S); Universidade do Porto; Porto 4200-135 Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS); Porto 4050-313 Portugal
| | - Marta D. Costa
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
| | - Verónica Fernandes
- Instituto de Investigação e Inovação em Saúde (i3S); Universidade do Porto; Porto 4200-135 Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
| | - Joana B. Pereira
- Instituto de Investigação e Inovação em Saúde (i3S); Universidade do Porto; Porto 4200-135 Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
| | - Teresa Rito
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
| | - David C. Samuels
- Vanderbilt Genetics Institute; Department of Molecular Physiology and Biophysics; Vanderbilt University Medical Center; Nashville Tennessee 37232-0700
| | - Luisa Pereira
- Instituto de Investigação e Inovação em Saúde (i3S); Universidade do Porto; Porto 4200-135 Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
- Faculdade de Medicina da Universidade do Porto; Porto 4200-319 Portugal
| |
Collapse
|
70
|
Abstract
Next-generation sequencing technology has facilitated the discovery of millions of genetic variants in human genomes. A sizeable fraction of these variants are predicted to be deleterious. Here, we review the pattern of deleterious alleles as ascertained in genome sequencing data sets and ask whether human populations differ in their predicted burden of deleterious alleles - a phenomenon known as mutation load. We discuss three demographic models that are predicted to affect mutation load and relate these models to the evidence (or the lack thereof) for variation in the efficacy of purifying selection in diverse human genomes. We also emphasize why accurate estimation of mutation load depends on assumptions regarding the distribution of dominance and selection coefficients - quantities that remain poorly characterized for current genomic data sets.
Collapse
|
71
|
Peischl S, Excoffier L. Expansion load: recessive mutations and the role of standing genetic variation. Mol Ecol 2015; 24:2084-94. [DOI: 10.1111/mec.13154] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Stephan Peischl
- Institute of Ecology and Evolution; University of Berne; Berne 3012 Switzerland
- Swiss Institute of Bioinformatics; Lausanne 1015 Switzerland
| | - Laurent Excoffier
- Institute of Ecology and Evolution; University of Berne; Berne 3012 Switzerland
- Swiss Institute of Bioinformatics; Lausanne 1015 Switzerland
| |
Collapse
|
72
|
|