51
|
Sheth J, Sheth H, Sheth F, Thelma BK, Joshi M, Kaur I, Joshi C. 48th annual meeting and international conference of the Indian Society of Human Genetics 2024: fostering collaborations within rare disease research community. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 23:100373. [PMID: 38434479 PMCID: PMC10905951 DOI: 10.1016/j.lansea.2024.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Jayesh Sheth
- FRIGE's Institute of Human Genetics, Ahmedabad, Gujarat, India
| | - Harsh Sheth
- FRIGE's Institute of Human Genetics, Ahmedabad, Gujarat, India
| | - Frenny Sheth
- FRIGE's Institute of Human Genetics, Ahmedabad, Gujarat, India
| | | | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | | | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| |
Collapse
|
52
|
Jin B, Yoon JG, Kim A, Moon J, Kim HJ. Late-Onset Ataxia-Telangiectasia Presenting With Dystonia and Tremor: The Use of Nanopore Long-Read Sequencing Solving the Variant Phase. Neurol Genet 2024; 10:e200141. [PMID: 38854973 PMCID: PMC11157422 DOI: 10.1212/nxg.0000000000200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/24/2024] [Indexed: 06/11/2024]
Abstract
Objectives This study investigates atypical late-onset ataxia-telangiectasia (AT) cases in a Korean family, diagnosed via Nanopore long-read sequencing, diverging from the typical early childhood onset caused by biallelic pathogenic ATM variants. Methods A 52-year-old Korean woman exhibiting dystonia and tremor, with a family history of similar symptoms in her older sister, underwent comprehensive tests including routine laboratory tests, neuropsychological assessments, and neuroimaging. Genetic analysis was conducted through targeted sequencing of 29 dystonia-associated genes and Nanopore long-read sequencing to assess the configuration of 2 ATM gene variants. Results Routine blood tests and brain imaging studies returned normal results, except for elevated α-fetoprotein levels. Neurologic examination revealed dystonia in the face, hand, and trunk, along with cervical dystonia in the proband. Her sister exhibited similar symptoms without evident telangiectasia. Genetic testing revealed 2 heterozygous pathogenic ATM gene variants (p.Glu2014Ter and p.Glu2052Lys). Nanopore long-read sequencing confirmed these variants were in trans configuration, establishing a definite molecular diagnosis in the proband. Discussion This report expands the known clinical spectrum of AT, highlighting a familial case of atypical AT. Moreover, it underscores the clinical utility of Nanopore long-read sequencing in phasing variant haplotypes, essential for diagnosing autosomal recessive disorders, especially beneficial for cases without parental samples.
Collapse
Affiliation(s)
- Bora Jin
- From the Department of Neurology (B.J., J.M., H.-J.K.), Seoul National University Hospital and Seoul National University College of Medicine; Department of Genomic Medicine (J.G.Y., J.M.), Seoul National University Hospital; Department of Laboratory Medicine (J.G.Y), Gangnam Severance Hospital and Yonsei University College of Medicine; and Department of Neurology (A.K.), Chungbuk National University Hospital and Chungbuk National University College of Medicine, Cheongju-si, Republic of Korea
| | - Jihoon G Yoon
- From the Department of Neurology (B.J., J.M., H.-J.K.), Seoul National University Hospital and Seoul National University College of Medicine; Department of Genomic Medicine (J.G.Y., J.M.), Seoul National University Hospital; Department of Laboratory Medicine (J.G.Y), Gangnam Severance Hospital and Yonsei University College of Medicine; and Department of Neurology (A.K.), Chungbuk National University Hospital and Chungbuk National University College of Medicine, Cheongju-si, Republic of Korea
| | - Aryun Kim
- From the Department of Neurology (B.J., J.M., H.-J.K.), Seoul National University Hospital and Seoul National University College of Medicine; Department of Genomic Medicine (J.G.Y., J.M.), Seoul National University Hospital; Department of Laboratory Medicine (J.G.Y), Gangnam Severance Hospital and Yonsei University College of Medicine; and Department of Neurology (A.K.), Chungbuk National University Hospital and Chungbuk National University College of Medicine, Cheongju-si, Republic of Korea
| | - Jangsup Moon
- From the Department of Neurology (B.J., J.M., H.-J.K.), Seoul National University Hospital and Seoul National University College of Medicine; Department of Genomic Medicine (J.G.Y., J.M.), Seoul National University Hospital; Department of Laboratory Medicine (J.G.Y), Gangnam Severance Hospital and Yonsei University College of Medicine; and Department of Neurology (A.K.), Chungbuk National University Hospital and Chungbuk National University College of Medicine, Cheongju-si, Republic of Korea
| | - Han-Joon Kim
- From the Department of Neurology (B.J., J.M., H.-J.K.), Seoul National University Hospital and Seoul National University College of Medicine; Department of Genomic Medicine (J.G.Y., J.M.), Seoul National University Hospital; Department of Laboratory Medicine (J.G.Y), Gangnam Severance Hospital and Yonsei University College of Medicine; and Department of Neurology (A.K.), Chungbuk National University Hospital and Chungbuk National University College of Medicine, Cheongju-si, Republic of Korea
| |
Collapse
|
53
|
Rodrigues Alves Barbosa V, Maroilley T, Diao C, Colvin-James L, Perrier R, Tarailo-Graovac M. Single variant, yet "double trouble": TSC and KBG syndrome because of a large de novo inversion. Life Sci Alliance 2024; 7:e202302115. [PMID: 38253421 PMCID: PMC10803213 DOI: 10.26508/lsa.202302115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Despite the advances in high-throughput sequencing, many rare disease patients remain undiagnosed. In particular, the patients with well-defined clinical phenotypes and established clinical diagnosis, yet missing or partial genetic diagnosis, may hold a clue to more complex genetic mechanisms of a disease that could be missed by available clinical tests. Here, we report a patient with a clinical diagnosis of Tuberous sclerosis, combined with unusual secondary features, but negative clinical tests including TSC1 and TSC2 Short-read whole-genome sequencing combined with advanced bioinformatics analyses were successful in uncovering a de novo pericentric 87-Mb inversion with breakpoints in TSC2 and ANKRD11, which explains the TSC clinical diagnosis, and confirms a second underlying monogenic disorder, KBG syndrome. Our findings illustrate how complex variants, such as large inversions, may be missed by clinical tests and further highlight the importance of well-defined clinical diagnoses in uncovering complex molecular mechanisms of a disease, such as complex variants and "double trouble" effects.
Collapse
Affiliation(s)
- Victoria Rodrigues Alves Barbosa
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Tatiana Maroilley
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Catherine Diao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Leslie Colvin-James
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Renee Perrier
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Maja Tarailo-Graovac
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
54
|
Koshimizu E, Kato M, Misawa K, Uchiyama Y, Tsuchida N, Hamanaka K, Fujita A, Mizuguchi T, Miyatake S, Matsumoto N. Detection of hidden intronic DDC variant in aromatic L-amino acid decarboxylase deficiency by adaptive sampling. J Hum Genet 2024; 69:153-157. [PMID: 38216729 DOI: 10.1038/s10038-023-01217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Aromatic l-amino acid decarboxylase (AADC) deficiency is an autosomal recessive neurotransmitter disorder caused by pathogenic DOPA decarboxylase (DDC) variants. We previously reported Japanese siblings with AADC deficiency, which was confirmed by the lack of enzyme activity; however, only a heterozygous missense variant was detected. We therefore performed targeted long-read sequencing by adaptive sampling to identify any missing variants. Haplotype phasing and variant calling identified a novel deep intronic variant (c.714+255 C > A), which was predicted to potentially activate the noncanonical splicing acceptor site. Minigene assay revealed that wild-type and c.714+255 C > A alleles had different impacts on splicing. Three transcripts, including the canonical transcript, were detected from the wild-type allele, but only the noncanonical cryptic exon was produced from the variant allele, indicating that c.714+255 C > A was pathogenic. Target long-read sequencing may be used to detect hidden pathogenic variants in unresolved autosomal recessive cases with only one disclosed hit variant.
Collapse
Affiliation(s)
- Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan.
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
55
|
Hiatt SM, Lawlor JM, Handley LH, Latner DR, Bonnstetter ZT, Finnila CR, Thompson ML, Boston LB, Williams M, Nunez IR, Jenkins J, Kelley WV, Bebin EM, Lopez MA, Hurst ACE, Korf BR, Schmutz J, Grimwood J, Cooper GM. Long-read genome sequencing and variant reanalysis increase diagnostic yield in neurodevelopmental disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.22.24304633. [PMID: 38585854 PMCID: PMC10996728 DOI: 10.1101/2024.03.22.24304633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Variant detection from long-read genome sequencing (lrGS) has proven to be considerably more accurate and comprehensive than variant detection from short-read genome sequencing (srGS). However, the rate at which lrGS can increase molecular diagnostic yield for rare disease is not yet precisely characterized. We performed lrGS using Pacific Biosciences "HiFi" technology on 96 short-read-negative probands with rare disease that were suspected to be genetic. We generated hg38-aligned variants and de novo phased genome assemblies, and subsequently annotated, filtered, and curated variants using clinical standards. New disease-relevant or potentially relevant genetic findings were identified in 16/96 (16.7%) probands, eight of which (8/96, 8.33%) harbored pathogenic or likely pathogenic variants. Newly identified variants were visible in both srGS and lrGS in nine probands (~9.4%) and resulted from changes to interpretation mostly from recent gene-disease association discoveries. Seven cases included variants that were only interpretable in lrGS, including copy-number variants, an inversion, a mobile element insertion, two low-complexity repeat expansions, and a 1 bp deletion. While evidence for each of these variants is, in retrospect, visible in srGS, they were either: not called within srGS data, were represented by calls with incorrect sizes or structures, or failed quality-control and filtration. Thus, while reanalysis of older data clearly increases diagnostic yield, we find that lrGS allows for substantial additional yield (7/96, 7.3%) beyond srGS. We anticipate that as lrGS analysis improves, and as lrGS datasets grow allowing for better variant frequency annotation, the additional lrGS-only rare disease yield will grow over time.
Collapse
Affiliation(s)
- Susan M. Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - Lori H. Handley
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Donald R. Latner
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | | | | | - Lori Beth Boston
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Melissa Williams
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - E. Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Michael A. Lopez
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Anna C. E. Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Bruce R. Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | |
Collapse
|
56
|
Yang Y, del Gaudio D, Santani A, Scott SA. Applications of genome sequencing as a single platform for clinical constitutional genetic testing. GENETICS IN MEDICINE OPEN 2024; 2:101840. [PMID: 39822265 PMCID: PMC11736070 DOI: 10.1016/j.gimo.2024.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 01/19/2025]
Abstract
The number of human disease genes has dramatically increased over the past decade, largely fueled by ongoing advances in sequencing technologies. In parallel, the number of available clinical genetic tests has also increased, including the utilization of exome sequencing for undiagnosed diseases. Although most clinical sequencing tests have been centered on enrichment-based multigene panels and exome sequencing, the continued improvements in performance and throughput of genome sequencing suggest that this technology is emerging as a potential platform for routine clinical genetic testing. A notable advantage is a single workflow with the opportunity to reflexively interrogate content as clinically indicated; however, challenges with implementing routine clinical genome sequencing still remain. This review is centered on evaluating the applications of genome sequencing as a single platform for clinical constitutional genetic testing, including its potential utility for diagnostic testing, carrier screening, cytogenomic molecular karyotyping, prenatal testing, mitochondrial genome interrogation, and pharmacogenomic and polygenic risk score testing.
Collapse
Affiliation(s)
- Yao Yang
- Department of Pathology, Stanford University, Stanford, CA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, CA
| | | | | | - Stuart A. Scott
- Department of Pathology, Stanford University, Stanford, CA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, CA
| |
Collapse
|
57
|
Gustafson JA, Gibson SB, Damaraju N, Zalusky MPG, Hoekzema K, Twesigomwe D, Yang L, Snead AA, Richmond PA, De Coster W, Olson ND, Guarracino A, Li Q, Miller AL, Goffena J, Anderson Z, Storz SHR, Ward SA, Sinha M, Gonzaga-Jauregui C, Clarke WE, Basile AO, Corvelo A, Reeves C, Helland A, Musunuri RL, Revsine M, Patterson KE, Paschal CR, Zakarian C, Goodwin S, Jensen TD, Robb E, McCombie WR, Sedlazeck FJ, Zook JM, Montgomery SB, Garrison E, Kolmogorov M, Schatz MC, McLaughlin RN, Dashnow H, Zody MC, Loose M, Jain M, Eichler EE, Miller DE. Nanopore sequencing of 1000 Genomes Project samples to build a comprehensive catalog of human genetic variation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.05.24303792. [PMID: 38496498 PMCID: PMC10942501 DOI: 10.1101/2024.03.05.24303792] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Less than half of individuals with a suspected Mendelian condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control datasets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project ONT Sequencing Consortium aims to generate LRS data from at least 800 of the 1000 Genomes Project samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37x and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.
Collapse
Affiliation(s)
- Jonas A. Gustafson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Sophia B. Gibson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nikhita Damaraju
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
| | - Miranda PG Zalusky
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David Twesigomwe
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lei Yang
- Pacific Northwest Research Institute, Seattle, WA, USA
| | | | | | - Wouter De Coster
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Nathan D. Olson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Human Technopole, Milan, Italy
| | - Qiuhui Li
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Angela L. Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Joy Goffena
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Zachery Anderson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Sophie HR Storz
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Sydney A. Ward
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Maisha Sinha
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Claudia Gonzaga-Jauregui
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México
| | - Wayne E. Clarke
- New York Genome Center, New York, NY, USA
- Outlier Informatics Inc., Saskatoon, SK, Canada
| | | | | | | | | | | | - Mahler Revsine
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | | | - Cate R. Paschal
- Department of Laboratories, Seattle Children’s Hospital, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Christina Zakarian
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Esther Robb
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Fritz J. Sedlazeck
- Human Genome Sequencing Center Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Justin M. Zook
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mikhail Kolmogorov
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Richard N. McLaughlin
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Pacific Northwest Research Institute, Seattle, WA, USA
| | - Harriet Dashnow
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Matt Loose
- Deep Seq, School of Life Sciences, University of Nottingham, Nottingham, England
| | - Miten Jain
- Department of Bioengineering, Department of Physics, Khoury College of Computer Sciences, Northeastern University, Boston, MA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Danny E. Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
58
|
Olivucci G, Iovino E, Innella G, Turchetti D, Pippucci T, Magini P. Long read sequencing on its way to the routine diagnostics of genetic diseases. Front Genet 2024; 15:1374860. [PMID: 38510277 PMCID: PMC10951082 DOI: 10.3389/fgene.2024.1374860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The clinical application of technological progress in the identification of DNA alterations has always led to improvements of diagnostic yields in genetic medicine. At chromosome side, from cytogenetic techniques evaluating number and gross structural defects to genomic microarrays detecting cryptic copy number variants, and at molecular level, from Sanger method studying the nucleotide sequence of single genes to the high-throughput next-generation sequencing (NGS) technologies, resolution and sensitivity progressively increased expanding considerably the range of detectable DNA anomalies and alongside of Mendelian disorders with known genetic causes. However, particular genomic regions (i.e., repetitive and GC-rich sequences) are inefficiently analyzed by standard genetic tests, still relying on laborious, time-consuming and low-sensitive approaches (i.e., southern-blot for repeat expansion or long-PCR for genes with highly homologous pseudogenes), accounting for at least part of the patients with undiagnosed genetic disorders. Third generation sequencing, generating long reads with improved mappability, is more suitable for the detection of structural alterations and defects in hardly accessible genomic regions. Although recently implemented and not yet clinically available, long read sequencing (LRS) technologies have already shown their potential in genetic medicine research that might greatly impact on diagnostic yield and reporting times, through their translation to clinical settings. The main investigated LRS application concerns the identification of structural variants and repeat expansions, probably because techniques for their detection have not evolved as rapidly as those dedicated to single nucleotide variants (SNV) identification: gold standard analyses are karyotyping and microarrays for balanced and unbalanced chromosome rearrangements, respectively, and southern blot and repeat-primed PCR for the amplification and sizing of expanded alleles, impaired by limited resolution and sensitivity that have not been significantly improved by the advent of NGS. Nevertheless, more recently, with the increased accuracy provided by the latest product releases, LRS has been tested also for SNV detection, especially in genes with highly homologous pseudogenes and for haplotype reconstruction to assess the parental origin of alleles with de novo pathogenic variants. We provide a review of relevant recent scientific papers exploring LRS potential in the diagnosis of genetic diseases and its potential future applications in routine genetic testing.
Collapse
Affiliation(s)
- Giulia Olivucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Emanuela Iovino
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Innella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pamela Magini
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
59
|
Chen Z, Gustavsson EK, Macpherson H, Anderson C, Clarkson C, Rocca C, Self E, Alvarez Jerez P, Scardamaglia A, Pellerin D, Montgomery K, Lee J, Gagliardi D, Luo H, Hardy J, Polke J, Singleton AB, Blauwendraat C, Mathews KD, Tucci A, Fu YH, Houlden H, Ryten M, Ptáček LJ. Adaptive Long-Read Sequencing Reveals GGC Repeat Expansion in ZFHX3 Associated with Spinocerebellar Ataxia Type 4. Mov Disord 2024; 39:486-497. [PMID: 38197134 DOI: 10.1002/mds.29704] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 4 (SCA4) is an autosomal dominant ataxia with invariable sensory neuropathy originally described in a family with Swedish ancestry residing in Utah more than 25 years ago. Despite tight linkage to the 16q22 region, the molecular diagnosis has since remained elusive. OBJECTIVES Inspired by pathogenic structural variation implicated in other 16q-ataxias with linkage to the same locus, we revisited the index SCA4 cases from the Utah family using novel technologies to investigate structural variation within the candidate region. METHODS We adopted a targeted long-read sequencing approach with adaptive sampling on the Oxford Nanopore Technologies (ONT) platform that enables the detection of segregating structural variants within a genomic region without a priori assumptions about any variant features. RESULTS Using this approach, we found a heterozygous (GGC)n repeat expansion in the last coding exon of the zinc finger homeobox 3 (ZFHX3) gene that segregates with disease, ranging between 48 and 57 GGC repeats in affected probands. This finding was replicated in a separate family with SCA4. Furthermore, the estimation of this GGC repeat size in short-read whole genome sequencing (WGS) data of 21,836 individuals recruited to the 100,000 Genomes Project in the UK and our in-house dataset of 11,258 exomes did not reveal any pathogenic repeats, indicating that the variant is ultrarare. CONCLUSIONS These findings support the utility of adaptive long-read sequencing as a powerful tool to decipher causative structural variation in unsolved cases of inherited neurological disease. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zhongbo Chen
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
| | - Emil K Gustavsson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
| | - Hannah Macpherson
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Claire Anderson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
| | - Chris Clarkson
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Clarissa Rocca
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Eleanor Self
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Pilar Alvarez Jerez
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Annarita Scardamaglia
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David Pellerin
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kylie Montgomery
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
| | - Jasmaine Lee
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Delia Gagliardi
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Huihui Luo
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - John Hardy
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Reta Lila Weston Institute, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China
| | - James Polke
- The Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine D Mathews
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Arianna Tucci
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Ying-Hui Fu
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neuroscience, University of California San Francisco, San Francisco, California, USA
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| | - Henry Houlden
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
- The Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Mina Ryten
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
| | - Louis J Ptáček
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neuroscience, University of California San Francisco, San Francisco, California, USA
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
60
|
Kingsmore SF, Nofsinger R, Ellsworth K. Rapid genomic sequencing for genetic disease diagnosis and therapy in intensive care units: a review. NPJ Genom Med 2024; 9:17. [PMID: 38413639 PMCID: PMC10899612 DOI: 10.1038/s41525-024-00404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Single locus (Mendelian) diseases are a leading cause of childhood hospitalization, intensive care unit (ICU) admission, mortality, and healthcare cost. Rapid genome sequencing (RGS), ultra-rapid genome sequencing (URGS), and rapid exome sequencing (RES) are diagnostic tests for genetic diseases for ICU patients. In 44 studies of children in ICUs with diseases of unknown etiology, 37% received a genetic diagnosis, 26% had consequent changes in management, and net healthcare costs were reduced by $14,265 per child tested by URGS, RGS, or RES. URGS outperformed RGS and RES with faster time to diagnosis, and higher rate of diagnosis and clinical utility. Diagnostic and clinical outcomes will improve as methods evolve, costs decrease, and testing is implemented within precision medicine delivery systems attuned to ICU needs. URGS, RGS, and RES are currently performed in <5% of the ~200,000 children likely to benefit annually due to lack of payor coverage, inadequate reimbursement, hospital policies, hospitalist unfamiliarity, under-recognition of possible genetic diseases, and current formatting as tests rather than as a rapid precision medicine delivery system. The gap between actual and optimal outcomes in children in ICUs is currently increasing since expanded use of URGS, RGS, and RES lags growth in those likely to benefit through new therapies. There is sufficient evidence to conclude that URGS, RGS, or RES should be considered in all children with diseases of uncertain etiology at ICU admission. Minimally, diagnostic URGS, RGS, or RES should be ordered early during admissions of critically ill infants and children with suspected genetic diseases.
Collapse
Affiliation(s)
- Stephen F Kingsmore
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, USA.
| | - Russell Nofsinger
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, USA
| | - Kasia Ellsworth
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, USA
| |
Collapse
|
61
|
Zalusky MPG, Gustafson JA, Bohaczuk SC, Mallory B, Reed P, Wenger T, Beckman E, Chang IJ, Paschal CR, Buchan JG, Lockwood CM, Puia-Dumitrescu M, Garalde DR, Guillory J, Markham AJ, Bamshad MJ, Eichler EE, Stergachis AB, Miller DE. 3-hour genome sequencing and targeted analysis to rapidly assess genetic risk. GENETICS IN MEDICINE OPEN 2024; 2:101833. [PMID: 39421454 PMCID: PMC11484281 DOI: 10.1016/j.gimo.2024.101833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Purpose Rapid genetic testing in the critical care setting may guide diagnostic evaluation, direct therapies, and help families and care providers make informed decisions about goals of care. We tested whether a simplified DNA extraction and library preparation process would enable us to perform ultra-rapid assessment of genetic risk for a Mendelian condition, based on information from an affected sibling, using long-read genome sequencing and targeted analysis. Methods Following extraction of DNA from cord blood and rapid library preparation, genome sequencing was performed on an Oxford Nanopore PromethION. FASTQ files were generated from original sequencing data in near real-time and aligned to a reference genome. Variant calling and analysis were performed at timed intervals. Results We optimized the DNA extraction and library preparation methods to create sufficient library for sequencing from 500 μL of blood. Real-time, targeted analysis was performed to determine that the newborn was neither affected nor a heterozygote for variants underlying a Mendelian condition. Phasing of the target region and prior knowledge of the affected haplotypes supported our interpretation despite a low level of coverage at 3 hours of life. Conclusion This proof-of-concept experiment demonstrates how prior knowledge of haplotype structure or familial variants can be used to rapidly evaluate an individual at risk for a genetic disease. While ultra-rapid sequencing remains both complex and cost prohibitive, our method is more easily automated than prior approaches and uses smaller volumes of blood, thus may be more easily adopted for future studies of ultra-rapid genome sequencing in the clinical setting.
Collapse
Affiliation(s)
- Miranda PG Zalusky
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
| | - Jonas A Gustafson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephanie C Bohaczuk
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Ben Mallory
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Paxton Reed
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
| | - Tara Wenger
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
| | - Erika Beckman
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
| | - Irene J. Chang
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
| | - Cate R. Paschal
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Laboratories, Seattle Children’s Hospital, Seattle, WA, USA
| | - Jillian G. Buchan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Christina M. Lockwood
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Mihai Puia-Dumitrescu
- Division of Neonatology, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
| | | | | | | | - Michael J. Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Andrew B. Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Danny E. Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
62
|
Nakamura W, Hirata M, Oda S, Chiba K, Okada A, Mateos RN, Sugawa M, Iida N, Ushiama M, Tanabe N, Sakamoto H, Sekine S, Hirasawa A, Kawai Y, Tokunaga K, Tsujimoto SI, Shiba N, Ito S, Yoshida T, Shiraishi Y. Assessing the efficacy of target adaptive sampling long-read sequencing through hereditary cancer patient genomes. NPJ Genom Med 2024; 9:11. [PMID: 38368425 PMCID: PMC10874402 DOI: 10.1038/s41525-024-00394-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/15/2024] [Indexed: 02/19/2024] Open
Abstract
Innovations in sequencing technology have led to the discovery of novel mutations that cause inherited diseases. However, many patients with suspected genetic diseases remain undiagnosed. Long-read sequencing technologies are expected to significantly improve the diagnostic rate by overcoming the limitations of short-read sequencing. In addition, Oxford Nanopore Technologies (ONT) offers adaptive sampling and computationally driven target enrichment technology. This enables more affordable intensive analysis of target gene regions compared to standard non-selective long-read sequencing. In this study, we developed an efficient computational workflow for target adaptive sampling long-read sequencing (TAS-LRS) and evaluated it through application to 33 genomes collected from suspected hereditary cancer patients. Our workflow can identify single nucleotide variants with nearly the same accuracy as the short-read platform and elucidate complex forms of structural variations. We also newly identified several SINE-R/VNTR/Alu (SVA) elements affecting the APC gene in two patients with familial adenomatous polyposis, as well as their sites of origin. In addition, we demonstrated that off-target reads from adaptive sampling, which is typically discarded, can be effectively used to accurately genotype common single-nucleotide polymorphisms (SNPs) across the entire genome, enabling the calculation of a polygenic risk score. Furthermore, we identified allele-specific MLH1 promoter hypermethylation in a Lynch syndrome patient. In summary, our workflow with TAS-LRS can simultaneously capture monogenic risk variants including complex structural variations, polygenic background as well as epigenetic alterations, and will be an efficient platform for genetic disease research and diagnosis.
Collapse
Affiliation(s)
- Wataru Nakamura
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
- Department of Pediatrics, Yokohama City University Hospital, Kanagawa, Japan
| | - Makoto Hirata
- Division of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoyo Oda
- Division of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Division of Laboratory Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ai Okada
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Raúl Nicolás Mateos
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahiro Sugawa
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Naoko Iida
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Mineko Ushiama
- Division of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Noriko Tanabe
- Division of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Hiromi Sakamoto
- Division of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Shigeki Sekine
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Hirasawa
- Department of Clinical Genetics and Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Central Biobank, National Center Biobank Network, Tokyo, Japan
| | - Shin-Ichi Tsujimoto
- Department of Pediatrics, Yokohama City University Hospital, Kanagawa, Japan
| | - Norio Shiba
- Department of Pediatrics, Yokohama City University Hospital, Kanagawa, Japan
| | - Shuichi Ito
- Department of Pediatrics, Yokohama City University Hospital, Kanagawa, Japan
| | - Teruhiko Yoshida
- Division of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
63
|
Kawakami R, Hiraide T, Watanabe K, Miyamoto S, Hira K, Komatsu K, Ishigaki H, Sakaguchi K, Maekawa M, Yamashita K, Fukuda T, Miyairi I, Ogata T, Saitsu H. RNA sequencing and target long-read sequencing reveal an intronic transposon insertion causing aberrant splicing. J Hum Genet 2024; 69:91-99. [PMID: 38102195 DOI: 10.1038/s10038-023-01211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
More than half of cases with suspected genetic disorders remain unsolved by genetic analysis using short-read sequencing such as exome sequencing (ES) and genome sequencing (GS). RNA sequencing (RNA-seq) and long-read sequencing (LRS) are useful for interpretation of candidate variants and detection of structural variants containing repeat sequences, respectively. Recently, adaptive sampling on nanopore sequencers enables target LRS more easily. Here, we present a Japanese girl with premature chromatid separation (PCS)/mosaic variegated aneuploidy (MVA) syndrome. ES detected a known pathogenic maternal heterozygous variant (c.1402-5A>G) in intron 10 of BUB1B (NM_001211.6), a known responsive gene for PCS/MVA syndrome with autosomal recessive inheritance. Minigene splicing assay revealed that almost all transcripts from the c.1402-5G allele have mis-splicing with 4-bp insertion. GS could not detect another pathogenic variant, while RNA-seq revealed abnormal reads in intron 2. To extensively explore variants in intron 2, we performed adaptive sampling and identified a paternal 3.0 kb insertion. Consensus sequence of 16 reads spanning the insertion showed that the insertion consists of Alu and SVA elements. Realignment of RNA-seq reads to the new reference sequence containing the insertion revealed that 16 reads have 5' splice site within the insertion and 3' splice site at exon 3, demonstrating causal relationship between the insertion and aberrant splicing. In addition, immunoblotting showed severely diminished BUB1B protein level in patient derived cells. These data suggest that detection of transcriptomic abnormalities by RNA-seq can be a clue for identifying pathogenic variants, and determination of insert sequences is one of merits of LRS.
Collapse
Affiliation(s)
- Ryota Kawakami
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takuya Hiraide
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Watanabe
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Sachiko Miyamoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kota Hira
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuyuki Komatsu
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidetoshi Ishigaki
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kimiyoshi Sakaguchi
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Keita Yamashita
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tokiko Fukuda
- Department of Hamamatsu Child Health and Developmental Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Isao Miyairi
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ogata
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
64
|
Friedman JM, Bombard Y, Carleton B, Issa AM, Knoppers B, Plon SE, Rahimzadeh V, Relling MV, Williams MS, van Karnebeek C, Vears D, Cornel MC. Should secondary pharmacogenomic variants be actively screened and reported when diagnostic genome-wide sequencing is performed in a child? Genet Med 2024; 26:101033. [PMID: 38007624 DOI: 10.1016/j.gim.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023] Open
Abstract
This white paper was prepared by the Global Alliance for Genomics and Health Regulatory and Ethics Work Stream's Pediatric Task Team to review and provide perspective with respect to ethical, legal, and social issues regarding the return of secondary pharmacogenomic variants in children who have a serious disease or developmental disorder and are undergoing exome or genome sequencing to identify a genetic cause of their condition. We discuss actively searching for and reporting pharmacogenetic/genomic variants in pediatric patients, different methods of returning secondary pharmacogenomic findings to the patient/parents and/or treating clinicians, maintaining these data in the patient's health record over time, decision supports to assist using pharmacogenetic results in future treatment decisions, and sharing information in public databases to improve the clinical interpretation of pharmacogenetic variants identified in other children. We conclude by presenting a series of points to consider for clinicians and policymakers regarding whether, and under what circumstances, routine screening and return of pharmacogenomic variants unrelated to the indications for testing is appropriate in children who are undergoing genome-wide sequencing to assist in the diagnosis of a suspected genetic disease.
Collapse
Affiliation(s)
- Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Yvonne Bombard
- Genomics Health Services Research Program, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Bruce Carleton
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada; Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pharmaceutical Outcomes Programme, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Amalia M Issa
- Personalized Precision Medicine & Targeted Therapeutics, Springfield, MA; Health Policy, University of the Sciences, Philadelphia, PA; Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA; Family Medicine, McGill University, Montreal, Quebec, Canada
| | - Bartha Knoppers
- Centre of Genomics and Policy, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Sharon E Plon
- Department of Pediatrics, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Vasiliki Rahimzadeh
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX
| | - Mary V Relling
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Clara van Karnebeek
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands; Departments of Pediatrics and Human Genetics, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands; United for Metabolic Diseases, The Netherlands; Radboud Center for Mitochondrial and Metabolic Medicine, Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Danya Vears
- University of Melbourne, Carlton, Melbourne, Australia; Biomedical Ethics Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Martina C Cornel
- Department of Human Genetics and Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| |
Collapse
|
65
|
Mandal AK. Recent insights into crosstalk between genetic parasites and their host genome. Brief Funct Genomics 2024; 23:15-23. [PMID: 36307128 PMCID: PMC10799329 DOI: 10.1093/bfgp/elac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 01/21/2024] Open
Abstract
The bulk of higher order organismal genomes is comprised of transposable element (TE) copies, i.e. genetic parasites. The host-parasite relation is multi-faceted, varying across genomic region (genic versus intergenic), life-cycle stages, tissue-type and of course in health versus pathological state. The reach of functional genomics though, in investigating genotype-to-phenotype relations, has been limited when TEs are involved. The aim of this review is to highlight recent progress made in understanding how TE origin biochemical activity interacts with the central dogma stages of the host genome. Such interaction can also bring about modulation of the immune context and this could have important repercussions in disease state where immunity has a role to play. Thus, the review is to instigate ideas and action points around identifying evolutionary adaptations that the host genome and the genetic parasite have evolved and why they could be relevant.
Collapse
Affiliation(s)
- Amit K Mandal
- Corresponding author: A.K. Mandal, Nuffield Department of Surgical Sciences (NDS), University of Oxford, Old Road Campus Research building (ORCRB), Oxford OX3 7DQ, UK. Tel: +44 (0)1865 617123; Fax: +44 (0)1865 768876; E-mail:
| |
Collapse
|
66
|
Wang J, Yang L, Cheng A, Tham CY, Tan W, Darmawan J, de Sessions PF, Wan Y. Direct RNA sequencing coupled with adaptive sampling enriches RNAs of interest in the transcriptome. Nat Commun 2024; 15:481. [PMID: 38212309 PMCID: PMC10784512 DOI: 10.1038/s41467-023-44656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
Abundant cellular transcripts occupy most of the sequencing reads in the transcriptome, making it challenging to assay for low-abundant transcripts. Here, we utilize the adaptive sampling function of Oxford Nanopore sequencing to selectively deplete and enrich RNAs of interest without biochemical manipulation before sequencing. Adaptive sampling performed on a pool of in vitro transcribed RNAs resulted in a net increase of 22-30% in the proportion of transcripts of interest in the population. Enriching and depleting different proportions of the Candida albicans transcriptome also resulted in a 11-13.5% increase in the number of reads on target transcripts, with longer and more abundant transcripts being more efficiently depleted. Depleting all currently annotated Candida albicans transcripts did not result in an absolute enrichment of remaining transcripts, although we identified 26 previously unknown transcripts and isoforms, 17 of which are antisense to existing transcripts. Further improvements in the adaptive sampling of RNAs will allow the technology to be widely applied to study RNAs of interest in diverse transcriptomes.
Collapse
Affiliation(s)
- Jiaxu Wang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | - Lin Yang
- Oxford Nanopore Technologies, Singapore, 138667, Singapore
| | - Anthony Cheng
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | | | - Wenting Tan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | - Jefferson Darmawan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | | | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
| |
Collapse
|
67
|
Damaraju N, Miller AL, Miller DE. Long-Read DNA and RNA Sequencing to Streamline Clinical Genetic Testing and Reduce Barriers to Comprehensive Genetic Testing. J Appl Lab Med 2024; 9:138-150. [PMID: 38167773 DOI: 10.1093/jalm/jfad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Obtaining a precise molecular diagnosis through clinical genetic testing provides information about disease prognosis or progression, allows accurate counseling about recurrence risk, and empowers individuals to benefit from precision therapies or take part in N-of-1 trials. Unfortunately, more than half of individuals with a suspected Mendelian condition remain undiagnosed after a comprehensive clinical evaluation, and the results of any individual clinical genetic test ordered during a typical evaluation may take weeks or months to return. Furthermore, commonly used technologies, such as short-read sequencing, are limited in the types of disease-causing variation they can identify. New technologies, such as long-read sequencing (LRS), are poised to solve these problems. CONTENT Recent technical advances have improved accuracy, increased throughput, and decreased the costs of commercially available LRS technologies. This has resolved many historical concerns about the use of LRS in the clinical environment and opened the door to widespread clinical adoption of LRS. Here, we review LRS technology, how it has been used in the research setting to clarify complex variants or identify disease-causing variation missed by prior clinical testing, and how it may be used clinically in the near future. SUMMARY LRS is unique in that, as a single data source, it has the potential to replace nearly every other clinical genetic test offered today. When analyzed in a stepwise fashion, LRS will simplify laboratory processes, reduce barriers to comprehensive genetic testing, increase the rate of genetic diagnoses, and shorten the amount of time required to make a molecular diagnosis.
Collapse
Affiliation(s)
- Nikhita Damaraju
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, United States
| | - Angela L Miller
- Department of Pediatrics, University of Washington, Seattle, WA 98195, United States
| | - Danny E Miller
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, United States
- Department of Pediatrics, University of Washington, Seattle, WA 98195, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
68
|
Harvey WT, Ebert P, Ebler J, Audano PA, Munson KM, Hoekzema K, Porubsky D, Beck CR, Marschall T, Garimella K, Eichler EE. Whole-genome long-read sequencing downsampling and its effect on variant-calling precision and recall. Genome Res 2023; 33:2029-2040. [PMID: 38190646 PMCID: PMC10760522 DOI: 10.1101/gr.278070.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/03/2023] [Indexed: 01/10/2024]
Abstract
Advances in long-read sequencing (LRS) technologies continue to make whole-genome sequencing more complete, affordable, and accurate. LRS provides significant advantages over short-read sequencing approaches, including phased de novo genome assembly, access to previously excluded genomic regions, and discovery of more complex structural variants (SVs) associated with disease. Limitations remain with respect to cost, scalability, and platform-dependent read accuracy and the tradeoffs between sequence coverage and sensitivity of variant discovery are important experimental considerations for the application of LRS. We compare the genetic variant-calling precision and recall of Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio) HiFi platforms over a range of sequence coverages. For read-based applications, LRS sensitivity begins to plateau around 12-fold coverage with a majority of variants called with reasonable accuracy (F1 score above 0.5), and both platforms perform well for SV detection. Genome assembly increases variant-calling precision and recall of SVs and indels in HiFi data sets with HiFi outperforming ONT in quality as measured by the F1 score of assembly-based variant call sets. While both technologies continue to evolve, our work offers guidance to design cost-effective experimental strategies that do not compromise on discovering novel biology.
Collapse
Affiliation(s)
- William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195-5065, USA
| | - Peter Ebert
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
- Core Unit Bioinformatics, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jana Ebler
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Peter A Audano
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195-5065, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195-5065, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195-5065, USA
| | - Christine R Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030-6403, USA
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kiran Garimella
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195-5065, USA;
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
69
|
Ling C, Dai Y, Geng C, Pan S, Quan W, Ding Q, Yang X, Shen D, Tao Q, Li J, Li J, Wang Y, Jiang S, Wang Y, Chen L, Cui L, Wang D. Uncovering the true features of dystrophin gene rearrangement and improving the molecular diagnosis of Duchenne and Becker muscular dystrophies. iScience 2023; 26:108365. [PMID: 38047063 PMCID: PMC10690541 DOI: 10.1016/j.isci.2023.108365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
Duchenne and Becker muscular dystrophies (DMD/BMD) are caused by complex mutations in the dystrophin gene (DMD). Currently, there is no integrative method for the precise detection of all potential DMD variants, a gap which we aimed to address using long-read sequencing. The captured long-read sequencing panel developed in this study was applied to 129 subjects, including 11 who had previously unsolved cases. The results showed that this method accurately detected DMD mutations, ranging from single-nucleotide variations to structural variations. Furthermore, our findings revealed that continuous exon duplication/deletion in the DMD/BMD cohort may be attributed to complex segmental rearrangements and that noncontiguous duplication/deletion is generally attributed to intragenic inversion or interchromosome translocation. Mutations in the deep introns were confirmed to produce a pseudoexon. Moreover, variations in female carriers were precisely identified. The integrated and precise DMD gene screening method proposed in this study could improve the molecular diagnosis of DMD/BMD.
Collapse
Affiliation(s)
- Chao Ling
- The Laboratory of Clinical Genetics, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Chang Geng
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Shirang Pan
- Grandomics Biosciences, Beijing 102200, China
| | | | - Qingyun Ding
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Qing Tao
- Grandomics Biosciences, Beijing 102200, China
| | - Jingjing Li
- Grandomics Biosciences, Beijing 102200, China
| | - Jia Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Yinbing Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Shan Jiang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Yang Wang
- Grandomics Biosciences, Beijing 102200, China
| | - Lin Chen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Depeng Wang
- Grandomics Biosciences, Beijing 102200, China
| |
Collapse
|
70
|
AlAbdi L, Shamseldin HE, Khouj E, Helaby R, Aljamal B, Alqahtani M, Almulhim A, Hamid H, Hashem MO, Abdulwahab F, Abouyousef O, Jaafar A, Alshidi T, Al-Owain M, Alhashem A, Al Tala S, Khan AO, Mardawi E, Alkuraya H, Faqeih E, Afqi M, Alkhalifi S, Rahbeeni Z, Hagos ST, Al-Ahmadi W, Nadeef S, Maddirevula S, Khabar KSA, Putra A, Angelov A, Park C, Reyes-Ramos AM, Umer H, Ullah I, Driguez P, Fukasawa Y, Cheung MS, Gallouzi IE, Alkuraya FS. Beyond the exome: utility of long-read whole genome sequencing in exome-negative autosomal recessive diseases. Genome Med 2023; 15:114. [PMID: 38098057 PMCID: PMC10720148 DOI: 10.1186/s13073-023-01270-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Long-read whole genome sequencing (lrWGS) has the potential to address the technical limitations of exome sequencing in ways not possible by short-read WGS. However, its utility in autosomal recessive Mendelian diseases is largely unknown. METHODS In a cohort of 34 families in which the suspected autosomal recessive diseases remained undiagnosed by exome sequencing, lrWGS was performed on the Pacific Bioscience Sequel IIe platform. RESULTS Likely causal variants were identified in 13 (38%) of the cohort. These include (1) a homozygous splicing SV in TYMS as a novel candidate gene for lethal neonatal lactic acidosis, (2) a homozygous non-coding SV that we propose impacts STK25 expression and causes a novel neurodevelopmental disorder, (3) a compound heterozygous SV in RP1L1 with complex inheritance pattern in a family with inherited retinal disease, (4) homozygous deep intronic variants in LEMD2 and SNAP91 as novel candidate genes for neurodevelopmental disorders in two families, and (5) a promoter SNV in SLC4A4 causing non-syndromic band keratopathy. Surprisingly, we also encountered causal variants that could have been identified by short-read exome sequencing in 7 families. The latter highlight scenarios that are especially challenging at the interpretation level. CONCLUSIONS Our data highlight the continued need to address the interpretation challenges in parallel with efforts to improve the sequencing technology itself. We propose a path forward for the implementation of lrWGS sequencing in the setting of autosomal recessive diseases in a way that maximizes its utility.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ebtissal Khouj
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rana Helaby
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Bayan Aljamal
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Aisha Almulhim
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Halima Hamid
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Omar Abouyousef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Jaafar
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Alshidi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed Al-Owain
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Collage of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Collage of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Pediatric Department, Division of Genetic and Metabolic Medicine, Prince Sultan Medical Military City, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Pediatric Department, Neonatal Unit, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Arif O Khan
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Elham Mardawi
- Maternal Fetal Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Hisham Alkuraya
- Vitreoretinal Surgery and Ocular Genetics, Global Eye Care/Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Saudi Arabia
| | - Manal Afqi
- Metabolic and Genetic Center, King Salman Bin Abdulaziz Medical City, Almadinah Almunwarah, Saudi Arabia
| | - Salwa Alkhalifi
- Newborn Screening, Ministry of Health, Eastern Province, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Samya T Hagos
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Wijdan Al-Ahmadi
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Seba Nadeef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khalid S A Khabar
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Alexander Putra
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Angel Angelov
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Changsook Park
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Ana M Reyes-Ramos
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Husen Umer
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Ikram Ullah
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Patrick Driguez
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Yoshinori Fukasawa
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Ming Sin Cheung
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Imed Eddine Gallouzi
- KAUST Smart-Health Initiative King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- KAUST Smart-Health Initiative King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
71
|
Wrenn DC, Drown DM. Nanopore adaptive sampling enriches for antimicrobial resistance genes in microbial communities. GIGABYTE 2023; 2023:gigabyte103. [PMID: 38111521 PMCID: PMC10726737 DOI: 10.46471/gigabyte.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global public health threat. Environmental microbial communities act as reservoirs for AMR, containing genes associated with resistance, their precursors, and the selective pressures promoting their persistence. Genomic surveillance could provide insights into how these reservoirs change and impact public health. Enriching for AMR genomic signatures in complex microbial communities would strengthen surveillance efforts and reduce time-to-answer. Here, we tested the ability of nanopore sequencing and adaptive sampling to enrich for AMR genes in a mock community of environmental origin. Our setup implemented the MinION mk1B, an NVIDIA Jetson Xavier GPU, and Flongle flow cells. Using adaptive sampling, we observed consistent enrichment by composition. On average, adaptive sampling resulted in a target composition 4× higher than without adaptive sampling. Despite a decrease in total sequencing output, adaptive sampling increased target yield in most replicates. We also demonstrate enrichment in a diverse community using an environmental sample. This method enables rapid and flexible genomic surveillance.
Collapse
Affiliation(s)
- Danielle C. Wrenn
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Devin M. Drown
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
72
|
Steigerwald C, Borsuk J, Pappas J, Galey M, Scott A, Devaney JM, Miller DE, Abreu NJ. CLN2 disease resulting from a novel homozygous deep intronic splice variant in TPP1 discovered using long-read sequencing. Mol Genet Metab 2023; 140:107713. [PMID: 37922835 DOI: 10.1016/j.ymgme.2023.107713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Neuronal ceroid lipofuscinosis type 2 (CLN2) is an autosomal recessive neurodegenerative disorder with enzyme replacement therapy available. We present two siblings with a clinical diagnosis of CLN2 disease, but no identifiable TPP1 variants after standard clinical testing. Long-read sequencing identified a homozygous deep intronic variant predicted to affect splicing, confirmed by clinical DNA and RNA sequencing. This case demonstrates how traditional laboratory assays can complement emerging molecular technologies to provide a precise molecular diagnosis.
Collapse
Affiliation(s)
- Connolly Steigerwald
- Division of Neurogenetics, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jill Borsuk
- Division of Clinical Genetics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - John Pappas
- Division of Clinical Genetics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Miranda Galey
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA 98195, USA
| | - Anna Scott
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Department of Laboratories, Seattle Children's Hospital, Seattle, WA 08105, USA
| | | | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
| | - Nicolas J Abreu
- Division of Neurogenetics, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
73
|
LaFlamme CW, Rastin C, Sengupta S, Pennington HE, Russ-Hall SJ, Schneider AL, Bonkowski ES, Almanza Fuerte EP, Galey M, Goffena J, Gibson SB, Allan TJ, Nyaga DM, Lieffering N, Hebbar M, Walker EV, Darnell D, Olsen SR, Kolekar P, Djekidel N, Rosikiewicz W, McConkey H, Kerkhof J, Levy MA, Relator R, Lev D, Lerman-Sagie T, Park KL, Alders M, Cappuccio G, Chatron N, Demain L, Genevieve D, Lesca G, Roscioli T, Sanlaville D, Tedder ML, Hubshman MW, Ketkar S, Dai H, Worley KC, Rosenfeld JA, Chao HT, Neale G, Carvill GL, Wang Z, Berkovic SF, Sadleir LG, Miller DE, Scheffer IE, Sadikovic B, Mefford HC. Diagnostic Utility of Genome-wide DNA Methylation Analysis in Genetically Unsolved Developmental and Epileptic Encephalopathies and Refinement of a CHD2 Episignature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.11.23296741. [PMID: 37873138 PMCID: PMC10592992 DOI: 10.1101/2023.10.11.23296741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sequence-based genetic testing currently identifies causative genetic variants in ∼50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. Rare epigenetic variations ("epivariants") can drive disease by modulating gene expression at single loci, whereas genome-wide DNA methylation changes can result in distinct "episignature" biomarkers for monogenic disorders in a growing number of rare diseases. Here, we interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 516 individuals with genetically unsolved DEEs who had previously undergone extensive genetic testing. We identified rare differentially methylated regions (DMRs) and explanatory episignatures to discover causative and candidate genetic etiologies in 10 individuals. We then used long-read sequencing to identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and two copy number variants. We also identify pathogenic sequence variants associated with episignatures; some had been missed by previous exome sequencing. Although most DEE genes lack known episignatures, the increase in diagnostic yield for DNA methylation analysis in DEEs is comparable to the added yield of genome sequencing. Finally, we refine an episignature for CHD2 using an 850K methylation array which was further refined at higher CpG resolution using bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate genetic causes as ∼2% (10/516) for unsolved DEE cases.
Collapse
|
74
|
Lenahan AL, Squire AE, Miller DE. Panels, Exomes, Genomes, and More-Finding the Best Path Through the Diagnostic Odyssey. Pediatr Clin North Am 2023; 70:905-916. [PMID: 37704349 DOI: 10.1016/j.pcl.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Selecting the ideal test to evaluate an individual with a suspected genetic disorder can be challenging. While several clinical testing options are available, no single test yet captures all potentially causative genetic variants. Thus, clinicians may order testing in a stepwise fashion, and what to order after non-diagnostic testing can be challenging to determine. Here, we provide an overview of commonly used clinical genetic tests, guidance on when they are best used, and what they may miss. We conclude with a discussion of how new technologies might be used to identify challenging variants and simplify clinical testing in the future.
Collapse
Affiliation(s)
- Arthur L Lenahan
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA 98105, USA
| | - Audrey E Squire
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA 98105, USA
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA 98105, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
75
|
Chrisman B, He C, Jung JY, Stockham N, Paskov K, Washington P, Petereit J, Wall DP. Localizing unmapped sequences with families to validate the Telomere-to-Telomere assembly and identify new hotspots for genetic diversity. Genome Res 2023; 33:1734-1746. [PMID: 37879860 PMCID: PMC10691534 DOI: 10.1101/gr.277175.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/25/2023] [Indexed: 10/27/2023]
Abstract
Although it is ubiquitous in genomics, the current human reference genome (GRCh38) is incomplete: It is missing large sections of heterochromatic sequence, and as a singular, linear reference genome, it does not represent the full spectrum of human genetic diversity. To characterize gaps in GRCh38 and human genetic diversity, we developed an algorithm for sequence location approximation using nuclear families (ASLAN) to identify the region of origin of reads that do not align to GRCh38. Using unmapped reads and variant calls from whole-genome sequences (WGSs), ASLAN uses a maximum likelihood model to identify the most likely region of the genome that a subsequence belongs to given the distribution of the subsequence in the unmapped reads and phasings of families. Validating ASLAN on synthetic data and on reads from the alternative haplotypes in the decoy genome, ASLAN localizes >90% of 100-bp sequences with >92% accuracy and ∼1 Mb of resolution. We then ran ASLAN on 100-mers from unmapped reads from WGS from more than 700 families, and compared ASLAN localizations to alignment of the 100-mers to the recently released T2T-CHM13 assembly. We found that many unmapped reads in GRCh38 originate from telomeres and centromeres that are gaps in GRCh38. ASLAN localizations are in high concordance with T2T-CHM13 alignments, except in the centromeres of the acrocentric chromosomes. Comparing ASLAN localizations and T2T-CHM13 alignments, we identified sequences missing from T2T-CHM13 or sequences with high divergence from their aligned region in T2T-CHM13, highlighting new hotspots for genetic diversity.
Collapse
Affiliation(s)
- Brianna Chrisman
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA;
- Nevada Bioinformatics Center, University of Nevada, Reno, Nevada 89557, USA
| | - Chloe He
- Department of Biomedical Data Science, Stanford University, Stanford, California 94305, USA
| | - Jae-Yoon Jung
- Department of Pediatrics (Systems Medicine), Stanford University, Stanford, California 94305, USA
| | - Nate Stockham
- Department of Neuroscience, Stanford University, Stanford, California 94305, USA
| | - Kelley Paskov
- Department of Biomedical Data Science, Stanford University, Stanford, California 94305, USA
| | - Peter Washington
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, Nevada 89557, USA
| | - Dennis P Wall
- Department of Biomedical Data Science, Stanford University, Stanford, California 94305, USA
- Department of Pediatrics (Systems Medicine), Stanford University, Stanford, California 94305, USA
| |
Collapse
|
76
|
Wang R, Helbig I, Edmondson AC, Lin L, Xing Y. Splicing defects in rare diseases: transcriptomics and machine learning strategies towards genetic diagnosis. Brief Bioinform 2023; 24:bbad284. [PMID: 37580177 PMCID: PMC10516351 DOI: 10.1093/bib/bbad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
Genomic variants affecting pre-messenger RNA splicing and its regulation are known to underlie many rare genetic diseases. However, common workflows for genetic diagnosis and clinical variant interpretation frequently overlook splice-altering variants. To better serve patient populations and advance biomedical knowledge, it has become increasingly important to develop and refine approaches for detecting and interpreting pathogenic splicing variants. In this review, we will summarize a few recent developments and challenges in using RNA sequencing technologies for rare disease investigation. Moreover, we will discuss how recent computational splicing prediction tools have emerged as complementary approaches for revealing disease-causing variants underlying splicing defects. We speculate that continuous improvements to sequencing technologies and predictive modeling will not only expand our understanding of splicing regulation but also bring us closer to filling the diagnostic gap for rare disease patients.
Collapse
Affiliation(s)
- Robert Wang
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- The Epilepsy NeuroGenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew C Edmondson
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lan Lin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
77
|
Grimes SM, Kim HS, Roy S, Sathe A, Ayala C, Bai X, Almeda-Notestine A, Haebe S, Shree T, Levy R, Lau B, Ji H. Single-cell multi-gene identification of somatic mutations and gene rearrangements in cancer. NAR Cancer 2023; 5:zcad034. [PMID: 37435532 PMCID: PMC10331933 DOI: 10.1093/narcan/zcad034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/18/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023] Open
Abstract
In this proof-of-concept study, we developed a single-cell method that provides genotypes of somatic alterations found in coding regions of messenger RNAs and integrates these transcript-based variants with their matching cell transcriptomes. We used nanopore adaptive sampling on single-cell complementary DNA libraries to validate coding variants in target gene transcripts, and short-read sequencing to characterize cell types harboring the mutations. CRISPR edits for 16 targets were identified using a cancer cell line, and known variants in the cell line were validated using a 352-gene panel. Variants in primary cancer samples were validated using target gene panels ranging from 161 to 529 genes. A gene rearrangement was also identified in one patient, with the rearrangement occurring in two distinct tumor sites.
Collapse
Affiliation(s)
- Susan M Grimes
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heon Seok Kim
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sharmili Roy
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anuja Sathe
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carlos I Ayala
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiangqi Bai
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alison F Almeda-Notestine
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah Haebe
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tanaya Shree
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ronald Levy
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Billy T Lau
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
78
|
Yoshida-Tanaka K, Ikemoto K, Kuribayashi R, Unoki M, Takano T, Fujimoto A. Long-read sequencing reveals the complex structure of extra dic(21;21) chromosome and its biological effects. Hum Genet 2023; 142:1375-1384. [PMID: 37432452 PMCID: PMC10449678 DOI: 10.1007/s00439-023-02583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023]
Abstract
Complex congenital chromosome abnormalities are rare but often cause severe symptoms. However, the structures and biological impacts of such abnormalities have seldomly been analyzed at the molecular level. Previously, we reported a Japanese female patient with severe developmental defects. The patient had an extra dicentric chromosome 21 (chr21) consisting of two partial chr21 copies fused together within their long arms along with two centromeres and many copy number changes. In this study, we performed whole-genome, transcriptional, and DNA methylation analyses, coupled with novel bioinformatic approaches, to reveal the complex structure of the extra chromosome and its transcriptional and epigenetic changes. Long-read sequencing accurately identified the structures of junctions related to the copy number changes in extra chr21 and suggested the mechanism of the structural changes. Our transcriptome analysis showed the overexpression of genes in extra chr21. Additionally, an allele-specific DNA methylation analysis of the long-read sequencing data suggested that the centromeric region of extra chr21 was hypermethylated, a property associated with the inactivation of one centromere in the extra chromosome. Our comprehensive analysis provides insights into the molecular mechanism underlying the generation of the extra chromosome and its pathogenic roles.
Collapse
Affiliation(s)
- Kugui Yoshida-Tanaka
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Ko Ikemoto
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Ryoji Kuribayashi
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Motoko Unoki
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Takako Takano
- Department of Child Health, Tokyo Kasei University, 1-18-1 Kaga, Itabashi-Ku, Tokyo, 173-8602, Japan.
- Tokyo Metropolitan Tobu Medical Center for Children with Developmental Disabilities, Tokyo, Japan.
| | - Akihiro Fujimoto
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
79
|
Abstract
DNA sequencing has revolutionized medicine over recent decades. However, analysis of large structural variation and repetitive DNA, a hallmark of human genomes, has been limited by short-read technology, with read lengths of 100-300 bp. Long-read sequencing (LRS) permits routine sequencing of human DNA fragments tens to hundreds of kilobase pairs in size, using both real-time sequencing by synthesis and nanopore-based direct electronic sequencing. LRS permits analysis of large structural variation and haplotypic phasing in human genomes and has enabled the discovery and characterization of rare pathogenic structural variants and repeat expansions. It has also recently enabled the assembly of a complete, gapless human genome that includes previously intractable regions, such as highly repetitive centromeres and homologous acrocentric short arms. With the addition of protocols for targeted enrichment, direct epigenetic DNA modification detection, and long-range chromatin profiling, LRS promises to launch a new era of understanding of genetic diversity and pathogenic mutations in human populations.
Collapse
Affiliation(s)
- Peter E Warburton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ,
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ,
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
80
|
Romagnoli S, Bartalucci N, Vannucchi AM. Resolving complex structural variants via nanopore sequencing. Front Genet 2023; 14:1213917. [PMID: 37674481 PMCID: PMC10479017 DOI: 10.3389/fgene.2023.1213917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023] Open
Abstract
The recent development of high-throughput sequencing platforms provided impressive insights into the field of human genetics and contributed to considering structural variants (SVs) as the hallmark of genome instability, leading to the establishment of several pathologic conditions, including neoplasia and neurodegenerative and cognitive disorders. While SV detection is addressed by next-generation sequencing (NGS) technologies, the introduction of more recent long-read sequencing technologies have already been proven to be invaluable in overcoming the inaccuracy and limitations of NGS technologies when applied to resolve wide and structurally complex SVs due to the short length (100-500 bp) of the sequencing read utilized. Among the long-read sequencing technologies, Oxford Nanopore Technologies developed a sequencing platform based on a protein nanopore that allows the sequencing of "native" long DNA molecules of virtually unlimited length (typical range 1-100 Kb). In this review, we focus on the bioinformatics methods that improve the identification and genotyping of known and novel SVs to investigate human pathological conditions, discussing the possibility of introducing nanopore sequencing technology into routine diagnostics.
Collapse
Affiliation(s)
| | | | - Alessandro Maria Vannucchi
- CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, DENOTHE Excellence Center, Careggi University Hospital and Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
81
|
Shiraishi Y, Koya J, Chiba K, Okada A, Arai Y, Saito Y, Shibata T, Kataoka K. Precise characterization of somatic complex structural variations from tumor/control paired long-read sequencing data with nanomonsv. Nucleic Acids Res 2023; 51:e74. [PMID: 37336583 PMCID: PMC10415145 DOI: 10.1093/nar/gkad526] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
We present our novel software, nanomonsv, for detecting somatic structural variations (SVs) using tumor and matched control long-read sequencing data with a single-base resolution. The current version of nanomonsv includes two detection modules, Canonical SV module, and Single breakend SV module. Using tumor/control paired long-read sequencing data from three cancer and their matched lymphoblastoid lines, we demonstrate that Canonical SV module can identify somatic SVs that can be captured by short-read technologies with higher precision and recall than existing methods. In addition, we have developed a workflow to classify mobile element insertions while elucidating their in-depth properties, such as 5' truncations, internal inversions, as well as source sites for 3' transductions. Furthermore, Single breakend SV module enables the detection of complex SVs that can only be identified by long-reads, such as SVs involving highly-repetitive centromeric sequences, and LINE1- and virus-mediated rearrangements. In summary, our approaches applied to cancer long-read sequencing data can reveal various features of somatic SVs and will lead to a better understanding of mutational processes and functional consequences of somatic SVs.
Collapse
Affiliation(s)
- Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Junji Koya
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ai Okada
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Saito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Hematology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
82
|
Gupta P, Nakamichi K, Bonnell AC, Yanagihara R, Radulovich N, Hisama FM, Chao JR, Mustafi D. Familial co-segregation and the emerging role of long-read sequencing to re-classify variants of uncertain significance in inherited retinal diseases. NPJ Genom Med 2023; 8:20. [PMID: 37558662 PMCID: PMC10412581 DOI: 10.1038/s41525-023-00366-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Phasing genetic variants is essential in determining those that are potentially disease-causing. In autosomal recessive inherited retinal diseases (IRDs), reclassification of variants of uncertain significance (VUS) can provide a genetic diagnosis in indeterminate compound heterozygote cases. We report four cases in which familial co-segregation demonstrated a VUS resided in trans to a known pathogenic variant, which in concert with other supporting criteria, led to the reclassification of the VUS to likely pathogenic, thereby providing a genetic diagnosis in each case. We also demonstrate in a simplex patient without access to family members for co-segregation analysis that targeted long-read sequencing can provide haplotagged variant calling. This can elucidate if variants reside in trans and provide phase of genetic variants from the proband alone without parental testing. This emerging method can alleviate the bottleneck of haplotype analysis in cases where genetic testing of family members is unfeasible to provide a complete genetic diagnosis.
Collapse
Affiliation(s)
- Pankhuri Gupta
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Kenji Nakamichi
- Department of Ophthalmology and Roger and Karalis Johnson Retina Center, University of Washington, Seattle, WA, 98109, USA
| | - Alyssa C Bonnell
- Department of Ophthalmology and Roger and Karalis Johnson Retina Center, University of Washington, Seattle, WA, 98109, USA
| | - Ryan Yanagihara
- Department of Ophthalmology and Roger and Karalis Johnson Retina Center, University of Washington, Seattle, WA, 98109, USA
| | - Nick Radulovich
- Department of Ophthalmology and Roger and Karalis Johnson Retina Center, University of Washington, Seattle, WA, 98109, USA
| | - Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Jennifer R Chao
- Department of Ophthalmology and Roger and Karalis Johnson Retina Center, University of Washington, Seattle, WA, 98109, USA
| | - Debarshi Mustafi
- Department of Ophthalmology and Roger and Karalis Johnson Retina Center, University of Washington, Seattle, WA, 98109, USA.
- Division of Ophthalmology, Seattle Children's Hospital, Seattle, WA, 98105, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
83
|
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, Yuan B, Boone PM, Groopman EE, Délot EC, Jain D, Sanchis-Juan A, Starita LM, Talkowski M, Montgomery SB, Bamshad MJ, Chong JX, Wheeler MT, Berger SI, O'Donnell-Luria A, Sedlazeck FJ, Miller DE. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet 2023; 110:1229-1248. [PMID: 37541186 PMCID: PMC10432150 DOI: 10.1016/j.ajhg.2023.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/06/2023] Open
Abstract
Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order, and emerging technologies, such as optical genome mapping and long-read DNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to research consortia focused on elucidating the underlying cause of rare unsolved genetic disorders.
Collapse
Affiliation(s)
- Monica H Wojcik
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M Reuter
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael H Duyzend
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hayk Barseghyan
- Center for Genetics Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Philip M Boone
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emily E Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emmanuèle C Délot
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA; Center for Genetics Medicine Research, Children's National Research and Innovation Campus, Washington, DC, USA; Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lea M Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen B Montgomery
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J Bamshad
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jessica X Chong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Matthew T Wheeler
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seth I Berger
- Center for Genetics Medicine Research and Rare Disease Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Danny E Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
84
|
Ohori S, Miyauchi A, Osaka H, Lourenco CM, Arakaki N, Sengoku T, Ogata K, Honjo RS, Kim CA, Mitsuhashi S, Frith MC, Seyama R, Tsuchida N, Uchiyama Y, Koshimizu E, Hamanaka K, Misawa K, Miyatake S, Mizuguchi T, Saito K, Fujita A, Matsumoto N. Biallelic structural variations within FGF12 detected by long-read sequencing in epilepsy. Life Sci Alliance 2023; 6:e202302025. [PMID: 37286232 PMCID: PMC10248215 DOI: 10.26508/lsa.202302025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
We discovered biallelic intragenic structural variations (SVs) in FGF12 by applying long-read whole genome sequencing to an exome-negative patient with developmental and epileptic encephalopathy (DEE). We also found another DEE patient carrying a biallelic (homozygous) single-nucleotide variant (SNV) in FGF12 that was detected by exome sequencing. FGF12 heterozygous recurrent missense variants with gain-of-function or heterozygous entire duplication of FGF12 are known causes of epilepsy, but biallelic SNVs/SVs have never been described. FGF12 encodes intracellular proteins interacting with the C-terminal domain of the alpha subunit of voltage-gated sodium channels 1.2, 1.5, and 1.6, promoting excitability by delaying fast inactivation of the channels. To validate the molecular pathomechanisms of these biallelic FGF12 SVs/SNV, highly sensitive gene expression analyses using lymphoblastoid cells from the patient with biallelic SVs, structural considerations, and Drosophila in vivo functional analysis of the SNV were performed, confirming loss-of-function. Our study highlights the importance of small SVs in Mendelian disorders, which may be overlooked by exome sequencing but can be detected efficiently by long-read whole genome sequencing, providing new insights into the pathomechanisms of human diseases.
Collapse
Affiliation(s)
- Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Genetics, Kitasato University Hospital, Sagamihara, Japan
| | - Akihiko Miyauchi
- Department of Pediatrics, Jichi Medical School, Shimotsuke, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical School, Shimotsuke, Japan
| | - Charles Marques Lourenco
- Neurogenetics Department, Faculdade de Medicina de São José do Rio Preto, São Jose do Rio Preto, Brazil
- Personalized Medicine Department, Special Education Sector at DLE/Grupo Pardini, Belo Horizonte, Brazil
| | - Naohiro Arakaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Toru Sengoku
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Rachel Sayuri Honjo
- Unidade de Genética Médica do Instituto da Criança, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Chong Ae Kim
- Unidade de Genética Médica do Instituto da Criança, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Satomi Mitsuhashi
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST, Tokyo, Japan
| | - Rie Seyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kuniaki Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
85
|
Liu Q, Xu F, Liu Q, Liu X. Comparative analysis of five etiological detecting techniques for the positive rates in the diagnosis of tuberculous granuloma. J Clin Tuberc Other Mycobact Dis 2023; 32:100378. [PMID: 37293271 PMCID: PMC10245093 DOI: 10.1016/j.jctube.2023.100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Purpose To examine the relationship between the positive rate and types of necrosis in pathological examinations of tuberculosis granulomas with necrosis, to improve the detection rate of positive cases. Methods Specimens from 381 patients were collected in Wuhan Pulmonary Hospital from Jan 2022 to Feb 2023. The samples were examined using various methods such as AFB smear microscopy, mycobacterial culture, PCR, SAT-TB, and X-pert MTB/RIF rapid molecular detection. Result There were 3 types of necrosis. Including 270 cases of caseous necrosis, 30 cases of coagulation necrosis, and 76 cases of an abscess. Five cases were non-necrotizing granulomas.In the pathological specimen testing for tuberculosis, five detection techniques were used and their positive rates detected in descending order were X-pert, TBDNA, SAT-TB, tuberculosis culture, AFB. Comparison between different examinations in the group: X-pert had the highest positive rate in each group, and it was significantly higher than TBDNA (P < 0.01) in caseous necrosis specimens. Compared with the same examination between the groups, the detection rates of X-pert and TBDNA in abscess and caseous necrosis specimens were significantly higher than in coagulation necrosis specimens (P < 0.01). Conclusion The positive rates of the five etiological detection techniques in tuberculous granuloma with different types of necrosis were quite different. The specimens of caseous necrosis or abscess could be selected for detection, and X-pert had the highest positive rate.
Collapse
Affiliation(s)
- Qibin Liu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, No. 28 Baofeng Road, Qiaokou District, Wuhan City, Hubei Province, China
| | - Feng Xu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, No. 28 Baofeng, Road, Qiaokou District, Wuhan City, Hubei Province, China
| | - Qiliang Liu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, No. 28 Baofeng, Road, Qiaokou District, Wuhan City, Hubei Province, China
| | - Xiaoyu Liu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, No. 28 Baofeng Road, Qiaokou District, Wuhan City, Hubei Province, China
| |
Collapse
|
86
|
Hort Y, Sullivan P, Wedd L, Fowles L, Stevanovski I, Deveson I, Simons C, Mallett A, Patel C, Furlong T, Cowley MJ, Shine J, Mallawaarachchi A. Atypical splicing variants in PKD1 explain most undiagnosed typical familial ADPKD. NPJ Genom Med 2023; 8:16. [PMID: 37419908 DOI: 10.1038/s41525-023-00362-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of kidney failure and is primarily associated with PKD1 or PKD2. Approximately 10% of patients remain undiagnosed after standard genetic testing. We aimed to utilise short and long-read genome sequencing and RNA studies to investigate undiagnosed families. Patients with typical ADPKD phenotype and undiagnosed after genetic diagnostics were recruited. Probands underwent short-read genome sequencing, PKD1 and PKD2 coding and non-coding analyses and then genome-wide analysis. Targeted RNA studies investigated variants suspected to impact splicing. Those undiagnosed then underwent Oxford Nanopore Technologies long-read genome sequencing. From over 172 probands, 9 met inclusion criteria and consented. A genetic diagnosis was made in 8 of 9 (89%) families undiagnosed on prior genetic testing. Six had variants impacting splicing, five in non-coding regions of PKD1. Short-read genome sequencing identified novel branchpoint, AG-exclusion zone and missense variants generating cryptic splice sites and a deletion causing critical intron shortening. Long-read sequencing confirmed the diagnosis in one family. Most undiagnosed families with typical ADPKD have splice-impacting variants in PKD1. We describe a pragmatic method for diagnostic laboratories to assess PKD1 and PKD2 non-coding regions and validate suspected splicing variants through targeted RNA studies.
Collapse
Affiliation(s)
- Yvonne Hort
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, Australia
| | - Patricia Sullivan
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Laura Wedd
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
| | - Lindsay Fowles
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Igor Stevanovski
- Genomic Technologies, Garvan Institute of Medical Research, Sydney, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, Australia
| | - Ira Deveson
- Genomic Technologies, Garvan Institute of Medical Research, Sydney, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, Australia
| | - Cas Simons
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Andrew Mallett
- Department of Renal Medicine, Townsville University Hospital, Townsville, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Timothy Furlong
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - John Shine
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, Australia
| | - Amali Mallawaarachchi
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, Australia.
- Clinical Genetics Service, Institute of Precision Medicine and Bioinformatics, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
87
|
Laufer VA, Glover TW, Wilson TE. Applications of advanced technologies for detecting genomic structural variation. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108475. [PMID: 37931775 PMCID: PMC10792551 DOI: 10.1016/j.mrrev.2023.108475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Chromosomal structural variation (SV) encompasses a heterogenous class of genetic variants that exerts strong influences on human health and disease. Despite their importance, many structural variants (SVs) have remained poorly characterized at even a basic level, a discrepancy predicated upon the technical limitations of prior genomic assays. However, recent advances in genomic technology can identify and localize SVs accurately, opening new questions regarding SV risk factors and their impacts in humans. Here, we first define and classify human SVs and their generative mechanisms, highlighting characteristics leveraged by various SV assays. We next examine the first-ever gapless assembly of the human genome and the technical process of assembling it, which required third-generation sequencing technologies to resolve structurally complex loci. The new portions of that "telomere-to-telomere" and subsequent pangenome assemblies highlight aspects of SV biology likely to develop in the near-term. We consider the strengths and limitations of the most promising new SV technologies and when they or longstanding approaches are best suited to meeting salient goals in the study of human SV in population-scale genomics research, clinical, and public health contexts. It is a watershed time in our understanding of human SV when new approaches are expected to fundamentally change genomic applications.
Collapse
Affiliation(s)
- Vincent A Laufer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas W Glover
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas E Wilson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
88
|
Noveski P, Plaseski T, Dimitrovska M, Plaseska-Karanfilska D. Androgen Insensitivity Syndrome DUE to Non-Coding Variation in the Androgen Receptor Gene: Review of the Literature and Case Report of a Patient with Mosaic c.-547C>T Variant. Balkan J Med Genet 2023; 26:51-56. [PMID: 37576790 PMCID: PMC10413879 DOI: 10.2478/bjmg-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Sexual development (SD) is a complex process with strict spatiotemporal regulation of gene expression. Despite advancements in molecular diagnostics, disorders of sexual development (DSD) have a diagnostic rate of ~50%. Androgen insensitivity syndrome (AIS) represents the most common form of 46,XY DSD, with a spectrum of defects in androgen action. Considering the importance of very strict regulation of the SD, it is reasonable to assume that the genetic cause for proportion of the DSD lies in the non-coding part of the genome that regulates proper gene functioning. Here we present a patient with partial AIS (PAIS) due to a mosaic de novo c.-547C>T pathogenic variant in the 5'UTR of androgen receptor (AR) gene. The same mutation was previously described as inherited, in two unrelated patients with complete AIS (CAIS). Thus, our case further confirms the previous findings that variable gene expressivity could be attributed to mosaicism. Mutations in 5'UTR could create new upstream open reading frames (uORFs) or could disrupt the existing one. A recent systematic genome-wide study identified AR as a member of a subset of genes where modifications of uORFs represents an important disease mechanism. Only a small number of studies are reporting non-coding mutations in the AR gene and our case emphasizes the importance of molecular testing of the entire AR locus in AIS patients. The introduction of new methods for comprehensive molecular testing in routine genetic diagnosis, accompanied with new tools for in sillico analysis could improve the genetic diagnosis of AIS, and DSD in general.
Collapse
Affiliation(s)
- P Noveski
- Research Centre for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’, Macedonian Academy of Sciences and Arts, 1000Skopje, Republic of North Macedonia
| | - T Plaseski
- University Clinic of Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre “Mother Teresa“, 1000Skopje, Republic of North Macedonia
| | - M Dimitrovska
- University Clinic of Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre “Mother Teresa“, 1000Skopje, Republic of North Macedonia
| | - D Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’, Macedonian Academy of Sciences and Arts, 1000Skopje, Republic of North Macedonia
| |
Collapse
|
89
|
Yahya S, Watson CM, Carr I, McKibbin M, Crinnion LA, Taylor M, Bonin H, Fletcher T, El-Asrag ME, Ali M, Toomes C, Inglehearn CF. Long-Read Nanopore Sequencing of RPGR ORF15 is Enhanced Following DNase I Treatment of MinION Flow Cells. Mol Diagn Ther 2023; 27:525-535. [PMID: 37284979 PMCID: PMC10299921 DOI: 10.1007/s40291-023-00656-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
INTRODUCTION RPGR ORF15 is an exon present almost exclusively in the retinal transcript of RPGR. It is purine-rich, repetitive and notoriously hard to sequence, but is a hotspot for mutations causing X-linked retinitis pigmentosa. METHODS Long-read nanopore sequencing on MinION and Flongle flow cells was used to sequence RPGR ORF15 in genomic DNA from patients with inherited retinal dystrophy. A flow cell wash kit was used on a MinION flow cell to increase yield. Findings were confirmed by PacBio SMRT long-read sequencing. RESULTS We showed that long-read nanopore sequencing successfully reads through a 2 kb PCR-amplified fragment containing ORF15. We generated reads of sufficient quality and cumulative read-depth to detect pathogenic RP-causing variants. However, we observed that this G-rich, repetitive DNA segment rapidly blocks the available pores, resulting in sequence yields less than 5% of the expected output. This limited the extent to which samples could be pooled, increasing cost. We tested the utility of a MinION wash kit containing DNase I to digest DNA fragments remaining on the flow cell, regenerating the pores. Use of the DNase I treatment allowed repeated re-loading, increasing the sequence reads obtained. Our customised workflow was used to screen pooled amplification products from previously unsolved inherited retinal disease (IRD) in patients, identifying two new cases with pathogenic ORF15 variants. DISCUSSION We report the novel finding that long-read nanopore sequencing can read through RPGR-ORF15, a DNA sequence not captured by short-read next-generation sequencing (NGS), but with a more reduced yield. Use of a flow cell wash kit containing DNase I unblocks the pores, allowing reloading of further library aliquots over a 72-h period, increasing yield. The workflow we describe provides a novel solution to the need for a rapid, robust, scalable, cost-effective ORF15 screening protocol.
Collapse
Affiliation(s)
- Samar Yahya
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, St James's University Hospital, Wellcome Trust Brenner Building, Beckett Street, Leeds, LS9 7TF, UK
- Department of Medical Genetics, School of Medicine, King Abdulaziz University, Rabigh, Kingdom of Saudi Arabia
| | - Christopher M Watson
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, St James's University Hospital, Wellcome Trust Brenner Building, Beckett Street, Leeds, LS9 7TF, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, UK
| | - Ian Carr
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, St James's University Hospital, Wellcome Trust Brenner Building, Beckett Street, Leeds, LS9 7TF, UK
| | - Martin McKibbin
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, St James's University Hospital, Wellcome Trust Brenner Building, Beckett Street, Leeds, LS9 7TF, UK
- Department of Ophthalmology, St. James's University Hospital, Leeds, UK
| | - Laura A Crinnion
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, St James's University Hospital, Wellcome Trust Brenner Building, Beckett Street, Leeds, LS9 7TF, UK
| | - Morag Taylor
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, St James's University Hospital, Wellcome Trust Brenner Building, Beckett Street, Leeds, LS9 7TF, UK
| | - Hope Bonin
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Tracy Fletcher
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Mohammed E El-Asrag
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, St James's University Hospital, Wellcome Trust Brenner Building, Beckett Street, Leeds, LS9 7TF, UK
- Department of Zoology, Faculty of Science, Benha University, Banha, Egypt
- Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, UK
| | - Manir Ali
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, St James's University Hospital, Wellcome Trust Brenner Building, Beckett Street, Leeds, LS9 7TF, UK
| | - Carmel Toomes
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, St James's University Hospital, Wellcome Trust Brenner Building, Beckett Street, Leeds, LS9 7TF, UK
| | - Chris F Inglehearn
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, St James's University Hospital, Wellcome Trust Brenner Building, Beckett Street, Leeds, LS9 7TF, UK.
| |
Collapse
|
90
|
Wrenn DC, Drown DM. Nanopore Adaptive Sampling Enriches for Antimicrobial Resistance Genes in Microbial Communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546783. [PMID: 37425917 PMCID: PMC10327016 DOI: 10.1101/2023.06.27.546783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Antimicrobial resistance (AMR) is a global public health threat. Environmental microbial communities act as reservoirs for AMR, containing genes associated with resistance, their precursors, and the selective pressures to encourage their persistence. Genomic surveillance could provide insight into how these reservoirs are changing and their impact on public health. The ability to enrich for AMR genomic signatures in complex microbial communities would strengthen surveillance efforts and reduce time-to-answer. Here, we test the ability of nanopore sequencing and adaptive sampling to enrich for AMR genes in a mock community of environmental origin. Our setup implemented the MinION mk1B, an NVIDIA Jetson Xavier GPU, and flongle flow cells. We observed consistent enrichment by composition when using adaptive sampling. On average, adaptive sampling resulted in a target composition that was 4x higher than a treatment without adaptive sampling. Despite a decrease in total sequencing output, the use of adaptive sampling increased target yield in most replicates.
Collapse
Affiliation(s)
- Danielle C. Wrenn
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Devin M. Drown
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
91
|
Mastrorosa FK, Miller DE, Eichler EE. Applications of long-read sequencing to Mendelian genetics. Genome Med 2023; 15:42. [PMID: 37316925 PMCID: PMC10266321 DOI: 10.1186/s13073-023-01194-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
Advances in clinical genetic testing, including the introduction of exome sequencing, have uncovered the molecular etiology for many rare and previously unsolved genetic disorders, yet more than half of individuals with a suspected genetic disorder remain unsolved after complete clinical evaluation. A precise genetic diagnosis may guide clinical treatment plans, allow families to make informed care decisions, and permit individuals to participate in N-of-1 trials; thus, there is high interest in developing new tools and techniques to increase the solve rate. Long-read sequencing (LRS) is a promising technology for both increasing the solve rate and decreasing the amount of time required to make a precise genetic diagnosis. Here, we summarize current LRS technologies, give examples of how they have been used to evaluate complex genetic variation and identify missing variants, and discuss future clinical applications of LRS. As costs continue to decrease, LRS will find additional utility in the clinical space fundamentally changing how pathological variants are discovered and eventually acting as a single-data source that can be interrogated multiple times for clinical service.
Collapse
Affiliation(s)
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
92
|
Greer SU, Botello J, Hongo D, Levy B, Shah P, Rabinowitz M, Miller DE, Im K, Kumar A. Implementation of Nanopore sequencing as a pragmatic workflow for copy number variant confirmation in the clinic. J Transl Med 2023; 21:378. [PMID: 37301971 PMCID: PMC10257846 DOI: 10.1186/s12967-023-04243-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Diagnosis of rare genetic diseases can be a long, expensive and complex process, involving an array of tests in the hope of obtaining an actionable result. Long-read sequencing platforms offer the opportunity to make definitive molecular diagnoses using a single assay capable of detecting variants, characterizing methylation patterns, resolving complex rearrangements, and assigning findings to long-range haplotypes. Here, we demonstrate the clinical utility of Nanopore long-read sequencing by validating a confirmatory test for copy number variants (CNVs) in neurodevelopmental disorders and illustrate the broader applications of this platform to assess genomic features with significant clinical implications. METHODS We used adaptive sampling on the Oxford Nanopore platform to sequence 25 genomic DNA samples and 5 blood samples collected from patients with known or false-positive copy number changes originally detected using short-read sequencing. Across the 30 samples (a total of 50 with replicates), we assayed 35 known unique CNVs (a total of 55 with replicates) and one false-positive CNV, ranging in size from 40 kb to 155 Mb, and assessed the presence or absence of suspected CNVs using normalized read depth. RESULTS Across 50 samples (including replicates) sequenced on individual MinION flow cells, we achieved an average on-target mean depth of 9.5X and an average on-target read length of 4805 bp. Using a custom read depth-based analysis, we successfully confirmed the presence of all 55 known CNVs (including replicates) and the absence of one false-positive CNV. Using the same CNV-targeted data, we compared genotypes of single nucleotide variant loci to verify that no sample mix-ups occurred between assays. For one case, we also used methylation detection and phasing to investigate the parental origin of a 15q11.2-q13 duplication with implications for clinical prognosis. CONCLUSIONS We present an assay that efficiently targets genomic regions to confirm clinically relevant CNVs with a concordance rate of 100%. Furthermore, we demonstrate how integration of genotype, methylation, and phasing data from the Nanopore sequencing platform can potentially simplify and shorten the diagnostic odyssey.
Collapse
Affiliation(s)
| | | | - Donna Hongo
- MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA
| | - Brynn Levy
- MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Premal Shah
- MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA
| | - Matthew Rabinowitz
- MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA
- Natera Inc., San Carlos, CA, USA
| | - Danny E Miller
- Department of Pediatrics, Department of Laboratory Medicine and Pathology, University of Washington, WA, Seattle, USA
| | - Kate Im
- MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA
| | - Akash Kumar
- MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA.
| |
Collapse
|
93
|
Salz R, Saraiva-Agostinho N, Vorsteveld E, van der Made CI, Kersten S, Stemerdink M, Allen J, Volders PJ, Hunt SE, Hoischen A, 't Hoen PAC. SUsPECT: a pipeline for variant effect prediction based on custom long-read transcriptomes for improved clinical variant annotation. BMC Genomics 2023; 24:305. [PMID: 37280537 PMCID: PMC10245480 DOI: 10.1186/s12864-023-09391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Our incomplete knowledge of the human transcriptome impairs the detection of disease-causing variants, in particular if they affect transcripts only expressed under certain conditions. These transcripts are often lacking from reference transcript sets, such as Ensembl/GENCODE and RefSeq, and could be relevant for establishing genetic diagnoses. We present SUsPECT (Solving Unsolved Patient Exomes/gEnomes using Custom Transcriptomes), a pipeline based on the Ensembl Variant Effect Predictor (VEP) to predict variant impact on custom transcript sets, such as those generated by long-read RNA-sequencing, for downstream prioritization. Our pipeline predicts the functional consequence and likely deleteriousness scores for missense variants in the context of novel open reading frames predicted from any transcriptome. We demonstrate the utility of SUsPECT by uncovering potential mutational mechanisms of pathogenic variants in ClinVar that are not predicted to be pathogenic using the reference transcript annotation. In further support of SUsPECT's utility, we identified an enrichment of immune-related variants predicted to have a more severe molecular consequence when annotating with a newly generated transcriptome from stimulated immune cells instead of the reference transcriptome. Our pipeline outputs crucial information for further prioritization of potentially disease-causing variants for any disease and will become increasingly useful as more long-read RNA sequencing datasets become available.
Collapse
Affiliation(s)
- Renee Salz
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands
| | - Nuno Saraiva-Agostinho
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Emil Vorsteveld
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands
| | - Caspar I van der Made
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, and Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simone Kersten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands
| | - Merel Stemerdink
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Jamie Allen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Pieter-Jan Volders
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Laboratory of Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, 3500, Belgium
| | - Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, and Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter A C 't Hoen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands.
| |
Collapse
|
94
|
Maroilley T, Tsai M, Mascarenhas R, Diao C, Khanbabaei M, Kaya S, Depienne C, Tarailo‐Graovac M, Klein KM. A novel FAME1 repeat configuration in a European family identified using a combined genomics approach. Epilepsia Open 2023; 8:659-665. [PMID: 36740228 PMCID: PMC10235570 DOI: 10.1002/epi4.12702] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/28/2023] [Indexed: 02/07/2023] Open
Abstract
Familial adult myoclonic epilepsy (FAME) is an adult-onset neurological disease characterized by cortical tremor, myoclonus, and seizures due to a pentanucleotide repeat expansion: a combination of pathogenic TTTCA expansion associated with a TTTTA repeat in introns of six different genes. Repeat-primed PCR (RP-PCR) is an inexpensive test for expansions at known loci. The analysis of the SAMD12 locus revealed that the repeats have different size, configuration, and composition. The TTTCA repeats can be very long (>1000 repeats) but also very short (14 being the shortest identified). Here, we report siblings of European descent with the clinical diagnosis of FAME yet a negative RP-PCR test. Using short-read genome sequencing, we identified the pentanucleotide expansion in intron 4 of SAMD12, which was confirmed by CRIPSR-Cas9-mediated enrichment and long-read sequencing to be of (TTTTA)~879 (TTTCA)3 (TTTTA)7 (TTTCA)7 configuration. Our finding is the first to associate the SAMD12 locus in European patients with FAME and currently represents the shortest identified TTTCA expansion. Our results suggest that the SAMD12 locus should be tested in patients with suspected FAME independent of ethnicity. Furthermore, RP-PCR may miss the underlying mutation, and genome sequencing may be needed to confirm the pathogenic repeat.
Collapse
Affiliation(s)
- Tatiana Maroilley
- Department of Biochemistry and Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical Genetics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Meng‐Han Tsai
- Department of Neurology and Medical ResearchKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- School of Medicine, College of Medicine, TaoyuanChang Gung UniversityTaoyuan CityTaiwan
| | - Rumika Mascarenhas
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Catherine Diao
- Department of Biochemistry and Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical Genetics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Maryam Khanbabaei
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Sabine Kaya
- Institute of Human Genetics, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Christel Depienne
- Institute of Human Genetics, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Maja Tarailo‐Graovac
- Department of Biochemistry and Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical Genetics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Karl Martin Klein
- Department of Medical Genetics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Epilepsy Center Frankfurt Rhine‐Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Center for Personalized Translational Epilepsy Research (CePTER)Goethe‐University FrankfurtFrankfurtGermany
| |
Collapse
|
95
|
Spealman P, De T, Chuong JN, Gresham D. Best Practices in Microbial Experimental Evolution: Using Reporters and Long-Read Sequencing to Identify Copy Number Variation in Experimental Evolution. J Mol Evol 2023; 91:356-368. [PMID: 37012421 PMCID: PMC10275804 DOI: 10.1007/s00239-023-10102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/21/2023] [Indexed: 04/05/2023]
Abstract
Copy number variants (CNVs), comprising gene amplifications and deletions, are a pervasive class of heritable variation. CNVs play a key role in rapid adaptation in both natural, and experimental, evolution. However, despite the advent of new DNA sequencing technologies, detection and quantification of CNVs in heterogeneous populations has remained challenging. Here, we summarize recent advances in the use of CNV reporters that provide a facile means of quantifying de novo CNVs at a specific locus in the genome, and nanopore sequencing, for resolving the often complex structures of CNVs. We provide guidance for the engineering and analysis of CNV reporters and practical guidelines for single-cell analysis of CNVs using flow cytometry. We summarize recent advances in nanopore sequencing, discuss the utility of this technology, and provide guidance for the bioinformatic analysis of these data to define the molecular structure of CNVs. The combination of reporter systems for tracking and isolating CNV lineages and long-read DNA sequencing for characterizing CNV structures enables unprecedented resolution of the mechanisms by which CNVs are generated and their evolutionary dynamics.
Collapse
Affiliation(s)
- Pieter Spealman
- Department of Biology, New York University, New York, NY, 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Titir De
- Department of Biology, New York University, New York, NY, 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Julie N Chuong
- Department of Biology, New York University, New York, NY, 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - David Gresham
- Department of Biology, New York University, New York, NY, 10003, USA.
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
96
|
Nakamichi K, Van Gelder RN, Chao JR, Mustafi D. Targeted adaptive long-read sequencing for discovery of complex phased variants in inherited retinal disease patients. Sci Rep 2023; 13:8535. [PMID: 37237007 PMCID: PMC10219926 DOI: 10.1038/s41598-023-35791-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023] Open
Abstract
Inherited retinal degenerations (IRDs) are a heterogeneous group of predominantly monogenic disorders with over 300 causative genes identified. Short-read exome sequencing is commonly used to genotypically diagnose patients with clinical features of IRDs, however, in up to 30% of patients with autosomal recessive IRDs, one or no disease-causing variants are identified. Furthermore, chromosomal maps cannot be reconstructed for allelic variant discovery with short-reads. Long-read genome sequencing can provide complete coverage of disease loci and a targeted approach can focus sequencing bandwidth to a genomic region of interest to provide increased depth and haplotype reconstruction to uncover cases of missing heritability. We demonstrate that targeted adaptive long-read sequencing on the Oxford Nanopore Technologies (ONT) platform of the USH2A gene from three probands in a family with the most common cause of the syndromic IRD, Usher Syndrome, resulted in greater than 12-fold target gene sequencing enrichment on average. This focused depth of sequencing allowed for haplotype reconstruction and phased variant identification. We further show that variants obtained from the haplotype-aware genotyping pipeline can be heuristically ranked to focus on potential pathogenic candidates without a priori knowledge of the disease-causing variants. Moreover, consideration of the variants unique to targeted long-read sequencing that are not covered by short-read technology demonstrated higher precision and F1 scores for variant discovery by long-read sequencing. This work establishes that targeted adaptive long-read sequencing can generate targeted, chromosome-phased data sets for identification of coding and non-coding disease-causing alleles in IRDs and can be applicable to other Mendelian diseases.
Collapse
Affiliation(s)
- Kenji Nakamichi
- Department of Ophthalmology, Roger and Karalis Johnson Retina Center, University of Washington, Seattle, WA, 98109, USA
| | - Russell N Van Gelder
- Department of Ophthalmology, Roger and Karalis Johnson Retina Center, University of Washington, Seattle, WA, 98109, USA
| | - Jennifer R Chao
- Department of Ophthalmology, Roger and Karalis Johnson Retina Center, University of Washington, Seattle, WA, 98109, USA
| | - Debarshi Mustafi
- Department of Ophthalmology, Roger and Karalis Johnson Retina Center, University of Washington, Seattle, WA, 98109, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, 98195, USA.
- Division of Ophthalmology, Seattle Children's Hospital, Seattle, WA, 98105, USA.
| |
Collapse
|
97
|
Harvey WT, Ebert P, Ebler J, Audano PA, Munson KM, Hoekzema K, Porubsky D, Beck CR, Marschall T, Garimella K, Eichler EE. Whole-genome long-read sequencing downsampling and its effect on variant calling precision and recall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539448. [PMID: 37205567 PMCID: PMC10187267 DOI: 10.1101/2023.05.04.539448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Advances in long-read sequencing (LRS) technology continue to make whole-genome sequencing more complete, affordable, and accurate. LRS provides significant advantages over short-read sequencing approaches, including phased de novo genome assembly, access to previously excluded genomic regions, and discovery of more complex structural variants (SVs) associated with disease. Limitations remain with respect to cost, scalability, and platform-dependent read accuracy and the tradeoffs between sequence coverage and sensitivity of variant discovery are important experimental considerations for the application of LRS. We compare the genetic variant calling precision and recall of Oxford Nanopore Technologies (ONT) and PacBio HiFi platforms over a range of sequence coverages. For read-based applications, LRS sensitivity begins to plateau around 12-fold coverage with a majority of variants called with reasonable accuracy (F1 score above 0.5), and both platforms perform well for SV detection. Genome assembly increases variant calling precision and recall of SVs and indels in HiFi datasets with HiFi outperforming ONT in quality as measured by the F1 score of assembly-based variant callsets. While both technologies continue to evolve, our work offers guidance to design cost-effective experimental strategies that do not compromise on discovering novel biology.
Collapse
Affiliation(s)
- William T. Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter Ebert
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Core Unit Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Jana Ebler
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Peter A. Audano
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Katherine M. Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Christine R. Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032 USA
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Kiran Garimella
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
98
|
Folland C, Ganesh V, Weisburd B, McLean C, Kornberg AJ, O'Donnell-Luria A, Rehm HL, Stevanovski I, Chintalaphani SR, Kennedy P, Deveson IW, Ravenscroft G. Transcriptome and Genome Analysis Uncovers a DMD Structural Variant: A Case Report. Neurol Genet 2023; 9:e200064. [PMID: 37090938 PMCID: PMC10117699 DOI: 10.1212/nxg.0000000000200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/27/2023] [Indexed: 03/16/2023]
Abstract
Objective Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the dystrophin gene (DMD). Hypermethylated CGG expansions within DIP2B 5' UTR are associated with an intellectual development disorder. Here, we demonstrate the diagnostic utility of genomic short-read sequencing (SRS) and transcriptome sequencing to identify a novel DMD structural variant (SV) and a DIP2B CGG expansion in a patient with DMD for whom conventional diagnostic testing failed to yield a genetic diagnosis. Methods We performed genomic SRS, skeletal muscle transcriptome sequencing, and targeted programmable long-read sequencing (LRS). Results The proband had a typical DMD clinical presentation, autism spectrum disorder (ASD), and dystrophinopathy on muscle biopsy. Transcriptome analysis identified 6 aberrantly expressed genes; DMD and DIP2B were the strongest underexpression and overexpression outliers, respectively. Genomic SRS identified a 216 kb paracentric inversion (NC_000023.11: g.33162217-33378800) overlapping 2 DMD promoters. ExpansionHunter indicated an expansion of 109 CGG repeats within the 5' UTR of DIP2B. Targeted genomic LRS confirmed the SV and genotyped the DIP2B repeat expansion as 270 CGG repeats. Discussion Here, transcriptome data heavily guided genomic analysis to resolve a complex DMD inversion and a DIP2B repeat expansion. Longitudinal follow-up will be important for clarifying the clinical significance of the DIP2B genotype.
Collapse
Affiliation(s)
- Chiara Folland
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Vijay Ganesh
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Ben Weisburd
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Catriona McLean
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Andrew J Kornberg
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Anne O'Donnell-Luria
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Heidi L Rehm
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Igor Stevanovski
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Sanjog R Chintalaphani
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Paul Kennedy
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Ira W Deveson
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Gianina Ravenscroft
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| |
Collapse
|
99
|
Re: Yahya et al.: Late-onset autosomal dominant macular degeneration caused by deletion of the CRX gene (Ophthalmology. 2023;130:68-76). Ophthalmology 2023; 130:e9. [PMID: 36400609 DOI: 10.1016/j.ophtha.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
|
100
|
Dixon K, Shen Y, O'Neill K, Mungall KL, Chan S, Bilobram S, Zhang W, Bezeau M, Sharma A, Fok A, Mungall AJ, Moore R, Bosdet I, Thibodeau ML, Sun S, Yip S, Schrader KA, Jones SJM. Defining the heterogeneity of unbalanced structural variation underlying breast cancer susceptibility by nanopore genome sequencing. Eur J Hum Genet 2023; 31:602-606. [PMID: 36797466 PMCID: PMC10172360 DOI: 10.1038/s41431-023-01284-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 02/18/2023] Open
Abstract
Germline structural variants (SVs) are challenging to resolve by conventional genetic testing assays. Long-read sequencing has improved the global characterization of SVs, but its sensitivity at cancer susceptibility loci has not been reported. Nanopore long-read genome sequencing was performed for nineteen individuals with pathogenic copy number alterations in BRCA1, BRCA2, CHEK2 and PALB2 identified by prior clinical testing. Fourteen variants, which spanned single exons to whole genes and included a tandem duplication, were accurately represented. Defining the precise breakpoints of SVs in BRCA1 and CHEK2 revealed unforeseen allelic heterogeneity and informed the mechanisms underlying the formation of recurrent deletions. Integrating read-based and statistical phasing further helped define extended haplotypes associated with founder alleles. Long-read sequencing is a sensitive method for characterizing private, recurrent and founder SVs underlying breast cancer susceptibility. Our findings demonstrate the potential for nanopore sequencing as a powerful genetic testing assay in the hereditary cancer setting.
Collapse
Affiliation(s)
- Katherine Dixon
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Kieran O'Neill
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Simon Chan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Steve Bilobram
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Wei Zhang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | | | | | - Alexandra Fok
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Hereditary Cancer Program, BC Cancer, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Richard Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Ian Bosdet
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - My Linh Thibodeau
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Hereditary Cancer Program, BC Cancer, Vancouver, BC, Canada
| | - Sophie Sun
- Hereditary Cancer Program, BC Cancer, Vancouver, BC, Canada.,Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kasmintan A Schrader
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada. .,Hereditary Cancer Program, BC Cancer, Vancouver, BC, Canada.
| | - Steven J M Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada. .,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.
| |
Collapse
|