51
|
Protective effect of pranlukast on Aβ₁₋₄₂-induced cognitive deficits associated with downregulation of cysteinyl leukotriene receptor 1. Int J Neuropsychopharmacol 2014; 17:581-92. [PMID: 24229499 DOI: 10.1017/s1461145713001314] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Deposition of extracellular amyloid-β (Aβ) peptide is one of the pathological hallmarks of Alzheimer's disease (AD). Accumulation of Aβ is thought to associate with cognition deficits, neuroinflammation and apoptosis observed in AD. However, effective neuroprotective approaches against Aβ neurotoxicity are unavailable. In the present study, we analysed the effects of pranlukast, a selective cysteinyl leukotriene receptor 1 (CysLT₁R) antagonist, on the impairment of learning and memory formation induced by Aβ and the probable underlying electrophysiological and molecular mechanisms. We found that bilateral intrahippocampal injection of Aβ₁₋₄₂ resulted in a significant decline of spatial learning and memory of mice in the Morris water maze (MWM) and Y-maze tests, together with a serious depression of in vivo hippocampal long-term potentiation (LTP) in the CA1 region of the mice. Importantly, this treatment caused significant increases in CysLT₁R expression and subsequent NF-κB signaling, caspase-3 activation and Bcl-2 downregulation in the hippocampus or prefrontal cortex. Oral administration of pranlukast at 0.4 or 0.8 mg/kg for 4 wk significantly reversed Aβ₁₋₄₂-induced impairments of cognitive function and hippocampal LTP in mice. Furthermore, pranlukast reversed Aβ₁₋₄₂-induced CysLT₁R upregulation, and markedly suppressed the Aβ₁₋₄₂-triggered NF-κB pathway, caspase-3 activation and Bcl-2 downregulation in the hippocampus and prefrontal cortex in mice. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay confirmed its presence in the brain after oral administration of pranlukast in mice. These data disclose novel findings about the therapeutic potential of pranlukast, revealing a previously unknown therapeutic possibility to treat memory deficits associated with AD.
Collapse
|
52
|
Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated macrophage infiltration. Oncogene 2014; 34:1241-52. [PMID: 24662827 DOI: 10.1038/onc.2014.85] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/11/2014] [Accepted: 02/25/2014] [Indexed: 12/27/2022]
Abstract
5-lipoxygenase (5-LOX), a member of the lipoxygenase gene family, is a key enzyme assisting in the conversion of arachidonic acid to 5-HETE and leukotrienes. Tumor-associated macrophages (TAMs) have a critical role in the progression and metastasis of many tumors, including ovarian tumors. Moreover, TAMs are often found in a high density in the hypoxic areas of tumors. However, the relevant mechanisms have not been studied explicitly until now. In this study, we found that the expression of 5-LOX strongly correlated with the density of TAMs in hypoxic areas of human ovarian tumor tissues. In cultured ovarian cancer cells, 5-LOX metabolites were increased under hypoxic conditons. Increased 5-LOX metabolites from hypoxic ovarian cancer cells promoted migration and invasion of macrophages, which was further demonstrated to be mediated by the upregulation of matrix metalloproteinase (MMP)-7 expression through the p38 pathway. Besides, we also showed that 5-LOX metabolites enhanced the release of tumor necrosis factor (TNF-α) and heparin-binding epidermal growth factor-like growth factor through upregulation of MMP-7. Furthermore, in animal models, Zileuton (a selective and specific 5-LOX inhibitor) reduced the MMP-7 expression and the number of macrophages infiltrating in the xenograft. Our findings suggest for the first time that increased metabolites of 5-LOX from hypoxic ovarian cancer cells promote TAM infiltration. These results of this study have immediate translational implications for the therapeutic exploitation of TAMs.
Collapse
|
53
|
Involvement of cysteinyl leukotriene receptor 1 in Aβ1–42-induced neurotoxicity in vitro and in vivo. Neurobiol Aging 2014; 35:590-9. [DOI: 10.1016/j.neurobiolaging.2013.09.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/15/2013] [Accepted: 09/22/2013] [Indexed: 12/22/2022]
|
54
|
Bhattacharya A, Hamilton R, Jernigan A, Zhang Y, Sabia M, Rahman MM, Li Y, Wei R, Chaudhuri A, Van Remmen H. Genetic ablation of 12/15-lipoxygenase but not 5-lipoxygenase protects against denervation-induced muscle atrophy. Free Radic Biol Med 2014; 67:30-40. [PMID: 24121057 DOI: 10.1016/j.freeradbiomed.2013.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/30/2013] [Accepted: 10/01/2013] [Indexed: 12/15/2022]
Abstract
Skeletal muscle atrophy is a debilitating outcome of a number of chronic diseases and conditions associated with loss of muscle innervation by motor neurons, such as aging and neurodegenerative diseases. We previously reported that denervation-induced loss of muscle mass is associated with activation of cytosolic phospholipase A2 (cPLA2), the rate-limiting step for the release of arachidonic acid from membrane phospholipids, which then acts as a substrate for metabolic pathways that generate bioactive lipid mediators. In this study, we asked whether 5- and 12/15-lipoxygenase (LO) lipid metabolic pathways downstream of cPLA2 mediate denervation-induced muscle atrophy in mice. Both 5- and 12/15-LO were activated in response to surgical denervation; however, 12/15-LO activity was increased ~2.5-fold versus an ~1.5-fold increase in activity of 5-LO. Genetic and pharmacological inhibition of 12/15-LO (but not 5-LO) significantly protected against denervation-induced muscle atrophy, suggesting a selective role for the 12/15-LO pathway in neurogenic muscle atrophy. The activation of the 12/15-LO pathway (but not 5-LO) during muscle atrophy increased NADPH oxidase activity, protein ubiquitination, and ubiquitin-proteasome-mediated proteolytic degradation. In conclusion, this study reveals a novel pathway for neurogenic muscle atrophy and suggests that 12/15-LO may be a potential therapeutic target in diseases associated with loss of innervation and muscle atrophy.
Collapse
Affiliation(s)
- Arunabh Bhattacharya
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA.
| | - Ryan Hamilton
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Amanda Jernigan
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Yiqiang Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Marian Sabia
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Md M Rahman
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yan Li
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Rochelle Wei
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Asish Chaudhuri
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA; Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Holly Van Remmen
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| |
Collapse
|
55
|
Paranjape SR, Chiang YM, Sanchez JF, Entwistle R, Wang CCC, Oakley BR, Gamblin TC. Inhibition of Tau aggregation by three Aspergillus nidulans secondary metabolites: 2,ω-dihydroxyemodin, asperthecin, and asperbenzaldehyde. PLANTA MEDICA 2014; 80:77-85. [PMID: 24414310 PMCID: PMC6442474 DOI: 10.1055/s-0033-1360180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aggregation of the microtubule-associated protein tau is a significant event in many neurodegenerative diseases including Alzheimer's disease. The inhibition or reversal of tau aggregation is therefore a potential therapeutic strategy for these diseases. Fungal natural products have proven to be a rich source of useful compounds having wide varieties of biological activity. We have screened Aspergillus nidulans secondary metabolites containing aromatic ring structures for their ability to inhibit tau aggregation in vitro using an arachidonic acid polymerization protocol and the previously identified aggregation inhibitor emodin as a positive control. While several compounds showed some activity, 2,ω-dihydroxyemodin, asperthecin, and asperbenzaldehyde were potent aggregation inhibitors as determined by both a filter trap assay and electron microscopy. In this study, these three compounds were stronger inhibitors than emodin, which has been shown in a prior study to inhibit the heparin induction of tau aggregation with an IC50 of 1-5 µM. Additionally, 2,ω-dihydroxyemodin, asperthecin, and asperbenzaldehyde reduced, but did not block, tau stabilization of microtubules. 2,ω-Dihydroxyemodin and asperthecin have similar structures to previously identified tau aggregation inhibitors, while asperbenzaldehyde represents a new class of compounds with tau aggregation inhibitor activity. Asperbenzaldehyde can be readily modified into compounds with strong lipoxygenase inhibitor activity, suggesting that compounds derived from asperbenzaldehyde could have dual activity. Together, our data demonstrates the potential of 2,ω-dihydroxyemodin, asperthecin, and asperbenzaldehyde as lead compounds for further development as therapeutics to inhibit tau aggregation in Alzheimer's disease and neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Smita R. Paranjape
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Institute of Pharmaceutical Science, Chia Nan University School of Pharmacy and Science, Tainan 71710, Taiwan
| | - James F. Sanchez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Ruth Entwistle
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - T. Chris Gamblin
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| |
Collapse
|
56
|
Abstract
AbstractAside from the well-known amyloid beta and tau pathologies found in Alzheimer’s disease (AD), neuroinflammation is a well-established aspect described in humans and animal models of the disease. Inflammatory perturbations are evident not only in neurons, but also in non-neuronal cells and cytokines in the AD brain. Although the amyloid hypothesis implicates amyloid beta (Aβ) as the prime initiator of the AD, brain inflammation in AD has a complex relationship between Aβ and tau. Using our work with the 5-lipoxygenase protein as an example, we suggest that at least in the case of AD, there is an interdependent and not necessarily hierarchical pathological relationship between Aβ, tau and inflammation.
Collapse
|
57
|
Giannopoulos PF, Joshi YB, Praticò D. Novel lipid signaling pathways in Alzheimer's disease pathogenesis. Biochem Pharmacol 2013; 88:560-4. [PMID: 24269629 DOI: 10.1016/j.bcp.2013.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly. With an increasing longevity and the absence of a cure, AD has become not only a major health problem but also a heavy social and economic burden worldwide. In addition to the presence of abundant intra- and extra-cellular neurotoxic amyloid β (Aβ) peptides, which form the amyloid plaques, and intracellular hyperphosphorylated tau protein, the main component of neurofibrillary tangles, consistent evidence indicates that the AD brain is characterized by extensive neuroinflammatory processes. The 5-lipoxygenase (5LO) is a pro-inflammatory enzymatic pathway widely distributed within the central nervous system and is up-regulated in AD. In the last five years our group has been involved in unraveling the neurobiology of this protein and investigating its relationship with cellular and molecular events of functional importance in AD pathogenesis. By using a combination of in vitro and in vivo experimental tools and implementing genetic as well as pharmacological approaches today we know that 5LO is likely an endogenous regulator of Aβ formation via the modulation of the γ-secretase complex, and tau metabolism by modulating its phosphorylation state at specific epitopes via the cyclin-dependent kinase-5 (cdk-5). In addition, 5LO influences synaptic function and integrity and by doing so significantly affects learning and memory in the Tg2576 and 3xTg AD transgenic mouse models. Taken together our data establish this protein as a pleiotropic contributor to the development of the full spectrum of the AD-like phenotype in these mouse models of the disease, making it a viable therapeutic target for the treatment of AD in humans.
Collapse
Affiliation(s)
- Phillip F Giannopoulos
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Yash B Joshi
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Domenico Praticò
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
58
|
Chu J, Li JG, Ceballos-Diaz C, Golde T, Praticò D. The influence of 5-lipoxygenase on Alzheimer's disease-related tau pathology: in vivo and in vitro evidence. Biol Psychiatry 2013; 74:321-8. [PMID: 23352590 PMCID: PMC3726558 DOI: 10.1016/j.biopsych.2012.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/18/2012] [Accepted: 12/18/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND Intracellular deposition of tau protein is a hallmark lesion of Alzheimer's disease. Although it is known this event is secondary to excessive tau phosphorylation, the mechanisms involved remain unknown. We previously reported that the enzyme 5-Lipoxygenase (5LO) acts as a modulator of Aβ peptides formation in vivo, and here we investigate its influence on tau protein. METHODS Tg2576 mice overexpressing neuronal 5LO were generated and its contribution to endogenous tau levels and metabolism investigated. RESULTS Although no differences were noted in the levels of total tau for both groups, compared with controls, Tg2576 mice overexpressing 5LO had a significant increase in the phosphorylation state of tau at S396 and S396/S404, as recognized by the antibodies PHF-13 and PHF-1, respectively. By contrast, no phosphorylation changes were observed in other tau epitopes. This increase was associated with a significant elevation in cyclin dependent kinase-5 but not other kinases that have been involved in tau phosphorylation. Additionally, mice overexpressing 5LO had biochemical evidence of altered synaptic integrity because they manifested a reduction in PSD-95, synaptophysin and MAP2. CONCLUSIONS This study demonstrates a new role for 5LO in regulating endogenous tau metabolism in the central nervous system and supports the hypothesis that its pharmacologic inhibition could be beneficial for Alzheimer's disease-related tau neuropathology.
Collapse
Affiliation(s)
- Jin Chu
- Centre for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
59
|
Giannopoulos PF, Chu J, Joshi YB, Sperow M, Li JG, Kirby LG, Praticò D. 5-lipoxygenase activating protein reduction ameliorates cognitive deficit, synaptic dysfunction, and neuropathology in a mouse model of Alzheimer's disease. Biol Psychiatry 2013; 74:348-56. [PMID: 23683389 PMCID: PMC3742720 DOI: 10.1016/j.biopsych.2013.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/25/2013] [Accepted: 04/11/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND 5-lipoxygenase activating protein (FLAP) is abundantly present in the central nervous system. Although its function has been extensively interrogated in the context of peripheral inflammation, novel roles for this protein are emerging in the central nervous system. The objective of our study was to investigate the functional role that FLAP plays in a mouse model of Alzheimer's disease (AD) with plaques and tangles (i.e., 3xTg mice). METHODS By implementing a genetic knockout of FLAP and pharmacologic inhibition with a FLAP inhibitor (MK-591), we evaluated the effect on the AD-like neuropathology, cognition, and synaptic plasticity in the 3xTg mice. RESULTS We show that reduction of FLAP leads to amelioration of cognition and memory along with the rescuing of synaptic dysfunction at an early age before the development of overt neuropathology. Genetic knockout and pharmacologic inhibition of FLAP also yielded an improvement in AD pathology through a reduction in Aβ via the γ-secretase pathway and a decrease in tau phosphorylation through the cdk5 pathway. CONCLUSIONS Our studies identify a novel functional role for FLAP in regulating memory and synaptic plasticity. They establish this protein at the crossroad of multiple pathways that ultimately contribute to the development of the entire AD-like phenotype, making it a viable therapeutic target with disease-modifying capacity for the treatment of this disease.
Collapse
Affiliation(s)
- Phillip F Giannopoulos
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Appleby BS, Nacopoulos D, Milano N, Zhong K, Cummings JL. A review: treatment of Alzheimer's disease discovered in repurposed agents. Dement Geriatr Cogn Disord 2013; 35:1-22. [PMID: 23307039 DOI: 10.1159/000345791] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIMS Many compounds that have already been approved for alternate diagnoses have been studied in relation to Alzheimer's disease (AD). The purpose of this review is to summarize these studies and discuss the rationale and benefits of repurposing drugs for AD treatment. METHODS Studies of drugs related to AD treatment that were relevant to a disease-modifying mechanism of action (MOA) and are already approved by the Food and Drug Administration for non-AD diagnoses were collected from PubMed. RESULTS Many drugs already approved for the treatment of other diseases have been studied in relation to AD treatment. Numerous drugs with known toxicity profiles have the potential to be repurposed as a treatment for AD. CONCLUSION Known MOA, toxicology, and pharmacodynamic profiles would accelerate the process and increase the odds of finding a more timely disease-modifying treatment for AD.
Collapse
Affiliation(s)
- Brian S Appleby
- Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
61
|
Chu J, Li JG, Praticò D. Zileuton improves memory deficits, amyloid and tau pathology in a mouse model of Alzheimer's disease with plaques and tangles. PLoS One 2013; 8:e70991. [PMID: 23951061 PMCID: PMC3737232 DOI: 10.1371/journal.pone.0070991] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/30/2013] [Indexed: 01/24/2023] Open
Abstract
The 5-lipoxygenase (5LO) enzyme is widely distributed within the central nervous system. Previous works showed that this protein is up-regulated in Alzheimer’s disease (AD), and plays an active role in the development of brain amyloidosis in the APP transgenic mice. In the present paper, we studied the effect of its pharmacological inhibition on the entire AD-like phenotype of a mouse model with plaques and tangles, the 3×Tg mice. Compared with mice receiving placebo, the group treated with zileuton, a specific 5LO inhibitor, manifested a significant improvement of their memory impairments. The same animals had a significant reduction in Aβ levels and deposition, which was secondary to a down-regulation of the γ-secretase pathway. Additionally, while total tau levels were unchanged for both groups, zileuton-treated mice had a significant reduction in its phosphorylation state and insoluble forms, secondary to a decreased activation of the cdk5 kinase. These data establish a functional role for 5LO in the pathogenesis of the full spectrum of the AD-like phenotype and represent the successful completion of the initial step for the preclinical development of 5LO inhibitors as viable therapeutic agents for AD.
Collapse
Affiliation(s)
- Jin Chu
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jin-Guo Li
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Domenico Praticò
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
62
|
Chen YP, Zhang ZY, Li YP, Li D, Huang SL, Gu LQ, Xu J, Huang ZS. Syntheses and evaluation of novel isoliquiritigenin derivatives as potential dual inhibitors for amyloid-beta aggregation and 5-lipoxygenase. Eur J Med Chem 2013; 66:22-31. [PMID: 23786711 DOI: 10.1016/j.ejmech.2013.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 12/21/2022]
Abstract
A series of new isoliquiritigenin (ISL) derivatives were synthesized and evaluated as dual inhibitors for amyloid-beta (Aβ) aggregation and 5-lipoxygenase (5-LO). It was found that all these synthetic compounds inhibited Aβ (1-42) aggregation effectively with their IC₅₀ values ranged from 2.2 ± 1.5 μM to 23.8 ± 2.0 μM. These derivatives also showed inhibitory activity to 5-LO with their IC50 values ranged from 6.1 ± 0.1 μM to 35.9 ± 0.3 μM. Their structure-activity relationships (SAR) and mechanisms of inhibitions were studied. This study provided potentially important information for further development of ISL derivatives as multifunctional agents for Alzheimer's disease (AD) treatment.
Collapse
Affiliation(s)
- Yi-Ping Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Leukotriene D4 induces cognitive impairment through enhancement of CysLT1R-mediated amyloid-β generation in mice. Neuropharmacology 2013; 65:182-92. [DOI: 10.1016/j.neuropharm.2012.08.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 08/03/2012] [Accepted: 08/31/2012] [Indexed: 12/21/2022]
|
64
|
Chu J, Praticò D. 5-Lipoxygenase pharmacological blockade decreases tau phosphorylation in vivo: involvement of the cyclin-dependent kinase-5. Neurobiol Aging 2013; 34:1549-54. [PMID: 23332172 DOI: 10.1016/j.neurobiolaging.2012.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/10/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
The 5-lipoxygenase (5LO) enzyme is widely distributed within the central nervous system. Previous works showed that this protein is upregulated in Alzheimer's disease, and that its genetic absence results in a reduction of amyloid beta levels in Tg2576 mice. However, its contribution to tau pathology remains to be investigated. To this end we studied the effect of 5LO chronic pharmacologic inhibition on endogenous tau level and metabolism in the same mice. The phosphorylation of tau at S396 and S396/404 in the brains of mice receiving zileuton, a selective and specific 5LO inhibitor, was significantly reduced when compared with their controls, while there was no significant change of tau phosphorylation at S202/T205, T231/S235, and T181 epitopes. The 5LO-dependent reduction of tau phosphorylation resulted from a significant decrease in the level and activity of the cyclin-dependent kinase-5 but not other kinases. Our findings highlight the novel functional role that neuronal 5LO plays in modulating tau phosphorylation, and suggest that pharmacologic inhibition of 5LO could provide a novel therapeutic opportunity also for Alzheimer's disease-related tau pathology.
Collapse
Affiliation(s)
- Jin Chu
- Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
65
|
Hawkes CA, Shaw JE, Brown M, Sampson AP, McLaurin J, Carare RO. MK886 Reduces Cerebral Amyloid Angiopathy Severity in TgCRND8 Mice. NEURODEGENER DIS 2013; 13:17-23. [DOI: 10.1159/000351096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 04/01/2013] [Indexed: 11/19/2022] Open
|
66
|
What is behind the non-antibiotic properties of minocycline? Pharmacol Res 2012; 67:18-30. [PMID: 23085382 DOI: 10.1016/j.phrs.2012.10.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 09/13/2012] [Accepted: 10/09/2012] [Indexed: 11/24/2022]
Abstract
Minocycline is a second-generation, semi-synthetic tetracycline that has been in use in therapy for over 30 years for its antibiotic properties against both Gram-positive and Gram-negative bacteria. It displays antibiotic activity due to its ability to bind to the 30S ribosomal subunit of bacteria and thus inhibit protein synthesis. More recently, it has been described to exert a variety of biological actions beyond its antimicrobial activity, including anti-inflammatory and anti-apoptotic activities, inhibition of proteolysis, as well as suppression of angiogenesis and tumor metastasis, which have been confirmed in different experimental models of non-infectious diseases. There are also many studies that have focused on the mechanisms involved in these non-antibiotic properties of minocycline, including anti-oxidant activity, inhibition of several enzyme activities, inhibition of apoptosis and regulation of immune cell activation and proliferation. This review summarizes the current findings in this topic, mainly focusing on the mechanisms underlying the immunomodulatory and anti-inflammatory activities of minocycline.
Collapse
|
67
|
Chou VP, Holman TR, Manning-Bog AB. Differential contribution of lipoxygenase isozymes to nigrostriatal vulnerability. Neuroscience 2012; 228:73-82. [PMID: 23079635 DOI: 10.1016/j.neuroscience.2012.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 02/05/2023]
Abstract
The 5- and 12/15-lipoxygenase (LOX) isozymes have been implicated to contribute to disease development in CNS disorders such as Alzheimer's disease. These LOX isozymes are distinct in function, with differential effects on neuroinflammation, and the impact of the distinct isozymes in the pathogenesis of Parkinson's disease has not as yet been evaluated. To determine whether the isozymes contribute differently to nigrostriatal vulnerability, the effects of 5- and 12/15-LOX deficiency on dopaminergic tone under naïve and toxicant-challenged conditions were tested. In naïve mice deficient in 5-LOX expression, a modest but significant reduction (18.0% reduction vs. wildtype (WT)) in striatal dopamine (DA) was detected (n=6-8 per genotype). A concomitant decline in striatal tyrosine hydroxylase (TH) enzyme was also revealed in null 5-LOX vs. WT mice (26.2%); however, no changes in levels of DA or TH immunoreactivity were observed in null 12/15-LOX vs. WT mice. When challenged with the selective dopaminergic toxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), WT mice showed a marked reduction in DA (31.9%) and robust astrocytic and microglial activation as compared to saline-treated animals. In contrast, null 5-LOX littermates demonstrated no significant striatal DA depletion or astrogliosis (as noted by Western blot analyses for glial acidic fibrillary protein (GFAP) immunoreactivity). In naïve null 12/15-LOX mice, no significant change in striatal DA values was observed compared to WT, and following MPTP treatment, the transgenics revealed striatal DA reduction similar to the challenged WT mice. Taken together, these data provide the first evidence that: (i) LOX isozymes are involved in the maintenance of normal dopaminergic function in the striatum and (ii) the 5- and 12/15-LOX isozymes contribute differentially to striatal vulnerability in response to neurotoxicant challenge.
Collapse
Affiliation(s)
- V P Chou
- Center for Health Sciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| | | | | |
Collapse
|
68
|
Chu J, Giannopoulos PF, Ceballos-Diaz C, Golde TE, Praticò D. 5-Lipoxygenase gene transfer worsens memory, amyloid, and tau brain pathologies in a mouse model of Alzheimer disease. Ann Neurol 2012; 72:442-54. [PMID: 23034916 PMCID: PMC3464917 DOI: 10.1002/ana.23642] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The 5-lipoxygenase (5LO) enzyme is upregulated in Alzheimer disease (AD), and its genetic absence reduces Aβ levels in APP mice. However, its functional role in modulating tau neuropathology remains to be elucidated. METHODS To this end, we generated triple transgenic mice (3xTg-AD) overexpressing neuronal 5LO and investigated their phenotype. RESULTS Compared with controls, 3xTg-AD mice overexpressing 5LO manifested an exacerbation of memory deficits, plaques, and tangle pathologies. The elevation in Aβ was secondary to an upregulation of γ-secretase pathway, whereas tau hyperphosphorylation resulted from an activation of the Cdk5 kinase. In vitro study confirmed the involvement of this kinase in the 5LO-dependent tau phosphorylation, which was independent of the effect on Aβ. INTERPRETATION Our findings highlight the novel functional role that neuronal 5LO plays in exacerbating AD-related tau pathologies. They provide critical preclinical evidence to justify testing selective 5LO inhibitors for AD treatment.
Collapse
Affiliation(s)
- Jin Chu
- Center for Translational Medicine and Department of Pharmacology, Temple University, School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
69
|
Chu J, Praticò D. Involvement of 5-lipoxygenase activating protein in the amyloidotic phenotype of an Alzheimer's disease mouse model. J Neuroinflammation 2012; 9:127. [PMID: 22697885 PMCID: PMC3425138 DOI: 10.1186/1742-2094-9-127] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 5-lipoxygenase enzyme is widely distributed within the central nervous system and its activity is regulated by the presence and availability of another protein, called 5-lipoxygenase activating protein. While previous works have shown that 5-lipoxygenase is involved in the pathogenesis of Alzheimer's disease, no data are available on the role that 5-lipoxygenase activating protein plays in Alzheimer's disease. METHODS In the present paper, we studied the effect of pharmacologic inhibition of 5-lipoxygenase activating protein on the amyloidotic phenotype of Tg2576 mice. RESULTS Amyloid β peptide (Aβ) deposition in the brains of mice receiving MK-591, a selective and specific 5-lipoxygenase activating protein inhibitor, was significantly reduced when compared with controls. This reduction was associated with a similar decrease in brain Aβ peptides levels. MK-591 treatment did not induce any change in the steady-state levels of amyloid-β precursor protein, β-site amyloid precursor protein cleaving enzyme 1 or disintegrin and metalloproteinase domain-containing protein 10. By contrast, it resulted in a significant reduction of the γ-secretase complex, at the protein and message level. Furthermore, in vitro studies confirmed that MK-591 prevents Aβ formation by modulating γ-secretase complex levels without affecting Notch signaling. CONCLUSIONS These data establish a novel functional role for 5-lipoxygenase activating protein in the pathogenesis of Alzheimer's disease-like amyloidosis, and suggest that its pharmacological inhibition could provide a novel therapeutic opportunity for Alzheimer's disease.
Collapse
Affiliation(s)
- Jin Chu
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, 3420 North Broad Street MRB, 706A, Philadelphia, PA 19140, USA
| | | |
Collapse
|
70
|
Battista N, Meloni MA, Bari M, Mastrangelo N, Galleri G, Rapino C, Dainese E, Agrò AF, Pippia P, Maccarrone M. 5-Lipoxygenase-dependent apoptosis of human lymphocytes in the International Space Station: data from the ROALD experiment. FASEB J 2012; 26:1791-8. [PMID: 22253478 DOI: 10.1096/fj.11-199406] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The functional adaptation of the immune system to the surrounding environment is also a fundamental issue in space. It has been suggested that a decreased number of lymphocytes might be a cause of immunosuppression, possibly due to the induction of apoptosis. Early activation of 5-lipoxygenase (5-LOX) might play a central role in the initiation of the apoptotic program. The goal of the role of apoptosis in lymphocyte depression (ROALD) experiment, flown on the International Space Station as part of the BIO-4 mission of the European Space Agency, was to ascertain the induction of apoptosis in human lymphocytes under authentic microgravity, and to elucidate the possible involvement of 5-LOX. Our results demonstrate that exposure of human lymphocytes to microgravity for 48 h onboard the ISS remarkably increased apoptotic hallmarks such as DNA fragmentation (∼3-fold compared to ground-based controls) and cleaved-poly (ADP-ribose) polymerase (PARP) protein expression (∼3-fold), as well as mRNA levels of apoptosis-related markers such as p53 (∼3-fold) and calpain (∼4-fold); these changes were paralleled by an early increase of 5-LOX activity (∼2-fold). Our findings provide a molecular background for the immune dysfunction observed in astronauts during space missions, and reveal potential new markers to monitor health status of ISS crew members.
Collapse
Affiliation(s)
- Natalia Battista
- Department of Biomedical Sciences, University of Teramo, Piazza A. Moro 45, I-64100 Teramo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Chu J, Giannopoulos PF, Ceballos-Diaz C, Golde TE, Pratico D. Adeno-associated virus-mediated brain delivery of 5-lipoxygenase modulates the AD-like phenotype of APP mice. Mol Neurodegener 2012; 7:1. [PMID: 22222029 PMCID: PMC3277480 DOI: 10.1186/1750-1326-7-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/05/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The 5-lipoxygenase (5LO) enzymatic pathway is widely distributed within the central nervous system. Previous works showed that this protein is up-regulated in Alzheimer's disease (AD), and that its genetic absence results in a reduction of Amyloid beta (Aβ) levels in the Tg2576 mice.Here by employing an adeno-associated viral (AAV) vector system to over-express 5LO in the same mouse model, we examined its contribution to their cognitive impairments and brain AD-like amyloid pathology. RESULTS Our results showed that compared with controls, 5LO-targeted gene brain over-expression in Tg2576 mice results in significant memory deficits. On the other hand, brain tissues had a significant elevation in the levels of Aβ peptides and deposition, no change in the steady state levels of amyloid-β precursor protein (APP), BACE-1 or ADAM-10, but a significant increase in PS1, nicastrin, and Pen-2, three major components of the γ-secretase complex. Additional data indicate that the transcription factor CREB was elevated and so were the mRNA levels for PS1, nicastrin and Pen-2. CONCLUSIONS These data demonstrate that neuronal 5LO plays a functional role in the pathogenesis of AD-like amyloidotic phenotype by modulating the γ-secretase pathway. They support the hypothesis that this enzyme is a novel therapeutic target for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Jin Chu
- Department of Pharmacology, Temple University, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
72
|
Knockout of 5-lipoxygenase results in age-dependent anxiety-like behavior in female mice. PLoS One 2011; 6:e29448. [PMID: 22220211 PMCID: PMC3248425 DOI: 10.1371/journal.pone.0029448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/28/2011] [Indexed: 11/29/2022] Open
Abstract
Background The enzyme 5-lipoxygenase (5LO) has been implicated in a variety of neurological and psychiatric disorders including anxiety. Knockout of 5LO has previously been shown to alter anxiety-like behavior in mice at a young age but the effect of 5LO knockout on older animals has not been characterized. Methodology/Principal Findings Here we used the elevated plus maze behavioral paradigm to measure anxiety-like behavior in female mice lacking 5LO (5LO-KO) at three different ages. Adolescent 5LO-KO animals did not significantly differ from wild-type (WT) animals in anxiety-like behavior. However, adult and older mice exhibited increased anxiety-like behavior compared to WT controls. Conclusions These results indicate that 5LO plays a role in the development of the anxiety-like phenotype in an age-dependent manner in female mice. Future work should further investigate this interaction as 5LO may prove to be an important molecular target for the development of novel anxiolytic therapies.
Collapse
|