51
|
Gordon SM, O'Connell AE. Inborn Errors of Immunity in the Premature Infant: Challenges in Recognition and Diagnosis. Front Immunol 2022; 12:758373. [PMID: 35003071 PMCID: PMC8738084 DOI: 10.3389/fimmu.2021.758373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Due to heightened awareness and advanced genetic tools, inborn errors of immunity (IEI) are increasingly recognized in children. However, diagnosing of IEI in premature infants is challenging and, subsequently, reports of IEI in premature infants remain rare. This review focuses on how common disorders of prematurity, such as sepsis, necrotizing enterocolitis, and bronchopulmonary dysplasia, can clinically overlap with presenting signs of IEI. We present four recent cases from a single neonatal intensive care unit that highlight diagnostic dilemmas facing neonatologists and clinical immunologists when considering IEI in preterm infants. Finally, we present a conceptual framework for when to consider IEI in premature infants and a guide to initial workup of premature infants suspected of having IEI.
Collapse
Affiliation(s)
- Scott M Gordon
- Division of Neonatology, Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
52
|
Feng W, Hou J, Xiang C, Die X, Sun J, Guo Z, Liu W, Wang Y. Correlation of systemic immune-inflammation Index with surgical necrotizing enterocolitis. Front Pediatr 2022; 10:1044449. [PMID: 36419917 PMCID: PMC9676951 DOI: 10.3389/fped.2022.1044449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Systemic Immune-Inflammation Index (SII), known as an easy, economical and useful marker, correlates with the severity of inflammatory response. However, the usefulness of SII in necrotizing enterocolitis (NEC) remains unclear. Therefore, we evaluated the correlation of SII at NEC diagnosis and subsequent surgery. METHODS Retrospective review of 131 neonates with NEC in a tertiary-level pediatric referral hospital was conducted with assessments of demographic data, general blood examination results at NEC diagnosis, treatment strategies and clinical outcomes. The receiver operating characteristic (ROC) curve determined the optimal cut-off values of SII, platelet-to-lymphocyte ratio (PLR), and neutrophil-to-lymphocyte ratio. Univariate/multivariate logistic regression analysis and ROC curve were conducted to evaluate the predictive significance of SII in identifying the patients who eventually received surgery. Additionally, NEC-related deaths were assessed. RESULTS Overall, 49 (37.4%) cases received surgical intervention and mortality was 12.3% (14/131). The area under ROC curve of SII at NEC diagnosis to predict subsequent surgery was 0.833 (optimal cut-off value: 235.85). The SII value in surgical intervention group was significantly higher than that in medical treatment group (332.92 ± 158.52 vs. 158.84 ± 106.82, P < 0.001). Independent influencing factors for surgical NEC were SII (95% confidence interval [CI]: 4.568∼36.449, odds ratio [OR]:12.904, P < 0.001) and PLR (95% CI: 1.071∼7.356, OR:2.807, P = 0.036). SII ≤ 235.85 could identify patients at high risk for surgery, with 87.76% sensitivity, 73.17% specificity, outperformed PLR. Furthermore, mortality was significantly higher in patients with SII ≤ 235.85 than those with SII > 235.85 (20.0% vs. 1.5%, P < 0.001). CONCLUSION SII and PLR at NEC diagnosis were independent influencing factors for subsequent surgery. SII ≤ 235.85 may be a useful predictive marker for the identification of surgical NEC and mortality.
Collapse
Affiliation(s)
- Wei Feng
- Department of General & Neonatal Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jinping Hou
- Department of General & Neonatal Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chenzhu Xiang
- Department of General & Neonatal Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaohong Die
- Department of General & Neonatal Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jing Sun
- Department of General & Neonatal Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhenhua Guo
- Department of General & Neonatal Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Wei Liu
- Department of General & Neonatal Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yi Wang
- Department of General & Neonatal Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
53
|
Chandramowlishwaran P, Raja S, Maheshwari A, Srinivasan S. Enteric Nervous System in Neonatal Necrotizing Enterocolitis. Curr Pediatr Rev 2022; 18:9-24. [PMID: 34503418 DOI: 10.2174/1573396317666210908162745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The pathophysiology of necrotizing enterocolitis (NEC) is not clear, but increasing information suggests that the risk and severity of NEC may be influenced by abnormalities in the enteric nervous system (ENS). OBJECTIVE The purpose of this review was to scope and examine the research related to ENS-associated abnormalities that have either been identified in NEC or have been noted in other inflammatory bowel disorders (IBDs) with histopathological abnormalities similar to NEC. The aim was to summarize the research findings, identify research gaps in existing literature, and disseminate them to key knowledge end-users to collaborate and address the same in future studies. METHODS Articles that met the objectives of the study were identified through an extensive literature search in the databases PubMed, EMBASE, and Scopus. RESULTS The sources identified through the literature search revealed that: (1) ENS may be involved in NEC development and post-NEC complications, (2) NEC development is associated with changes in the ENS, and (3) NEC-associated changes could be modulated by the ENS. CONCLUSION The findings from this review identify the enteric nervous as a target in the development and progression of NEC. Thus, factors that can protect the ENS can potentially prevent and treat NEC and post-NEC complications. This review serves to summarize the existing literature and highlights a need for further research on the involvement of ENS in NEC.
Collapse
Affiliation(s)
- Pavithra Chandramowlishwaran
- Department of Medicine, Emory University School of Medicine, Decatur, GA, USA.,Gastroenterology Research, Atlanta VA Medical Center, Decatur, GA, USA
| | - Shreya Raja
- Department of Medicine, Emory University School of Medicine, Decatur, GA, USA.,Gastroenterology Research, Atlanta VA Medical Center, Decatur, GA, USA
| | - Akhil Maheshwari
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Shanthi Srinivasan
- Department of Medicine, Emory University School of Medicine, Decatur, GA, USA.,Gastroenterology Research, Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
54
|
James KR, Elmentaite R, Teichmann SA, Hold GL. Redefining intestinal immunity with single-cell transcriptomics. Mucosal Immunol 2022; 15:531-541. [PMID: 34848830 PMCID: PMC8630196 DOI: 10.1038/s41385-021-00470-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 02/04/2023]
Abstract
The intestinal immune system represents the largest collection of immune cells in the body and is continually exposed to antigens from food and the microbiota. Here we discuss the contribution of single-cell transcriptomics in shaping our understanding of this complex system. We consider the impact on resolving early intestine development, engagement with the neighbouring microbiota, diversity of intestinal immune cells, compartmentalisation within the intestines and interactions with non-immune cells. Finally, we offer a perspective on open questions about gut immunity that evolving single-cell technologies are well placed to address.
Collapse
Affiliation(s)
- Kylie Renee James
- grid.415306.50000 0000 9983 6924Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010 Australia ,grid.1005.40000 0004 4902 0432School of Medical Sciences, University of New South Wales, Sydney, NSW 2006 Australia
| | - Rasa Elmentaite
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA UK
| | - Sarah Amalia Teichmann
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA UK ,grid.5335.00000000121885934Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, NSW CB3 0HE UK
| | - Georgina Louise Hold
- grid.1005.40000 0004 4902 0432University of New South Wales Microbiome Research Centre, Sydney, NSW 2217 Australia
| |
Collapse
|
55
|
Duchon J, Farkouh-Karoleski C, Bailey DD, Krishnan US. Association between pulmonary vein stenosis and necrotizing enterocolitis or gastrointestinal pathology: A case-control study. Ann Pediatr Cardiol 2022; 15:13-19. [PMID: 35847391 PMCID: PMC9280108 DOI: 10.4103/apc.apc_210_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/06/2022] [Accepted: 03/15/2022] [Indexed: 11/04/2022] Open
Abstract
Objective Pulmonary vein stenosis (PVS) is an emerging cause of pulmonary hypertension in preterm infants. It is an often lethal condition with poor long.term prognosis and high mortality. Previous work suggests an association between necrotizing enterocolitis (NEC) and PVS, supporting a possible role for inflammatory processes due to gastrointestinal (GI) pathology as an associated risk factor for PVS. Study Description We performed a matched case-control study where infants with PVS were matched for gestational age with infants without PVS. Hospital records were reviewed for prior history of NEC or other gut pathology. Results Twenty-four PVS patients were matched with 68 controls; 63% of patients (15/24) had prior GI pathology as opposed to 19% (13/68) of controls. The GI pathology group had a significantly higher growth restriction and C-reactive protein. The mean gradient across the pulmonary veins was higher in the gut pathology group versus controls, as was mortality (29% vs. 9%). Conclusions The previously described association between PVS and intestinal pathology was further strengthened by this study. The presence of GI pathology should lead to early surveillance and intervention for PVS.
Collapse
Affiliation(s)
- Jennifer Duchon
- Division of Neonatology, BronxCare Hospital System, Grand Concourse, Bronx, New York, USA
| | - Christiana Farkouh-Karoleski
- Department of Pediatrics, Columbia University Irving Medical Center, Broadway, New York, USA
- Division of Neonatology, Valley Health System, New Jersey, New York, USA
| | - Dominique D. Bailey
- Department of Pediatrics, Columbia University Irving Medical Center, Broadway, New York, USA
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University Medical Center, New York, USA
| | - Usha S. Krishnan
- Department of Pediatrics, Columbia University Irving Medical Center, Broadway, New York, USA
| |
Collapse
|
56
|
de Kroon RR, de Baat T, Senger S, van Weissenbruch MM. Amniotic Fluid: A Perspective on Promising Advances in the Prevention and Treatment of Necrotizing Enterocolitis. Front Pediatr 2022; 10:859805. [PMID: 35359891 PMCID: PMC8964040 DOI: 10.3389/fped.2022.859805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 12/09/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a common and potentially fatal disease that typically affects preterm (PIs) and very low birth weight infants (VLBWIs). Although NEC has been extensively studied, the current therapeutic approaches are unsatisfactory. Due to the similarities in the composition between human amniotic fluid (AF) and human breast milk (BM), which plays a protective role in the development of NEC in PIs and VLBWIs, it has been postulated that AF has similar effects on the outcome of NEC and potential therapeutic implications. AF has been long used for its diagnostic purposes and is often discarded after birth as "biological waste". However, researchers have started to elucidate its therapeutic potential. Experimental studies in animal models have shown that diseases of various organ systems can possibly benefit from AF-based therapy. Hence, we have identified three approaches which show promising results for future clinical application in the prevention and/or treatment of NEC: (1) administration of processed AF (PAF) isolated from donor mothers, (2) administration of AF stem cells (AFSCs), and (3) administration of simulated AF (SAF) formulated to mimic the composition of physiological AF. We have highlighted the most important aspects that should be taken into account to guide further research on the clinical application of AF-based therapy. We hope that this review can provide a framework to identify the challenges of AF-based therapy and help to design future studies to better evaluate AF-based approaches for the treatment and/or prevention of NEC in PIs and VLBWIs.
Collapse
Affiliation(s)
- Rimke Romee de Kroon
- Department of Neonatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Tessa de Baat
- Department of Neonatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Stefania Senger
- Department of Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
57
|
Cai L, Lai D, Gao J, Wu H, Shi B, Ji H, Tou J. The role and mechanisms of miRNA in neonatal necrotizing enterocolitis. Front Pediatr 2022; 10:1053965. [PMID: 36518784 PMCID: PMC9742607 DOI: 10.3389/fped.2022.1053965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Neonatal necrotizing enterocolitis (NEC), the most significant causes of neonatal mortality, is a disease of acute intestinal inflammation. At present, it is not clear exactly how the disease is caused, but it has been suggested that this disorder is a result of a complex interaction among prematurity, enteral feeding and inappropriate pro-inflammation response and bacterial infection of the intestine. A microRNA (miRNA) is a class of endogenous non-coding single-stranded RNA that is about 23 nucleotides long engaging in the regulation of the gene expression. Recently, numerous studies have determined that abnormal miRNA expression plays important roles in various diseases, including NEC. Here, we summarized the role of miRNAs in NEC. We introduce the biosynthetic and function of miRNAs and then describe the possible mechanisms of miRNAs in the initiation and development of NEC, including their influence on the intestinal epithelial barrier's function and regulation of the inflammatory process. Finally, this review aids in a comprehensive understanding of the current miRNA to accurately predict the diagnosis of NEC and provide ideas to find potential therapeutic targets of miRNA for NEC. In conclusion, our aims are to highlight the close relationship between miRNAs and NEC and to summarize the practical value of developing diagnostic biomarkers and potential therapeutic targets of NEC.
Collapse
Affiliation(s)
- Linghao Cai
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dengming Lai
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiafang Gao
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hao Wu
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Bo Shi
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Haosen Ji
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jinfa Tou
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
58
|
Alshaikh BN, Reyes Loredo A, Knauff M, Momin S, Moossavi S. The Role of Dietary Fats in the Development and Prevention of Necrotizing Enterocolitis. Nutrients 2021; 14:145. [PMID: 35011027 PMCID: PMC8746672 DOI: 10.3390/nu14010145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 11/18/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a significant cause of mortality and morbidity in preterm infants. The pathogenesis of NEC is not completely understood; however, intestinal immaturity and excessive immunoreactivity of intestinal mucosa to intraluminal microbes and nutrients appear to have critical roles. Dietary fats are not only the main source of energy for preterm infants, but also exert potent effects on intestinal development, intestinal microbial colonization, immune function, and inflammatory response. Preterm infants have a relatively low capacity to digest and absorb triglyceride fat. Fat may thereby accumulate in the ileum and contribute to the development of NEC by inducing oxidative stress and inflammation. Some fat components, such as long-chain polyunsaturated fatty acids (LC-PUFAs), also exert immunomodulatory roles during the early postnatal period when the immune system is rapidly developing. LC-PUFAs may have the ability to modulate the inflammatory process of NEC, particularly when the balance between n3 and n6 LC-PUFAs derivatives is maintained. Supplementation with n3 LC-PUFAs alone may have limited effect on NEC prevention. In this review, we describe how various fatty acids play different roles in the pathogenesis of NEC in preterm infants.
Collapse
Affiliation(s)
- Belal N Alshaikh
- Neonatal Nutrition and Gastroenterology Program, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Adriana Reyes Loredo
- Neonatal Nutrition and Gastroenterology Program, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Megan Knauff
- Nutrition Services, Alberta Health Services, Calgary, AB T2N 2T9, Canada
| | - Sarfaraz Momin
- Neonatal Nutrition and Gastroenterology Program, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Shirin Moossavi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
- International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB T2N 2T9, Canada
| |
Collapse
|
59
|
Lu L, Xu W, Liu J, Chen L, Hu S, Sheng Q, Zhang M, Lv Z. DRG1 Maintains Intestinal Epithelial Cell Junctions and Barrier Function by Regulating RAC1 Activity in Necrotizing Enterocolitis. Dig Dis Sci 2021; 66:4237-4250. [PMID: 33471252 DOI: 10.1007/s10620-020-06812-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/29/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND An immature intestine is a high-risk factor for necrotizing enterocolitis (NEC), which is a serious intestinal disease in newborns. The regulation of developmentally regulated GTP-binding protein 1 (DRG1) during organ development suggests a potential role of DRG1 in the maturation process of the intestine. AIM To illustrate the function of DRG1 during the pathogenesis of NEC. METHODS DRG1 expression in the intestine was measured using immunohistochemistry and q-PCR. Immunoprecipitation coupled with mass spectrometry was used to identify the interacting proteins of DRG1. The biological functions of the potential interactors were annotated with the Database for Annotation, Visualization and Integrated Discovery. Caco2 and FHs74Int cells with stable DRG1 silencing or overexpression were used to investigate the influence of DRG1 on cell junctions and intestinal barrier permeability and to elucidate the downstream mechanism. RESULTS DRG1 was constitutively expressed during the intestinal maturation process but significantly decreased in the ileum in the context of NEC. Protein interaction analysis revealed that DRG1 was closely correlated with cell junctions. DRG1 deficiency destabilized the E-cadherin and occludin proteins near the cell membrane and increased the permeability of the epithelial cell monolayer, while DRG1 overexpression prevented lipopolysaccharide-induced disruption of E-cadherin and occludin expression and cell monolayer integrity. Further investigation suggested that DRG1 maintained cell junctions, especially adherens junctions, by regulating RAC1 activity, and RAC1 inhibition with NSC23766 attenuated intestinal injury and led to improved barrier integrity in experimental NEC. CONCLUSIONS Our findings illustrate the mechanism underlying the effect of DRG1 deficiency on epithelial cell permeability regulation and provide evidence supporting the application of RAC1 inhibitors for protection against NEC.
Collapse
Affiliation(s)
- Li Lu
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, 200040, China
| | - Weijue Xu
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, 200040, China
| | - Jiangbin Liu
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, 200040, China
| | - Liping Chen
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, 200040, China
| | - Shaohua Hu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, 200040, China
| | - Qingfeng Sheng
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, 200040, China
| | - Minghua Zhang
- Clinical Pharmacy Laboratory, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, 200040, China.
| |
Collapse
|
60
|
Al-Alaiyan S, Abdulaziz N, Alkohlani A, Almairi SO, Al Hazzani F, Binmanee A, Alfattani A. Effects of Probiotics and Lactoferrin on Necrotizing Enterocolitis in Preterm Infants. Cureus 2021; 13:e18256. [PMID: 34712533 PMCID: PMC8542402 DOI: 10.7759/cureus.18256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/29/2022] Open
Abstract
Background Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in neonates. Despite intensive research, the etiology and pathophysiology of NEC is still obscure. Evidence from recent studies and meta-analyses showed a significant role of probiotics as a prophylactic measure in reducing NEC, sepsis, and mortality. However, obstacles against the generalization of the results still remain. The aim of the study was to evaluate the role of prophylactic administration of probiotics and lactoferrin in reducing the rate of NEC in preterm infants. Methods In this retrospective cohort study, all medical records of infants born with a birth weight of 1,500 g and less who were born between 2012 and 2017 were reviewed. The enrolled infants were divided into two groups: group 1 included infants born between January 2012 and August 2014, a period before probiotics were started in our unit, and group 2 included infants born between January 2014 and December 2017 after starting probiotics and lactoferrin. Multiple variables were collected including maternal data, neonatal data, and risk factors for NEC. Results Medical records of 284 infants who met our inclusion criteria were reviewed. Of the 284 infants, 134 were in group 1 and 150 infants were in group 2. There were no significant statistical differences between group 1 and group 2 in neonatal and maternal demographic data and clinical data. Of 134 infants who received probiotics and lactoferrin, 11 developed NEC, while 26 of the 150 infants in group 2 developed NEC, and the difference was statistically significant (p = 0.023). Conclusion Probiotics and lactoferrin given orally to very low birth weight preterm infants were associated with a decreased rate of NEC.
Collapse
Affiliation(s)
- Saleh Al-Alaiyan
- Pediatrics/Neonatal-Perinatal Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, SAU.,Pediatrics, Alfaisal University, Riyadh, SAU
| | - Najlaa Abdulaziz
- Pediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh, SAU
| | | | - Sana O Almairi
- Pediatrics, Alfaisal University College of Medicine, Riyadh, SAU
| | - Fahad Al Hazzani
- Pediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh, SAU
| | - Abdulaziz Binmanee
- Pediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh, SAU
| | - Areej Alfattani
- Biostatistics and Epidemiology, King Faisal Specialist Hospital & Research Centre, Riyadh, SAU
| |
Collapse
|
61
|
Hill DR, Chow JM, Buck RH. Multifunctional Benefits of Prevalent HMOs: Implications for Infant Health. Nutrients 2021; 13:3364. [PMID: 34684364 PMCID: PMC8539508 DOI: 10.3390/nu13103364] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Breastfeeding is the best source of nutrition during infancy and is associated with a broad range of health benefits. However, there remains a significant and persistent need for innovations in infant formula that will allow infants to access a wider spectrum of benefits available to breastfed infants. The addition of human milk oligosaccharides (HMOs) to infant formulas represents the most significant innovation in infant nutrition in recent years. Although not a direct source of calories in milk, HMOs serve as potent prebiotics, versatile anti-infective agents, and key support for neurocognitive development. Continuing improvements in food science will facilitate production of a wide range of HMO structures in the years to come. In this review, we evaluate the relationship between HMO structure and functional benefits. We propose that infant formula fortification strategies should aim to recapitulate a broad range of benefits to support digestive health, immunity, and cognitive development associated with HMOs in breastmilk. We conclude that acetylated, fucosylated, and sialylated HMOs likely confer important health benefits through multiple complementary mechanisms of action.
Collapse
Affiliation(s)
| | | | - Rachael H. Buck
- Abbott Nutrition, 3300 Stelzer Road, Columbus, OH 43219, USA; (D.R.H.); (J.M.C.)
| |
Collapse
|
62
|
Human Milk Oligosaccharides: A Comprehensive Review towards Metabolomics. CHILDREN-BASEL 2021; 8:children8090804. [PMID: 34572236 PMCID: PMC8465502 DOI: 10.3390/children8090804] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022]
Abstract
Human milk oligosaccharides (HMOs) are the third most represented component in breast milk. They serve not only as prebiotics but they exert a protective role against some significant neonatal pathologies such as necrotizing enterocolitis. Furthermore, they can program the immune system and consequently reduce allergies and autoimmune diseases’ incidence. HMOs also play a crucial role in brain development and in the gut barrier’s maturation. Moreover, the maternal genetic factors influencing different HMO patterns and their modulation by the interaction and the competition between active enzymes have been widely investigated in the literature, but there are few studies concerning the role of other factors such as maternal health, nutrition, and environmental influence. In this context, metabolomics, one of the newest “omics” sciences that provides a snapshot of the metabolites present in bio-fluids, such as breast milk, could be useful to investigate the HMO content in human milk. The authors performed a review, from 2012 to the beginning of 2021, concerning the application of metabolomics to investigate the HMOs, by using Pubmed, Researchgate and Scopus as source databases. Through this technology, it is possible to know in real-time whether a mother produces a specific oligosaccharide, keeping into consideration that there are other modifiable and unmodifiable factors that influence HMO production from a qualitative and a quantitative point of view. Although further studies are needed to provide clinical substantiation, in the future, thanks to metabolomics, this could be possible by using a dipstick and adding the eventual missing oligosaccharide to the breast milk or formula in order to give the best and the most personalized nutritional regimen for each newborn, adjusting to different necessities.
Collapse
|
63
|
de Jong JCW, Ijssennagger N, van Mil SWC. Breast milk nutrients driving intestinal epithelial layer maturation via Wnt and Notch signaling: Implications for necrotizing enterocolitis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166229. [PMID: 34329708 DOI: 10.1016/j.bbadis.2021.166229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/15/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Necrotizing enterocolitis (NEC) is an often lethal, inflammatory disease of the preterm intestine. The underdeveloped immune system plays an important role; however, the initial trigger for NEC development is likely a damaged intestinal epithelial layer. We hypothesize that due to incomplete maturation of different epithelial cell lineages, nutrients and bacteria are able to damage the epithelial cells and cause the (immature) inflammatory response, food intolerance and malabsorption seen in NEC. Intestinal organoid research has shown that maturation of intestinal epithelial cell lineages is orchestrated by two key signaling pathways: Wnt and Notch. In NEC, these pathways are dysregulated by hyperactivation of Toll-like-receptor-4. Breastfeeding decreases the risk of developing NEC compared to formula milk. Here, we review the intricate link between breast milk components, Wnt and Notch signaling and intestinal epithelial maturation. We argue that (nutritional) interventions regulating these pathways may decrease the risk of NEC development in preterm infants.
Collapse
Affiliation(s)
- Judith C W de Jong
- Center for Molecular Medicine, UMC Utrecht, 3508 AB, Utrecht, the Netherlands
| | | | - Saskia W C van Mil
- Center for Molecular Medicine, UMC Utrecht, 3508 AB, Utrecht, the Netherlands.
| |
Collapse
|
64
|
Thänert R, Keen EC, Dantas G, Warner BB, Tarr PI. Necrotizing Enterocolitis and the Microbiome: Current Status and Future Directions. J Infect Dis 2021; 223:S257-S263. [PMID: 33330904 PMCID: PMC8206796 DOI: 10.1093/infdis/jiaa604] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Decades of research have failed to define the pathophysiology of necrotizing enterocolitis (NEC), a devastating pediatric gastrointestinal disorder of preterm infants. However, evidence suggests that host-microbiota interactions, in which microbial dysbiosis is followed by loss of barrier integrity, inflammation, and necrosis, are central to NEC development. Thus, greater knowledge of the preterm infant microbiome could accelerate attempts to diagnose, treat, and prevent NEC. In this article, we summarize clinical characteristics of and risk factors for NEC, the structure of the pre-event NEC microbiome, how this community interfaces with host immunology, and microbiome-based approaches that might prevent or lessen the severity of NEC in this very vulnerable population.
Collapse
Affiliation(s)
- Robert Thänert
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Eric C Keen
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, Missouri, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Phillip I Tarr
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| |
Collapse
|
65
|
Donà D, Gastaldi A, Barbieri E, Bonadies L, Aluvaala J, English M. Empirical Antimicrobial Therapy of Neonates with Necrotizing Enterocolitis: A Systematic Review. Am J Perinatol 2021; 40:646-656. [PMID: 34126646 PMCID: PMC7614399 DOI: 10.1055/s-0041-1730364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Necrotizing enterocolitis (NEC) is an inflammatory disease of the gastrointestinal tract characterized by ischemic necrosis of the intestinal mucosa, mostly affecting premature neonates. Management of NEC includes medical care and surgical approaches, with supportive care and empirical antibiotic therapy recommended to avoid any disease progression. However, there is still no clear evidence-based consensus on empiric antibiotic strategies or surgical timing. This study was aimed to review the available evidence on the effectiveness and safety of different antibiotic regimens for NEC. STUDY DESIGN MEDLINE, EMBASE, Cochrane CENTRAL, and CINAHL databases were systematically searched through May 31, 2020. Randomized controlled trials (RCTs) and nonrandomized interventions reporting data on predefined outcomes related to NEC treatments were included. Clinical trials were assessed using the criteria and standard methods of the Cochrane risk of bias tool for randomized trials, while the risk of bias in nonrandomized studies of interventions was evaluated using the ROBINS-I tool. The certainty in evidence of each outcome's effects was assessed using the Grading of Recommendations Assessment, Development, and Evaluation approach. RESULTS Five studies were included in this review, two RCTs and three observational studies, for a total amount of 3,161 patients. One RCT compared the outcomes of parenteral (ampicillin plus gentamicin) and oral (gentamicin) treatment with parenteral only. Three studies (one RCT and two observational) evaluated adding anaerobic coverage to different parenteral regimens. The last observational study compared two different parenteral antibiotic combinations (ampicillin and gentamicin vs. cefotaxime and vancomycin). CONCLUSION No antimicrobial regimen has been shown to be superior to ampicillin and gentamicin in decreasing mortality and preventing clinical deterioration in NEC. The use of additional antibiotics providing anaerobic coverage, typically metronidazole, or use of other broad-spectrum regimens as first-line empiric therapy is not supported by the very limited current evidence. Well-conducted, appropriately sized comparative trials are needed to make evidence-based recommendations. KEY POINTS · Ampicillin and gentamicin are effective in decreasing mortality and preventing clinical deterioration in NEC.. · Metronidazole could be added in patients with surgical NEC.. · No study with high-quality evidence was found..
Collapse
Affiliation(s)
- Daniele Donà
- Division of Paediatric Infectious Diseases, Department of Woman and Child Health, University Hospital of Padua, Padua, Italy
| | - Andrea Gastaldi
- Department of Pediatrics, Woman and Child Hospital, University of Verona, Verona, Italy
| | - Elisa Barbieri
- Division of Paediatric Infectious Diseases, Department of Woman and Child Health, University Hospital of Padua, Padua, Italy
| | - Luca Bonadies
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Jalemba Aluvaala
- Health Services Unit, KEMRI-Wellcome Trust Research Programme, Nairobi, Kenya.,Department of Paediatrics, University of Nairobi, Nairobi, Kenya
| | - Mike English
- Health Services Unit, KEMRI-Wellcome Trust Research Programme, Nairobi, Kenya.,Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
66
|
Chaaban H, Burge K, Eckert J, Trammell M, Dyer D, Keshari RS, Silasi R, Regmi G, Lupu C, Good M, McElroy SJ, Lupu F. Acceleration of Small Intestine Development and Remodeling of the Microbiome Following Hyaluronan 35 kDa Treatment in Neonatal Mice. Nutrients 2021; 13:2030. [PMID: 34204790 PMCID: PMC8231646 DOI: 10.3390/nu13062030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
The beneficial effects of human milk suppressing the development of intestinal pathologies such as necrotizing enterocolitis in preterm infants are widely known. Human milk (HM) is rich in a multitude of bioactive factors that play major roles in promoting postnatal maturation, differentiation, and the development of the microbiome. Previous studies showed that HM is rich in hyaluronan (HA) especially in colostrum and early milk. This study aims to determine the role of HA 35 KDa, a HM HA mimic, on intestinal proliferation, differentiation, and the development of the intestinal microbiome. We show that oral HA 35 KDa supplementation for 7 days in mouse pups leads to increased villus length and crypt depth, and increased goblet and Paneth cells, compared to controls. We also show that HA 35 KDa leads to an increased predominance of Clostridiales Ruminococcaceae, Lactobacillales Lactobacillaceae, and Clostridiales Lachnospiraceae. In seeking the mechanisms involved in the changes, bulk RNA seq was performed on samples from the terminal ileum and identified upregulation in several genes essential for cellular growth, proliferation, and survival. Taken together, this study shows that HA 35 KDa supplemented to mouse pups promotes intestinal epithelial cell proliferation, as well as the development of Paneth cells and goblet cell subsets. HA 35 KDa also impacted the intestinal microbiota; the implications of these responses need to be determined.
Collapse
Affiliation(s)
- Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.)
| | - Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.)
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.)
| | - MaJoi Trammell
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.T.); (D.D.)
| | - David Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.T.); (D.D.)
| | - Ravi S. Keshari
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| | - Girija Regmi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| | - Cristina Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| | - Misty Good
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Steven J. McElroy
- Department of Microbiology and Immunology, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA;
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| |
Collapse
|
67
|
Aslan S, Akış Yıldız Z, Yazar Ş, Kargı A, Dönmez R, Selimoğlu A, Arıkan Ç, Kavlak E, Polat KY. Gastrointestinal perforations and associated risk factors in children after liver transplantation. Pediatr Transplant 2021; 25:e13911. [PMID: 33152172 DOI: 10.1111/petr.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/14/2020] [Accepted: 10/11/2020] [Indexed: 11/28/2022]
Abstract
In this study, possible risk factors of gastrointestinal perforations (GIP) that increase mortality after liver transplantation in children were investigated. One hundred and thirty-one pediatric patients who underwent 139 liver transplants between January 2016 and February 2020 were evaluated retrospectively based on preoperative and surgical data. Furthermore, cases with biliary atresia, which constitute 26.7% (35) of the patients, were compared within themselves and with other groups. It was found that the cases that developed perforations were younger, lower in weight, and had higher number of surgeries than those who did not, while the mortality and morbidity rates were higher in these patients. When cases with biliary atresia were analyzed within themselves, no significant difference was found between perforated biliary atresia and non-perforated cases in terms of age, weight, and previous surgery. When biliary atresia and other etiologies were compared, biliary atresia cases were found to be transplanted at a younger age, at a lower weight, and this group had a higher risk for perforation. Early laparotomy should be performed in order to reduce mortality in GIPs. Patients that are younger, underweight, previously operated, and using mesh must be closely monitored.
Collapse
Affiliation(s)
- Serdar Aslan
- Liver Transplant Center, Memorial Ataşehir/Bahçelievler Hospitals, İstanbul, Turkey
| | - Zeliha Akış Yıldız
- Pediatric Surgery Clinic, Ümraniye Training and Research Hospital, İstanbul, Turkey
| | - Şerafettin Yazar
- Liver Transplant Center, Memorial Ataşehir/Bahçelievler Hospitals, İstanbul, Turkey
| | - Ahmet Kargı
- Liver Transplant Center, Memorial Ataşehir/Bahçelievler Hospitals, İstanbul, Turkey
| | - Ramazan Dönmez
- General Surgery Clinic, Faculty of Medicine, Yeditepe University, İstanbul, Turkey
| | - Ayşe Selimoğlu
- Pediatric Gastroenterology, Hepatology and Nutrition, Memorial Ataşehir/Bahçelievler Hospitals, İstanbul, Turkey
| | - Çiğdem Arıkan
- Pediatric Gastroenterology, Hepatology, Koç University Research Center for Translational Medicine, İstanbul, Turkey
| | - Emre Kavlak
- Anesthesiology Clinic, Memorial Ataşehir Hospital, İstanbul, Turkey
| | - Kamil Yalçın Polat
- Liver Transplant Center, Memorial Ataşehir/Bahçelievler Hospitals, İstanbul, Turkey
| |
Collapse
|
68
|
Extracellular vesicles isolated from milk can improve gut barrier dysfunction induced by malnutrition. Sci Rep 2021; 11:7635. [PMID: 33828139 PMCID: PMC8026962 DOI: 10.1038/s41598-021-86920-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 03/18/2021] [Indexed: 02/01/2023] Open
Abstract
Malnutrition impacts approximately 50 million children worldwide and is linked to 45% of global mortality in children below the age of five. Severe acute malnutrition (SAM) is associated with intestinal barrier breakdown and epithelial atrophy. Extracellular vesicles including exosomes (EVs; 30-150 nm) can travel to distant target cells through biofluids including milk. Since milk-derived EVs are known to induce intestinal stem cell proliferation, this study aimed to examine their potential efficacy in improving malnutrition-induced atrophy of intestinal mucosa and barrier dysfunction. Mice were fed either a control (18%) or a low protein (1%) diet for 14 days to induce malnutrition. From day 10 to 14, they received either bovine milk EVs or control gavage and were sacrificed on day 15, 4 h after a Fluorescein Isothiocyanate (FITC) dose. Tissue and blood were collected for histological and epithelial barrier function analyses. Mice fed low protein diet developed intestinal villus atrophy and barrier dysfunction. Despite continued low protein diet feeding, milk EV treatment improved intestinal permeability, intestinal architecture and cellular proliferation. Our results suggest that EVs enriched from milk should be further explored as a valuable adjuvant therapy to standard clinical management of malnourished children with high risk of morbidity and mortality.
Collapse
|
69
|
Identification of Inflammatory Genes, Pathways, and Immune Cells in Necrotizing Enterocolitis of Preterm Infant by Bioinformatics Approaches. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5568724. [PMID: 33880370 PMCID: PMC8046524 DOI: 10.1155/2021/5568724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 11/21/2022]
Abstract
Background Necrotizing enterocolitis (NEC) is one of the most serious gastrointestinal disease-causing high morbidity and mortality in premature infants. However, the underlying mechanism of the pathogenesis of NEC is still not fully understood. Methods RNA sequencing of intestinal specimens from 9 NEC and 5 controls was employed to quantify the gene expression levels. RNA sequencing was employed to quantify the gene expression levels. DESeq2 tool was used to identify the differentially expressed genes. The biological function, pathways, transcription factors, and immune cells dysregulated in NEC were characterized by gene set enrichment analysis. Results In the present study, we analyzed RNA sequencing data of NECs and controls and revealed that immune-related pathways were highly activated, while some cellular responses to external stimuli-related pathways were inactivated in NEC. Moreover, B cells, macrophages M1, and plasma cells were identified as the major cell types involved in NEC. Furthermore, we also found that inflammation-related transcription factor genes, such as STAT1, STAT2, and IRF2, were significantly activated in NEC, further suggesting that these TFs might play critical roles in NEC pathogenesis. In addition, NEC samples exhibited heterogeneity to some extent. Interestingly, two subgroups in the NEC samples were identified by hierarchical clustering analysis. Notably, B cells, T cells, Th1, and Tregs involved in adaptive immune were predicted to highly infiltrate into subgroup I, while subgroup II was significantly infiltrated by neutrophils. The heterogeneity of immune cells in NEC indicated that both innate and adaptive immunes might induce NEC-related inflammatory response. Conclusions In summary, we systematically analyzed inflammation-related genes, signaling pathways, and immune cells to characterize the NEC pathogenesis and samples, which greatly improved our understanding of the roles of inflammatory responses in NEC.
Collapse
|
70
|
Sinha CK, Ashworth I, Martin S, Bhayat S, Kulkarni A. Do more mature preterm babies with surgical necrotizing enterocolitis predominantly develop the colonic disease? WORLD JOURNAL OF PEDIATRIC SURGERY 2021; 4:e000246. [DOI: 10.1136/wjps-2020-000246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/03/2022] Open
Abstract
BackgroundThe primary aim was to scrutinize our hypothesis: “Do more mature preterm (MMP) babies with surgical necrotizing enterocolitis (NEC) predominantly develop the colonic disease and are different in their response and behaviour in comparison to exceedingly preterm (EP) babies?” Secondary outcomes were to define time taken in developing NEC, time from diagnosis to laparotomy, requirement of parenteral nutrition (PN), and ventilatory support.MethodsWe defined MMP babies as ≥30 weeks of gestation and EP babies as ≤29 weeks+6 days of gestation. Inclusion criteria were all babies <37 weeks with NEC requiring surgery (called surgical NEC group). Data were collected retrospectively and analyzed using QuickCalcs.ResultsOf the total, 41% (97/234) of babies underwent laparotomy between 2010 and 2019. Totally, 81% were EP and 19% were MMP babies. Pure colonic involvement was seen in 9% of EP babies in comparison to 56% in the MMP babies (p=0.0001). Involvement of only the small bowel was seen in two-thirds of EP babies in comparison to only one-third in MMP babies (p=0.01). EP cohort required PN for 82 days (median) in comparison to 17 days (median) in the MMP cohort (p=0.001). Ventilation requirement in the EP group versus the MMP group was 24 vs 9 days (median), respectively (p=0.0006).ConclusionsMMP babies predominantly developed colonic disease, whereas EP babies predominantly developed small bowel disease. EP babies required a longer duration of PN and ventilation support. This study opens a new area of research to differentiate pathogenesis and maturation patterns of the small and large bowels in babies with NEC.
Collapse
|
71
|
Liu Y, Wang M, Wang D, Fay WP, Korthuis RJ, Sowa G. Elevated postischemic tissue injury and leukocyte-endothelial adhesive interactions in mice with global deficiency in caveolin-2: role of PAI-1. Am J Physiol Heart Circ Physiol 2021; 320:H1185-H1198. [PMID: 33416452 PMCID: PMC8362680 DOI: 10.1152/ajpheart.00682.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/13/2023]
Abstract
Ischemia/reperfusion (I/R)-induced rapid inflammation involving activation of leukocyte-endothelial adhesive interactions and leukocyte infiltration into tissues is a major contributor to postischemic tissue injury. However, the molecular mediators involved in this pathological process are not fully known. We have previously reported that caveolin-2 (Cav-2), a protein component of plasma membrane caveolae, regulated leukocyte infiltration in mouse lung carcinoma tumors. The goal of the current study was to examine if Cav-2 plays a role in I/R injury and associated acute leukocyte-mediated inflammation. Using a mouse small intestinal I/R model, we demonstrated that I/R downregulates Cav-2 protein levels in the small bowel. Further study using Cav-2-deficient mice revealed aggravated postischemic tissue injury determined by scoring of villi length in H&E-stained tissue sections, which correlated with increased numbers of MPO-positive tissue-infiltrating leukocytes determined by IHC staining. Intravital microscopic analysis of upstream events relative to leukocyte transmigration and tissue infiltration revealed that leukocyte-endothelial cell adhesive interactions in postcapillary venules, namely leukocyte rolling and adhesion were also enhanced in Cav-2-deficient mice. Mechanistically, Cav-2 deficiency increased plasminogen activator inhibitor-1 (PAI-1) protein levels in the intestinal tissue and a pharmacological inhibition of PAI-1 had overall greater inhibitory effect on both aggravated I/R tissue injury and enhanced leukocyte-endothelial interactions in postcapillary venules in Cav-2-deficient mice. In conclusion, our data suggest that Cav-2 protein alleviates tissue injury in response to I/R by dampening PAI-1 protein levels and thereby reducing leukocyte-endothelial adhesive interactions.NEW & NOTEWORTHY The role of caveolin-2 in regulating ischemia/reperfusion (I/R) tissue injury and the mechanisms underlying its effects are unknown. This study uses caveolin-2-deficient mouse and small intestinal I/R injury models to examine the role of caveolin-2 in the leukocyte-dependent reperfusion injury. We demonstrate for the first time that caveolin-2 plays a protective role from the I/R-induced leukocyte-dependent reperfusion injury by reducing PAI-1 protein levels in intestinal tissue and leukocyte-endothelial adhesive interactions in postcapillary venules.
Collapse
Affiliation(s)
- Yajun Liu
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Meifang Wang
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Derek Wang
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - William P Fay
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- Department of Medicine, University of Missouri, Columbia, Missouri
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- The Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Grzegorz Sowa
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
72
|
Moore RE, Xu LL, Townsend SD. Prospecting Human Milk Oligosaccharides as a Defense Against Viral Infections. ACS Infect Dis 2021; 7:254-263. [PMID: 33470804 DOI: 10.1021/acsinfecdis.0c00807] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to providing maximal nutritional value for neonatal growth and development, human milk functions as an early defense mechanism against invading pathogens. Human milk oligosaccharides (HMOs), which are abundant in human milk, are a diverse group of heterogeneous carbohydrates with wide ranging protective effects. In addition to promoting the colonization of beneficial intestinal flora, HMOs serve as decoy receptors, effectively blocking the attachment of pathogenic bacteria. HMOs also function as bacteriostatic agents, inhibiting the growth of gram-positive bacteria. Based on this precedence, an emerging area in the field has focused on characterizing the antiviral properties of HMOs. Indeed, HMOs have been evaluated as antiviral agents, with many possessing activity against life-threatening infections. This targeted review provides insight into the known glycan-binding interactions between select HMOs and influenza, rotavirus, respiratory syncytial virus, human immunodeficiency virus, and norovirus. Additionally, we review the role of HMOs in preventing necrotizing enterocolitis, an intestinal disease linked to viral infections. We close with a discussion of what is known broadly regarding human milk oligosaccharides and their interactions with coronaviruses.
Collapse
Affiliation(s)
- Rebecca E. Moore
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Lianyan L. Xu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
73
|
Yakah W, Singh P, Brown J, Stoll B, Burrin D, Premkumar MH, Otu HH, Gu X, Dillon ST, Libermann TA, Freedman SD, Martin CR. Parenteral lipid emulsions induce unique ileal fatty acid and metabolomic profiles but do not increase the risk of necrotizing enterocolitis in preterm pigs. Am J Physiol Gastrointest Liver Physiol 2021; 320:G227-G239. [PMID: 33236951 PMCID: PMC7948117 DOI: 10.1152/ajpgi.00311.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is a manifestation of maladaptive intestinal responses in preterm infants centrally medicated by unattenuated inflammation. Early in the postnatal period, preterm infants develop a deficit in arachidonic and docosahexaenoic acid, both potent regulators of inflammation. We hypothesized that the fatty acid composition of parenteral lipid emulsions uniquely induces blood and intestinal fatty acid profiles which, in turn, modifies the risk of NEC development. Forty-two preterm pigs were randomized to receive one of three lipid emulsions containing 100% soybean oil (SO), 15% fish oil (MO15), or 100% fish oil (FO100) with enteral feedings over an 8-day protocol. Blood and distal ileum tissue were collected for fatty acid analysis. The distal ileum underwent histologic, proteomic, and metabolomic analyses. Eight pigs [3/14 SO (21%), 3/14 MO15 (21%), and 2/14 FO100 (14%)] developed NEC. No differences in NEC risk were evident between groups despite differences in induced fatty acid profiles in blood and ileal tissue. Metabolomic analysis of NEC versus no NEC tissue revealed differences in tryptophan metabolism and arachidonic acid-containing glycerophospholipids. Proteomic analysis demonstrated no differences by lipid group; however, 15 proteins differentiated NEC versus no NEC in the domains of tissue injury, glucose uptake, and chemokine signaling. Exposure to parenteral lipid emulsions induces unique intestinal fatty acid and metabolomic profiles; however, these profiles are not linked to a difference in NEC development. Metabolomic and proteomic analyses of NEC versus no NEC intestinal tissue provide mechanistic insights into the pathogenesis of NEC in preterm infants.NEW & NOTEWORTHY Exposure to parenteral lipid emulsions induces unique intestinal fatty acid and metabolomic profiles; however, these profiles are not linked to a difference in NEC risk in preterm pigs. Metabolomic and proteomic analyses provide mechanistic insights into NEC pathogenesis. Compared with healthy ileal tissue, metabolites in tryptophan metabolism and arachidonic acid-containing glycerophospholipids are increased in NEC tissue. Proteomic analysis differentiates NEC versus no NEC in the domains of tissue injury, glucose uptake, and chemokine signaling.
Collapse
Affiliation(s)
- William Yakah
- 1Department of Neonatology Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Pratibha Singh
- 2Division of Gastroenterology Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Joanne Brown
- 2Division of Gastroenterology Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Barbara Stoll
- 3United States Department of Agriculture-Agricultural Research Service, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Doug Burrin
- 3United States Department of Agriculture-Agricultural Research Service, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Muralidhar H. Premkumar
- 4Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hasan H. Otu
- 5Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Xuesong Gu
- 6Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Simon T. Dillon
- 6Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Towia A. Libermann
- 6Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Steven D. Freedman
- 2Division of Gastroenterology Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,7Division of Translational Research Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Camilia R. Martin
- 1Department of Neonatology Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,7Division of Translational Research Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
74
|
Alexander KM, Chan SS, Opfer E, Cuna A, Fraser JD, Sharif S, Khashu M. Implementation of bowel ultrasound practice for the diagnosis and management of necrotising enterocolitis. Arch Dis Child Fetal Neonatal Ed 2021; 106:96-103. [PMID: 32398270 PMCID: PMC7788207 DOI: 10.1136/archdischild-2019-318382] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/04/2022]
Abstract
Necrotising enterocolitis (NEC) is a serious inflammatory bowel disease of prematurity with potentially devastating complications and remains a leading cause of morbidity and mortality among premature infants. In recent years, there has been accumulating data regarding benefits of using bowel ultrasound (BUS) in the diagnosis and management of NEC. Despite this, adoption of robust BUS programmes into clinical practice has been slow. As BUS is a relatively new technique, many barriers to implementation exist, namely lack of education and training for sonographers and radiologists, low case volume and unfamiliarity by clinicians regarding how to use the information provided. The aim of this manuscript is to provide a framework and a roadmap for units to implement BUS in day-to-day practice for NEC diagnosis and management.
Collapse
Affiliation(s)
- Karen M Alexander
- GME Radiology, University of Missouri Kansas City, Kansas City, Missouri, USA,Department of Radiology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Sherwin S Chan
- Department of Radiology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Erin Opfer
- Department of Radiology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Alain Cuna
- Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Jason D Fraser
- Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Shazia Sharif
- Department of Paediatric Surgery, Royal London Hospital, London, UK
| | - Minesh Khashu
- Neonatal Service, Poole Hospital NHS Foundation Trust, Poole, UK .,Bournemouth University, Poole, UK
| |
Collapse
|
75
|
Yu S, Lv Z, Gao Z, Shi J, Sheng Q, Zheng L, Zhou J, Wang X. Hydrogen Promotes the M1 Macrophage Conversion During the Polarization of Macrophages in Necrotizing Enterocolitis. Front Pediatr 2021; 9:710382. [PMID: 34869093 PMCID: PMC8635714 DOI: 10.3389/fped.2021.710382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Hydrogen is protective against intestinal injury in necrotizing enterocolitis (NEC), mainly through to alleviate inflammation response. The M1 macrophages can promote inflammation. We hypothesized that hydrogen would promote the M1 macrophages conversion during the polarization and reduce the inflammatory factors in NEC. Methods: We used M1 and M2 macrophages induced from RAW264.7 cells and bone marrow-derived macrophages, models of NEC and macrophages derived from spleens, abdominal lymph nodes and lamina propria in model mice. Cytokines, CD16/32 and CD206 were measured by quantitative PCR, flow cytometry. Nuclear factor-κB (NF-κB) p65 were determined by western blot. Histology staining were used to assess the severity of NEC. Results: Macrophages were successfully polarized to M1 or M2 by assessing the expression of inflammatory factors. Pro-inflammatory factors and CD16/32 in M1 macrophages were decreased, and the expression of CD16/32 in lamina propria were inhibited after treatment with hydrogen, but the changes has no effects in other tissues. Hydrogen inhibited the NF-κB p65 in M1 macrophages nucleus and distal ileum of NEC. HE staining showed hydrogen could attenuate the severity of NEC. Conclusion: Hydrogen could attenuate the severity of NEC through promoting M1 macrophages conversion by inhibited the expression of NF-κB p65 in the nucleus.
Collapse
Affiliation(s)
- Shenghua Yu
- Department of Pediatric Surgery, Shanghai Children's Hospital, Shanghai, China
| | - ZhiBao Lv
- Department of Pediatric Surgery, Shanghai Children's Hospital, Shanghai, China
| | - Zhimei Gao
- Department of Center Laboratory, Shanghai Children's Hospital, Shanghai, China
| | - Jingyi Shi
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai, China
| | - Qingfeng Sheng
- Department of Pediatric Surgery, Shanghai Children's Hospital, Shanghai, China
| | - Lulu Zheng
- Department of Pediatric Surgery, Shanghai Children's Hospital, Shanghai, China
| | - Junmei Zhou
- Department of Center Laboratory, Shanghai Children's Hospital, Shanghai, China
| | - Xueli Wang
- Department of Pathology, Shanghai Children's Hospital, Shanghai, China
| |
Collapse
|
76
|
Priyadarshi A, Lowe G, Saddi V, Trivedi A, Luig M, Tracy M. Clinical Outcomes of Single vs. Two-Strain Probiotic Prophylaxis for Prevention of Necrotizing Enterocolitis in Preterm Infants. Front Pediatr 2021; 9:729535. [PMID: 34527647 PMCID: PMC8435710 DOI: 10.3389/fped.2021.729535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The administration of live microbiota (probiotic) via enteral route to preterm infants facilitates intestinal colonization with beneficial bacteria, resulting in competitive inhibition of the growth of pathogenic bacteria preventing gut microbiome dysbiosis. This dysbiosis is linked to the pathogenesis of necrotizing enterocolitis (NEC), an acquired multi-factorial intestinal disease characterized by microbial invasion of the gut mucosa, particularly affecting preterm infants. Probiotic prophylaxis reduces NEC; however, variations in strain-specific probiotic effects, differences in administration protocols, and synergistic interactions with the use of combination strains have all led to challenges in selecting the optimal probiotic for clinical use. Aim: To compare any differences in NEC rates, feeding outcomes, co-morbidities in preterm infants receiving single or two-strain probiotics over a 4-year period. The two-strain probiotic prophylaxis was sequentially switched over after 2 years to the single strain probiotic within this 4-year study period, in similar cohort of preterm infants. Methods: During two consecutive equal 2-year epochs, preterm infants (<32 weeks and or with birth weight <1,500 g) receiving two-strain (Lactobacillus acidophilus and Bifidobacterium bifidum) and single strain (Bifidobacterium breve M-16 V,) probiotic prophylaxis for prevention of NEC were included in this retrospective, observational study. The primary outcome included rates of NEC; secondary outcomes included prematurity related co-morbidities and feeding outcomes. Time to reach full enteral feeds was identified as the first day of introducing milk feeds at 150 ml/kg/day. Results: There were 180 preterm infants in the two-strain, 196 in the single strain group from the two equal consecutive 2-year epochs. There were no differences in the NEC rates, feeding outcomes, all-cause morbidities except for differences in rates of retinopathy of prematurity. Conclusion: In our intensive-care setting, clinical outcomes of single vs. two-strain probiotic prophylaxis for prevention of NEC were similar. Although our study demonstrates single strain probiotic may be equally effective than two-strain in the prevention of NEC, small sample size and low baseline incidence of NEC in our unit were not sufficiently powered to compare single vs. two-strain probiotic prophylaxis in preventing NEC. Further clustered randomized controlled trials are required to study the effects of single vs. multi-strain probiotic products for NEC prevention in preterm infants.
Collapse
Affiliation(s)
- Archana Priyadarshi
- Westmead Hospital Neonatal Intensive Care Unit, Sydney, NSW, Australia.,Grace Centre for Newborn Intensive Care at The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Gemma Lowe
- Westmead Hospital Neonatal Intensive Care Unit, Sydney, NSW, Australia
| | - Vishal Saddi
- Department of Pediatrics, Bankstown Hospital and Sydney Children's Hospital, Sydney, NSW, Australia
| | - Amit Trivedi
- Grace Centre for Newborn Intensive Care at The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Melissa Luig
- Westmead Hospital Neonatal Intensive Care Unit, Sydney, NSW, Australia
| | - Mark Tracy
- Westmead Hospital Neonatal Intensive Care Unit, Sydney, NSW, Australia
| |
Collapse
|
77
|
Peptidomics Analysis Discloses That Novel Bioactive Peptides Participate in Necrotizing Enterocolitis in a Rat Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4705149. [PMID: 33490244 PMCID: PMC7790586 DOI: 10.1155/2020/4705149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022]
Abstract
Necrotizing enterocolitis (NEC) is a common devastating gastrointestinal disease in premature infants, the molecular mechanisms of which have not been fully elucidated. Recently, endogenous peptides have garnered much attention owing to their role in diagnosis and treatment. However, changes in the peptide expression of NEC intestinal tissues remain poorly understood. In the present study, a comparative peptidomics profiling analysis was performed between NEC and control intestinal tissues via liquid chromatography-tandem mass spectrometry (LC-MS). In total, 103 upregulated and 73 downregulated peptides were identified in the intestinal tissues (fold change ≥ 1.5, p < 0.05). Bioinformatics analysis revealed that these differentially expressed peptides were significantly associated with NEC pathophysiology, including apoptosis, the TGF-β signaling pathway, the Wnt signaling pathway, and the MAPK signaling pathway. Furthermore, two putative peptides could inhibit apoptosis and promote the migration of intestinal epithelial cells induced by lipopolysaccharide; these peptides were derived from the protein domains MT1 and EZRI, respectively. In conclusion, our study revealed that endogenous peptides are involved in the pathophysiologic mechanism of NEC; nevertheless, further exploration is required in this regard.
Collapse
|
78
|
Agrawal S, Pestell CF, Granich J, Rao S, Nathan E, Wray JA, Whitehouse AJO, Patole S. Difficulties in developmental follow-up of preterm neonates in a randomised-controlled trial of Bifidobacterium breve M16-V - Experience from Western Australia. Early Hum Dev 2020; 151:105165. [PMID: 32871454 DOI: 10.1016/j.earlhumdev.2020.105165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/20/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Probiotics may be neuroprotective for preterm neonates due to their anti-inflammatory effects and ability to facilitate nutrition. AIM To assess long-term effects of early probiotic supplementation on neuropsychological development in preterm infants. STUDY DESIGN Follow up study. SUBJECTS Children at age 3 to 5 years who had participated as preterm infants (<33 week) in the randomised controlled trial. OUTCOMES Primary: Continuous early learning composite measure derived from the Mullen's Scale of Early Learning (MSEL). Other outcomes were assessed by the Developmental, Dimensional and Diagnostic Interview, Developmental NEuroPSYchological assessment-2nd Edition, Parental questionnaires using children's communication checklist-2nd edition, social responsiveness scale, and Vineland Adaptive Behavioural Scales-2nd edition. MEASURES Continuous scores derived from all the measures. RESULTS 67 children of the 159 participants (42%) (Probiotic: 36/79, Placebo: 31/80) were followed-up for at least one neuropsychological assessment. All six assessments were completed in 18/31 (58.1%) of the control vs. 11/36 (30.6%) probiotic group children. Multivariable analysis of MSEL composite score showed no evidence of probiotic effect univariately, or after adjustment for gestation, intrauterine growth restriction, Apgar <7 at 5 min and age at assessment (adjusted mean effect in probiotic group: -2.7, 95% CI -8.5-3.0, p = 0.349). CONCLUSION There was no significant effect on neurodevelopment of children assessed at the age of 3 to 5 years who participated as preterm neonates in the RCT of B. breve M-16V. The validity of these results is limited by the reduced sample size due to high rate of loss to follow up.
Collapse
Affiliation(s)
- S Agrawal
- Neonatal Directorate, KEM Hospital for Women, 374 Bagot Road, Subiaco, WA, Australia.
| | - C F Pestell
- School of Psychological Science, University of WA, 35 Stirling Highway, Crawley, WA, 6009 Perth, Australia; Telethon Kids Institute, 15 Hospital Avenue, Nedlands, WA, 6009 Perth, Australia
| | - J Granich
- Telethon Kids Institute, 15 Hospital Avenue, Nedlands, WA, 6009 Perth, Australia
| | - S Rao
- School of Medicine, University of WA, 35 Stirling Highway, Crawley, WA, 6009 Perth, Australia; Neonatal Pediatrics, Perth Children Hospital, 15 Hospital Avenue, Nedlands, WA, 6009 Perth, Australia
| | - E Nathan
- School of Medicine, University of WA, 35 Stirling Highway, Crawley, WA, 6009 Perth, Australia; Women and Infants Research Foundation, King Edward Memorial Hospital for Women, 374, Bagot Road, Subiaco, Perth, WA, Australia
| | - J A Wray
- School of Medicine, University of WA, 35 Stirling Highway, Crawley, WA, 6009 Perth, Australia; Child Development Centre, 4/16 Rheola St, West Perth, WA 6005, Australia
| | - A J O Whitehouse
- Telethon Kids Institute, 15 Hospital Avenue, Nedlands, WA, 6009 Perth, Australia
| | - S Patole
- Neonatal Directorate, KEM Hospital for Women, 374 Bagot Road, Subiaco, WA, Australia; School of Medicine, University of WA, 35 Stirling Highway, Crawley, WA, 6009 Perth, Australia
| |
Collapse
|
79
|
Kosik K, Szpecht D, Al-Saad SR, Karbowski LM, Kurzawińska G, Szymankiewicz M, Drews K, Wolski H, Seremak-Mrozikiewicz A. Single nucleotide vitamin D receptor polymorphisms (FokI, BsmI, ApaI, and TaqI) in the pathogenesis of prematurity complications. Sci Rep 2020; 10:21098. [PMID: 33273558 PMCID: PMC7713052 DOI: 10.1038/s41598-020-78125-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 11/10/2022] Open
Abstract
The vitamin D receptor (VDR), coded by the VDR gene, plays a pivotal role in executing cellular functions when bound by the active form of vitamin D. Gene polymorphisms in this receptor have been increasingly associated with a heightened state of vulnerability to certain diseases. However, limited data is available concerning the role of VDR gene polymorphisms in preterm infant complications. In 114 premature infants (< 32 weeks gestation) we analyze four single nucleotide VDR polymorphisms (rs2228570 (FokI), rs1544410 (BsmI), rs797532 (ApaI), rs731236 (TaqI)) for their association with respiratory distress syndrome (RDS), intraventricular hemorrhage (IVH), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC) and retinopathy of prematurity (ROP). The results show that BPD was almost four times more likely in infants with the genotype CC of ApaI (rs7975232) (OR 3.845; p = 0.038). While both BPD and NEC were 2.1 times more likely to occur in preterm infants with the allele C of ApaI (rs7975232) (respectively: OR 2.111 and OR 2.129, p < 0.05). The ApaI VDR polymorphism appears to influence incidence of BPD and NEC in preterm infants. Considering VDR polymorphisms in future genetic investigations, in preterm complications, may prove clinically relevant.
Collapse
|
80
|
Low serum albumin concentration predicts the need for surgical intervention in neonates with necrotizing enterocolitis. J Pediatr Surg 2020; 55:2625-2629. [PMID: 32771214 DOI: 10.1016/j.jpedsurg.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/22/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate whether serum albumin (SA) concentration can predict the need for surgical intervention in neonates with necrotizing enterocolitis (NEC). METHODS Retrospective review of all cases with NEC Bell's stage 2 and 3 that were treated in a single center between 2009 and 2015. Data on patient demographics, clinical parameters, laboratory findings and surgical status were recorded. Receiver operating characteristics analysis was used to evaluate optimal cutoffs and predictive values. RESULTS Overall, 151 neonates with NEC were identified. Of these, 132 (87.4%) had confirmed NEC Bell's stage 2. The median gestational age was 28.4 (range, 23.1-39.0) weeks and 69 (52.3%) had a birth weight of ≤1000 g. Sixty-eight (51.5%) underwent surgery, showing a sustained reduction in SA over time with significantly lower median SA levels compared to 64 (48.5%) cases that responded well to medical treatment (18.3 ± 3.7 g/L vs. 26.0 ± 2.0 g/L; P < 0.001). SA concentration of ≤20 g/L on day 2 of NEC diagnosis was a significant predictor for surgery (OR 3.41; P = 0.019) with a positive predictive value of 71.4%. CONCLUSIONS An SA concentration of ≤20 g/L on day 2 of the NEC disease process is associated with a higher likelihood for surgical intervention in neonates with NEC Bell's stage 2. SA, in combination with other clinical parameters and serological markers, may be a useful predictive tool for surgery in NEC. LEVEL OF EVIDENCE II.
Collapse
|
81
|
Park CJ, Shaughnessy MP, Cowles RA. Mucosal characteristics vary across developmental stages in the small intestine of C57BL/6J mice. Life Sci 2020; 260:118428. [PMID: 32931798 DOI: 10.1016/j.lfs.2020.118428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023]
Abstract
AIMS The benefits of utilizing laboratory mice include low cost, ease of maintenance, and accessibility of molecular tools. However, the ages of experimental mice in the literature vary drastically. We hypothesized that there exists age-related variation in the murine small intestine across developmental stages. MATERIALS AND METHODS Segments of small intestine were harvested from C57BL/6J mice of varying ages (E17 to 24 weeks; n = 3-4/group). Slides were analyzed for morphometric parameters, cell types, and crypt proliferation index (CPI). Secondary analysis comparing age-matched males and females (n = 4/group) was performed. Means were compared with Student's t-test and variance of proportions with the Chi-squared test to a significance of p < 0.05. KEY FINDINGS There were small but significant differences including regional variation in villus height, which abolished when examining the small intestine as a whole. Sexually immature mice had increased CPI compared to mature animals. The most dramatic differences were seen in mice at weaning, which demonstrated shallower crypts, increased CPI, fewer Paneth and goblet cells, and more enterochromaffin cells. Examination of embryonic intestine revealed an underdeveloped mucosa lacking differentiated cells. There were minimal differences when comparing age-matched males and females. SIGNIFICANCE Small, but statistically significant differences in villus height, crypt depth, and crypt proliferation are present in mice across early developmental stages. Mice at weaning exhibit variation in crypt-villus cell composition compared to older animals, which may explain the propensity for certain intestinal conditions in the very young. Investigators studying the GI mucosa should employ consistent age-matching in order to allow direct comparison between studies.
Collapse
Affiliation(s)
- Christine J Park
- Department of Surgery, Divison of Pediatric Surgery at Yale University, 330 Cedar St., FMB 131, New Haven, CT, United States of America
| | - Matthew P Shaughnessy
- Department of Surgery, Divison of Pediatric Surgery at Yale University, 330 Cedar St., FMB 131, New Haven, CT, United States of America
| | - Robert A Cowles
- Department of Surgery, Divison of Pediatric Surgery at Yale University, 330 Cedar St., FMB 131, New Haven, CT, United States of America.
| |
Collapse
|
82
|
Wang FS, Yu ML, Li WZ, Hong K, Xu CB, Wang GH. Intestinal tract and parenteral multi-organ sequential pathological injury caused by necrotizing enterocolitis. BMC Pediatr 2020; 20:418. [PMID: 32878600 PMCID: PMC7465432 DOI: 10.1186/s12887-020-02304-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/20/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND To explore the relationship between the pathological changes of the colon, terminal ileum, lung, liver and kidney, and the changes of Bax, PCNA and PAF in a rat model of NEC. METHODS One hundred and forty neonatal SD rats were randomly divided into NEC group and control group (70 in each group). NEC group was given hypoxia, cold stimulation and artificial feeding twice a day for 3 consecutive days. The control group was only fed normally. After modeling, From the 1st day to the 7th day, 10 rats were sampled in each group for pathological examination of colon, terminal ileum, lung, liver and kidney tissue. The levels of Bax, PCNA and PAF were investigated by immunohistochemistry. RESULTS Compared with the normal group, in the NEC group, on the 1st day, the colon, terminal ileum, lung, liver and kidney showed inflammatory damage. On the 5th day, the inflammatory injury was reduced. The inflammation disappeared on the 7th day. There were differences in the time of apoptosis in the intestine. In the intestine, the proliferation of PCNA was weak at first and then strong. Bax in liver and kidney showed marked apoptosis and apoptosis time increased in the lung. The expression of PCNA increased in lung, liver and kidney, and the expression of PAF increased in lung and liver. CONCLUSIONS NEC can lead to secondary injury of different degrees in colon, terminal ileum, lung, liver and kidney, and the degree and time of injury and repair were different. In general, organ repair played a leading role on the 4th day after modeling.
Collapse
Affiliation(s)
- Fu-Sheng Wang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Meng-Lu Yu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wei-Zhong Li
- Department of Neonatal, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Kai Hong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chen-Bin Xu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Guang-Huan Wang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
83
|
RNASeq analysis reveals upregulation of complement C3 in the offspring gut following prenatal stress in mice. Immunobiology 2020; 225:151983. [PMID: 32747015 DOI: 10.1016/j.imbio.2020.151983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/12/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022]
Abstract
Dysregulated activation of inflammatory signaling by the immature neonatal immune system could lead to the development of many pediatric diseases including necrotizing enterocolitis (NEC). While the mechanism(s) of pathogenesis is unknown, NEC is believed to have multifactorial causes. Microbial dysbiosis and intestinal immaturity have been implicated as potential triggers for this disease. We hypothesized that psychological stress during pregnancy negatively impacts the development of intestinal tissues in offspring and contributes to development of NEC. Consistent with this hypothesis, we previously observed shorter villi and a decrease in total surface area in the small intestine of pups derived from mice that were chronically stressed during gestation. In this study, we performed RNASeq analysis to determine the gene expression changes in the offspring gut following prenatal stress in pregnant mice and identified several differentially expressed genes (DEGs) and biological pathways. Notably, C3 was upregulated in the small intestine and contributed to a higher tissue injury score in a mesenteric ischemia model compared to unstressed controls. We discuss the potential implications of these stress-induced genes expression changes and their contribution to development of intestinal inflammation.
Collapse
|
84
|
Gunasekaran A, Eckert J, Burge K, Zheng W, Yu Z, Kessler S, de la Motte C, Chaaban H. Hyaluronan 35 kDa enhances epithelial barrier function and protects against the development of murine necrotizing enterocolitis. Pediatr Res 2020; 87:1177-1184. [PMID: 31499514 PMCID: PMC7061074 DOI: 10.1038/s41390-019-0563-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/09/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Disruption of tight junctions (TJs) predisposes to bacterial translocation, intestinal inflammation, and necrotizing enterocolitis (NEC). Previously, studies showed that hyaluronan (HA), a glycosaminoglycan in human milk, maintains intestinal permeability, enhances intestinal immunity, and reduces intestinal infections. In this study, we investigated the effects of HA 35 kDa on a NEC-like murine model. METHODS Pups were divided into Sham, NEC, NEC+HA 35, and HA 35. Severity of intestinal injury was compared using a modified macroscopic gut scoring and histologic injury grading. The effect of HA 35 on intestinal permeability was determined by measuring FITC dextran and bacterial translocation. RNA and protein expression of TJ proteins (claudin-2, -3, -4, occludin, and ZO-1) were compared between the groups. RESULTS Pups in the NEC+HA 35 group had increased survival and lower intestinal injury compared to untreated NEC. In addition, HA 35 reduced intestinal permeability, bacterial translocation, and proinflammatory cytokine release. Ileal expression of claudin-2, -3, -4, occludin, and ZO-1 was upregulated in NEC+HA 35 and HA 35 compared to untreated NEC and shams. CONCLUSION These findings suggest that HA 35 protects against NEC partly by upregulating intestinal TJs and enhancing intestinal barrier function.
Collapse
Affiliation(s)
- Aarthi Gunasekaran
- Department of Neonatal and Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jeffrey Eckert
- Department of Neonatal and Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kathryn Burge
- Department of Neonatal and Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wei Zheng
- Department of GI/Liver Pathology, UCLA, Los Angeles, California
| | - Zhongxin Yu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sean Kessler
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio
| | - Carol de la Motte
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio
| | - Hala Chaaban
- Department of Neonatal and Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
85
|
Klinke M, Vincent D, Trochimiuk M, Appl B, Tiemann B, Reinshagen K, Pagerols Raluy L, Boettcher M. Development of an improved murine model of necrotizing enterocolitis shows the importance of neutrophils in NEC pathogenesis. Sci Rep 2020; 10:8049. [PMID: 32415172 PMCID: PMC7229036 DOI: 10.1038/s41598-020-65120-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/28/2020] [Indexed: 12/23/2022] Open
Abstract
Various research models to induce necrotizing enterocolitis (NEC) in animals exist, yet significant differences in NEC severity between murine animal models and human patients persist. One possible explanation for the difference in severity may be the variance in neutrophil concentration among newborn humans (50-70%) in comparison to neonatal mice (10-25%). However, neutrophil activity has yet to be evaluated in NEC pathogenesis. Thus, the aim of the study was to evaluate the effects of altered neutrophil concentrations in neonatal mice while simultaneously undergoing a NEC induction. A total of 44 neonatal mice were included in this study and 40 were subjected to an established NEC induction paradigm and 4 were assigned a sham group. Of the 40 mice, 30 received granulocyte-colony stimulating factor (G-CSF) on a daily basis, while 10 were used as controls (receiving inactivated G-CSF). Mice undergoing G-CSF treatment were further divided into two subgroups: (1) wildtype and (2) ELANE-knockout (KO). ELANE - KO mice are incapable of producing neutrophil elastase (NE) and were used to evaluate the role of neutrophils in NEC. For each of the groups, the following metrics were evaluated: survival, NEC severity, tissue damage, neutrophil count and activation, and NETs formation. An improved murine model of NEC was developed using (1) Lipopolysaccharides and Neocate gavage feeding, (2) hypoxia, and (3) G-CSF administration. The results suggest that the addition of G-CSF resulted in significantly elevated NEC manifestation rates with consequent tissue damage and intestinal inflammation, without affecting overall mortality. Animals without functioning NE (ELANE-KO) appeared to have been protected from NEC development. This study supports the importance of neutrophils in NEC pathogenesis. The optimized NEC induction paradigm, using G-CSF administration, resulted in elevated neutrophil counts, resembling those of neonatal humans. Elevation of neutrophil levels significantly improved NEC disease manifestation by modeling human physiology more accurately than current NEC models. Thus, in the future, murine NEC experiments should include the elevation of neutrophil levels to improve the transition of research findings from mice to humans.
Collapse
Affiliation(s)
- Michaela Klinke
- Department of Pediatric Surgery, UKE Medical School, Martinistrasse 52, 20246, Hamburg, Germany
| | - Deirdre Vincent
- Department of Pediatric Surgery, UKE Medical School, Martinistrasse 52, 20246, Hamburg, Germany
| | - Magdalena Trochimiuk
- Department of Pediatric Surgery, UKE Medical School, Martinistrasse 52, 20246, Hamburg, Germany
| | - Birgit Appl
- Department of Pediatric Surgery, UKE Medical School, Martinistrasse 52, 20246, Hamburg, Germany
| | - Bastian Tiemann
- Department of Pediatric Surgery, UKE Medical School, Martinistrasse 52, 20246, Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, UKE Medical School, Martinistrasse 52, 20246, Hamburg, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, UKE Medical School, Martinistrasse 52, 20246, Hamburg, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, UKE Medical School, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
86
|
Beneficial Effect of Mildly Pasteurized Whey Protein on Intestinal Integrity and Innate Defense in Preterm and Near-Term Piglets. Nutrients 2020; 12:nu12041125. [PMID: 32316586 PMCID: PMC7230795 DOI: 10.3390/nu12041125] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023] Open
Abstract
Background. The human digestive tract is structurally mature at birth, yet maturation of gut functions such as digestion and mucosal barrier continues for the next 1–2 years. Human milk and infant milk formulas (IMF) seem to impact maturation of these gut functions differently, which is at least partially related to high temperature processing of IMF causing loss of bioactive proteins and formation of advanced glycation end products (AGEs). Both loss of protein bioactivity and formation of AGEs depend on heating temperature and time. The aim of this study was to investigate the impact of mildly pasteurized whey protein concentrate (MP-WPC) compared to extensively heated WPC (EH-WPC) on gut maturation in a piglet model hypersensitive to enteral nutrition. Methods. WPC was obtained by cold filtration and mildly pasteurized (73 °C, 30 s) or extensively heat treated (73 °C, 30 s + 80 °C, 6 min). Preterm (~90% gestation) and near-term piglets (~96% gestation) received enteral nutrition based on MP-WPC or EH-WPC for five days. Macroscopic and histologic lesions in the gastro-intestinal tract were evaluated and intestinal responses were further assessed by RT-qPCR, immunohistochemistry and enzyme activity analysis. Results. A diet based on MP-WPC limited epithelial intestinal damage and improved colonic integrity compared to EH-WPC. MP-WPC dampened colonic IL1-β, IL-8 and TNF-α expression and lowered T-cell influx in both preterm and near-term piglets. Anti-microbial defense as measured by neutrophil influx in the colon was only observed in near-term piglets, correlated with histological damage and was reduced by MP-WPC. Moreover, MP-WPC stimulated iALP activity in the colonic epithelium and increased differentiation into enteroendocrine cells compared to EH-WPC. Conclusions. Compared to extensively heated WPC, a formula based on mildly pasteurized WPC limits gut inflammation and stimulates gut maturation in preterm and near-term piglets and might therefore also be beneficial for preterm and (near) term infants.
Collapse
|
87
|
Mendez YS, Khan FA, Perrier GV, Radulescu A. Animal models of necrotizing enterocolitis. WORLD JOURNAL OF PEDIATRIC SURGERY 2020; 3:e000109. [DOI: 10.1136/wjps-2020-000109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/19/2023] Open
Abstract
BackgroundNecrotizing enterocolitis (NEC) is one of the leading causes of death in premature infants. To determine the factors present in the disease that lead to increased morbidity and mortality, manipulation of variables that are shown to have a positive response has been tested using various animal models. Testing and manipulation of these variables are unwarranted in humans due to regulatory health standards.MethodsThe purpose of this review is to provide an update to previous summaries that determine the significance of animal models in studying the mechanisms of NEC. A large variety of animal models including rats, mice, rabbits, piglets, nonhuman primates, and quails have been described in literature. We reviewed the reported animal models of NEC and examined the pros and cons of the various models as well as the scientific question addressed.ResultsThe animals used in these experiments were subject to gavage feeding, hypoxia, hypothermia, oxygen perfusion, and other methods to induce the disease state. Each of these models has been utilized to show the effects of NEC on the premature, undeveloped gut in animals to find a correlation to the disease state present in humans. We found specific advantages and disadvantages for each model.ConclusionsRecent advances in our understanding of NEC and the ongoing therapeutic strategy developments underscore the importance of animal models for this disease.
Collapse
|
88
|
Burge K, Bergner E, Gunasekaran A, Eckert J, Chaaban H. The Role of Glycosaminoglycans in Protection from Neonatal Necrotizing Enterocolitis: A Narrative Review. Nutrients 2020; 12:nu12020546. [PMID: 32093194 PMCID: PMC7071410 DOI: 10.3390/nu12020546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/22/2022] Open
Abstract
Necrotizing enterocolitis, a potentially fatal intestinal inflammatory disorder affecting primarily premature infants, is a significant cause of morbidity and mortality in neonates. While the etiology of the disease is, as yet, unknown, a number of risk factors for the development of necrotizing enterocolitis have been identified. One such risk factor, formula feeding, has been shown to contribute to both increased incidence and severity of the disease. The protective influences afforded by breastfeeding are likely attributable to the unique composition of human milk, an extremely potent, biologically active fluid. This review brings together knowledge on the pathogenesis of necrotizing enterocolitis and current thinking on the instrumental role of one of the more prominent classes of bioactive components in human breast milk, glycosaminoglycans.
Collapse
MESH Headings
- Breast Feeding
- Enterocolitis, Necrotizing/etiology
- Enterocolitis, Necrotizing/pathology
- Enterocolitis, Necrotizing/prevention & control
- Female
- Glycosaminoglycans/pharmacology
- Humans
- Infant Formula/adverse effects
- Infant, Newborn
- Infant, Premature, Diseases/etiology
- Infant, Premature, Diseases/pathology
- Infant, Premature, Diseases/prevention & control
- Male
- Milk, Human/chemistry
- Protective Agents/pharmacology
- Risk Factors
Collapse
|
89
|
Regenerating islet-derived protein (Reg)3β plays a crucial role in attenuation of ileitis and colitis in mice. Biochem Biophys Rep 2020; 21:100738. [PMID: 32072024 PMCID: PMC7016002 DOI: 10.1016/j.bbrep.2020.100738] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/26/2019] [Accepted: 01/25/2020] [Indexed: 12/16/2022] Open
Abstract
Regenerating islet-derived protein (Reg)3β belongs to a member of the Reg family of proteins and has pleiotropic functions, including antimicrobial activity and tissue repair. However, whether Reg3β plays a protective role in the development of colitis and ileitis has not been fully investigated. We generated transgenic mice expressing a short form of cellular FLICE-inhibitory protein (cFLIPs) that promotes necroptosis, a regulated form of cell death. cFLIPs transgenic (CFLARs Tg) mice develop severe ileitis in utero. Although Reg3β is undetectable in the small intestine of wild-type embryos, its expression is aberrantly elevated in the small intestine of CFLARs Tg embryos. To test whether elevated Reg3β attenuates or exacerbates ileitis in CFLARs Tg mice, we generated a Reg3b−/− strain. Reg3b−/− mice grew to adulthood without apparent abnormalities. Deletion of Reg3b in CFLARs Tg mice exacerbated the embryonic lethality of CFLARs Tg mice. Dextran sulfate sodium-induced colitis, characterized by body weight loss and infiltration of neutrophils, was exacerbated in Reg3b−/− compared to wild-type mice. Moreover, the expression of Interleukin 6, an inflammatory cytokine and Chitinase-like 3, a marker for tissue repair macrophages was elevated in the colon of Reg3b−/− mice compared to wild-type mice after DSS treatment. Together, these results suggest that attenuation of colitis and ileitis is a result of Reg3β′s real function. The expression of Reg3β is elevated in the embryonic small intestine of CFLARs Tg mice. Reg3b−/− mice grow to adulthood without apparent abnormalities. Dextran sulfate sodium-induced colitis is exacerbated in Reg3b−/− mice. Deletion of Reg3b exacerbates ileitis in CFLARs Tg mice.
Collapse
Key Words
- Arg1, Arginase-1
- CFLARs Tg, cFLIPs transgenic
- Cellular FLICE-Inhibitory protein
- Chitinase-like 3, Chil3
- Colitis
- DSS, dextran sulfate sodium
- Dextran sulfate sodium
- GFP, green fluorescent protein
- IECs, intestinal epithelial cells
- IL, interleukin
- ILC3, group 3 innate lymphoid cell
- Ileitis
- MLKL, mixed lineage kinase domain–like protein
- Mrc1, Mannose receptor C-type 1
- RIPK, receptor-interacting protein kinase
- RORγt, RAR-related orphan receptor gamma t
- Reg, regenerating islet-derived protein
- Regenerating islet-derived protein
- Retnla, Resistin-like alpha
- STAT, signal transducer and activator of transcription
- cFLIPs and L, cellular FLICE-inhibitory protein, short and long forms
- pSTAT3, phospho-STAT3
- qPCR, quantitative polymerase chain reaction
Collapse
|
90
|
Chen L, Lv Z, Gao Z, Ge G, Wang X, Zhou J, Sheng Q. Human β-defensin-3 reduces excessive autophagy in intestinal epithelial cells and in experimental necrotizing enterocolitis. Sci Rep 2019; 9:19890. [PMID: 31882811 PMCID: PMC6934505 DOI: 10.1038/s41598-019-56535-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of mortality in preterm newborns. Intestinal barrier dysfunction is one key event in NEC pathogenesis. Human β-defensin-3 (hBD3), one member of cationic host defence peptides, was reported to reduce the development of necrotizing enterocolitis in a neonatal rat model. And autophagy was induced in the intestine of human and animals with NEC. We hypothesized that regulation of autophagy might play a critical role in hBD3-mediated protection against NEC injury. Autophagy activity was evaluated both in intestinal epithelial cells and in NEC models. Newborn Sprague-Dawley rats were divided randomly into four groups: Control + NS, Control + rapamycin, NEC + NS, and NEC + hBD3. Body weight, histological score, survival time, enterocyte migration and mucosal barrier were recorded. Our results showed that hBD3 pretreatment could effectively inhibit autophagy activity in cultured IEC-6 and Caco2 enterocytes, and CXCR4 might be involved in hBD3-mediated autophagy suppression. Moreover, hBD3-induced inhibition of autophagy significantly promoted the intestinal epithelial cell migration by wound healing assay and transwell migration assay. In the rat model of NEC, hBD3 could noticeably reduce the expression of autophagy-activated proteins, down-regulate the expression of inflammatory mediators, and promote the mucosal integrity. Our data suggest an additional role of hBD3-mediated protection against intestinal mucosal injury: inhibition of over-activated autophagy in enterocytes.
Collapse
Affiliation(s)
- Liping Chen
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
| | - Zhimei Gao
- Department of Central Laboratory, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Guijie Ge
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Xueli Wang
- Department of Pathology, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Junmei Zhou
- Department of Central Laboratory, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Qingfeng Sheng
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
| |
Collapse
|
91
|
Meister AL, Doheny KK, Travagli RA. Necrotizing enterocolitis: It's not all in the gut. Exp Biol Med (Maywood) 2019; 245:85-95. [PMID: 31810384 DOI: 10.1177/1535370219891971] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Necrotizing enterocolitis is the leading cause of death due to gastrointestinal disease in preterm neonates, affecting 5–12% of neonates born at a very-low birth weight. Necrotizing enterocolitis can present with a slow and insidious onset, with some neonates displaying early symptoms such as feeding intolerance. Treatment during the early stages includes bowel rest and careful use of antibiotics, but surgery is required if pneumoperitoneum and intestinal perforation occur. Mortality rates among neonates requiring surgery are estimated to be 20–30%, mandating the development of non-invasive and reliable biomarkers to predict necrotizing enterocolitis before the onset of clinical signs. Such biomarkers would allow at-risk neonates to receive maximal preventative therapies such as careful nutritional consideration, probiotics, and increased skin-to-skin care.Impact statementNecrotizing enterocolitis (NEC) is a devastating gastrointestinal disease; its high mortality rate mandates the development of non-invasive biomarkers to predict NEC before its onset. This review summarizes the pathogenesis, prevention, unresolved issues, and long-term outcomes of NEC.
Collapse
Affiliation(s)
- Alissa L Meister
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Kim K Doheny
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA.,Neonatal-Perinatal Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
92
|
Liang S, Lai P, Li X, Xu J, Bao Y, Fang Y, Ding M. Ulinastatin Reduces the Severity of Intestinal Damage in the Neonatal Rat Model of Necrotizing Enterocolitis. Med Sci Monit 2019; 25:9123-9130. [PMID: 31786582 PMCID: PMC6904988 DOI: 10.12659/msm.919413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Ulinastatin is a protease inhibitor derived from urine that has shown anti-inflammatory effects in human disease, including in sepsis. Necrotizing enterocolitis (NEC) is a common gastrointestinal disease in premature infants. Our aim was to explore the effects of ulinastatin on a neonatal NEC rat model. Material/Methods Forty-five neonatal rats were divided into 3 groups: normal control; NEC+sepsis-induced kidney injury (SIRS); NEC/SIRS+ulinastatin. The NEC/SIRS model was induced by injection of intraperitoneal saline, enteral formula feeding, hypoxia-hyperoxide, and cold stress exposure. The NEC/SIRS neonatal rats were perfused with ulinastatin at a dose of 10 000 u/kg/day. Giemsa staining and hematoxylin and eosin (H&E) were performed to evaluate the severity of intestinal damage. To assess intestinal cell apoptosis, we examined the expression of caspase-3 by TUNEL staining and western blot analysis. Intestinal levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) were examined using ELISA assay. Results Rats in the NEC treated with ulinastatin group had better physiological status and histological score compared to the NEC/SIRS group. Ulinastatin reduced NEC-induced weight loss. Macroscopic and microscopic morphology analyses showed that rats in the NEC treated with ulinastatin group had lower severity of intestinal damage compared to the NEC/SIRS group. TUNEL staining and caspase-3 expression detection results revealed that ulinastatin significantly inhibited intestinal cell apoptosis of NEC. Furthermore, ulinastatin decreased the intestinal levels of IL-1β, IL-6, and TNF-α in NEC. Conclusions Ulinastatin could ameliorate the severity of intestinal damage in NEC and possess anti-apoptosis and anti-inflammation effects.
Collapse
Affiliation(s)
- Shuxia Liang
- Department of Ophthalmology, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China (mainland)
| | - Panjian Lai
- Department of Pediatrics, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China (mainland)
| | - Xiaobing Li
- Department of Pediatrics, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China (mainland)
| | - Jie Xu
- Operating Room, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China (mainland)
| | - Yunguang Bao
- Department of Pediatrics, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China (mainland)
| | - Yuanshu Fang
- Department of Laboratory Animals Center, Jinhua Institute for Food and Drug Control, Jinhua, Zhejiang, China (mainland)
| | - Mingxing Ding
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang, China (mainland)
| |
Collapse
|
93
|
Adams M, Bassler D, Darlow BA, Lui K, Reichman B, Hakansson S, Norman M, Lee SK, Helenius KK, Lehtonen L, San Feliciano L, Vento M, Moroni M, Beltempo M, Yang J, Shah PS. Preventive strategies and factors associated with surgically treated necrotising enterocolitis in extremely preterm infants: an international unit survey linked with retrospective cohort data analysis. BMJ Open 2019; 9:e031086. [PMID: 31615799 PMCID: PMC6797308 DOI: 10.1136/bmjopen-2019-031086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES To compare necrotising enterocolitis (NEC) prevention practices and NEC associated factors between units from eight countries of the International Network for Evaluation of Outcomes of Neonates, and to assess their association with surgical NEC rates. DESIGN Prospective unit-level survey combined with retrospective cohort study. SETTING Neonatal intensive care units in Australia/New Zealand, Canada, Finland, Israel, Spain, Sweden, Switzerland and Tuscany (Italy). PATIENTS Extremely preterm infants born between 240 to 286 weeks' gestation, with birth weights<1500 g, and admitted between 2014-2015. EXPOSURES NEC prevention practices (probiotics, feeding, donor milk) using responses of an on-line pre-piloted questionnaire containing 10 questions and factors associated with NEC in literature (antenatal steroids, c-section, indomethacin treated patent ductus arteriosus and sepsis) using cohort data. OUTCOME MEASURES Surgical NEC rates and death following NEC using cohort data. RESULTS The survey response rate was 91% (153 units). Both probiotic provision and donor milk availability varied between 0%-100% among networks whereas feeding initiation and advancement rates were similar in most networks. The 9792 infants included in the cohort study to link survey results and cohort outcomes, revealed similar baseline characteristics but considerable differences in factors associated with NEC between networks. 397 (4.1%) neonates underwent NEC surgery, ranging from 2.4%-8.4% between networks. Standardised ratios for surgical NEC were lower for Australia/New Zealand, higher for Spain, and comparable for the remaining six networks. CONCLUSIONS The variation in implementation of NEC prevention practices and in factors associated with NEC in literature could not be associated with the variation in surgical NEC incidence. This corroborates the current lack of consensus surrounding the use of preventive strategies for NEC and emphasises the need for research.
Collapse
MESH Headings
- Cause of Death
- Cohort Studies
- Data Analysis
- Databases, Factual
- Enterocolitis, Necrotizing/mortality
- Enterocolitis, Necrotizing/prevention & control
- Enterocolitis, Necrotizing/surgery
- Female
- Hospital Mortality/trends
- Humans
- Infant, Extremely Premature
- Infant, Newborn
- Infant, Premature, Diseases/diagnosis
- Infant, Premature, Diseases/mortality
- Infant, Premature, Diseases/surgery
- Intensive Care Units, Neonatal
- Internationality
- Male
- Primary Prevention/methods
- Probiotics/administration & dosage
- Prognosis
- Retrospective Studies
- Risk Factors
- Surveys and Questionnaires
- Survival Analysis
- Treatment Outcome
Collapse
Affiliation(s)
- Mark Adams
- Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Dirk Bassler
- Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Brian A Darlow
- Department of Paediatrics, University of Otago, Christchurch, Otago, New Zealand
| | - Kei Lui
- Department of Newborn Care, Royal Hospital for Women, Randwick, New South Wales, Australia
| | - Brian Reichman
- Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Centre, Tel Hashomer, Israel
| | - Stellan Hakansson
- Department of Clinical Sciences/Pediatrics, Umeå University Hospital, Umeå, Sweden
| | - Mikael Norman
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Shoo K Lee
- Department of Paediatrics, Mount Sinai Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Kjell K Helenius
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Liisa Lehtonen
- Department of Pediatrics, University of Turku, Turku, Finland
| | | | - Maximo Vento
- Division of Neonatology and Health Research Institute La Fe, University of Valencia, Valencia, Spain
| | - Marco Moroni
- Neonatal Intensive Care Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Marc Beltempo
- Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Québec, Canada
| | - Junmin Yang
- Department of Paediatrics, Mount Sinai Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Prakesh S Shah
- Department of Paediatrics, Mount Sinai Hospital and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
94
|
Chen L, Strohmeier V, He Z, Deshpande M, Catalan-Dibene J, Durum SK, Moran TM, Kraus T, Xiong H, Faith JJ, Sodhi CP, Hackam DJ, Lira SA, Furtado GC. Interleukin 22 disrupts pancreatic function in newborn mice expressing IL-23. Nat Commun 2019; 10:4517. [PMID: 31586069 PMCID: PMC6778080 DOI: 10.1038/s41467-019-12540-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
Neonatal inflammatory diseases are associated with severe morbidity, but the inflammatory factors underlying them and their potential effector mechanisms are poorly defined. Here we show that necrotizing enterocolitis in neonate mice is accompanied by elevation of IL-23 and IL-22 and decreased production of pancreatic enzymes. These phenotypes are mirrored in neonate mice overexpressing IL-23 in CX3CR1+ myeloid cells or in keratinocytes. The mice fail to grow and die prematurely, displaying systemic inflammation, nutrient malabsorption and decreased expression of intestinal and pancreatic genes mediating digestion and absorption of carbohydrates, proteins, and lipids. Germ-free environment improves, and genetic ablation of IL-22 restores normal growth in mice overexpressing IL-23. Mechanistically, IL-22 acts directly at the level of pancreatic acinar cells to decrease expression of the pancreas associated transcription factor 1a (PTF1a). These results show that augmented production of IL-23 and IL-22 in early life has a negative impact on pancreatic enzyme secretion and food absorption.
Collapse
Affiliation(s)
- Lili Chen
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Valentina Strohmeier
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Zhengxiang He
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Madhura Deshpande
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jovani Catalan-Dibene
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Scott K Durum
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Thomas M Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thomas Kraus
- Center for Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Huabao Xiong
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chhinder P Sodhi
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, 21287, USA
| | - David J Hackam
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, 21287, USA
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Glaucia C Furtado
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
95
|
Impaired Wnt/β-catenin pathway leads to dysfunction of intestinal regeneration during necrotizing enterocolitis. Cell Death Dis 2019; 10:743. [PMID: 31582728 PMCID: PMC6776513 DOI: 10.1038/s41419-019-1987-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/17/2019] [Indexed: 01/21/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating neonatal disease characterized by acute intestinal injury. Intestinal stem cell (ISC) renewal is required for gut regeneration in response to acute injury. The Wnt/β-catenin pathway is essential for intestinal renewal and ISC maintenance. We found that ISC expression, Wnt activity and intestinal regeneration were all decreased in both mice with experimental NEC and in infants with acute active NEC. Moreover, intestinal organoids derived from NEC-injured intestine of both mice and humans failed to maintain proliferation and presented more differentiation. Administration of Wnt7b reversed these changes and promoted growth of intestinal organoids. Additionally, administration of exogenous Wnt7b rescued intestinal injury, restored ISC, and reestablished intestinal epithelial homeostasis in mice with NEC. Our findings demonstrate that during NEC, Wnt/β-catenin signaling is decreased, ISC activity is impaired, and intestinal regeneration is defective. Administration of Wnt resulted in the maintenance of intestinal epithelial homeostasis and avoidance of NEC intestinal injury.
Collapse
|
96
|
Burge KY, Hannah L, Eckert JV, Gunasekaran A, Chaaban H. The Protective Influence of Chondroitin Sulfate, a Component of Human Milk, on Intestinal Bacterial Invasion and Translocation. J Hum Lact 2019; 35:538-549. [PMID: 31051086 PMCID: PMC6615959 DOI: 10.1177/0890334419845338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Human milk is known to be protective against necrotizing enterocolitis, a devastating intestinal inflammatory disease affecting the preterm population. Although the pathogenesis of necrotizing enterocolitis is yet to be solidified, intestinal integrity dysfunction, bacterial invasion and/or translocation, and inflammation may play important roles. Glycosaminoglycans, compounds naturally prevalent in both human milk and the intestine, are thought to be anti-inflammatory and capable of altering bacterial interactions within the gut. RESEARCH AIM In this study, we aimed to evaluate the potential of chondroitin sulfate, the most prominent class of glycosaminoglycans in human milk, to protect against bacterial infection in an intestinal in vitro model. METHODS T84 cell monolayers were treated with chondroitin sulfate and cell viability was assessed across a number of doses. Monolayers were then pretreated with chondroitin sulfate and subsequently challenged with E. coli invasion and translocation to evaluate any protective role of the compound against infection. Tight junction barrier function was assessed by transepithelial electrical resistance, and cytokine levels were evaluated. RESULTS Chondroitin sulfate at any dose up to 750 μg/ml was not associated with any statistically significant decrease in cell viability. Additionally, chondroitin sulfate at 750 μg/ml was associated with a 75% decrease in both bacterial invasion and translocation compared to control. CONCLUSIONS These data suggest chondroitin sulfate may protect against bacterial infection through a reduction in both invasion and translocation, importantly without attendant reduction in cell viability.
Collapse
Affiliation(s)
- Kathryn Y Burge
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lindsey Hannah
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jeffrey V Eckert
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Aarthi Gunasekaran
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hala Chaaban
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
97
|
Prado C, Michels M, Ávila P, Burger H, Milioli MVM, Dal-Pizzol F. The protective effects of fecal microbiota transplantation in an experimental model of necrotizing enterocolitis. J Pediatr Surg 2019; 54:1578-1583. [PMID: 30414693 DOI: 10.1016/j.jpedsurg.2018.10.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a serious disease that affects premature neonates, causing high mortality. In the search for new options of treatment it was investigated whether fecal microbiota transplantation (FMT) decreased the inflammatory response during NEC development in experimental model. METHODS Wistar rats were used and divided as follows: naïve, control (NEC induction), FMT-before (transplantation of microbiota before insult) and FMT-after (microbiota transplantation after insult). The microbiota transplantation was performed by administering a feces solution obtained from an adult donor rat. The induction of enterocolitis involves feeding by artificial formula, hypothermia, hypoxia and endotoxin administration. MPO activity, TNF-α, IL-1β and IL-6 levels, oxidative and nitrosative damage and the grade of intestinal mucosa lesion were analyzed. RESULTS The control group had a significant increase of inflammatory and oxidative parameters when compared to naive animals. Both FMT-before and after decreased all inflammatory and oxidative damage parameters when compared to control group. This was also true to the intestinal mucosa damage. CONCLUSION FMT administered just before or after NEC induction improved gut and systemic inflammation, and gut oxidative damage and intestinal injury.
Collapse
Affiliation(s)
- Christian Prado
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| | - Pricila Ávila
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Henrique Burger
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Maria Vitória Meller Milioli
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| |
Collapse
|
98
|
Recombinant human soluble thrombomodulin reduces the severity and incidence of necrotizing enterocolitis in a newborn rat model. Surg Today 2019; 49:971-976. [PMID: 31190184 DOI: 10.1007/s00595-019-01832-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/31/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE Necrotizing enterocolitis (NEC) remains the leading cause of death in preterm infants. Recombinant human soluble thrombomodulin (rTM) has been reported to have anti-inflammatory effects as well as antithrombogenic effects. The aim of this study was to evaluate the effect of rTM in a rat NEC model. METHODS NEC was induced by enteral feeding with hyperosmolar formula, gavage administration of lipopolysaccharide and asphyxia stress. Controls were fed by their mother ad libitum. In the treatment group, rTM was administered subcutaneously twice (once each on the first and second day). All animals surviving beyond 96 h or that developed signs of distress were euthanized. The ileum was harvested for a histological evaluation and the measurement of the mRNA and protein expression. RESULTS The rate of NEC-like intestinal injury in the treatment group (9/25, 36%) was significantly lower than in the NEC group (25/34, 73.5%). Tissue levels of TNF-α, IL-6 and HMGB1 were significantly elevated in the NEC group, whereas those in the treatment group were decreased to similar values as in the control group. CONCLUSIONS Our experimental study showed that rTM is able to reduce the severity and incidence of NEC. It may be an alternative option for the treatment of NEC.
Collapse
|
99
|
Shindo R, Ohmuraya M, Komazawa-Sakon S, Miyake S, Deguchi Y, Yamazaki S, Nishina T, Yoshimoto T, Kakuta S, Koike M, Uchiyama Y, Konishi H, Kiyama H, Mikami T, Moriwaki K, Araki K, Nakano H. Necroptosis of Intestinal Epithelial Cells Induces Type 3 Innate Lymphoid Cell-Dependent Lethal Ileitis. iScience 2019; 15:536-551. [PMID: 31132747 PMCID: PMC6538961 DOI: 10.1016/j.isci.2019.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/12/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
A short form of cellular FLICE-inhibitory protein encoded by CFLARs promotes necroptosis. Although necroptosis is involved in various pathological conditions, the detailed mechanisms are not fully understood. Here we generated transgenic mice wherein CFLARs was integrated onto the X chromosome. All male CFLARs Tg mice died perinatally due to severe ileitis. Although necroptosis was observed in various tissues of CFLARs Tg mice, large numbers of intestinal epithelial cells (IECs) died by apoptosis. Deletion of Ripk3 or Mlkl, essential genes of necroptosis, prevented both necroptosis and apoptosis, and rescued lethality of CFLARs Tg mice. Type 3 innate lymphoid cells (ILC3s) were activated and recruited to the small intestine along with upregulation of interleukin-22 (Il22) in CFLARs Tg mice. Deletion of ILC3s or Il22 rescued lethality of CFLARs Tg mice by preventing apoptosis, but not necroptosis of IECs. Together, necroptosis-dependent activation of ILC3s induces lethal ileitis in an IL-22-dependent manner. CFLARs Tg mice develop severe ileitis in utero Intestinal epithelial cells die by apoptosis and necroptosis in CFLARs Tg mice Blockade of necroptosis rescues lethality of CFLARs Tg mice Necroptosis activates type 3 innate lymphoid cells, resulting in severe ileitis
Collapse
Affiliation(s)
- Ryodai Shindo
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Sachiko Komazawa-Sakon
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Sanae Miyake
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Yutaka Deguchi
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Takashi Nishina
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku-ku, Tokyo 160-8402, Japan
| | - Soichiro Kakuta
- Department of Cellular Molecular Neuropathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasuo Uchiyama
- Department of Cellular Molecular Neuropathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumaicho, Showa-ku, Nagoya 466-8560, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumaicho, Showa-ku, Nagoya 466-8560, Japan
| | - Tetuo Mikami
- Department of Pathology, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Kenta Moriwaki
- Department of Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan; Host Defense Research Center, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan.
| |
Collapse
|
100
|
Recent Potential Noninvasive Biomarkers in Necrotizing Enterocolitis. Gastroenterol Res Pract 2019; 2019:8413698. [PMID: 31178908 PMCID: PMC6501130 DOI: 10.1155/2019/8413698] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/31/2018] [Accepted: 02/12/2019] [Indexed: 12/27/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a rare but devastating gastrointestinal disease that predominately affects preterm neonates. Numerous studies have revealed that NEC is strongly associated with very low birth weight, degree of prematurity, formula feeding, infection, hypoxic/ischemic injury, and enteric dysbiosis. Given these clinical associations, the search for a deeper understanding of disease pathogenesis has led to an intense interest in the discovery and development of noninvasive biomarkers of NEC from stool, urine, and serum. Biomarkers for NEC may serve at least two general purposes of urgent unmet need: to improve diagnostic accuracy and disease prediction and to reveal the mechanism of the disease. This review will provide an overview of recent research focused on clinical NEC and highlight the advances that were made within the past five years towards the development of noninvasive diagnostic biomarkers.
Collapse
|