51
|
Kropski JA, Richmond BW, Gaskill CF, Foronjy RF, Majka SM. Deregulated angiogenesis in chronic lung diseases: a possible role for lung mesenchymal progenitor cells (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217739807. [PMID: 29040010 PMCID: PMC5731726 DOI: 10.1177/2045893217739807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic lung disease (CLD), including pulmonary fibrosis (PF) and chronic obstructive pulmonary disease (COPD), is the fourth leading cause of mortality worldwide. Both are debilitating pathologies that impede overall tissue function. A common co-morbidity in CLD is vasculopathy, characterized by deregulated angiogenesis, remodeling, and loss of microvessels. This substantially worsens prognosis and limits survival, with most current therapeutic strategies being largely palliative. The relevance of angiogenesis, both capillary and lymph, to the pathophysiology of CLD has not been resolved as conflicting evidence depicts angiogenesis as both reparative or pathologic. Therefore, we must begin to understand and model the underlying pathobiology of pulmonary vascular deregulation, alone and in response to injury induced disease, to define cell interactions necessary to maintain normal function and promote repair. Capillary and lymphangiogenesis are deregulated in both PF and COPD, although the mechanisms by which they co-regulate and underlie early pathogenesis of disease are unknown. The cell-specific mechanisms that regulate lung vascular homeostasis, repair, and remodeling represent a significant gap in knowledge, which presents an opportunity to develop targeted therapies. We have shown that that ABCG2pos multipotent adult mesenchymal stem or progenitor cells (MPC) influence the function of the capillary microvasculature as well as lymphangiogenesis. A balance of both is required for normal tissue homeostasis and repair. Our current models suggest that when lymph and capillary angiogenesis are out of balance, the non-equivalence appears to support the progression of disease and tissue remodeling. The angiogenic regulatory mechanisms underlying CLD likely impact other interstitial lung diseases, tuberous sclerosis, and lymphangioleiomyomatosis.
Collapse
Affiliation(s)
- Jonathan A Kropski
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley W Richmond
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christa F Gaskill
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert F Foronjy
- 3 5718 Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Susan M Majka
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,2 74498 Department of Medicine, Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
52
|
Rapp J, Jaromi L, Kvell K, Miskei G, Pongracz JE. WNT signaling - lung cancer is no exception. Respir Res 2017; 18:167. [PMID: 28870231 PMCID: PMC5584342 DOI: 10.1186/s12931-017-0650-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/27/2017] [Indexed: 02/07/2023] Open
Abstract
Since the initial discovery of the oncogenic activity of WNT ligands our understanding of the complex roles for WNT signaling pathways in lung cancers has increased substantially. In the current review, the various effects of activation and inhibition of the WNT signaling pathways are summarized in the context of lung carcinogenesis. Recent evidence regarding WNT ligand transport mechanisms, the role of WNT signaling in lung cancer angiogenesis and drug transporter regulation and the importance of microRNA and posttranscriptional regulation of WNT signaling are also reviewed.
Collapse
Affiliation(s)
- Judit Rapp
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Luca Jaromi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Gyorgy Miskei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| |
Collapse
|
53
|
|
54
|
Sun W, Tang H, Gao L, Sun X, Liu J, Wang W, Wu T, Lin H. Mechanisms of pulmonary fibrosis induced by core fucosylation in pericytes. Int J Biochem Cell Biol 2017; 88:44-54. [PMID: 28483669 DOI: 10.1016/j.biocel.2017.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 01/03/2023]
Abstract
Pulmonary fibrosis is a common outcome of a variety of pulmonary interstitial diseases, and myofibroblasts are the main culprit for this process. Recent studies have found that pericytes are one of the major sources of myofibroblasts; the transformation of which involves a complex process of activation of TGF-β/Smad2/3 and PDGFβ/Erk signaling pathways. We have reported that the transforming growth factor-β receptor and platelet-derived growth factor-β receptor (TGF-βR I and PDGFβR, respectively) are modified by glycosylation. Thus, we hope to regulate the above-mentioned signal pathways through core fucosylation (CF) catalyzed by α-1,6-fucosyltransferase (FUT8). Previous work has confirmed that TGF-β1 can induce the transformation of pericytes into myofibroblasts, while FUT8siRNA can inhibit such transformation. In the present study, we used an adenovirus packaging FUT8 shRNA to infect a bleomycin-induced pulmonary fibrosis mouse model and determined the effect of CF on pulmonary fibrosis by analyzing the mechanism of CF-mediated pericyte transformation. Our findings may shed new light on the mechanism of pulmonary interstitial fibrosis and provide a novel therapeutic target for clinical applications.
Collapse
Affiliation(s)
- Wei Sun
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - HaiYing Tang
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - Lili Gao
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - Xiuna Sun
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - Jia Liu
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - WeiDong Wang
- Departments of Nephrology, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - Taihua Wu
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China.
| | - Hongli Lin
- Departments of Nephrology, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China.
| |
Collapse
|
55
|
Gaskill CF, Carrier EJ, Kropski JA, Bloodworth NC, Menon S, Foronjy RF, Taketo MM, Hong CC, Austin ED, West JD, Means AL, Loyd JE, Merryman WD, Hemnes AR, De Langhe S, Blackwell TS, Klemm DJ, Majka SM. Disruption of lineage specification in adult pulmonary mesenchymal progenitor cells promotes microvascular dysfunction. J Clin Invest 2017; 127:2262-2276. [PMID: 28463231 DOI: 10.1172/jci88629] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 03/02/2017] [Indexed: 01/04/2023] Open
Abstract
Pulmonary vascular disease is characterized by remodeling and loss of microvessels and is typically attributed to pathological responses in vascular endothelium or abnormal smooth muscle cell phenotypes. We have challenged this understanding by defining an adult pulmonary mesenchymal progenitor cell (MPC) that regulates both microvascular function and angiogenesis. The current understanding of adult MPCs and their roles in homeostasis versus disease has been limited by a lack of genetic markers with which to lineage label multipotent mesenchyme and trace the differentiation of these MPCs into vascular lineages. Here, we have shown that lineage-labeled lung MPCs expressing the ATP-binding cassette protein ABCG2 (ABCG2+) are pericyte progenitors that participate in microvascular homeostasis as well as adaptive angiogenesis. Activation of Wnt/β-catenin signaling, either autonomously or downstream of decreased BMP receptor signaling, enhanced ABCG2+ MPC proliferation but suppressed MPC differentiation into a functional pericyte lineage. Thus, enhanced Wnt/β-catenin signaling in ABCG2+ MPCs drives a phenotype of persistent microvascular dysfunction, abnormal angiogenesis, and subsequent exacerbation of bleomycin-induced fibrosis. ABCG2+ MPCs may, therefore, account in part for the aberrant microvessel function and remodeling that are associated with chronic lung diseases.
Collapse
Affiliation(s)
- Christa F Gaskill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Erica J Carrier
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Jonathan A Kropski
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | | | - Swapna Menon
- Pulmonary Vascular Research Institute, Kochi, and AnalyzeDat Consulting Services, Kerala, India
| | - Robert F Foronjy
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | | | - Charles C Hong
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA.,Department of Pathology and Laboratory Medicine or Department of Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | | | - James D West
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Anna L Means
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E Loyd
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee USA
| | - Anna R Hemnes
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | | | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Dwight J Klemm
- Department of Medicine, Pulmonary and Critical Care Medicine, Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado, USA.,Geriatric Research Education and Clinical Center, Eastern Colorado Health Care System, Denver, Colorado, USA
| | - Susan M Majka
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
56
|
Yuan K, Orcholski ME, Huang NF, de Jesus Perez VA. In Vivo Study of Human Endothelial-Pericyte Interaction Using the Matrix Gel Plug Assay in Mouse. J Vis Exp 2016. [PMID: 28060266 DOI: 10.3791/54617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Angiogenesis is the process by which new blood vessels are formed from existing vessels. New vessel growth requires coordinated endothelial cell proliferation, migration, and alignment to form tubular structures followed by recruitment of pericytes to provide mural support and facilitate vessel maturation. Current in vitro cell culture approaches cannot fully reproduce the complex biological environment where endothelial cells and pericytes interact to produce functional vessels. We present a novel application of the in vivo matrix gel plug assay to study endothelial-pericyte interactions and formation of functional blood vessels using severe combined immune deficiency mutation (SCID) mice. Briefly, matrix gel is mixed with a solution containing endothelial cells with or without pericytes followed by injection into the back of anesthetized SCID mice. After 14 days, the matrix gel plugs are removed, fixed and sectioned for histological analysis. The length, number, size and extent of pericyte coverage of mature vessels (defined by the presence of red blood cells in the lumen) can be quantified and compared between experimental groups using commercial statistical platforms. Beyond its use as an angiogenesis assay, this matrix gel plug assay can be used to conduct genetic studies and as a platform for drug discovery. In conclusion, this protocol will allow researchers to complement available in vitro assays for the study of endothelial-pericyte interactions and their relevance to either systemic or pulmonary angiogenesis.
Collapse
Affiliation(s)
- Ke Yuan
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Stanford University; Stanford Cardiovascular Institute, School of Medicine, Stanford University
| | - Mark E Orcholski
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Stanford University; Stanford Cardiovascular Institute, School of Medicine, Stanford University
| | - Ngan F Huang
- Stanford Cardiovascular Institute, School of Medicine, Stanford University; VA Palo Alto Health Care System, Department of Cardiothoracic Surgery, School of Medicine, Stanford University
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Stanford University; Stanford Cardiovascular Institute, School of Medicine, Stanford University;
| |
Collapse
|
57
|
Gaskill C, Marriott S, Pratap S, Menon S, Hedges LK, Fessel JP, Kropski JA, Ames D, Wheeler L, Loyd JE, Hemnes AR, Roop DR, Klemm DJ, Austin ED, Majka SM. Shared gene expression patterns in mesenchymal progenitors derived from lung and epidermis in pulmonary arterial hypertension: identifying key pathways in pulmonary vascular disease. Pulm Circ 2016; 6:483-497. [PMID: 28090290 PMCID: PMC5210051 DOI: 10.1086/688314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/29/2016] [Indexed: 01/14/2023] Open
Abstract
Rapid access to lung-derived cells from stable subjects is a major challenge in the pulmonary hypertension field, given the relative contraindication of lung biopsy. In these studies, we sought to demonstrate the importance of evaluating a cell type that actively participates in disease processes, as well as the potential to translate these findings to vascular beds in other nonlung tissues, in this instance perivascular skin mesenchymal cells (MCs). We utilized posttransplant or autopsy lung explant-derived cells (ABCG2-expressing mesenchymal progenitor cells [MPCs], fibroblasts) and skin-derived MCs to test the hypothesis that perivascular ABCG2 MPCs derived from pulmonary arterial hypertension (PAH) patient lung and skin would express a gene profile reflective of ongoing vascular dysfunction. By analyzing the genetic signatures and pathways associated with abnormal ABCG2 lung MPC phenotypes during PAH and evaluating them in lung- and skin-derived MCs, we have identified potential predictor genes for detection of PAH as well as a targetable mechanism to restore MPCs and microvascular function. These studies are the first to explore the utility of expanding the study of ABCG2 MPC regulation of the pulmonary microvasculature to the epidermis, in order to identify potential markers for adult lung vascular disease, such as PAH.
Collapse
Affiliation(s)
- Christa Gaskill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Shennea Marriott
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Sidd Pratap
- Meharry Medical College, Nashville, Tennessee, USA
| | - Swapna Menon
- Pulmonary Vascular Research Institute, Kochi; and AnalyzeDat Consulting Services, Kerala, India
| | - Lora K. Hedges
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | - Joshua P. Fessel
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - DeWayne Ames
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | - Lisa Wheeler
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - James E. Loyd
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Dennis R. Roop
- Department of Dermatology; and Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado, USA
| | - Dwight J. Klemm
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; and Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado, USA
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | - Susan M. Majka
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
58
|
Awad KS, West JD, de Jesus Perez V, MacLean M. Novel signaling pathways in pulmonary arterial hypertension (2015 Grover Conference Series). Pulm Circ 2016; 6:285-94. [PMID: 27683605 PMCID: PMC5019081 DOI: 10.1086/688034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/06/2016] [Indexed: 12/27/2022] Open
Abstract
The proliferative endothelial and smooth muscle cell phenotype, inflammation, and pulmonary vascular remodeling are prominent features of pulmonary arterial hypertension (PAH). Mutations in bone morphogenetic protein type 2 receptor (BMPR2) have been identified as the most common genetic cause of PAH and females with BMPR2 mutations are 2.5 times as likely to develop heritable forms of PAH than males. Higher levels of estrogen have also been observed in males with PAH, implicating sex hormones in PAH pathogenesis. Recently, the estrogen metabolite 16α-OHE1 (hydroxyestrone) was implicated in the regulation of miR29, a microRNA involved in modulating energy metabolism. In females, decreased miR96 enhances serotonin's effect by upregulating the 5-hydroxytryptamine 1B (5HT1B) receptor. Because PAH is characterized as a quasi-malignant disease, likely due to BMPR2 loss of function, altered signaling pathways that sustain this cancer-like phenotype are being explored. Extracellular signal-regulated kinases 1 and 2 and p38 mitogen-activated protein kinases (MAPKs) play a critical role in proliferation and cell motility, and dysregulated MAPK signaling is observed in various experimental models of PAH. Wnt signaling pathways preserve pulmonary vascular homeostasis, and dysregulation of this pathway could contribute to limited vascular regeneration in response to injury. In this review, we take a closer look at sex, sex hormones, and the interplay between sex hormones and microRNA regulation. We also focus on MAPK and Wnt signaling pathways in the emergence of a proproliferative, antiapoptotic endothelial phenotype, which then orchestrates an angioproliferative process of vascular remodeling, with the hope of developing novel therapies that could reverse the phenotype.
Collapse
Affiliation(s)
- Keytam S. Awad
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - James D. West
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Margaret MacLean
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
59
|
Vladar EK, Nayak JV, Milla CE, Axelrod JD. Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation. JCI Insight 2016; 1. [PMID: 27570836 DOI: 10.1172/jci.insight.88027] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease.
Collapse
Affiliation(s)
- Eszter K Vladar
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Carlos E Milla
- Division of Pulmonary Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
60
|
Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, Corada M, Dejana E, Zhou B, Adams RH. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun 2016; 7:12422. [PMID: 27516371 PMCID: PMC4990645 DOI: 10.1038/ncomms12422] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 06/30/2016] [Indexed: 12/31/2022] Open
Abstract
Mural cells of the vessel wall, namely pericytes and vascular smooth muscle cells, are essential for vascular integrity. The developmental sources of these cells and molecular mechanisms controlling their progenitors in the heart are only partially understood. Here we show that endocardial endothelial cells are progenitors of pericytes and vascular smooth muscle cells in the murine embryonic heart. Endocardial cells undergo endothelial–mesenchymal transition and convert into primitive mesenchymal progenitors expressing the platelet-derived growth factor receptors, PDGFRα and PDGFRβ. These progenitors migrate into the myocardium, differentiate and assemble the wall of coronary vessels, which requires canonical Wnt signalling involving Frizzled4, β-catenin and endothelial cell-derived Wnt ligands. Our findings identify a novel and unexpected population of progenitors for coronary mural cells with potential relevance for heart function and disease conditions. Pericytes and vascular smooth muscle cells are crucial for functional blood vessels, but the developmental sources of these cells are incompletely understood. Here, the authors show that endocardial endothelial cells give rise to cardiac mural cells, which are controlled by Wnt signalling.
Collapse
Affiliation(s)
- Qi Chen
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| | - Hui Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Liu
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| | - Susanne Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| | - Hanna Eilken
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| | - Martin Stehling
- Electron Microscopy and Flow Cytometry Units, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Monica Corada
- IFOM Fondazione, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Elisabetta Dejana
- IFOM Fondazione, FIRC Institute of Molecular Oncology, 20139 Milan, Italy.,Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Bin Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| |
Collapse
|
61
|
Yuan K, Shao NY, Hennigs JK, Discipulo M, Orcholski ME, Shamskhou E, Richter A, Hu X, Wu JC, de Jesus Perez VA. Increased Pyruvate Dehydrogenase Kinase 4 Expression in Lung Pericytes Is Associated with Reduced Endothelial-Pericyte Interactions and Small Vessel Loss in Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2500-14. [PMID: 27456128 DOI: 10.1016/j.ajpath.2016.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/26/2016] [Accepted: 05/25/2016] [Indexed: 12/23/2022]
Abstract
Reduced endothelial-pericyte interactions are linked to progressive small vessel loss in pulmonary arterial hypertension (PAH), but the molecular mechanisms underlying this disease remain poorly understood. To identify relevant gene candidates associated with aberrant pericyte behavior, we performed a transcriptome analysis of patient-derived donor control and PAH lung pericytes followed by functional genomics analysis. Compared with donor control cells, PAH pericytes had significant enrichment of genes involved in various metabolic processes, the top hit being PDK4, a gene coding for an enzyme that suppresses mitochondrial activity in favor of glycolysis. Given reports that link reduced mitochondrial activity with increased PAH cell proliferation, we hypothesized that increased PDK4 is associated with PAH pericyte hyperproliferation and reduced endothelial-pericyte interactions. We found that PDK4 gene and protein expression was significantly elevated in PAH pericytes and correlated with reduced mitochondrial metabolism, higher rates of glycolysis, and hyperproliferation. Importantly, reducing PDK4 levels restored mitochondrial metabolism, reduced cell proliferation, and improved endothelial-pericyte interactions. To our knowledge, this is the first study that documents significant differences in gene expression between human donor control and PAH lung pericytes and the link between mitochondrial dysfunction and aberrant endothelial-pericyte interactions in PAH. Comprehensive characterization of these candidate genes could provide novel therapeutic targets to improve endothelial-pericyte interactions and prevent small vessel loss in PAH.
Collapse
Affiliation(s)
- Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California; Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Ning-Yi Shao
- Stanford Cardiovascular Institute, Stanford University, Stanford, California; Division of Cardiology, Stanford University, Stanford, California
| | - Jan K Hennigs
- Stanford Cardiovascular Institute, Stanford University, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Marielle Discipulo
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California
| | - Mark E Orcholski
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California; Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Elya Shamskhou
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California; Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Alice Richter
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California
| | - Xinqian Hu
- Department of Genetics, Stanford University, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, California; Division of Cardiology, Stanford University, Stanford, California
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California; Stanford Cardiovascular Institute, Stanford University, Stanford, California.
| |
Collapse
|
62
|
Aman J, Weijers EM, van Nieuw Amerongen GP, Malik AB, van Hinsbergh VWM. Using cultured endothelial cells to study endothelial barrier dysfunction: Challenges and opportunities. Am J Physiol Lung Cell Mol Physiol 2016; 311:L453-66. [PMID: 27343194 DOI: 10.1152/ajplung.00393.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/20/2016] [Indexed: 12/24/2022] Open
Abstract
Despite considerable progress in the understanding of endothelial barrier regulation and the identification of approaches that have the potential to improve endothelial barrier function, no drug- or stem cell-based therapy is presently available to reverse the widespread vascular leak that is observed in acute respiratory distress syndrome (ARDS) and sepsis. The translational gap suggests a need to develop experimental approaches and tools that better mimic the complex environment of the microcirculation in which the vascular leak develops. Recent studies have identified several elements of this microenvironment. Among these are composition and stiffness of the extracellular matrix, fluid shear stress, interaction of endothelial cells (ECs) with pericytes, oxygen tension, and the combination of toxic and mechanic injurious stimuli. Development of novel cell culture techniques that integrate these elements would allow in-depth analysis of EC biology that closely approaches the (patho)physiological conditions in situ. In parallel, techniques to isolate organ-specific ECs, to define EC heterogeneity in its full complexity, and to culture patient-derived ECs from inducible pluripotent stem cells or endothelial progenitor cells are likely to advance the understanding of ARDS and lead to development of therapeutics. This review 1) summarizes the advantages and pitfalls of EC cultures to study vascular leak in ARDS, 2) provides an overview of elements of the microvascular environment that can directly affect endothelial barrier function, and 3) discusses alternative methods to bridge the gap between basic research and clinical application with the intent of improving the translational value of present EC culture approaches.
Collapse
Affiliation(s)
- Jurjan Aman
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; Department of Pulmonary Diseases, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands;
| | - Ester M Weijers
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Geerten P van Nieuw Amerongen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois
| | - Victor W M van Hinsbergh
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
63
|
Cheng SL, Ramachandran B, Behrmann A, Shao JS, Mead M, Smith C, Krchma K, Bello Arredondo Y, Kovacs A, Kapoor K, Brill LM, Perera R, Williams BO, Towler DA. Vascular smooth muscle LRP6 limits arteriosclerotic calcification in diabetic LDLR-/- mice by restraining noncanonical Wnt signals. Circ Res 2015; 117:142-56. [PMID: 26034040 DOI: 10.1161/circresaha.117.306712] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/28/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Wnt signaling regulates key aspects of diabetic vascular disease. OBJECTIVE We generated SM22-Cre;LRP6(fl/fl);LDLR(-/-) mice to determine contributions of Wnt coreceptor low-density lipoprotein receptor-related protein 6 (LRP6) in the vascular smooth muscle lineage of male low-density lipoprotein receptor-null mice, a background susceptible to diet (high-fat diet)-induced diabetic arteriosclerosis. METHODS AND RESULTS As compared with LRP6(fl/fl);LDLR(-/-) controls, SM22-Cre;LRP6(fl/fl);LDLR(-/-) (LRP6-VKO) siblings exhibited increased aortic calcification on high-fat diet without changes in fasting glucose, lipids, or body composition. Pulse wave velocity (index of arterial stiffness) was also increased. Vascular calcification paralleled enhanced aortic osteochondrogenic programs and circulating osteopontin (OPN), a matricellular regulator of arteriosclerosis. Survey of ligands and Frizzled (Fzd) receptor profiles in LRP6-VKO revealed upregulation of canonical and noncanonical Wnts alongside Fzd10. Fzd10 stimulated noncanonical signaling and OPN promoter activity via an upstream stimulatory factor (USF)-activated cognate inhibited by LRP6. RNA interference revealed that USF1 but not USF2 supports OPN expression in LRP6-VKO vascular smooth muscle lineage, and immunoprecipitation confirmed increased USF1 association with OPN chromatin. ML141, an antagonist of cdc42/Rac1 noncanonical signaling, inhibited USF1 activation, osteochondrogenic programs, alkaline phosphatase, and vascular smooth muscle lineage calcification. Mass spectrometry identified LRP6 binding to protein arginine methyltransferase (PRMT)-1, and nuclear asymmetrical dimethylarginine modification was increased with LRP6-VKO. RNA interference demonstrated that PRMT1 inhibits OPN and TNAP, whereas PRMT4 supports expression. USF1 complexes containing the histone H3 asymmetrically dimethylated on Arg-17 signature of PRMT4 are increased with LRP6-VKO. Jmjd6, a demethylase downregulated with LRP6 deficiency, inhibits OPN and TNAP expression, USF1: histone H3 asymmetrically dimethylated on Arg-17 complex formation, and transactivation. CONCLUSIONS LRP6 restrains vascular smooth muscle lineage noncanonical signals that promote osteochondrogenic differentiation, mediated in part via USF1- and arginine methylation-dependent relays.
Collapse
Affiliation(s)
- Su-Li Cheng
- From the Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Cardiovascular Pathobiology, Orlando, FL (S.-L.C., B.R., A.B., M.M., C.S., Y.B.A., K.K., L.M.B., R.P., D.A.T.); MD Anderson Cancer Center, Cancer Biology, Houston, TX (J.-S.S.); Washington University, Department of Medicine, St. Louis, MO (K.K., A.K.); and Van Andel Research Institute, Department of Cancer and Cell Biology, Grand Rapids, MI (B.O.W.)
| | - Bindu Ramachandran
- From the Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Cardiovascular Pathobiology, Orlando, FL (S.-L.C., B.R., A.B., M.M., C.S., Y.B.A., K.K., L.M.B., R.P., D.A.T.); MD Anderson Cancer Center, Cancer Biology, Houston, TX (J.-S.S.); Washington University, Department of Medicine, St. Louis, MO (K.K., A.K.); and Van Andel Research Institute, Department of Cancer and Cell Biology, Grand Rapids, MI (B.O.W.)
| | - Abraham Behrmann
- From the Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Cardiovascular Pathobiology, Orlando, FL (S.-L.C., B.R., A.B., M.M., C.S., Y.B.A., K.K., L.M.B., R.P., D.A.T.); MD Anderson Cancer Center, Cancer Biology, Houston, TX (J.-S.S.); Washington University, Department of Medicine, St. Louis, MO (K.K., A.K.); and Van Andel Research Institute, Department of Cancer and Cell Biology, Grand Rapids, MI (B.O.W.)
| | - Jian-Su Shao
- From the Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Cardiovascular Pathobiology, Orlando, FL (S.-L.C., B.R., A.B., M.M., C.S., Y.B.A., K.K., L.M.B., R.P., D.A.T.); MD Anderson Cancer Center, Cancer Biology, Houston, TX (J.-S.S.); Washington University, Department of Medicine, St. Louis, MO (K.K., A.K.); and Van Andel Research Institute, Department of Cancer and Cell Biology, Grand Rapids, MI (B.O.W.)
| | - Megan Mead
- From the Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Cardiovascular Pathobiology, Orlando, FL (S.-L.C., B.R., A.B., M.M., C.S., Y.B.A., K.K., L.M.B., R.P., D.A.T.); MD Anderson Cancer Center, Cancer Biology, Houston, TX (J.-S.S.); Washington University, Department of Medicine, St. Louis, MO (K.K., A.K.); and Van Andel Research Institute, Department of Cancer and Cell Biology, Grand Rapids, MI (B.O.W.)
| | - Carolyn Smith
- From the Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Cardiovascular Pathobiology, Orlando, FL (S.-L.C., B.R., A.B., M.M., C.S., Y.B.A., K.K., L.M.B., R.P., D.A.T.); MD Anderson Cancer Center, Cancer Biology, Houston, TX (J.-S.S.); Washington University, Department of Medicine, St. Louis, MO (K.K., A.K.); and Van Andel Research Institute, Department of Cancer and Cell Biology, Grand Rapids, MI (B.O.W.)
| | - Karen Krchma
- From the Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Cardiovascular Pathobiology, Orlando, FL (S.-L.C., B.R., A.B., M.M., C.S., Y.B.A., K.K., L.M.B., R.P., D.A.T.); MD Anderson Cancer Center, Cancer Biology, Houston, TX (J.-S.S.); Washington University, Department of Medicine, St. Louis, MO (K.K., A.K.); and Van Andel Research Institute, Department of Cancer and Cell Biology, Grand Rapids, MI (B.O.W.)
| | - Yoanna Bello Arredondo
- From the Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Cardiovascular Pathobiology, Orlando, FL (S.-L.C., B.R., A.B., M.M., C.S., Y.B.A., K.K., L.M.B., R.P., D.A.T.); MD Anderson Cancer Center, Cancer Biology, Houston, TX (J.-S.S.); Washington University, Department of Medicine, St. Louis, MO (K.K., A.K.); and Van Andel Research Institute, Department of Cancer and Cell Biology, Grand Rapids, MI (B.O.W.)
| | - Attila Kovacs
- From the Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Cardiovascular Pathobiology, Orlando, FL (S.-L.C., B.R., A.B., M.M., C.S., Y.B.A., K.K., L.M.B., R.P., D.A.T.); MD Anderson Cancer Center, Cancer Biology, Houston, TX (J.-S.S.); Washington University, Department of Medicine, St. Louis, MO (K.K., A.K.); and Van Andel Research Institute, Department of Cancer and Cell Biology, Grand Rapids, MI (B.O.W.)
| | - Kapil Kapoor
- From the Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Cardiovascular Pathobiology, Orlando, FL (S.-L.C., B.R., A.B., M.M., C.S., Y.B.A., K.K., L.M.B., R.P., D.A.T.); MD Anderson Cancer Center, Cancer Biology, Houston, TX (J.-S.S.); Washington University, Department of Medicine, St. Louis, MO (K.K., A.K.); and Van Andel Research Institute, Department of Cancer and Cell Biology, Grand Rapids, MI (B.O.W.)
| | - Laurence M Brill
- From the Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Cardiovascular Pathobiology, Orlando, FL (S.-L.C., B.R., A.B., M.M., C.S., Y.B.A., K.K., L.M.B., R.P., D.A.T.); MD Anderson Cancer Center, Cancer Biology, Houston, TX (J.-S.S.); Washington University, Department of Medicine, St. Louis, MO (K.K., A.K.); and Van Andel Research Institute, Department of Cancer and Cell Biology, Grand Rapids, MI (B.O.W.)
| | - Ranjan Perera
- From the Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Cardiovascular Pathobiology, Orlando, FL (S.-L.C., B.R., A.B., M.M., C.S., Y.B.A., K.K., L.M.B., R.P., D.A.T.); MD Anderson Cancer Center, Cancer Biology, Houston, TX (J.-S.S.); Washington University, Department of Medicine, St. Louis, MO (K.K., A.K.); and Van Andel Research Institute, Department of Cancer and Cell Biology, Grand Rapids, MI (B.O.W.)
| | - Bart O Williams
- From the Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Cardiovascular Pathobiology, Orlando, FL (S.-L.C., B.R., A.B., M.M., C.S., Y.B.A., K.K., L.M.B., R.P., D.A.T.); MD Anderson Cancer Center, Cancer Biology, Houston, TX (J.-S.S.); Washington University, Department of Medicine, St. Louis, MO (K.K., A.K.); and Van Andel Research Institute, Department of Cancer and Cell Biology, Grand Rapids, MI (B.O.W.)
| | - Dwight A Towler
- From the Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Cardiovascular Pathobiology, Orlando, FL (S.-L.C., B.R., A.B., M.M., C.S., Y.B.A., K.K., L.M.B., R.P., D.A.T.); MD Anderson Cancer Center, Cancer Biology, Houston, TX (J.-S.S.); Washington University, Department of Medicine, St. Louis, MO (K.K., A.K.); and Van Andel Research Institute, Department of Cancer and Cell Biology, Grand Rapids, MI (B.O.W.).
| |
Collapse
|