51
|
Hasani M, Jafari S, Akbari Javar H, Abdollahi H, Rashidzadeh H. Cell-Penetrating Peptidic GRP78 Ligand-Conjugated Iron Oxide Magnetic Nanoparticles for Tumor-Targeted Doxorubicin Delivery and Imaging. ACS APPLIED BIO MATERIALS 2023; 6:1019-1031. [PMID: 36862384 DOI: 10.1021/acsabm.2c00897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Although chemotherapy is regarded as an essential option in cancer treatment, it is still far from being perfect. Inadequate tumor drug concentration and systemic toxicity along with broad biodistribution have diminished the utility of chemotherapy. Tumor-targeting peptide-conjugated multifunctional nanoplatforms have emerged as an effective strategy for site-directed tumor tissues in cancer treatment and imaging. Herein, Pep42-targeted iron oxide magnetic nanoparticles (IONPs) functionalized with β-cyclodextrin (ßCD) containing doxorubicin (DOX) (Fe3O4-ßCD-Pep42-DOX) were successfully developed. The physical effects of the prepared NPs were characterized by employing various techniques. Transmission electron microscopy (TEM) images disclosed that the developed Fe3O4-ßCD-Pep42-DOX nanoplatforms had a spherical morphology and a core-shell structure with a size of nearly 17 nm. Fourier transform infrared (FT-IR) spectroscopy showed that β-cyclodextrin, DOX, and Pep42 molecules were successfully loaded on the IONPs. In vitro cytotoxicity analysis revealed that the fabricated multifunctional Fe3O4-ßCD-Pep42 nanoplatforms possessed excellent biosafety toward BT-474, MDA-MB468 (cancerous cells), and MCF10A normal cells, while Fe3O4-ßCD-Pep42-DOX exhibited great cancer cell killing ability. The high cellular uptake along with intracellular trafficking of Fe3O4-ßCD-Pep42-DOX highlights the usefulness of the Pep42-targeting peptide. In vivo results strongly supported the in vitro results, i.e., significant tumor size reduction was observed by single-dose injection of Fe3O4-ßCD-Pep42-DOX into tumor-bearing mice. Interestingly, in vivo MR imaging (MRI) of Fe3O4-ßCD-Pep42-DOX revealed T2 contrast improvement in the tumor cells and therapeutic ability in cancer theranostics. Taken together, these findings provided strong evidence for the potential capability of Fe3O4-ßCD-Pep42-DOX as a multifunctional nanoplatform in cancer therapy and imaging and opens up a new avenue of research in this area.
Collapse
Affiliation(s)
- Mahdiyeh Hasani
- Pharmaceutical Nanotechnology Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan PG36+6RX, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 83VX+PCM, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran P94V+8MF, Iran
| | - Hossein Abdollahi
- Department of Polymer Engineering, Faculty of Engineering, Urmia University, Urmia 5756151818, Iran
| | - Hamid Rashidzadeh
- Pharmaceutical Nanotechnology Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan PG36+6RX, Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan PG36+6RX, Iran
| |
Collapse
|
52
|
Xu N, Hu C, Zhu Z, Wang W, Peng H, Liu B. Establishment of a novel system for photothermal removal of ampicillin under near-infrared irradiation: Persulfate activation, mechanism, pathways and bio-toxicology. J Colloid Interface Sci 2023; 640:472-486. [PMID: 36871512 DOI: 10.1016/j.jcis.2023.02.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
One of the most effective ways to address the problems of low solar spectrum utilization in photocatalysis and the high cost of persulfate activation technology is to create a cost-effective synergistic photothermal persulfate system. In this work, a brand-new composite catalyst called ZnFe2O4/Fe3O4@MWCNTs (ZFC) was developed to activate PDS (K2S2O8) from the aforementioned basis. ZFC's surface temperature could unbelievably reach 120.6 °C in 150 s together with the degrading synergistic system solution temperature could reach 48 °C under near-infrared light (NIR) in 30 min, thus accelerating the ZFC/PDS decolorization rate for reactive blue KN-R (150 mg/L) to 95% in 60 min. Furthermore, the ZFC's ferromagnetism bore it with good cycling performance, allowing it to maintain an 85% decolorization rate even after 5 cycles with OH·, SO4-·, 1O2, and O2-· dominating the degrading process. In the meantime, the DFT calculations of the kinetic constants for the entire process of S2O82- adsorption on Fe3O4 in dye degradation solution were in agreement with the outcomes of the experimental pseudo-first-order kinetic fitting. By analyzing the particular degradation route of ampicillin (50 mg/L) and the possible environmental impact of the intermediate using LC-MS and the toxicological analysis software (T.E.S.T.), respectively, it was shown that this system might function as an environmentally friendly method for removing antibiotics. This work may provide some productive research lines for the creation of a photothermal persulfate synergistic system and suggest fresh approaches to water treatment technology.
Collapse
Affiliation(s)
- Nan Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhijia Zhu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Department of Textile &Garment Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Huitao Peng
- ANTA (China) Co. Ltd., Jinjiang 362212, China.
| | - Baojiang Liu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
53
|
Dudchenko N, Pawar S, Perelshtein I, Fixler D. Magnetite-Based Biosensors and Molecular Logic Gates: From Magnetite Synthesis to Application. BIOSENSORS 2023; 13:304. [PMID: 36979516 PMCID: PMC10046048 DOI: 10.3390/bios13030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
In the last few decades, point-of-care (POC) sensors have become increasingly important in the detection of various targets for the early diagnostics and treatment of diseases. Diverse nanomaterials are used as building blocks for the development of smart biosensors and magnetite nanoparticles (MNPs) are among them. The intrinsic properties of MNPs, such as their large surface area, chemical stability, ease of functionalization, high saturation magnetization, and more, mean they have great potential for use in biosensors. Moreover, the unique characteristics of MNPs, such as their response to external magnetic fields, allow them to be easily manipulated (concentrated and redispersed) in fluidic media. As they are functionalized with biomolecules, MNPs bear high sensitivity and selectivity towards the detection of target biomolecules, which means they are advantageous in biosensor development and lead to a more sensitive, rapid, and accurate identification and quantification of target analytes. Due to the abovementioned properties of functionalized MNPs and their unique magnetic characteristics, they could be employed in the creation of new POC devices, molecular logic gates, and new biomolecular-based biocomputing interfaces, which would build on new ideas and principles. The current review outlines the synthesis, surface coverage, and functionalization of MNPs, as well as recent advancements in magnetite-based biosensors for POC diagnostics and some perspectives in molecular logic, and it also contains some of our own results regarding the topic, which include synthetic MNPs, their application for sample preparation, and the design of fluorescent-based molecular logic gates.
Collapse
Affiliation(s)
- Nataliia Dudchenko
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Shweta Pawar
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ilana Perelshtein
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
54
|
Selim MS, Fatthallah NA, Shenashen MA, Higazy SA, Madian HR, Selim MM, El-Safty SA. Bioinspired Graphene Oxide-Magnetite Nanocomposite Coatings as Protective Superhydrophobic Antifouling Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2333-2346. [PMID: 36719844 DOI: 10.1021/acs.langmuir.2c03061] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antifouling (AF) nanocoatings made of polydimethylsiloxane (PDMS) are more cost-efficient and eco-friendly substitutes for the already outlawed tributyltin-based coatings. Here, a catalytic hydrosilation approach was used to construct a design inspired by composite mosquito eyes from non-toxic PDMS nanocomposites filled with graphene oxide (GO) nanosheets decorated with magnetite nanospheres (GO-Fe3O4 nanospheres). Various GO-Fe3O4 hybrid nanofillers were dispersed into the PDMS resin through a solution casting method to evaluate the structure-property relationship. A simple coprecipitation procedure was used to fabricate magnetite nanospheres with an average diameter of 30-50 nm, a single crystal structure, and a predominant (311) lattice plane. The uniform bioinspired superhydrophobic PDMS/GO-Fe3O4 nanocomposite surface produced had a micro-/nano-roughness, low surface-free energy (SFE), and high fouling release (FR) efficiency. It exhibited several advantages including simplicity, ease of large-area fabrication, and a simultaneous offering of dual micro-/nano-scale structures simply via a one-step solution casting process for a wide variety of materials. The superhydrophobicity, SFE, and rough topology have been studied as surface properties of the unfilled silicone and the bioinspired PDMS/GO-Fe3O4 nanocomposites. The coatings' physical, mechanical, and anticorrosive features were also taken into account. Several microorganisms were employed to examine the fouling resistance of the coated specimens for 1 month. Good dispersion of GO-Fe3O4 hybrid fillers in the PDMS coating until 1 wt % achieved the highest water contact angle (158° ± 2°), the lowest SFE (12.06 mN/m), micro-/nano-roughness, and improved bulk mechanical and anticorrosion properties. The well-distributed PDMS/GO-Fe3O4 (1 wt % nanofillers) bioinspired nanocoating showed the least biodegradability against all the tested microorganisms [Kocuria rhizophila (2.047%), Pseudomonas aeruginosa (1.961%), and Candida albicans (1.924%)]. We successfully developed non-toxic, low-cost, and economical nanostructured superhydrophobic FR composite coatings for long-term ship hull coatings. This study may expand the applications of bio-inspired functional materials because for multiple AF, durability and hydrophobicity are both important features in several industrial applications.
Collapse
Affiliation(s)
- Mohamed S Selim
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
| | - Nesreen A Fatthallah
- Processes Design & Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
| | - Mohamed A Shenashen
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken305-0047, Japan
| | - Shimaa A Higazy
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
| | - Hekmat R Madian
- Processes Design & Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
| | - Mahmoud M Selim
- Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj11942, Saudi Arabia
| | - Sherif A El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken305-0047, Japan
| |
Collapse
|
55
|
Nordin AH, Ahmad Z, Husna SMN, Ilyas RA, Azemi AK, Ismail N, Nordin ML, Ngadi N, Siti NH, Nabgan W, Norfarhana AS, Azami MSM. The State of the Art of Natural Polymer Functionalized Fe 3O 4 Magnetic Nanoparticle Composites for Drug Delivery Applications: A Review. Gels 2023; 9:121. [PMID: 36826291 PMCID: PMC9957034 DOI: 10.3390/gels9020121] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Natural polymers have received a great deal of interest for their potential use in the encapsulation and transportation of pharmaceuticals and other bioactive compounds for disease treatment. In this perspective, the drug delivery systems (DDS) constructed by representative natural polymers from animals (gelatin and hyaluronic acid), plants (pectin and starch), and microbes (Xanthan gum and Dextran) are provided. In order to enhance the efficiency of polymers in DDS by delivering the medicine to the right location, reducing the medication's adverse effects on neighboring organs or tissues, and controlling the medication's release to stop the cycle of over- and under-dosing, the incorporation of Fe3O4 magnetic nanoparticles with the polymers has engaged the most consideration due to their rare characteristics, such as easy separation, superparamagnetism, and high surface area. This review is designed to report the recent progress of natural polymeric Fe3O4 magnetic nanoparticles in drug delivery applications, based on different polymers' origins.
Collapse
Affiliation(s)
- Abu Hassan Nordin
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (A.H.N.); (N.N.); (A.S.N.)
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; (Z.A.); (S.M.N.H.); (M.S.M.A.)
| | - Zuliahani Ahmad
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; (Z.A.); (S.M.N.H.); (M.S.M.A.)
| | - Siti Muhamad Nur Husna
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; (Z.A.); (S.M.N.H.); (M.S.M.A.)
| | - Rushdan Ahmad Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (A.H.N.); (N.N.); (A.S.N.)
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia;
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia;
| | - Muhammad Luqman Nordin
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia;
- Centre for Nanotechnology in Veterinary Medicine (NanoVet), Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (A.H.N.); (N.N.); (A.S.N.)
| | - Nordin Hawa Siti
- Pharmacology Unit, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia;
| | - Walid Nabgan
- Departament d’Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Abd Samad Norfarhana
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (A.H.N.); (N.N.); (A.S.N.)
- Department of Petrochemical Engineering, Politeknik Tun Syed Nasir Syed Ismail, Pagoh Education Hub, Pagoh Muar 84600, Johor, Malaysia
| | - Mohammad Saifulddin Mohd Azami
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; (Z.A.); (S.M.N.H.); (M.S.M.A.)
| |
Collapse
|
56
|
Kang Y, Liang Y, Sun H, Dan J, Zhang Q, Su Z, Wang J, Zhang W. Selective Enrichment of Gram-positive Bacteria from Apple Juice by Magnetic Fe3O4 Nanoparticles Modified with Phytic Acid. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
57
|
Abreu MK, Silva MA, Abreu DS, Richter AR, de Paula RC, Constantino VR, Vasconcelos IF, de Oliveira FG, de Melo AS, Correa MA, Diógenes IC. Colloidal stability improvement of cobalt ferrite encapsulated in carboxymethylated cashew gum. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
58
|
Farhan A, Arshad J, Rashid EU, Ahmad H, Nawaz S, Munawar J, Zdarta J, Jesionowski T, Bilal M. Metal ferrites-based nanocomposites and nanohybrids for photocatalytic water treatment and electrocatalytic water splitting. CHEMOSPHERE 2023; 310:136835. [PMID: 36243091 DOI: 10.1016/j.chemosphere.2022.136835] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/18/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Photocatalytic degradation is one of the most promising technologies available for removing a variety of synthetic and organic pollutants from the environmental matrices because of its high catalytic activity, reduced energy consumption, and low total cost. Due to its acceptable bandgap, broad light-harvesting efficiency, significant renewability, and stability, Fe2O3 has emerged as a fascinating material for the degradation of organic contaminants as well as numerous dyes. This study thoroughly reviewed the efficiency of Fe2O3-based nanocomposite and nanomaterials for water remediation. Iron oxide structure and various synthetic methods are briefly discussed. Additionally, the electrocatalytic application of Fe2O3-based nanocomposites, including oxygen evolution reaction, oxygen reduction reaction, hydrogen evolution reaction, and overall water splitting efficiency, was also highlighted to illustrate the great promise of these composites. Finally, the ongoing issues and future prospects are directed to fully reveal the standards of Fe2O3-based catalysts. This review is intended to disseminate knowledge for further research on the possible applications of Fe2O3 as a photocatalyst and electrocatalyst.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Javeria Arshad
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Haroon Ahmad
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Junaid Munawar
- College of Chemistry, Beijing University of Chemical Technology, 100029, China
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland.
| |
Collapse
|
59
|
Rabiee N, Ahmadi S, Ghadiri AM, Rabiee M, Webster TJ. Nanomaterials obtained from biowastes: Applications for cancer therapy. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
60
|
Nandhini G, Shobana MK. Influence of phytochemicals with iron oxide nanoparticles for biomedical applications: a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
61
|
Das D, Ali S, Rajbanshi B, Ray S, Barman S, Chouhan D, Haydar MS, Mandal P, Roy K, Dakua VK, Nath Roy M. Synthesis of Biogenic Hematite Nanocubes as Recyclable Dark Fenton-like Catalysts at Neutral pH and Plant Growth Applications of Degraded Waste Water. ACS OMEGA 2022; 7:44698-44710. [PMID: 36530228 PMCID: PMC9753106 DOI: 10.1021/acsomega.2c03798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
The goal of this study is to fabricate bioinspired metal oxide nanocubes from lemon peel extract in an environmentally friendly manner and evaluate its impact on environmental remediation. In neutral pH, the degradation kinetics of methylene blue dye (MB) in the aqueous phase was investigated using iron oxide nanoparticles as a catalyst. The obtained results revealed that under optimum conditions, synthesized Fe2O3 nanoparticles (IONPs) offered ultrafast dark Fenton-like reaction to degrade MB. The size, morphological structures, and stability were confirmed through dynamic light scattering, field emission scanning electron microscopy, X-ray diffraction, and ζ potential analysis. The overall environmental impact of the process was assessed by growing wheat plants with treated wastewater and evaluating their biochemical attributes. Antibacterial activity was investigated against Gram-positive (Bacillus megaterium, Bacillus subtilis) and Gram-negative (Escherichia coli, Salmonella typhimurium) aerobics and Gram-positive cocci (Staphylococcus aureus). The antifungal activity was measured against Fusarium solani by spore germination inhibition and zone inhibition of fungal pathogens for different nanocube concentrations.
Collapse
Affiliation(s)
- Debasmita Das
- Department
of Chemistry, University of North Bengal, Darjeeling734013, India
| | - Salim Ali
- Department
of Chemistry, University of North Bengal, Darjeeling734013, India
| | - Biplab Rajbanshi
- Department
of Chemistry, University of North Bengal, Darjeeling734013, India
| | - Samapika Ray
- Department
of Chemistry, University of North Bengal, Darjeeling734013, India
| | - Sanjoy Barman
- Department
of Chemistry, University of North Bengal, Darjeeling734013, India
| | - Divya Chouhan
- Nanobiology
and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri734013, West Bengal, India
| | - Md Salman Haydar
- Nanobiology
and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri734013, West Bengal, India
| | - Palash Mandal
- Nanobiology
and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri734013, West Bengal, India
| | - Kanak Roy
- Department
of Chemistry, Alipurduar University, Alipurduar736122, India
| | - Vikas Kumar Dakua
- Department
of Chemistry, Alipurduar University, Alipurduar736122, India
| | - Mahendra Nath Roy
- Department
of Chemistry, University of North Bengal, Darjeeling734013, India
- Department
of Chemistry, Alipurduar University, Alipurduar736122, India
| |
Collapse
|
62
|
Villafañe G, Bazán V, Brandaleze E, López A, Pacheco P, Maratta A. Solid phase extraction of arsenic on modified MWCNT/Fe3O4 magnetic hybrid nanoparticles from copper ores samples with ETAAS determination. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
63
|
Ali MD, Aslam A, Haider MA, Aftab ZEH, Fakhar U, ud-Din SZ, Ezzine S, ben farhat L, Somaily H. I-V, dielectric, antibacterial, and robust EMI shielding effectiveness properties of graphene/Fe3O4. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
64
|
Elizondo-Villarreal N, Verástegui-Domínguez L, Rodríguez-Batista R, Gándara-Martínez E, Alcorta-García A, Martínez-Delgado D, Rodríguez-Castellanos EA, Vázquez-Rodríguez F, Gómez-Rodríguez C. Green Synthesis of Magnetic Nanoparticles of Iron Oxide Using Aqueous Extracts of Lemon Peel Waste and Its Application in Anti-Corrosive Coatings. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238328. [PMID: 36499817 PMCID: PMC9735538 DOI: 10.3390/ma15238328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 05/12/2023]
Abstract
Lately, the development of green chemistry methods with high efficiency for metal nanoparticle synthesis has become a primary focus among researchers. The main goal is to find an eco-friendly technique for the production of nanoparticles. Ferro- and ferrimagnetic materials such as magnetite (Fe3O4) exhibit superparamagnetic behavior at a nanometric scale. Magnetic nanoparticles have been gaining increasing interest in nanoscience and nanotechnology. This interest is attributed to their physicochemical properties, particle size, and low toxicity. The present work aims to synthesize magnetite nanoparticles in a single step using extracts of green lemon Citrus Aurantifolia residues. The results produced nanoparticles of smaller size using a method that is friendlier to health and the environment, is more profitable, and can be applied in anticorrosive coatings. The green synthesis was carried out by a co-precipitation method under variable temperature conditions. The X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) characterization showed that magnetite nanoparticles were successfully obtained with a very narrow particle size distribution between 3 and 10 nm. A composite was produced with the nanoparticles and graphene to be used as a surface coating on steel. In addition, the coating's anticorrosive behavior was evaluated through electrochemical techniques. The surface coating obtained showed good anticorrosive properties and resistance to abrasion.
Collapse
Affiliation(s)
- Nora Elizondo-Villarreal
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
- Correspondence: (N.E.-V.); (L.V.-D.)
| | - Luz Verástegui-Domínguez
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
- Correspondence: (N.E.-V.); (L.V.-D.)
| | - Raúl Rodríguez-Batista
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | - Eleazar Gándara-Martínez
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | - Aracelia Alcorta-García
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | - Dora Martínez-Delgado
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | | | - Francisco Vázquez-Rodríguez
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | - Cristian Gómez-Rodríguez
- Faculty of Engineering, University of Veracruz (Coatzacoalcos), Av. Universidad km 7.5 Col. Santa Isabel, Coatzacoalcos 96535, Mexico
| |
Collapse
|
65
|
Gao Z, Zhu J, Zhu Q, Wang C, Cao Y. Spinel ferrites materials for sulfate radical-based advanced oxidation process: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157405. [PMID: 35850354 DOI: 10.1016/j.scitotenv.2022.157405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In the past decade, the sulfate radical-based advanced oxidation processes (SR-AOPs) have been increasingly investigated because of their excellent performance and ubiquity in the degradation of emerging contaminants. Generally, sulfate radicals can be generated by activating peroxodisulfate (PDS) or peroxymonosulfate (PMS). To date, spinel ferrites (SF) materials have been greatly favored by researchers in activating PMS/PDS for their capability and unique superiorities. This article reviewed the recent advances in various pure SF, modified SF, and SF composites for PDS/PMS activation. In addition, synthesis methods, mechanisms, and potential applications of SF-based SR-AOPs were also examined and discussed in detail. Finally, we present future research directions and challenges for the application of SF materials in SR-AOPs.
Collapse
Affiliation(s)
- Zhimin Gao
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianzhong Zhu
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Qiuzi Zhu
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Cunshi Wang
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Yanyan Cao
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
66
|
Zhang H, Mei Y, Zhu F, Yu F, Komarneni S, Ma J. Efficient activation of persulfate by C@Fe 3O 4 in visible-light for tetracycline degradation. CHEMOSPHERE 2022; 306:135635. [PMID: 35810856 DOI: 10.1016/j.chemosphere.2022.135635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
A C@Fe3O4 material, Fe3O4 coated with carbon, was prepared by a simple one-pot hydrothermal method. The C@Fe3O4 material was investigated with persulfate (PS) and light to degrade tetracycline (TC) as a function of pH, aeration conditions and quenching. Experimental results suggest that TC was effectively degraded in the C@Fe3O4/PS/Vis system. In addition, due to the availability of different main active species in this catalytic system, TC degradation was possible under both strong acid and strong alkali pH conditions. The presence of dissolved oxygen can also generate oxygen-active species, such as superoxide radicals (O2•-) and singlet oxygen (1O2), to decompose TC organic matter in solution. Simply put, C@Fe3O4/PS/Vis catalytic system removed pollutants by the formation of O2•-, 1O2, hydroxyl radicals (•OH) and sulfate radicals (SO4•-) species for degrading TC. In addition, the stability of the C@Fe3O4 material was found to be outstanding.
Collapse
Affiliation(s)
- He Zhang
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Yu Mei
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Zhejiang, 312028, China
| | - Fang Zhu
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Fenting Yu
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204 Materials Research Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Jianfeng Ma
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China.
| |
Collapse
|
67
|
Evaluating Antioxidant Activity of Phenolic Mediated Fe3O4 Nanoparticles Using Usnea Longissimma Methanol Extract. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
68
|
Muthukumaran P, Suresh Babu P, Shyamalagowri S, Aravind J, Kamaraj M, Govarthanan M. Polymeric biomolecules based nanomaterials: Production strategies and pollutant mitigation as an emerging tool for environmental application. CHEMOSPHERE 2022; 307:136008. [PMID: 35985386 DOI: 10.1016/j.chemosphere.2022.136008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The ever-exploding global population coupled with its anthropogenic impact has imparted unparalleled detrimental effects on the environment and mitigating them has emerged as the prime challenge and focus of the current century. The niche of nanotechnology empowered by composites of biopolymers in the handling of xenobiotics and environmental clean-up has an unlimited scope. The appositeness of biopolymer-nanoparticles (Bp-NPs) for environmental contaminant mitigation has received unique consideration due to its exclusive combination of physicochemical characteristics and other attributes. The current review furnishes exhaustive scrutiny of the current accomplishments in the development of Bp-NPs and biopolymer nanomaterials (Bp-NMs) from various polymeric biomolecules. Special attention was provided for polymeric biomolecules such as cellulose, lignin, starch, chitin, and chitosan, whereas limited consideration on gelatin, alginate, and gum for the development of Bp-NPs and Bp-NMs; together with coverage of literature. Promising applications of tailored biopolymer hybrids such as Bp-NPs and Bp-NMs on environmentally hazardous xenobiotics handling and pollution management are discussed as to their notable environmental applications.
Collapse
Affiliation(s)
- P Muthukumaran
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - S Shyamalagowri
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, 600030, TamilNadu, India
| | - J Aravind
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram Campus, Chennai, 600089, Tamil Nadu, India.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
69
|
Kandasamy G, Maity D. Current Advancements in Self-assembling Nanocarriers-Based siRNA Delivery for Cancer Therapy. Colloids Surf B Biointerfaces 2022; 221:113002. [PMID: 36370645 DOI: 10.1016/j.colsurfb.2022.113002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/01/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
Abstract
Different therapeutic practices for treating cancers have significantly evolved to compensate and/or overcome the failures in conventional methodologies. The demonstrated potentiality in completely inhibiting the tumors and in preventing cancer relapse has made nucleic acids therapy (NAT)/gene therapy as an attractive practice. This has been made possible because NAT-based cancer treatments are highly focused on the fundamental mechanisms - i.e., silencing the expression of oncogenic genes responsible for producing abnormal proteins (via messenger RNAs (mRNAs)). However, the future clinical translation of NAT is majorly dependent upon the effective delivery of the exogenous nucleic acids (especially RNAs - e.g., short interfering RNAs (siRNAs) - herein called biological drugs). Moreover, nano-based vehicles (i.e., nanocarriers) are involved in delivering them to prevent degradation and undesired bioaccumulation while enhancing the stability of siRNAs. Herein, we have initially discussed about three major types of self-assembling nanocarriers (liposomes, polymeric nanoparticles and exosomes). Later, we have majorly reviewed recent developments in non-targeted/targeted nanocarriers for delivery of biological drugs (individual/dual) to silence the most important genes/mRNAs accountable for inducing protein abnormality. These proteins include polo-like kinase 1 (PLK1), survivin, vascular endothelial growth factor (VEGF), B-cell lymphoma/leukaemia-2 (Bcl-2) and multi-drug resistance (MDR). Besides, the consequent therapeutic effects on cancer growth, invasion and/or metastasis have also been discussed. Finally, we have comprehensively reviewed the improvements achieved in the cutting-edge cancer therapeutics while delivering siRNAs in combination with clinically approved chemotherapeutic drugs.
Collapse
|
70
|
Ye Y, Yin L, Owens G, Chen Z. Using carbonized hybrid FeNPs@ZIF-8 for the sustained release of doxorubicin hydrochloride. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
71
|
Miola M, Multari C, Vernè E. Iron Oxide-Au Magneto-Plasmonic Heterostructures: Advances in Their Eco-Friendly Synthesis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7036. [PMID: 36234377 PMCID: PMC9573543 DOI: 10.3390/ma15197036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In recent years, nanotechnologies have attracted considerable interest, especially in the biomedical field. Among the most investigated particles, magnetic based on iron oxides and Au nanoparticles gained huge interest for their magnetic and plasmonic properties, respectively. These nanoparticles are usually produced starting from processes and reagents that can be the cause of potential human health and environmental concerns. For this reason, there is a need to develop simple, green, low-cost, and non-toxic synthesis methods and reagents. This review aims at providing an overview of the most recently developed processes to produce iron oxide magnetic nanoparticles, Au nanoparticles, and their magneto-plasmonic heterostructures using eco-friendly approaches, focusing the attention on the microorganisms and plant-assisted syntheses and showing the first results of the development of magneto-plasmonic heterostructures.
Collapse
|
72
|
Rasel MSI, Mohona FA, Akter W, Kabir S, Chowdhury AA, Chowdhury JA, Hassan MA, Al Mamun A, Ghose DK, Ahmad Z, Khan FS, Bari MF, Rahman MS, Amran MS. Exploration of Site-Specific Drug Targeting-A Review on EPR-, Stimuli-, Chemical-, and Receptor-Based Approaches as Potential Drug Targeting Methods in Cancer Treatment. JOURNAL OF ONCOLOGY 2022; 2022:9396760. [PMID: 36284633 PMCID: PMC9588330 DOI: 10.1155/2022/9396760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Cancer has been one of the most dominant causes of mortality globally over the last few decades. In cancer treatment, the selective targeting of tumor cells is indispensable, making it a better replacement for conventional chemotherapies by diminishing their adverse side effects. While designing a drug to be delivered selectively in the target organ, the drug development scientists should focus on various factors such as the type of cancer they are dealing with according to which drug, targeting moieties, and pharmaceutical carriers should be targeted. All published articles have been collected regarding cancer and drug-targeting approaches from well reputed databases including MEDLINE, Embase, Cochrane Library, CENTRAL and ClinicalTrials.gov, Science Direct, PubMed, Scopus, Wiley, and Springer. The articles published between January 2010 and December 2020 were considered. Due to the existence of various mechanisms, it is challenging to choose which one is appropriate for a specific case. Moreover, a combination of more than one approach is often utilized to achieve optimal drug effects. In this review, we have summarized and highlighted central mechanisms of how the targeted drug delivery system works in the specific diseased microenvironment, along with the strategies to make an approach more effective. We have also included some pictorial illustrations to have a precise idea about different types of drug targeting. The core contribution of this work includes providing a cancer drug development scientist with a broad preliminary idea to choose the appropriate approach among the various targeted drug delivery mechanisms. Also, the study will contribute to improving anticancer treatment approaches by providing a pathway for lesser side effects observed in conventional chemotherapeutic techniques.
Collapse
Affiliation(s)
- Md. Shamiul Islam Rasel
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Farhana Afrin Mohona
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Wahida Akter
- College of Pharmacy, University of Houston, Houston, USA
| | - Shaila Kabir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Abu Asad Chowdhury
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Jakir Ahmed Chowdhury
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Md. Abul Hassan
- Department of Science & Technology, Tokushima University Graduate School, Tokushima, Japan
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Dipayon Krisna Ghose
- Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka 1100, Bangladesh
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia
- Department of Biology, College of Arts and Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Department of Biology, College of Arts and Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Md. Fazlul Bari
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| |
Collapse
|
73
|
Chircov C, Bîrcă AC, Vasile BS, Oprea OC, Huang KS, Grumezescu AM. Microfluidic Synthesis of -NH 2- and -COOH-Functionalized Magnetite Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3160. [PMID: 36144948 PMCID: PMC9503789 DOI: 10.3390/nano12183160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Microfluidics has emerged as a promising alternative for the synthesis of nanoparticles, which ensures precise control over the synthesis parameters, high uniformity, reproducibility, and ease of integration. Therefore, the present study investigated a one-step synthesis and functionalization of magnetite nanoparticles (MNPs) using sulfanilic acid (SA) and 4-sulfobenzoic acid (SBA). The flows of both the precursor and precipitating/functionalization solutions were varied in order to ensure the optimal parameters. The obtained nanoparticles were characterized through dynamic light scattering (DLS) and zeta potential, X-ray diffraction (XRD), selected area electron diffraction (SAED), transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry and differential scanning calorimetry (TG-DSC), and vibrating sample magnetometry (VSM). The results demonstrated the successful synthesis of magnetite as the unique mineralogical phase, as well as the functionalization of the nanoparticles. Furthermore, the possibility to control the crystallinity, size, shape, and functionalization degree by varying the synthesis parameters was further confirmed. In this manner, this study validated the potential of the microfluidic platform to develop functionalized MNPs, which are suitable for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Bogdan Stefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 840301, Taiwan
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050045 Bucharest, Romania
| |
Collapse
|
74
|
Electrochemical sensor based on Fe3O4/ZIF-4 nanoparticles for determination of bisphenol A. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
75
|
Al-luhaibi AA, Sendi RK. Synthesis, potential of hydrogen activity, biological and chemical stability of zinc oxide nanoparticle preparation by sol–gel: A review. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
76
|
Ajalli N, Pourmadadi M, Yazdian F, Rashedi H, Navaei-Nigjeh M, Díez-Pascual AM. Chitosan/Gamma-Alumina/Fe3O4@5-FU Nanostructures as Promising Nanocarriers: Physiochemical Characterization and Toxicity Activity. Molecules 2022; 27:molecules27175369. [PMID: 36080138 PMCID: PMC9458215 DOI: 10.3390/molecules27175369] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023] Open
Abstract
Today, cancer treatment is an important issue in the medical world due to the challenges and side effects of ongoing treatment procedures. Current methods can be replaced with targeted nano-drug delivery systems to overcome such side effects. In the present work, an intelligent nano-system consisting of Chitosan (Ch)/Gamma alumina (γAl)/Fe3O4 and 5-Fluorouracil (5-FU) was synthesized and designed for the first time in order to influence the Michigan Cancer Foundation-7 (MCF-7) cell line in the treatment of breast cancer. Physico-chemical characterization of the nanocarriers was carried out using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), and scanning electron microscopy (SEM). SEM analysis revealed smooth and homogeneous spherical nanoparticles. The high stability of the nanoparticles and their narrow size distribution was confirmed by DLS. The results of the loading study demonstrated that these nano-systems cause controlled, stable, and pH-sensitive release in cancerous environments with an inactive targeting mechanism. Finally, the results of MTT and flow cytometry tests indicated that this nano-system increased the rate of apoptosis induction on cancerous masses and could be an effective alternative to current treatments.
Collapse
Affiliation(s)
- Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran 1439956191, Iran
- Correspondence: (F.Y.); (H.R.); (A.M.D.-P.)
| | - Hamid Rashedi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
- Correspondence: (F.Y.); (H.R.); (A.M.D.-P.)
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Department of Pharmaceutical Biomaterials, Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
- Correspondence: (F.Y.); (H.R.); (A.M.D.-P.)
| |
Collapse
|
77
|
Study and Characterization rGO/Fe3O4 in Microstructure and Synthesized of Magnetic Properties Based Natural Iron Sand. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
78
|
Babaie A, Rezaei M, Razzaghi D, Roghani‐Mamaqani H. Synthesis of
dual‐stimuli‐responsive
polyurethane shape memory nanocomposites incorporating
isocyanate‐functionalized Fe
3
O
4
nanoparticles. J Appl Polym Sci 2022. [DOI: 10.1002/app.52790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amin Babaie
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
| | - Mostafa Rezaei
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
| | - Donya Razzaghi
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
| | - Hossein Roghani‐Mamaqani
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
| |
Collapse
|
79
|
Electrical, dielectric, I-V and antimicrobial behavior of cobalt incapacitated Prussian blue graphene ferrites composite. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
80
|
Moacă EA, Watz CG, (Ionescu) DF, Păcurariu C, Tudoran LB, Ianoș R, Socoliuc V, Drăghici GA, Iftode A, Liga S, Dragoș D, Dehelean CA. Biosynthesis of Iron Oxide Nanoparticles: Physico-Chemical Characterization and Their In Vitro Cytotoxicity on Healthy and Tumorigenic Cell Lines. NANOMATERIALS 2022; 12:nano12122012. [PMID: 35745350 PMCID: PMC9230869 DOI: 10.3390/nano12122012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023]
Abstract
Iron oxide nanoparticles were synthesized starting from two aqueous extracts based on Artemisia absinthium L. leaf and stems, employing a simplest, eco-friendliness and low toxicity method—green synthesis. The nanoparticles were characterized by powder X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), X-ray fluorescence analysis (XRF), thermal analysis (TG/DSC), and scanning electron microscopy (SEM). Lack of magnetic properties and the reddish-brown color of all the samples confirms the presence of hematite as majority phase. The FTIR bands located at 435 cm−1 and 590 cm−1, are assigned to Fe-O stretching vibration from hematite, confirming the formation of α-Fe2O3 nanoparticles (NPs). The in vitro screening of the samples revealed that the healthy cell line (HaCaT) presents a good viability (above 80%) after exposure to iron oxide NPs and lack of apoptotic features, while the tumorigenic cell lines manifested a higher sensitivity, especially the melanoma cells (A375) when exposed to concentration of 500 µg/mL iron oxide NPs for 72 h. Moreover, A375 cells elicited significant apoptotic markers under these parameters (concentration of 500 µg/mL iron oxide NPs for a contact time of 72 h).
Collapse
Affiliation(s)
- Elena-Alina Moacă
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (G.-A.D.); (A.I.); (S.L.); (D.D.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Claudia Geanina Watz
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
- Correspondence: (C.G.W.); (D.F.); Tel.: +40-746227217 (C.G.W.); +40-746183917 (D.F.)
| | - Daniela Flondor (Ionescu)
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (G.-A.D.); (A.I.); (S.L.); (D.D.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
- Correspondence: (C.G.W.); (D.F.); Tel.: +40-746227217 (C.G.W.); +40-746183917 (D.F.)
| | - Cornelia Păcurariu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Victoriei Square no. 2, RO-300006 Timisoara, Romania; (C.P.); (R.I.)
| | - Lucian Barbu Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, RO-400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for R & D of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania
| | - Robert Ianoș
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Victoriei Square no. 2, RO-300006 Timisoara, Romania; (C.P.); (R.I.)
| | - Vlad Socoliuc
- Romanian Academy—Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, 24 M. Viteazu Ave., RO-300223 Timisoara, Romania;
| | - George-Andrei Drăghici
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (G.-A.D.); (A.I.); (S.L.); (D.D.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Andrada Iftode
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (G.-A.D.); (A.I.); (S.L.); (D.D.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Sergio Liga
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (G.-A.D.); (A.I.); (S.L.); (D.D.); (C.A.D.)
| | - Dan Dragoș
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (G.-A.D.); (A.I.); (S.L.); (D.D.); (C.A.D.)
| | - Cristina Adriana Dehelean
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (G.-A.D.); (A.I.); (S.L.); (D.D.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| |
Collapse
|
81
|
Dalavi PA, V. AJ, Thomas S, Prabhu A, Anil S, Seong GH, Venkatesan J. Microwave-Assisted Biosynthesized Gold Nanoparticles Using Saussurea obvallata: Biocompatibility and Antioxidant Activity Assessment. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
82
|
Magnetite Nanoparticles Functionalized with Therapeutic Agents for Enhanced ENT Antimicrobial Properties. Antibiotics (Basel) 2022; 11:antibiotics11050623. [PMID: 35625267 PMCID: PMC9137518 DOI: 10.3390/antibiotics11050623] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
In the context of inefficient antibiotics, antibacterial alternatives are urgently needed to stop the increasing resistance rates in pathogens. This study reports the fabrication and characterization of four promising magnetite-based antibiotic delivery systems for ENT (ear, nose and throat) applications. Magnetite nanoparticles were functionalized with streptomycin and neomycin and some were entrapped in polymeric spheres. The obtained nanomaterials are stable, with spherical morphology, their size ranging from ~2.8 to ~4.7 nm for antibiotic-coated magnetite nanoparticles, and from submicron sizes up to several microns for polymer-coated magnetite–antibiotic composites. Cell viability and antimicrobial tests demonstrated their biocompatibility on human diploid cells and their antibacterial effect against Gram-negative (Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) opportunistic bacteria. The presence of the polymeric coat proved an enhancement in biocompatibility and a slight reduction in the antimicrobial efficiency of the spheres. Our results support the idea that functional NPs and polymeric microsystems containing functional NPs could be tailored to achieve more biocompatibility or more antimicrobial effect, depending on the bioactive compounds they incorporate and their intended application.
Collapse
|
83
|
PARMANIK A, BOSE A, GHOSH B. Research advancement on magnetic iron oxide nanoparticles and their potential biomedical applications. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2022. [DOI: 10.23736/s2724-542x.21.02830-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
84
|
Kiwumulo HF, Muwonge H, Ibingira C, Lubwama M, Kirabira JB, Ssekitoleko RT. Green synthesis and characterization of iron-oxide nanoparticles using Moringa oleifera: a potential protocol for use in low and middle income countries. BMC Res Notes 2022; 15:149. [PMID: 35468836 PMCID: PMC9036744 DOI: 10.1186/s13104-022-06039-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/13/2022] [Indexed: 01/20/2023] Open
Abstract
Objective Green synthesized iron(III) oxide (Fe3O4) nanoparticles are gaining appeal in targeted drug delivery systems because of their low cost, fast processing and nontoxicity. However, there is no known research work undertaken in the production of green synthesized nano-particles from the Ugandan grown Moringa Oleifera (MO). This study aims at exploring and developing an optimized protocol aimed at producing such nanoparticles from the Ugandan grown Moringa. Results While reducing ferric chloride solution with Moringa oleifera leaves, Iron oxide nanoparticles (Fe3O4-NPs) were synthesized through an economical and completely green biosynthetic method. The structural properties of these Fe3O4-NPs were investigated by Ultra Violet–visible (UV–Vis) spectrophotometry, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). These nanoparticles exhibited UV–visible absorption peaks at 225 nm (nm) for the sixth dilution and 228 nm for the fifth dilution which indicated that the nanoparticles were photosensitive and the SEM study confirmed the spherical nature of these nanoparticles. The total synthesis time was approximately 5 h after drying the moringa leaves, and the average particle size was approximately 16 nm. Such synthesized nanoparticles can potentially be useful for drug delivery, especially in Low and Middle Income Countries (LMICs).
Collapse
|
85
|
Comparative Toxicity Assessment of Eco-Friendly Synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in Plants and Aquatic Model Organisms. MINERALS 2022. [DOI: 10.3390/min12040451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aimed to evaluate the toxicity of superparamagnetic iron oxide nanoparticles (SPIONs) synthesized by biogenic (BS) and chemical (CH) routes. The nanoparticles were characterized by X-ray diffraction (XRD), X-ray spectroscopy (XPS), atomic force microscopy (AFM), vibrating-sample magnetometry (VSM-SQUID), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The toxicity of SPIONs was evaluated using Artemia salina as model aquatic organisms and Raphanus sativus and Lactuca sativa as model plants to evaluate their phytotoxicity. The results obtained from XRD, XPS, and AFM confirmed the formation of spherical nanoparticles of 41.9 ± 1.00 nm (BS route) and 19.8 ± 0.47 nm (CH route). VSM-SQUID demonstrated the superparamagnetic behavior of both nanoparticles, and FT-IR provided evidence of the differences in the surface of SPIONs, suggesting the presence of phenolic compounds on the surface of BS-SPIONs. For the assays with Artemia salina, the results demonstrated (i) nonsignificant differences of BS-SPIONs in mortality rates, and (ii) significant toxicity (p < 0.05) was observed for CH-SPIONs at 300 and 400 mg L−1. The Raphanus sativa plant assay tests showed (i) BS-SPIONs and CH-SPIONs improved the root elongation of seedlings. However, BS-SPIONs demonstrated significant activity on root seedling elongation (p < 0.05) in the range of 300 mg L−1 to 600 mg L−1. To the best of our knowledge, this is the first report to compare the toxicity of chemically and biogenically synthesized SPIONs. In conclusion, although BS-SPIONs and CH-SPIONs present similar structures, their characteristics of magnetic saturation and surface structure are nonidentical, providing differences in their biological activity.
Collapse
|
86
|
Dudchenko N, Pawar S, Perelshtein I, Fixler D. Magnetite Nanoparticles: Synthesis and Applications in Optics and Nanophotonics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2601. [PMID: 35407934 PMCID: PMC9000335 DOI: 10.3390/ma15072601] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023]
Abstract
Magnetite nanoparticles with different surface coverages are of great interest for many applications due to their intrinsic magnetic properties, nanometer size, and definite surface morphology. Magnetite nanoparticles are widely used for different medical-biological applications while their usage in optics is not as widespread. In recent years, nanomagnetite suspensions, so-called magnetic ferrofluids, are applied in optics due to their magneto-optical properties. This review gives an overview of nanomagnetite synthesis and its properties. In addition, the preparation and application of magnetic nanofluids in optics, nanophotonics, and magnetic imaging are described.
Collapse
Affiliation(s)
- Nataliia Dudchenko
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel; (N.D.); (I.P.)
| | - Shweta Pawar
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Ilana Perelshtein
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel; (N.D.); (I.P.)
| | - Dror Fixler
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel; (N.D.); (I.P.)
| |
Collapse
|
87
|
Barwant M, Ugale Y, Ghotekar S, Basnet P, Nguyen VH, Pansambal S, Ananda Murthy HC, Sillanpaa M, Bilal M, Oza R, Karande V. Eco-friendly synthesis and characterizations of Ag/AgO/Ag2O nanoparticles using leaf extracts of Solanum elaeagnifolium for antioxidant, anticancer, and DNA cleavage activities. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02178-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
88
|
Shen X, Song J, Sevencan C, Leong DT, Ariga K. Bio-interactive nanoarchitectonics with two-dimensional materials and environments. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:199-224. [PMID: 35370475 PMCID: PMC8973389 DOI: 10.1080/14686996.2022.2054666] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 05/19/2023]
Abstract
Like the proposal of nanotechnology by Richard Feynman, the nanoarchitectonics concept was initially proposed by Masakazu Aono. The nanoarchitectonics strategy conceptually fuses nanotechnology with other research fields including organic chemistry, supramolecular chemistry, micro/nanofabrication, materials science, and bio-related sciences, and aims to produce functional materials from nanoscale components. In this review article, bio-interactive nanoarchitectonics and two-dimensional materials and environments are discussed as a selected topic. The account gives general examples of nanoarchitectonics of two-dimensional materials for energy storage, catalysis, and biomedical applications, followed by explanations of bio-related applications with two-dimensional materials such as two-dimensional biomimetic nanosheets, fullerene nanosheets, and two-dimensional assemblies of one-dimensional fullerene nanowhiskers (FNWs). The discussion on bio-interactive nanoarchitectonics in two-dimensional environments further extends to liquid-liquid interfaces such as fluorocarbon-medium interfaces and viscous liquid interfaces as new frontiers of two-dimensional environments for bio-related applications. Controlling differentiation of stem cells at fluidic liquid interfaces is also discussed. Finally, a conclusive section briefly summarizes features of bio-interactive nanoarchitectonics with two-dimensional materials and environments and discusses possible future perspectives.
Collapse
Affiliation(s)
- Xuechen Shen
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Cansu Sevencan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| |
Collapse
|
89
|
Jiang Y, Lee J, Seo JM, Davaa E, Shin KJ, Yang SG. Enhanced thermodynamic, pharmacokinetic and theranostic properties of polymeric micelles via hydrophobic core-clustering of superparamagnetic iron oxide nanoparticles. Biomater Res 2022; 26:8. [PMID: 35256008 PMCID: PMC8900364 DOI: 10.1186/s40824-022-00255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background Superparamagnetic iron oxide nanoparticles (SPIO) have been applied for decades to design theranostic polymeric micelles for targeted cancer therapy and diagnostic MR imaging. However, the effects of SPIO on the physicochemical, and biological properties of polymeric micelles have not yet been fully elucidated. Therefore, we investigated potential effect of SPIO on the physical and biological properties of theranostic polymeric micelles using representative cancer drug (doxorubicin; Doxo) and polymer carrier (i.e., poly (ethylene glycol)-co-poly(D,L-lactide), PEG-PLA). Methods SPIO were synthesized from Fe(acetyl acetonate)3 in an aryl ether. SPIO and Doxo were loaded into the polymeric micelles by a solvent-evaporation method. We observed the effect of SPIO-clustering on drug loading, micelle size, thermodynamic stability, and theranostic property of PEG-PLA polymeric micelles. In addition, cellular uptake behaviors, pharmacokinetic and biodistribution study were performed. Results SPIO formed hydrophobic geometric cavity in the micelle core and significantly affected the integrity of micelles in terms of micelle size, Doxo loading, critical micelle concentration (CMC) and in vitro dissociation. In vivo pharmacokinetic studies also showed the enhanced Area Under Curve (AUC) and elongated the half-life of Doxo. Conclusions Clustered SPIO in micelles largely affects not only MR imaging properties but also biological and physical properties of polymeric micelles. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00255-9.
Collapse
|
90
|
Laha SS, Thorat ND, Singh G, Sathish CI, Yi J, Dixit A, Vinu A. Rare-Earth Doped Iron Oxide Nanostructures for Cancer Theranostics: Magnetic Hyperthermia and Magnetic Resonance Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104855. [PMID: 34874618 DOI: 10.1002/smll.202104855] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/11/2021] [Indexed: 05/27/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively investigated during the last couple of decades because of their potential applications across various disciplines ranging from spintronics to nanotheranostics. However, pure iron oxide nanoparticles cannot meet the requirement for practical applications. Doping is considered as one of the most prominent and simplest techniques to achieve optimized multifunctional properties in nanomaterials. Doped iron oxides, particularly, rare-earth (RE) doped nanostructures have shown much-improved performance for a wide range of biomedical applications, including magnetic hyperthermia and magnetic resonance imaging (MRI), compared to pure iron oxide. Extensive investigations have revealed that bigger-sized RE ions possessing high magnetic moment and strong spin-orbit coupling can serve as promising dopants to significantly regulate the properties of iron oxides for advanced biomedical applications. This review provides a detailed investigation on the role of RE ions as primary dopants for engineering the structural and magnetic properties of Fe3 O4 nanoparticles to carefully introspect and correlate their impact on cancer theranostics with a special focus on magnetic hyperthermia and MRI. In addition, prospects for achieving high-performance magnetic hyperthermia and MRI are thoroughly discussed. Finally, suggestions on future work in these two areas are also proposed.
Collapse
Affiliation(s)
- Suvra S Laha
- Department of Physics and Astronomy, Wayne State University, Detroit, MI, 48201, USA
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore, 560012, India
| | - Nanasaheb D Thorat
- Nuffield Department of Women's & Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, OX3 9DU, UK
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - C I Sathish
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ambesh Dixit
- Department of Physics, Indian Institute of Technology, Jodhpur, 342037, India
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
91
|
MHD Hybrid Nanofluid Mixed Convection Heat Transfer and Entropy Generation in a 3-D Triangular Porous Cavity with Zigzag Wall and Rotating Cylinder. MATHEMATICS 2022. [DOI: 10.3390/math10050769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this work was to conduct a numerical examination of mixed convective heat transfer in a three-dimensional triangular enclosure with a revolving circular cylinder in the cavity’s center. Numerical simulations of the hybrid Fe3O4/MWCNT-water nanofluid are performed using the finite element approach (FEM). The simulation is carried out for a range of parameter values, including the Darcy number (between 10−5 and 10−2), the Hartmann number (between 0 and 100), the angular speed of the rotation (between −500 and 1000), and the number of zigzags. The stream function, isotherms, and isentropic contours illustrate the impact of many parameters on motion, heat transfer, and entropy formation. The findings indicate that for enhancing the heat transfer rates of hybrid nanofluid in a three-dimensional triangular porous cavity fitted with a rotating cylinder and subjected to a magnetic field, Darcy number > 10−3, Hartmann number < 0, one zigzag on the hot surface, and rotation speed > 500 in flow direction are recommended.
Collapse
|
92
|
Păduraru DN, Ion D, Niculescu AG, Mușat F, Andronic O, Grumezescu AM, Bolocan A. Recent Developments in Metallic Nanomaterials for Cancer Therapy, Diagnosing and Imaging Applications. Pharmaceutics 2022; 14:435. [PMID: 35214167 PMCID: PMC8874382 DOI: 10.3390/pharmaceutics14020435] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer continues to represent a global health concern, imposing an ongoing need to research for better treatment alternatives. In this context, nanomedicine seems to be the solution to existing problems, bringing unprecedented results in various biomedical applications, including cancer therapy, diagnosing, and imaging. As numerous studies have uncovered the advantageous properties of various nanoscale metals, this review aims to present metal-based nanoparticles that are most frequently employed for cancer applications. This paper follows the description of relevant nanoparticles made of metals, metal derivatives, hybrids, and alloys, further discussing in more detail their potential applications in cancer management, ranging from the delivery of chemotherapeutics, vaccines, and genes to ablative hyperthermia therapies and theranostic platforms.
Collapse
Affiliation(s)
- Dan Nicolae Păduraru
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Daniel Ion
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Florentina Mușat
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Alexandra Bolocan
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
93
|
Fani A, Varmazyar S, Akbari F, Garfami M, Mohaghegh R, Balkhi S, Mojdehi SR, Tabassi NR, Hosseinpour T, Ghanbari Z, Salehzadeh A. Green Synthesis of a Novel PtFe2O4@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Anti-Cancer Studies in Gastric Cancer Cell Line. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
94
|
Efficient electrochemical detection of hazardous para-nitrophenol based on a carbon paste electrode modified with green synthesized gold/iron oxide nanocomposite. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02094-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
95
|
Zakariya NA, Majeed S, Jusof WHW. Investigation of antioxidant and antibacterial activity of iron oxide nanoparticles (IONPS) synthesized from the aqueous extract of Penicillium SPP. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
96
|
Li W, Wang H, Yang S, Isak AN, Song Y, Zhang F, Mao D, Zhu X. Magnetism-Controllable Catalytic Activity of DNAzyme. Anal Chem 2022; 94:2827-2834. [PMID: 35104119 DOI: 10.1021/acs.analchem.1c04506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controllable regulation of enzyme activity is an important prerequisite for the in-depth application of enzymes, especially in today's intelligent era. However, irreversible regulation and cumbersome operation make this goal difficult to achieve. Here, by adopting magnetism and a harmless, noncontact, and time- and space-controllable physical element, we developed a system that could conveniently and reversibly regulate the activity of DNAzyme. In this system, the strands of the DNAzyme could be stretched or folded by applying or removing a magnetic field. Thereby, the conformation-dependent endonuclease activity of the DNAzyme could be facilely switched between an "OFF" and "ON" state. This system provides a reusable platform for the control of enzyme catalytic activity through magnetism, which provides guidance for further application in some related scientific research, especially the regulation of the activity of conformation-dependent polymers (DNAzymes, aptamers, and peptides).
Collapse
Affiliation(s)
- Wenxing Li
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Hao Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Shiqi Yang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Albertina N Isak
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yuchen Song
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Fan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Dongsheng Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| |
Collapse
|
97
|
Navada KM, Nagaraja G, D'Souza JN, Kouser S, Nithyashree B, Manasa D. Bio-fabrication of multifunctional nano-ceria mediated from Pouteria campechiana for biomedical and sensing applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
98
|
Chang ZX, Li CH, Chang YC, Huang CYF, Chan MH, Hsiao M. Novel monodisperse FePt nanocomposites for T2-weighted magnetic resonance imaging: biomedical theranostics applications. NANOSCALE ADVANCES 2022; 4:377-386. [PMID: 36132698 PMCID: PMC9419603 DOI: 10.1039/d1na00613d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/19/2021] [Indexed: 06/07/2023]
Abstract
Given the high incidence and mortality of cancer, current research is focused on designing efficient diagnostic methods. At present, clinical diagnoses are made based on X-ray, computed tomography, magnetic resonance imaging (MRI), ultrasound, and fiber optic endoscopy. MRI is a powerful diagnostic tool because it is non-invasive, has a high spatial resolution, uses non-ionizing radiation, and has good soft-tissue contrast. However, the long relaxation time of water protons may result in the inability to distinguish different tissues. To overcome this drawback of MRI, magnetic resonance contrast agents can enhance the contrast, improve the sensitivity of MRI-based diagnoses, increase the success rate of surgery, and reduce tumor recurrence. This review focuses on using iron-platinum (FePt) nanoparticles (NPs) in T2-weighted MRI to detect tumor location based on dark-field changes. In addition, existing methods for optimizing and improving FePt NPs are reviewed, and the MRI applications of FePt NPs are discussed. FePT NPs are expected to strengthen MRI resolution, thereby helping to inhibit tumor development.
Collapse
Affiliation(s)
- Zhi-Xuan Chang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University Taipei 112 Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University Taipei 112 Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University Taipei 112 Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University Taipei 112 Taiwan
| | | | - Michael Hsiao
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
- Department of Biochemistry College of Medicine, Kaohsiung Medical University Kaohsiung 807 Taiwan
| |
Collapse
|
99
|
Gulzar A, Ayoub N, Mir JF, Alanazi AM, Shah MA, Gulzar A. In vitro and in vivo MRI imaging and photothermal therapeutic properties of Hematite (α-Fe 2O 3) Nanorods. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:10. [PMID: 35022850 PMCID: PMC8755697 DOI: 10.1007/s10856-021-06636-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/23/2021] [Indexed: 05/07/2023]
Abstract
Herein we report synthesis of hematite (α-Fe2O3) nanorods by calcinating hydrothermally synthesized goethite nanorods at 5000C. The structural, optical and MRI imaging guided cancer therapeutic properties of fabricated nanorods have been discussed in this manscript. FESEM and TEM imaging techniques were used to confirm the nanorod like morphology of as prepared materials. As we know that Fe2O3 nanorods with size in the range of 25-30 nm exhibit super magnetism. After coating with the PEG, the as prepared nanorods can be used as T2 MR imaging contrast agents. An excellent T2 MRI contrast of 38.763 mM-1s-1 achieved which is highest reported so far for α-Fe2O3. Besides the as prepared nanorods display an excellent photothermal conversion efficiency of 39.5% thus acts as an excellent photothermal therapeutic agent. Thus, we envision the idea of testing our nanorods for photothermal therapy and MR imaging application both in vitro and in vivo, achieving an excellent T2 MRI contrast and photothermal therapy effect with as prepared PEGylated nanorods.
Collapse
Affiliation(s)
- Aanisa Gulzar
- Laboratory for Multifunctional Nanomaterials, P.G Department of Physics, National Institute of Technology Srinagar, Hazratbal, Srinagar, J&K, 190006, India
| | - Nowsheena Ayoub
- Laboratory for Multifunctional Nanomaterials, P.G Department of Physics, National Institute of Technology Srinagar, Hazratbal, Srinagar, J&K, 190006, India
| | - Jaffar Farooq Mir
- Laboratory for Multifunctional Nanomaterials, P.G Department of Physics, National Institute of Technology Srinagar, Hazratbal, Srinagar, J&K, 190006, India
| | - Amer M Alanazi
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M A Shah
- Laboratory for Multifunctional Nanomaterials, P.G Department of Physics, National Institute of Technology Srinagar, Hazratbal, Srinagar, J&K, 190006, India.
| | - Arif Gulzar
- Med X Institute, School of Biomedical Engineering Shanghai Jiao Tong University, Shanghai, 200030, China.
- Hevesy Laboratory, Center for Nuclear Technologies, DTU Health Tech, 4000, Roskilde, Denmark.
| |
Collapse
|
100
|
Green synthesis of chitosan-coated magnetic nanoparticles for drug delivery of oxaliplatin and irinotecan against colorectal cancer cells. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04066-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|