51
|
Qin Y, Cai ML, Jin HZ, Huang W, Zhu C, Bozec A, Huang J, Chen Z. Age-associated B cells contribute to the pathogenesis of rheumatoid arthritis by inducing activation of fibroblast-like synoviocytes via TNF-α-mediated ERK1/2 and JAK-STAT1 pathways. Ann Rheum Dis 2022; 81:1504-1514. [PMID: 35760450 DOI: 10.1136/ard-2022-222605] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/17/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Age-associated B cells (ABCs) are a recently identified B cell subset, whose expansion has been increasingly linked to the pathogenesis of autoimmune disorders. This study aimed to investigate whether ABCs are involved in the pathogenesis and underlying mechanisms of rheumatoid arthritis (RA). METHODS ABCs were assessed in collagen-induced arthritis (CIA) mice and patients with RA using flow cytometry. Transcriptomic features of RA ABCs were explored using RNA-seq. Primary fibroblast-like synoviocytes (FLS) derived from the synovial tissue of patients with RA were cocultured with ABCs or ABCs-conditioned medium (ABCsCM). IL-6, MMP-1, MMP-3 and MMP-13 levels in the coculture supernatant were detected by ELISA. Signalling pathways related to ABCs-induced FLS activation were examined using western blotting. RESULTS Increased ABCs levels in the blood, spleen and inflammatory joints of CIA mice were observed. Notably, ABCs were elevated in the blood, synovial fluid and synovial tissue of patients with RA and positively correlated with disease activity. RNA-seq revealed upregulated chemotaxis-related genes in RA ABCs compared with those in naive and memory B cells. Coculture of FLS with RA ABCs or ABCsCM led to an active phenotype of FLS, with increased production of IL-6, MMP-1, MMP-3 and MMP-13. Mechanistically, ABCsCM-derived TNF-α promoted the upregulation of interferon-stimulated genes in FLS, with elevated phosphorylation of ERK1/2 and STAT1. Furthermore, blockage of ERK1/2 and Janus Kinase (JAK)-STAT1 pathways inhibited the activation of FLS induced by ABCsCM. CONCLUSIONS Our results suggest that ABCs contribute to the pathogenesis of RA by inducing the activation of FLS via TNF-α-mediated ERK1/2 and JAK-STAT1 pathways.
Collapse
Affiliation(s)
- Yi Qin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming-Long Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui-Zhi Jin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aline Bozec
- Department of Internal Medicine III, Institute for Clinical Immunology University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jingang Huang
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhu Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
52
|
Zandonadi RP. An Overview of Nutritional Aspects in Juvenile Idiopathic Arthritis. Nutrients 2022; 14:4412. [PMID: 36297096 PMCID: PMC9610591 DOI: 10.3390/nu14204412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 09/07/2024] Open
Abstract
There is evidence that nutritional impairment can complicate juvenile idiopathic arthritis (JIA). It is also recognized that the JIA drug treatment may affect the nutritional aspects of patients. It is crucial to understand the impacts that nutritional aspects can have on a patient's treatment, health, and life. Therefore, this review explores how nutrition influences juvenile idiopathic arthritis. Dietary aspects play essential roles in JIA patients' growth, body mass index (BMI), bone mineral density (BMD), inflammation, and recovery. Suboptimal nutrition seems to adversely affect the long-term outcome of JIA patients. Nutritional deficiency potentially affects JIA patients' general wellbeing and disease control and contributes to growth, inflammation, BMI, and BMD disturbances. It was also possible to verify that the correct status of nutrients helps the body recover and reduce inflammation in JIA patients, since nutritional status and nutrients play an important role in regulating immune function. Studies are diverse, and most analyze the effects of a single nutrient on JIA. Moreover, the diet and nutrition impacts are difficult to interpret in the pediatric population due to family influence, dietary regulation, and data collection in children/adolescents. Despite the lack of standardization among studies, the potential benefits of a healthy diet on short- and long-term health and wellbeing in JIA patients are noteworthy.
Collapse
Affiliation(s)
- Renata Puppin Zandonadi
- Department of Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, University of Brasília, Brasilia 70910-900, Brazil
| |
Collapse
|
53
|
Castiblanco LL, García de Yébenes MJ, Martín Martín JM, Carmona L. Safety and efficacy in the nursing care of people with rheumatic diseases on janus kinase inhibitor therapy. Rheumatol Int 2022; 42:2125-2133. [PMID: 35982184 DOI: 10.1007/s00296-022-05185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Nurses's support of patients needs an evidence base as much as that of specialists management. However, some more practical aspects need specific questions that are not addressed in medical societies' recommendations. Our objective was to investigate the effect of Janus kinase inhibitors (jakinibs) on efficacy, safety, infections, cardiovascular risk, vaccination, pregnancy and lactation, interactions, surgery, and switch in adult patients with rheumatic diseases. We used the methodology for rapid reviews. Medline was searched for systematic reviews of randomised clinical trials and longitudinal observational studies reporting on the target aspects, without limits, yielding 540 titles, of which 70 articles were selected for detailed reading after the screening of title and abstract. In the case of no systematic review being published on a specific question, we resorted to the information provided by primary studies. The efficacy and safety profiles are similar to that of TNF-inhibitors to which they are compared in most studies; however, there is an increased risk of herpes zoster infections with jakinibs. The evidence on pregnancy, surgery and switches between jakinibs is very limited, although, so far, there are no major issues to inform patients about or to implement specific measures. In general, evidence to support nursing management in patients being treated with jakinibs is of moderate quality and scarce, ought to the recent incursion of jakinibs as a treatment.
Collapse
Affiliation(s)
| | | | | | - Loreto Carmona
- Institute of Musculoskeletal Health (Inmusc), Calle de Méndez Álvaro, 20, 28045, Madrid, Spain.
| |
Collapse
|
54
|
From vaccines to nanovaccines: A promising strategy to revolutionize rheumatoid arthritis treatment. J Control Release 2022; 350:107-121. [PMID: 35977582 DOI: 10.1016/j.jconrel.2022.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Rheumatoid arthritis (RA) is a joint-related autoimmune disease that is difficult to cure. Most therapeutics act to alleviate the symptoms but not correct the causes of RA. Novel strategies that specifically target the causes are highly needed for RA management. Currently, early interruption of RA is increasingly suggested but the corresponding therapeutics are not available. Vaccines that have shown great success to combat infection, cancer, degenerative diseases, autoimmune diseases, etc. are ideal candidates for a new generation of anti-RA therapeutics to correct the causes and prevent RA or interrupt RA in early phases. Anti-RA vaccines can be divided into two major categories. One is to induce neutralizing antibodies and the other is to induce antigen-specific immune tolerance. The vaccines are inherently linked to nanotechnology because they usually need a biomacromolecule or carrier to provoke sufficient immune responses. In the past decade, designed nanocarriers such as nanoparticles, liposomes, nanoemulsion, etc., have been applied to optimize the vaccines for autoimmune disease treatment. Nanotechnology endows vaccines with a higher biostability, tunable in vivo behavior, better targeting, co-delivery with stimulatory agents, regulatory effects on immune responses, etc. In this review, unmet medical needs for RA treatment and anti-RA vaccinology are first introduced. The development of anti-RA therapies from vaccines to nanovaccines are then reviewed and perspectives on how nanotechnology promotes vaccine development and advancement are finally provided. In addition, challenges for anti-RA vaccine development are summarized and advantages of nanovaccines are analyzed. In conclusion, nanovaccines will be a promising strategy to revolutionize the treatment of RA by correcting the causes in an early phase of RA.
Collapse
|
55
|
Fonseca Peixoto R, Ewerton Maia Rodrigues C, Henrique de Sousa Palmeira P, Cézar Comberlang Queiroz Davis Dos Santos F, Keesen de Souza Lima T, de Sousa Braz A. Immune hallmarks of rheumatoid arthritis management: A brief review. Cytokine 2022; 158:156007. [PMID: 35985174 DOI: 10.1016/j.cyto.2022.156007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
The purpose of this review was to examine current evidence on immunomodulation mediated by conventional drugs and the use of novel biological agents for the treatment of rheumatoid arthritis (RA). Currently, treatment is focused on maximizing quality of life through sustained clinical remission and/or attenuating disease activity. To do so, disease-modifying antirheumatic drugs, especially methotrexate, are used alone or in combination with other drugs, including leflunomide, biological disease-modifying antirheumatic drugs (bDMARDs) and targeted synthetic disease-modifying antirheumatic drugs (tsDMARDs). The most recent strategies modulate the immune response of the individual RA patient using tsDMARDs such as JAK inhibitors and bDMARDs such as ig-CTLA-4, anti- IL6R, anti-TNF-α and anti-CD20. To better understand current immunopharmacological interventions, we also looked at documented mechanisms of RA-mediated immunomodulation, highlighting perspectives potentially boosting RA treatment.
Collapse
Affiliation(s)
- Rephany Fonseca Peixoto
- Laboratory of Immunology of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Carlos Ewerton Maia Rodrigues
- Post‑Graduate Program in Medical Sciences, Medical School, University of Fortaleza (Unifor), Fortaleza, Brazil; Department of Internal Medicine, Federal University of Ceará, Brazil.
| | - Pedro Henrique de Sousa Palmeira
- Laboratory of Immunology of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | | - Tatjana Keesen de Souza Lima
- Laboratory of Immunology of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | |
Collapse
|
56
|
AXL Inhibits Proinflammatory Factors to Relieve Rheumatoid Arthritis Pain by Regulating the TLR4/NF-κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7625739. [PMID: 35983008 PMCID: PMC9381196 DOI: 10.1155/2022/7625739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
Objective This study aims to explore the role and mechanism of AXL receptor tyrosine kinase (AXL) in relieving inflammatory pain caused by rheumatoid arthritis (RA). Methods RA mouse model was constructed by collagen antibody induction. RT-qPCR and Western blot were used to detect the level of AXL in RA fibroblast-like synovial cells (RA-FLS) and joint synovium. The levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO) were detected by ELISA. The inflammatory infiltration in joints was determined via HE staining. The mechanical abnormal pain and hyperalgesia were detected by the Von Frey microfilament test. The protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (3COX-2), toll-like receptor 4 (TLR4), p65, and phosphor (p)-p65 were detected by Western blotting. Results The expression of AXL in RA-FLS and RA mice was downregulated, while the expression of iNOS and COX-2 was upregulated. The levels of inflammatory cytokines IL-6, TNF-α, and NO were increased in RA-FLS and RA mice. RA mice presented inflammatory cell infiltration, bone and cartilage destruction, and joint space stenosis. AXL overexpression alleviated inflammatory cell infiltration, inflammatory cytokine secretion, and pathological injury in RA mice. Additionally, AXL overexpression inhibited the expression of TLR4 and p-p65. Conclusion AXL inhibits inflammatory pain in RA mice by suppressing TLR4/NF-κB pathway.
Collapse
|
57
|
Traditional Chinese Medicine Is Associated with Reduced Risk of Readmission in Rheumatoid Arthritis Patients with Anemia: A Retrospective Cohort Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4553985. [PMID: 35966735 PMCID: PMC9365533 DOI: 10.1155/2022/4553985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
Objective This study aimed to analyze the effect of traditional Chinese medicine (TCM) on the risk of readmission for rheumatoid arthritis (RA) patients with anemia. Methods In this study, 893 hospitalized RA patients were followed up by telephone. A retrospective cohort study was conducted using propensity score matching (PSM). The Cox proportional hazards model was used to assess the influence of various factors on the risk of readmission for RA patients with anemia. The Kaplan–Meier survival curve was utilized to analyze the effect of TCM intervention time on readmission. Results The incidence of anemia was 58.08% (471/811) in RA patients. After 1 : 1 PSM, 328 RA patients with anemia and 328 RA patients without anemia were finally included in our study. The readmission rate of anemia patients was higher than that of patients without anemia (P < 0.01). The readmission rate of RA patients with anemia was obviously lower in the TCM group than in the non-TCM group (P < 0.01). The Cox proportional hazards model showed TCM as an independent protective factor as it decreased the risk of readmission by 50% (HR = 0.50, 95% CI = 0.27–0.94, P=0.03) in RA patients with anemia. In addition, the risk of readmission was dramatically diminished in the high-exposure subgroup (TCM > 12 months) compared with the low-exposure subgroup (TCM ≤ 12 months) (log-rank P=0.016). Conclusion TCM, as a protective factor, is associated with a reduced risk of readmission in RA patients with anemia.
Collapse
|
58
|
Hou J, Su H, Kuang X, Qin W, Liu K, Pan K, Zhang B, Yang S, Yang S, Peng X, Nie X, Hua Q. Knowledge Domains and Emerging Trends of Osteoblasts-Osteoclasts in Bone Disease From 2002 to 2021: A Bibliometrics Analysis and Visualization Study. Front Endocrinol (Lausanne) 2022; 13:922070. [PMID: 35937845 PMCID: PMC9355788 DOI: 10.3389/fendo.2022.922070] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Osteoblasts-Osteoclasts has been a major area in bone disease research for a long time. However, there are few systematic studies in this field using bibliometric analysis. We aimed to perform a bibliometric analysis and visualization study to determine hotspots and trends of osteoblasts-osteoclasts in bone diseases, identify collaboration and influence among authors, countries, institutions, and journals, and assess the knowledge base to develop basic and clinical research in the future. METHODS We collected articles and reviews for osteoblasts-osteoclasts in bone diseases from the Web of Science Core Collection. In addition, we utilized scientometrics software (CiteSpace5.8 and VOSviewer1.6.18) for visual analysis of countries/regions, institutions, authors, references, and keywords in the field. RESULTS In total, 16,832 authors from 579 institutions in 73 countries/regions have published 3,490 papers in 928 academic journals. The literature in this field is rapidly increasing, with Bone publishing the most articles, whereas Journal of Bone and Mineral Research had the most co-cited journals. These two journals mainly focused on molecular biology and the clinical medicine domain. The countries with the highest number of publications were the US and China, and the University of Arkansas for Medical Sciences was the most active institution. Regarding authors, Stavros C. Manolagas published the most articles, and Hiroshi Takayanagi had the most co-cited papers. Research in this field mainly includes molecular expression and regulatory mechanisms, differentiation, osteoprotection, inflammation, and tumors. The latest research hotspots are oxidative stress, mutation, osteocyte formation and absorption, bone metabolism, tumor therapy, and in-depth mechanisms. CONCLUSION We identified the research hotspots and development process of osteoblasts-osteoclasts in bone disease using bibliometric and visual methods. Osteoblasts-osteoclasts have attracted increasing attention in bone disease. This study will provide a valuable reference for researchers concerned with osteoblasts-osteoclasts in bone diseases.
Collapse
Affiliation(s)
- Jun Hou
- Department of Bone and Joint Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Diabetic Foot Salvage Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Hongjie Su
- Department of Bone and Joint Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Diabetic Foot Salvage Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Xiaocong Kuang
- Department of Bone and Joint Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Diabetic Foot Salvage Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Wencong Qin
- Department of Bone and Joint Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Diabetic Foot Salvage Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Kaibing Liu
- Department of Bone and Joint Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Diabetic Foot Salvage Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Kaixiang Pan
- Department of Bone and Joint Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Diabetic Foot Salvage Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Bokai Zhang
- Department of Bone and Joint Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Diabetic Foot Salvage Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Sijie Yang
- Department of Bone and Joint Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Diabetic Foot Salvage Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Shenghui Yang
- Department of Bone and Joint Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Diabetic Foot Salvage Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Xiao Peng
- Department of Bone and Joint Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Diabetic Foot Salvage Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Xinyu Nie
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun, China
| | - Qikai Hua
- Department of Bone and Joint Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Diabetic Foot Salvage Engineering Research Center, Guangxi Medical University, Nanning, China
| |
Collapse
|
59
|
Adas MA, Norton S, Balachandran S, Alveyn E, Russell MD, Esterine T, Amlani-Hatcher P, Oyebanjo S, Lempp H, Ledingham J, Kumar K, Galloway JB, Dubey S. Worse outcomes linked to ethnicity for early inflammatory arthritis in England and Wales: a national cohort study. Rheumatology (Oxford) 2022; 62:169-180. [PMID: 35536178 PMCID: PMC9788810 DOI: 10.1093/rheumatology/keac266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To assess variability in care quality and treatment outcomes across ethnicities in early inflammatory arthritis (EIA). METHODS We conducted an observational cohort study in England and Wales from May 2018 to March 2020, including patients with a suspected/confirmed EIA diagnosis. Care quality was assessed against six metrics defined by national guidelines. Clinical outcomes were measured using DAS28. Outcomes between ethnic groups ('White', 'Black', 'Asian', 'Mixed', 'Other') were compared, and adjusted for confounders. RESULTS A total of 35 807 eligible patients were analysed. Of those, 30 643 (85.6%) were White and 5164 (14.6%) were from ethnic minorities: 1035 (2.8%) Black; 2617 (7.3%) Asian; 238 (0.6%) Mixed; 1274 (3.5%) Other. In total, 12 955 patients had confirmed EIA, of whom 11 315 were White and 1640 were from ethnic minorities: 314 (2.4%) Black; 927 (7.1%) Asian; 70 (0.5%) Mixed; 329 (2.5%) Other. A total of 14 803 patients were assessed by rheumatology within three weeks, and 5642 started treatment within six weeks of referral. There were no significant differences by ethnicity. Ethnic minority patients had lower odds of disease remission at three months [adjusted odds ratio 0.79 (95% CI: 0.65, 0.96)] relative to White patients. Ethnic minorities were significantly less likely to receive initial treatment withMTX[0.68 (0.52, 0.90)] or with glucocorticoids [0.63 (0.49, 0.80)]. CONCLUSION We demonstrate that some ethnic minorities are less likely to achieve disease remission in three months following EIA diagnosis. This is not explained by delays in referral or time to treatment. Our data highlight the need for investigation into the possible drivers of these inequitable outcomes and reappraisal of EIA management pathways.
Collapse
Affiliation(s)
| | | | | | - Edward Alveyn
- Centre for Rheumatic Disease, Department of Inflammatory Biology
| | - Mark D Russell
- Centre for Rheumatic Disease, Department of Inflammatory Biology
| | | | | | | | - Heidi Lempp
- Centre for Rheumatic Disease, Department of Inflammatory Biology
| | - Joanna Ledingham
- Rheumatology Department, Portsmouth Hospitals University NHS Trust, Portsmouth
| | - Kanta Kumar
- Institute of Clinical Sciences, University of Birmingham, Birmingham
| | - James B Galloway
- Correspondence to: James Galloway, Weston Education Centre, 10 Cutcombe Road, SE5 9RJ London, UK. E-mail:
| | | |
Collapse
|
60
|
Healthcare Professionals' Compliance with the Standard Management Guidelines towards the Use of Biological Disease-Modifying Anti-Rheumatic Drugs in Rheumatoid Arthritis Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084699. [PMID: 35457564 PMCID: PMC9025247 DOI: 10.3390/ijerph19084699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023]
Abstract
Treatment of rheumatoid arthritis (RA) is complicated, with numerous aspects influencing decision-making, including disease severity, comorbidities, and patient preferences. The present study aimed to evaluate healthcare professionals' (HCPs) knowledge of biological disease-modifying anti-rheumatic drugs (bDMARDs) and their compliance with the standard management guidelines for assuring optimal RA therapy. The cross-sectional, survey-based study was performed in various healthcare and academic settings in Karachi, Pakistan to probe HCPs' knowledge of bDMARDs and their compliance with the European League against Rheumatism (EULAR) recommendations for the management of RA patients. Overall, n = 413 questionnaires were included in our study (response rate: 82.6%). The physicians were further well-informed about the indications (n = 276, 91.3%, p = 0.001) and monitoring requirements (n = 258, 85.4%, p = 0.004). The pharmacists were more knowledgeable about the drug targets (n = 96, 86.4%, p = 0.029) and their mechanisms of action (n = 80, 72.0%, p = 0.013). Male respondents as compared with females (41.3% vs. 35.6%, p = 0.04), and physicians as compared with pharmacists (40.7% vs. 37.8%, p = 0.012), were more confident in using bDMARDs than conventional treatment in RA patients. Our findings show that the respondents were familiar with the attributes of bDMARDs and the standard management guidelines for RA care. Our results may be relevant in creating new methods, guidelines, and treatments to enhance RA treatment adherence, satisfaction, and health outcomes.
Collapse
|
61
|
Rodríguez Sánchez-Laulhé P, Luque-Romero LG, Barrero-García FJ, Biscarri-Carbonero Á, Blanquero J, Suero-Pineda A, Heredia-Rizo AM. An Exercise and Educational and Self-management Program Delivered With a Smartphone App (CareHand) in Adults With Rheumatoid Arthritis of the Hands: Randomized Controlled Trial. JMIR Mhealth Uhealth 2022; 10:e35462. [PMID: 35389367 PMCID: PMC9030995 DOI: 10.2196/35462] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/01/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a prevalent autoimmune disease that usually involves problems of the hand or wrist. Current evidence recommends a multimodal therapy including exercise, self-management, and educational strategies. To date, the efficacy of this approach, as delivered using a smartphone app, has been scarcely investigated. OBJECTIVE This study aims to assess the short- and medium-term efficacy of a digital app (CareHand) that includes a tailored home exercise program, together with educational and self-management recommendations, compared with usual care, for people with RA of the hands. METHODS A single-blinded randomized controlled trial was conducted between March 2020 and February 2021, including 36 participants with RA of the hands (women: 22/36, 61%) from 2 community health care centers. Participants were allocated to use the CareHand app, consisting of tailored exercise programs, and self-management and monitoring tools or to a control group that received a written home exercise routine and recommendations, as per the usual protocol provided at primary care settings. Both interventions lasted for 3 months (4 times a week). The primary outcome was hand function, assessed using the Michigan Hand Outcome Questionnaire (MHQ). Secondary measures included pain and stiffness intensity (visual analog scale), grip strength (dynamometer), pinch strength (pinch gauge), and upper limb function (shortened version of the Disabilities of the Arm, Shoulder, and Hand questionnaire). All measures were collected at baseline and at a 3-month follow-up. Furthermore, the MHQ and self-reported stiffness were assessed 6 months after baseline, whereas pain intensity and scores on the shortened version of the Disabilities of the Arm, Shoulder, and Hand questionnaire were collected at the 1-, 3-, and 6-month follow-ups. RESULTS In total, 30 individuals, corresponding to 58 hands (CareHand group: 26/58, 45%; control group: 32/58, 55%), were included in the analysis; 53% (19/36) of the participants received disease-modifying antirheumatic drug treatment. The ANOVA demonstrated a significant time×group effect for the total score of the MHQ (F1.62,85.67=9.163; P<.001; η2=0.15) and for several of its subscales: overall hand function, work performance, pain, and satisfaction (all P<.05), with mean differences between groups for the total score of 16.86 points (95% CI 8.70-25.03) at 3 months and 17.21 points (95% CI 4.78-29.63) at 6 months. No time×group interaction was observed for the secondary measures (all P>.05). CONCLUSIONS Adults with RA of the hands who used the CareHand app reported better results in the short and medium term for overall hand function, work performance, pain, and satisfaction, compared with usual care. The findings of this study suggest that the CareHand app is a promising tool for delivering exercise therapy and self-management recommendations to this population. Results must be interpreted with caution because of the lack of efficacy of the secondary outcomes. TRIAL REGISTRATION ClinicalTrials.gov NCT04263974; https://clinicaltrials.gov/ct2/show/NCT04263974. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR2-10.1186/s13063-020-04713-4.
Collapse
Affiliation(s)
- Pablo Rodríguez Sánchez-Laulhé
- Department of Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, Seville, Spain.,Uncertainty, Mindfulness, Self, Spirituality (UMSS) Research Group, University of Seville, Seville, Spain
| | - Luis Gabriel Luque-Romero
- Research Unit, Distrito Sanitario Aljarafe-Sevilla Norte, Andalusian Health Service, Seville, Spain.,Normal and Pathological Cytology and Histology Department, University of Seville, Seville, Spain
| | | | | | - Jesús Blanquero
- Department of Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, Seville, Spain
| | - Alejandro Suero-Pineda
- Department of Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, Seville, Spain
| | - Alberto Marcos Heredia-Rizo
- Department of Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, Seville, Spain.,Uncertainty, Mindfulness, Self, Spirituality (UMSS) Research Group, University of Seville, Seville, Spain
| |
Collapse
|
62
|
Zhang S, Ning L, Song Z, Zhao X, Guan F, Yang XF, Zhang J. Activatable Near-Infrared Fluorescent Organic Nanoprobe for Hypochlorous Acid Detection in the Early Diagnosis of Rheumatoid Arthritis. Anal Chem 2022; 94:5805-5813. [PMID: 35380780 DOI: 10.1021/acs.analchem.1c05184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Early diagnosis of rheumatoid arthritis (RA) is crucial to prevent deterioration and improve the prognosis of disease outcome. However, current clinical diagnostic methods are unable to achieve accurate and early detection of RA. In this work, we designed an activatable organic nanoprobe (ONP-CySe) capable of specific and real-time imaging of ClO- in early RA. ONP-CySe comprises a near-infrared fluorescent selenomorpholine-caged cyanine dye as the sensing component and an amphiphilic triblock copolymer triphenyl phosphine derivative for mitochondria targeting. Our results showed that ONP-CySe successfully detected elevated levels of ClO- in the mitochondria of macrophages with high selectivity, low limit of detection (31.5 nM), excellent photostability, and good biocompatibility. Furthermore, ONP-CySe can also be used to monitor anti-inflammatory responses and efficacies of RA therapeutics, such as selenocysteine and methotrexate, in BALB/c mouse models. Therefore, our research proposes a universal molecular design strategy for the detection of ClO-, which holds potential for early diagnosis and drug screening for RA.
Collapse
Affiliation(s)
- Suya Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Lulu Ning
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Zhihui Song
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Xinyue Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Feng Guan
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Xiao-Feng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Jianjian Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
63
|
Samra MM, Hafeez H, Sadia A, Imran M, Basra MAR. Synthesis, characterization, docking and biological studies of M(II) (M= Mg, Ca, Sr) Piroxicam complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
64
|
Allawadhi P, Singh V, Govindaraj K, Khurana I, Sarode LP, Navik U, Banothu AK, Weiskirchen R, Bharani KK, Khurana A. Biomedical applications of polysaccharide nanoparticles for chronic inflammatory disorders: Focus on rheumatoid arthritis, diabetes and organ fibrosis. Carbohydr Polym 2022; 281:118923. [PMID: 35074100 DOI: 10.1016/j.carbpol.2021.118923] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022]
Abstract
Polysaccharides are biopolymers distinguished by their complex secondary structures executing various roles in microorganisms, plants, and animals. They are made up of long monomers of similar type or as a combination of other monomeric chains. Polysaccharides are considered superior as compared to other polymers due to their diversity in charge and size, biodegradability, abundance, bio-compatibility, and less toxicity. These natural polymers are widely used in designing of nanoparticles (NPs) which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. The side chain reactive groups of polysaccharides are advantageous for functionalization with nanoparticle-based conjugates or therapeutic agents such as small molecules, proteins, peptides and nucleic acids. Polysaccharide NPs show excellent pharmacokinetic and drug delivery properties, facilitate improved oral absorption, control the release of drugs, increases in vivo retention capability, targeted delivery, and exert synergistic effects. This review updates the usage of polysaccharides based NPs particularly cellulose, chitosan, hyaluronic acid, alginate, dextran, starch, cyclodextrins, pullulan, and their combinations with promising applications in diabetes, organ fibrosis and arthritis.
Collapse
Affiliation(s)
- Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Kannan Govindaraj
- Department of Developmental BioEngineering, Technical Medicine Centre, University of Twente, Enschede, the Netherlands
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, Maharashtra, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India.
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
65
|
Current Status, Issues and Future Prospects of Personalized Medicine for Each Disease. J Pers Med 2022; 12:jpm12030444. [PMID: 35330444 PMCID: PMC8949099 DOI: 10.3390/jpm12030444] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, with the advancement of next-generation sequencing (NGS) technology, gene panel tests have been approved in the field of cancer diseases, and approaches to prescribe optimal molecular target drugs to patients are being developed. In the field of rare diseases, whole-genome and whole-exome analysis has been used to identify the causative genes of undiagnosed diseases and to diagnose patients’ diseases, and further progress in personalized medicine is expected. In order to promote personalized medicine in the future, we investigated the current status and progress of personalized medicine in disease areas other than cancer and rare diseases, where personalized medicine is most advanced. We selected rheumatoid arthritis and psoriasis as the inflammatory disease, in addition to Alzheimer’s disease. These diseases have high unmet needs for personalized medicine from the viewpoints of disease mechanisms, diagnostic biomarkers, therapeutic drugs with diagnostic markers and treatment satisfaction. In rheumatoid arthritis and psoriasis, there are many therapeutic options; however, diagnostic methods have not been developed to select the best treatment for each patient. In addition, there are few effective therapeutic agents in Alzheimer’s disease, although clinical trials of many candidate drugs have been conducted. In rheumatoid arthritis and psoriasis, further elucidation of the disease mechanism is desired to enable the selection of appropriate therapeutic agents according to the patient profile. In the case of Alzheimer’s disease, progress in preventive medicine is desired through the establishment of an early diagnosis method as well as the research and development of innovative therapeutic agents. To this end, we hope for further research and development of diagnostic markers and new drugs through progress in comprehensive data analysis such as comprehensive genomic and transcriptomic information. Furthermore, new types of markers such as miRNAs and the gut microbiome are desired to be utilized in clinical diagnostics.
Collapse
|
66
|
Wu YY, Li XF, Wu S, Niu XN, Yin SQ, Huang C, Li J. Role of the S100 protein family in rheumatoid arthritis. Arthritis Res Ther 2022; 24:35. [PMID: 35101111 PMCID: PMC8802512 DOI: 10.1186/s13075-022-02727-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/16/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis is a chronic systemic autoimmune disease characterized by synovial hyperplasia, inflammatory cell infiltration, and proliferation of inflammatory tissue (angiogranuloma). The destruction of joints and surrounding tissues eventually causes joint deformities and dysfunction or even loss. The S100 protein family is one of the biggest subtribes in the calcium-binding protein family and has more than 20 members. The overexpression of most S100 proteins in rheumatoid arthritis is closely related to its pathogenesis. This paper reviews the relationship between S100 proteins and the occurrence and development of rheumatoid arthritis. It will provide insights into the development of new clinical diagnostic markers and therapeutic targets for rheumatoid arthritis.
Collapse
Affiliation(s)
- Yuan-Yuan Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Feng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Postdoctoral Station of Clinical Medicine of Anhui Medical University, Hefei, Anhui, China
| | - Sha Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xue-Ni Niu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Su-Qin Yin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
67
|
Zhang Y, Huang L, Zhang J, De Souza Rastelli AN, Yang J, Deng D. Anti-Inflammatory Efficacy of Curcumin as an Adjunct to Non-Surgical Periodontal Treatment: A Systematic Review and Meta-Analysis. Front Pharmacol 2022; 13:808460. [PMID: 35140616 PMCID: PMC8819153 DOI: 10.3389/fphar.2022.808460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/06/2022] [Indexed: 01/19/2023] Open
Abstract
Objective: Curcumin has been used as an adjunct to non-surgical periodontal treatment. However, the efficacy of curcumin in the periodontal therapy remained controversial. This study aimed to evaluate the anti-inflammatory efficacy of curcumin as an adjunct to non-surgical periodontal treatment (NPT) by systematic review. Methods: Databases including Embase, PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), and ClinicalTrials.gov were searched to identify relevant RCTs on the use of curcumin as an adjunct to NPT for the treatment of periodontal disease from inception to July 21, 2021. Two reviewers independently screened literature, extracted data and assessed the risk of bias of the included studies. Meta-analysis was then performed using Review Manager 5.3 software. Results: A total of 18 RCTs involving 846 patients/sites were included in this meta-analysis. The results of the meta-analysis revealed that as compared to NPT alone, curcumin as an adjunct to NPT resulted in significant reduction in gingival index (GI) at the 1-week (mean differences (MD) = -0.15, 95% confidence intervals (CI) -0.26 to -0.05, p = 0.005), 2-week (MD = -0.51, 95%CI -0.74 to -0.28, p < 0.0001), 3-week (MD = -0.34, 95%CI -0.66 to -0.02, p = 0.03), 4-week (MD = -0.25, 95%CI -0.48 to -0.02, p = 0.04) or 6-week (MD = -0.33, 95%CI -0.58 to -0.08, p = 0.01) follow-ups. Similar significant reductions were also observed for sulcus bleeding index (SBI) at 1, 2, 4, and 12 weeks. However, there were no statistically significant differences in reducing bleeding on probing (BOP) between curcumin as an adjunct and NPT alone at 4, 12, and 24 weeks. Conclusion: Based on the current evidence, curcumin demonstrates anti-inflammatory efficacies in terms of reducing GI and SBI compared with NPT alone. Moreover, curcumin is a natural herbal medicine with few side effects, and it is a good candidate as an adjunct treatment for periodontal disease.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jinmei Zhang
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Jingmei Yang
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
68
|
Li C, Pan J, Xu C, Jin Z, Chen X. A Preliminary Inquiry Into the Potential Mechanism of Huang-Lian-Jie-Du Decoction in Treating Rheumatoid Arthritis via Network Pharmacology and Molecular Docking. Front Cell Dev Biol 2022; 9:740266. [PMID: 35127697 PMCID: PMC8807552 DOI: 10.3389/fcell.2021.740266] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Huang-Lian-Jie-Du decoction (HLJDD) has been widely applied to treat inflammation-associated diseases for thousands of years in China. However, the concrete molecular mechanism of HLJDD in the treatment of rheumatoid arthritis (RA) remains unclear. In this work, network pharmacology and molecular docking were applied to preliminarily analyze the potential active ingredients, drug targets, and related pathways of HLJDD on treating RA. A total of 102 active compounds with corresponding 189 targets were identified from HLJDD, and 41 common targets were further identified by intersecting with RA-related targets. Functional enrichment analysis was performed to screen the biological pathways associated with RA. Ten hub targets were further identified through constructing the protein–protein interaction (PPI) network of common targets, which were mainly enriched in the interleukin-17 (IL-17) signaling pathway, tumor necrosis factor (TNF) signaling pathway, and Toll-like receptor signaling pathway. Furthermore, a complex botanical drugs-ingredients-hub-targets-disease network was successfully constructed. The molecular docking results exhibited that these vital ingredients of HLJDD had a stable binding to the hub targets. Among these ingredients, quercetin (MOL000098) was the most common molecule with stable binding to all the targets, and PTGS2 was considered the most important target with multiple regulations by the most active ingredients. In vitro, we successfully validated the inhibitory role of quercetin in the cellular proliferation of human RA fibroblast-like synoviocyte cell line (MH7A cells). These findings indicated that the potential mechanisms of HLJDD for RA treatment might be attributed to inhibiting the immune-inflammatory response, reducing the release of chemokines, and alleviating the destruction of extracellular matrix (ECM) in the synovial compartment.
Collapse
Affiliation(s)
- Chenlu Li
- Department of Gastroenterology, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chang Xu
- Department of Intensive Care Unit, Hua Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Zhenlin Jin
- Department of Hematopathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xupeng Chen, ; Zhenlin Jin ,
| | - Xupeng Chen
- Department of Gastroenterology, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xupeng Chen, ; Zhenlin Jin ,
| |
Collapse
|
69
|
Wang S, Hou Y, Li X, Meng X, Zhang Y, Wang X. Practical Implementation of Artificial Intelligence-Based Deep Learning and Cloud Computing on the Application of Traditional Medicine and Western Medicine in the Diagnosis and Treatment of Rheumatoid Arthritis. Front Pharmacol 2022; 12:765435. [PMID: 35002704 PMCID: PMC8733656 DOI: 10.3389/fphar.2021.765435] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
Rheumatoid arthritis (RA), an autoimmune disease of unknown etiology, is a serious threat to the health of middle-aged and elderly people. Although western medicine, traditional medicine such as traditional Chinese medicine, Tibetan medicine and other ethnic medicine have shown certain advantages in the diagnosis and treatment of RA, there are still some practical shortcomings, such as delayed diagnosis, improper treatment scheme and unclear drug mechanism. At present, the applications of artificial intelligence (AI)-based deep learning and cloud computing has aroused wide attention in the medical and health field, especially in screening potential active ingredients, targets and action pathways of single drugs or prescriptions in traditional medicine and optimizing disease diagnosis and treatment models. Integrated information and analysis of RA patients based on AI and medical big data will unquestionably benefit more RA patients worldwide. In this review, we mainly elaborated the application status and prospect of AI-assisted deep learning and cloud computation-oriented western medicine and traditional medicine on the diagnosis and treatment of RA in different stages. It can be predicted that with the help of AI, more pharmacological mechanisms of effective ethnic drugs against RA will be elucidated and more accurate solutions will be provided for the treatment and diagnosis of RA in the future.
Collapse
Affiliation(s)
- Shaohui Wang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuanhao Li
- Chengdu Second People's Hospital, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
70
|
Szabłowski M, Okruszko MA, Pochodowicz K, Abramowicz P, Konstantynowicz J, Bossowski A, Głowińska-Olszewska B. Coincidence of juvenile idiopathic arthritis and type 1 diabetes: a case-based review. Rheumatol Int 2022; 42:371-378. [PMID: 34999914 PMCID: PMC8800897 DOI: 10.1007/s00296-021-05083-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/28/2021] [Indexed: 01/09/2023]
Abstract
The study was aimed to review a rare coexistence of type 1 diabetes (T1D) and juvenile idiopathic arthritis (JIA) regarding different clinical approaches to the management and treatment options. Medical complications of the two autoimmune disorders in children and adolescents have been evaluated, particularly in those treated with glucocorticosteroids (GCS) and insulin. A review of the literature regarding reports on concomitant T1D and JIA was conducted using resources available in Medline, Google Scholar, and Web of Science databases, with a specific focus on the combination of T1D and JIA in a pediatric population. The review was extended by our analysis of two patients treated in a single center for this comorbidity. Eligible reports of four cases were found, and including our two original records, a total of six pediatric patients (5 females) were analyzed, of which three had also other autoimmune diseases (thyroiditis, coeliac disease, autoimmune hepatitis), whereas four had been treated with a long-term GCS, and two were receiving biological therapy (etanercept or adalimumab). Only one of them had good metabolic control of diabetes. Diabetes in childhood may coexist with other autoimmune diseases, including rheumatologic conditions. Hyperglycemia can worsen JIA therapy by induction and maintaining inflammation. Using modern diabetes technologies (like personal insulin pumps and continuous glucose monitoring) helps to minimize the deteriorating effect of JIA exacerbations and the rheumatoid treatment on metabolic control of diabetes.
Collapse
Affiliation(s)
- Maciej Szabłowski
- Department of Pediatrics, Endocrinology, Diabetology With Cardiology Division, Medical University of Białystok, Białystok, Poland
| | - Michał Andrzej Okruszko
- Department of Pediatrics, Endocrinology, Diabetology With Cardiology Division, Medical University of Białystok, Białystok, Poland
| | - Katarzyna Pochodowicz
- Department of Pediatrics, Endocrinology, Diabetology With Cardiology Division, Medical University of Białystok, Białystok, Poland
| | - Paweł Abramowicz
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Białystok, Białystok, Poland
| | - Jerzy Konstantynowicz
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Białystok, Białystok, Poland
| | - Artur Bossowski
- Department of Pediatrics, Endocrinology, Diabetology With Cardiology Division, Medical University of Białystok, Białystok, Poland
| | - Barbara Głowińska-Olszewska
- Department of Pediatrics, Endocrinology, Diabetology With Cardiology Division, Medical University of Białystok, Białystok, Poland.
| |
Collapse
|
71
|
Giollo A, Fuzzi E, Doria A. Methotrexate in early rheumatoid arthritis: Is the anchor drug still holding? Autoimmun Rev 2022; 21:103031. [PMID: 34995761 DOI: 10.1016/j.autrev.2022.103031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/02/2022] [Indexed: 12/29/2022]
Abstract
Treat-to-target (T2T) is currently the most fashionable strategy for treatment-naïve, early rheumatoid arthritis (RA) patients. A T2T approach can lead to a complete and drug-free disease remission, whereas failure to obtain remission leads to damage early in the disease course. Hence, one should try to achieve high remission rates as early as possible, implementing the best therapeutic strategies available. Methotrexate (MTX) combined with glucocorticoid bridging is the mainstay of T2T. However, MTX is often used suboptimally in RA patients for many reasons, including poor tolerability, low compliance, and safety issues. Recent evidence has suggested that novel targeted synthetic DMARDs (tsDMARDs) such as the Janus-kinase (JAK) inhibitors in combination with glucocorticoids yielded better outcomes in early RA than conventional treatment. Such an approach may have advantages in terms of patients' outcomes, though some concerns about serious adverse events need to be addressed.
Collapse
Affiliation(s)
- Alessandro Giollo
- Division of Rheumatology, Department of Medicine, University of Padova Hospital Trust, Padova, Italy.
| | - Enrico Fuzzi
- Division of Rheumatology, Department of Medicine, University of Padova Hospital Trust, Padova, Italy
| | - Andrea Doria
- Division of Rheumatology, Department of Medicine, University of Padova Hospital Trust, Padova, Italy.
| |
Collapse
|
72
|
Zhang C, Shi D, Li X, Yuan J. Microfluidic electrochemical magnetoimmunosensor for ultrasensitive detection of interleukin-6 based on hybrid of AuNPs and graphene. Talanta 2021; 240:123173. [PMID: 34999320 DOI: 10.1016/j.talanta.2021.123173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/04/2021] [Accepted: 12/22/2021] [Indexed: 02/02/2023]
Abstract
Cytokines are important factors in the early diagnosis of autoimmune diseases and require high sensitivity, high selectivity and quantitative detection. We proposed a miniaturized electrochemical magneto-immunosensor (EC-MIS) on portable interleukin-6 (IL-6) detection based on this requirement. Firstly, a micro-fabricated working electrode is electrochemically modified with a hybrid of reduced graphene oxide (rGO) and gold nanoparticles (AuNPs). Increased surface area and enhanced charge transfer rate improve the performance of this immunosensor on sensitivity. Secondly, magnetic beads attached with the capture antibody (cAb) are employed in sandwich immunoassay. This kind of immunoassay is immobilized on the working electrode surface by an external magnet to enrich the analyte IL-6. Thirdly, the last two features are combined and integrated on a microfluidic device in order to restrict the sample at certain areas and ease the operation of detection. With our prototypic EC-MIS operated in amperometric mode, we have achieved the detection of IL-6 with a linear range from 0.97 to 250 pg/mL and a limit of detection (LOD) of 0.42 pg/mL. Real serum samples were demonstrated and compared with benchtop equipment's results.
Collapse
Affiliation(s)
- Chiye Zhang
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong.
| | - Dongmin Shi
- Microelectronics, The Hong Kong University of Science and Technology (GZ), Hong Kong
| | - Xiaoyuan Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong
| | - Jie Yuan
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong
| |
Collapse
|
73
|
The Role of Exposomes in the Pathophysiology of Autoimmune Diseases I: Toxic Chemicals and Food. PATHOPHYSIOLOGY 2021; 28:513-543. [PMID: 35366249 PMCID: PMC8830458 DOI: 10.3390/pathophysiology28040034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases affect 5–9% of the world’s population. It is now known that genetics play a relatively small part in the pathophysiology of autoimmune disorders in general, and that environmental factors have a greater role. In this review, we examine the role of the exposome, an individual’s lifetime exposure to external and internal factors, in the pathophysiology of autoimmune diseases. The most common of these environmental factors are toxic chemicals, food/diet, and infections. Toxic chemicals are in our food, drink, common products, the air, and even the land we walk on. Toxic chemicals can directly damage self-tissue and cause the release of autoantigens, or can bind to human tissue antigens and form neoantigens, which can provoke autoimmune response leading to autoimmunity. Other types of autoimmune responses can also be induced by toxic chemicals through various effects at the cellular and biochemical levels. The food we eat every day commonly has colorants, preservatives, or packaging-related chemical contamination. The food itself may be antigenic for susceptible individuals. The most common mechanism for food-related autoimmunity is molecular mimicry, in which the food’s molecular structure bears a similarity with the structure of one or more self-tissues. The solution is to detect the trigger, remove it from the environment or diet, then repair the damage to the individual’s body and health.
Collapse
|
74
|
Development of an intelligent, stimuli-responsive transdermal system for efficient delivery of Ibuprofen against rheumatoid arthritis. Int J Pharm 2021; 610:121242. [PMID: 34737113 DOI: 10.1016/j.ijpharm.2021.121242] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022]
Abstract
The present study aimed to fabricate and evaluate the therapeutic efficacy of pH-responsive Ibuprofen (IB) nanoparticles (NPs) loaded transdermal hydrogel against rheumatoid arthritis (RA). The IB loaded Eudragit® L 100 (EL 100) nanoparticles were formulated through a modified nanoprecipitation technique and optimized using central composite design software. The optimized NPs were loaded into Carbopol® 934-based hydrogel by solvent evaporation method and were analyzed for physicochemical characteristics. The mean particle size of the prepared NPs was 48 nm with an entrapment efficiency of 90%. The transdermal hydrogel showed a pH-responsive sustained drug release and high penetration through the skin. Moreover, the prepared nanocarrier system exhibited therapeutic efficacy at inflamed joints' sites both in acute and chronic RA mice model. The therapeutic efficacy of the prepared formulation was confirmed through the results of various behavioral, biochemical, and cytokines-based assays. Similarly, the assessment of histopathological and radiological images, as well as the skin irritation studies further strengthens the potential use of the prepared formulation through the transdermal route. The current findings suggested that IB loaded pH-responsive NPs based transdermal hydrogel can be used as an efficient agent to manage RA.
Collapse
|
75
|
Qin Y, Jin HZ, Li YJ, Chen Z. Emerging Role of Eosinophils in Resolution of Arthritis. Front Immunol 2021; 12:764825. [PMID: 34733292 PMCID: PMC8558534 DOI: 10.3389/fimmu.2021.764825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Eosinophils are a minor component of circulating granulocytes, which are classically viewed as end-stage effector cells in host defense against helminth infection and promoting allergic responses. However, a growing body of evidence has emerged showing that eosinophils are versatile leukocytes acting as an orchestrator in the resolution of inflammation. Rheumatoid arthritis (RA) is the most common chronic inflammatory disease characterized by persistent synovitis that hardly resolves spontaneously. Noteworthy, a specific population of eosinophils, that is, regulatory eosinophils (rEos), was identified in the synovium of RA patients, especially in disease remission. Mechanistically, the rEos in the synovium display a unique pro-resolving signature that is distinct from their counterpart in the lung. Herein, we summarize the latest understanding of eosinophils and their emerging role in promoting the resolution of arthritis. This knowledge is crucial to the design of new approaches to rebalancing immune homeostasis in RA, considering that current therapies are centered on inhibiting pro-inflammatory cytokines and mediators rather than fostering the resolution of inflammation.
Collapse
Affiliation(s)
- Yi Qin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui-Zhi Jin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu-Jing Li
- Second Clinical Medical School, Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Zhu Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
76
|
Zeng Z, Hu J, Jiang J, Xiao G, Yang R, Li S, Li Y, Huang H, Zhong H, Bi X. Network Pharmacology and Molecular Docking-Based Prediction of the Mechanism of Qianghuo Shengshi Decoction against Rheumatoid Arthritis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6623912. [PMID: 34527739 PMCID: PMC8437630 DOI: 10.1155/2021/6623912] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/18/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
Qianghuo Shengshi decoction (QHSSD) is a classical Chinese medicine formula, which is used in clinical practice for the treatment of rheumatoid arthritis (RA) in China. However, the pharmacological mechanism of QHSSD on RA has remained unclear by now. We collected and screened active compounds and its potential targets by the pharmacology platform of Chinese herbal medicines. In addition, the therapeutic targets of RA were obtained and selected from databases. Network construction analyzed that 128 active compounds may act on 87 candidate targets and identified a total of 18 hub targets. GO annotation and KEGG enrichment investigated that the action mechanism underlying the treatment of RA by QHSSD might be involved in cell proliferation, angiogenesis, anti-inflammation, and antioxidation. Finally, molecular docking verification showed that TP53, VEGFA, TNF, EGFR, and NOS3 may be related to the RA treatment and molecular dynamics simulation showed the stability of protein-ligand interactions. In this work, QHSSD might exert therapeutic effect through a multicomponent, multitarget, and multipathway in RA from a holistic aspect, which provides basis for its mechanism of action and subsequent experiments.
Collapse
Affiliation(s)
- Zhihao Zeng
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiaoting Hu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jieyi Jiang
- Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine, Guangzhou 510095, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, China
| | - Guanlin Xiao
- Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine, Guangzhou 510095, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, China
| | - Ruipei Yang
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Sumei Li
- Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine, Guangzhou 510095, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, China
| | - Yangxue Li
- Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine, Guangzhou 510095, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, China
| | - Huajing Huang
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huixian Zhong
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaoli Bi
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine, Guangzhou 510095, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, China
| |
Collapse
|
77
|
Vvedenskyi DB, Volkova NO, Yukhta MS, Ashukina NO, Goltsev AM. Course correction of adjuvant arthritis with cryopreserved multipotent mesenchymal stromal cells. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rheumatoid arthritis is an inflammatory autoimmune disease that occurs as a result of impaired immune tolerance, leading to an aberrant immune response to autologous antigens. Multipotent mesenchymal stromal cells (MMSCs) and the biologically active substances they produce can promote the activation of regenerative processes in the organism not only by direct cell differentiation, but also due to their inherent trophic and immunosuppressive potentials. The aim of the study was to experimentally evaluate changes in the course of the acute phase of adjuvant arthritis upon local and generalized administration of cryopreserved MMSCs from adipose and cartilage tissues. The results of histological, imunohistochemical and biochemical studies showed that the animals of the control group throughout the observation period developed an inflammatory process, which manifested in joint swelling (increased arthritis index), leukocytosis, spread of chondrocyte-free zones, weakening of staining, loss of clarity of cartilage tissue contours, increased content of cyclooxygenase-2, reduced glycosaminoglycan content and total antioxidant defense system activity. At the same time, the local administration of cryopreserved MMSCs from adipose and cartilage tissues contributed to the normalization of the structural and functional organization, content of glycosaminoglycans and cyclooxygenase-2 with complete recovery of blood parameters. Less pronounced regeneration processes in articular cartilage occurred under generalized administration of cryopreserved MMSCs from adipose and cartilage tissues in comparison with the local method. However, the difference between the control and experimental groups indicates the ability of cryopreserved MMSCs to influence the intensity of regenerative processes in damaged cartilage tissue with both methods of administration. Comparative evaluation of the use of cryopreserved MMSCs from adipose and cartilage tissues showed the absence of significant changes in the studied indicators. These data can be used to substantiate and develop methods of arthritis treatment in clinical practice.
Collapse
|
78
|
Piao X, Zhou J, Xue L. Triptolide decreases rheumatoid arthritis fibroblast-like synoviocyte proliferation, invasion, inflammation and presents a therapeutic effect in collagen-induced arthritis rats via inactivating lncRNA RP11-83J16.1 mediated URI1 and β-catenin signaling. Int Immunopharmacol 2021; 99:108010. [PMID: 34358861 DOI: 10.1016/j.intimp.2021.108010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Our previous study observed that long non-coding RNA (lncRNA) RP11-83J16.1 promoted rheumatoid arthritis (RA)-fibroblast-like synoviocyte (RA-FLS) proliferation, invasion and inflammation, which was downregulated by triptolide treatment. Therefore, the present study aimed to further investigate the mechanism and interaction between triptolide and lncRNA RP11-83J16.1 in RA treatment in vitro and in vivo. METHODS RA-FLS was isolated and treated by different concentration of triptolide and lncRNA RP11-83J16.1 overexpression plasmid. Furthermore, collagen-induced arthritis (CIA) rat model was constructed followed by triptolide and lncRNA RP11-83J16.1 overexpression plasmid treatment. RESULTS Triptolide inhibited RA-FLS viability and lncRNA RP11-83J16.1 expression in a dose-dependent manner. Afterward, triptolide treatment inhibited RA-FLS proliferation, invasion, levels of inflammatory markers (TNF-α, IL-1β, IL-6, MMP-3, and MMP-9), inactivated lncRNA RP11-83J16.1, URI1 and β-catenin signaling, but promoted apoptosis. However, lncRNA RP11-83J16.1 overexpression weakened the effects of triptolide on regulating RA-FLS cell behaviors, URI1 signaling and β-catenin signaling. In CIA model, triptolide decreased arthritis score, hyperproliferation of synovial cells, inflammation infiltration of synovial tissue, inflammatory markers (TNF-α, IL-1β, IL-6, MMP-3, and MMP-9), inactivated lncRNA RP11-83J16.1, URI1 and β-catenin signaling, but increased cell apoptosis rate of synovial tissue. Nevertheless, lncRNA RP11-83J16.1 curtailed the treatment effect of triptolide in CIA model. CONCLUSION Triptolide decreases RA-FLS proliferation, invasion, inflammation and presents a therapeutic effect in CIA model via inactivating lncRNA RP11-83J16.1 mediated URI1 and β-catenin signaling.
Collapse
Affiliation(s)
- Xuemei Piao
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jieru Zhou
- Department of Health Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luan Xue
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
79
|
Feng Y, Mei L, Wang M, Huang Q, Huang R. Anti-inflammatory and Pro-apoptotic Effects of 18beta-Glycyrrhetinic Acid In Vitro and In Vivo Models of Rheumatoid Arthritis. Front Pharmacol 2021; 12:681525. [PMID: 34381358 PMCID: PMC8351798 DOI: 10.3389/fphar.2021.681525] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022] Open
Abstract
18β-Glycyrrhetinic acid (18β-GA), an active component from Glycyrrhiza glabra L. root (licorice), has been demonstrated to be able to protect against inflammatory response and reduce methotrexate (MTX)-derived toxicity. This study was therefore designed to test the therapeutic possibility of 18β-GA on rheumatoid arthritis (RA) and to explore the underlying mechanism. LPS or TNF-α-induced inflammatory cell models and collagen-induced arthritis (CIA) animal models were applied in this study. Real-time quantitative PCR (RT-qPCR) was used to measure the mRNA levels of various cytokines and FOXO family members. The protein levels of molecules in the MAPK/NF-κB signaling pathway were analyzed using western blot. The cell proliferation assay and colony-forming assay were used to test the influence of 18β-GA on cell viability. The cell apoptosis assay and cell cycle assay were performed to detect the effect of 18β-GA on cell proliferative capacity by using flow cytometry. Hematoxylin and eosin (H&E) staining was performed to evaluate pathological changes after drug administration. The enzyme-linked immunosorbent assay (ELISA) was carried out for the detection of cytokines in serum. In vitro, we found that 18β-GA decreased the mRNA levels of IL-1β, IL-6, and COX-2 by inhibiting the MAPK/NF-κB signaling pathway in MH7A and RAW264.7 cell lines. Moreover, 18β-GA was able to suppress cell viability, trigger cell apoptosis, and G1 phase cell cycle arrest in our in vitro studies. 18β-GA dramatically enhanced the mRNA level of FOXO3 in both TNF-α- and LPS-induced inflammation models in vitro. Interestingly, after analyzing GEO datasets, we found that the FOXO3 gene was significantly decreased in the RA synovial tissue as compared to healthy donors in multiple microarray studies. In vivo, 18β-GA exhibited a promising therapeutic effect in a collagen-induced arthritis mouse model by alleviating joint pathological changes and declining serum levels of TNF-α, IL-1β, and IL-6. Finally, we observed that 18β-GA administration could mitigate liver damage caused by collagen or MTX. Collectively, the current study demonstrates for the first time that 18β-GA can inhibit inflammation and proliferation of synovial cells, and the underlying mechanism may be associated with its inhibition of MAPK/NF-κB signaling and promotion of FOXO3 signaling. Therefore, 18β-GA is expected to be a new drug candidate for RA therapy.
Collapse
Affiliation(s)
- Yunhui Feng
- College of Physical Education, Guangzhou University, Guangzhou, China
| | - Liyan Mei
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Maojie Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.,Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Qingchun Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Runyue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine (The Second Affiliated Hospital of Guangzhou University of Chinese Medicine), Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
80
|
Takeuchi T, Yoshida H, Tanaka S. Role of interleukin-6 in bone destruction and bone repair in rheumatoid arthritis. Autoimmun Rev 2021; 20:102884. [PMID: 34229044 DOI: 10.1016/j.autrev.2021.102884] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is a common inflammatory form of arthritis leading to the progressive bone and joint destruction. Many factors are closely involved in the pathology of RA, in particular bone-related cells and inflammatory cytokines such as TNF-α and interleukin-6 (IL-6). Because RA patients with progressive bone destruction experience accelerated deterioration of their quality of life, inhibition of disease progression and joint destruction has become an important clinical goal. Recent studies have also found that drug intervention targeting proinflammatory cytokines such as IL-6 results in bone repair in addition to suppression of bone and joint destruction, and these results suggest the potential for new therapeutic goals. Regarding the relationship between IL-6 and bone destruction, essential roles of osteoclasts have been reported over many years; however, more recent studies have explored the relationship of IL-6 with osteoblasts and osteocytes. In this review, we highlight the perspectives of basic and clinical research, adding new findings on the relationships between IL-6 and bone-related cells associated with inflammation, and the possibility of bone repair by blocking IL-6.
Collapse
Affiliation(s)
- Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hiroto Yoshida
- Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura City, Kanagawa, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
81
|
Meng M, Yue Z, Chang L, Liu Y, Hu J, Song Z, Tang Z, Zhou R, Wang C. Anti-Rheumatoid Arthritic Effects of Paris Saponin VII in Human Rheumatoid Arthritis Fibroblast-Like Synoviocytes and Adjuvant-Induced Arthritis in Rats. Front Pharmacol 2021; 12:683698. [PMID: 34122110 PMCID: PMC8194347 DOI: 10.3389/fphar.2021.683698] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/14/2021] [Indexed: 12/29/2022] Open
Abstract
In the pathogenesis of rheumatoid arthritis (RA), rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) have tumor-like characteristics, mainly manifested by hyperproliferation and resistance to apoptosis and then it will erode the bone and cartilage, eventually leading to joint destruction. Paris saponin VII (PS VII) is an active compound derived from a traditional herbal medicine named Trillium tschonoskii Maxim, which has anti-tumor, analgesic, and immunomodulatory effects. However, its anti-RA effect has not yet been reported. This study was to investigate the effect of PS VII on two rheumatoid arthritis fibroblast-like synoviocytes lines (RA-FLS and MH7A) and adjuvant-induced arthritis (AIA) in rats. In vitro, the effects of PS VII on the proliferation, cell cycle, and apoptosis of RA-FLS and MH7A cells were detected by MTT, flow cytometry, and western blot analysis. In vivo, the effect of PS VII on the weight of the rat, paw swelling, ankle joint diameter, arthritis index, serum inflammatory cytokines (TNF-α, IL-6, and IL-1β), histopathological assessment and apoptosis proteins in the synovial tissues were evaluated in AIA rats. The in vitro studies showed that PS VII inhibited the proliferation of RA-FLS and MH7A cells, induced S phase arrest and triggered cell apoptosis mainly through the mitochondrial apoptotic pathway and the regulation of JNK and p38 MAPK pathways. The in vivo studies revealed that PS VII could improve ameliorate body weight, paw swelling, ankle joint diameter, reduce the spleen and thymus index, suppress the production of TNF-α, IL-6 and IL-1β, improve histopathological changes and regulate the expressions of apoptosis proteins in AIA Rats. In conclusion, PS VII could inhibit the proliferation and trigger apoptosis of RA-FLS and MH7A cells by regulating the mitochondrial apoptosis pathway and the JNK and p38 MAPK pathways, and alleviate the symptoms of RA, signifying it to be one of the potential anti-RA therapeutics.
Collapse
Affiliation(s)
- Mei Meng
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China.,Country School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhenggang Yue
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lu Chang
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China.,Country School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yanru Liu
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jinhang Hu
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhongxing Song
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhishu Tang
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Rui Zhou
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Changli Wang
- Country School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
82
|
Rodríguez Portal JA, López Ramírez C, Aguilera Cros C. Rheumatoid Arthritis and Tobacco. Arch Bronconeumol 2021; 57:315-316. [PMID: 32564945 DOI: 10.1016/j.arbres.2020.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022]
Affiliation(s)
- José Antonio Rodríguez Portal
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Virgen del Rocío, Sevilla, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), España.
| | - Cecilia López Ramírez
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Virgen del Rocío, Sevilla, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), España
| | | |
Collapse
|
83
|
Wan X, Wang Y, Jin P, Zhang J, Liu L, Wang Z, Hu Y. Influence of HLA Class II Alleles and DRB1-DQB1 Haplotypes on Rheumatoid Arthritis Susceptibility and Autoantibody Status in the Chinese Han Population. Immunol Invest 2021; 51:1198-1210. [PMID: 33929277 DOI: 10.1080/08820139.2021.1918708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human leukocyte antigen (HLA) class II alleles are considered to play a key role in the progress of rheumatoid arthritis (RA). This study was carried out to investigate the presence of HLA class II alleles and their influence on disease risk and autoantibody status in Chinese Han patients with RA. Here, HLA-DRB1, DQB1 and DPB1 genotyping was performed in 125 RA patients and 120 healthy controls by using the next-generation sequencing (NGS). Strong positive associations were shown between high-resolution typed HLA-DRB1*04:05:01, DRB1*10:01:01, DQB1*04:01:01, DPB1*02:01:02 and RA patients. Moreover, the haplotypes HLA-DRB1*04:05:01~ DQB1*04:01:01 and HLA-DRB1*10:01:01~ DQB1*05:01:01 were found to be more frequent in RA populations than in healthy controls. These possible susceptible HLA alleles (HLA-DRB1*04:05:01, DRB1*10:01:01, DQB1*04:01:01 and DPB1*02:01:02) also showed higher frequencies in seropositive RA patients as compared to normal controls. The present study provided evidence that alleles HLA-DRB1*04:05:01, DRB1*10:01:01, DQB1*04:01:01 and DPB1*02:01:02 constituted RA risk alleles, and haplotypes HLA-DRB1*04:05:01~ DQB1*04:01:01, HLA-DRB1*10:01:01~ DQB1*05:01:01 also showed prevalence in Chinese Han patients with RA. Serological results preliminary demonstrated patients carrying RA-risk HLA alleles might elevate the serum level of anti-citrullinated protein antibodies and rheumatoid factor and affect RA progression.
Collapse
Affiliation(s)
- Xin Wan
- Department of Medical Laboratory Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ying Wang
- Department of Medical Laboratory Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peipei Jin
- Department of Medical Laboratory Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ju Zhang
- Department of Medical Laboratory Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liu Liu
- Department of Medical Laboratory Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhangfei Wang
- Department of Medical Laboratory Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yue Hu
- Department of Prenatal Diagnosis Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
84
|
Makuch S, Więcek K, Woźniak M. The Immunomodulatory and Anti-Inflammatory Effect of Curcumin on Immune Cell Populations, Cytokines, and In Vivo Models of Rheumatoid Arthritis. Pharmaceuticals (Basel) 2021; 14:ph14040309. [PMID: 33915757 PMCID: PMC8065689 DOI: 10.3390/ph14040309] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a widespread chronic autoimmune disorder affecting the joints, causing irreversible cartilage, synovium, and bone degradation. During the course of the disease, many immune and joint cells are activated, causing inflammation. Immune cells including macrophages, lymphocytes, neutrophils, mast cells, natural killer cells, innate lymphoid cells, as well as synovial tissue cells, like fibroblast-like synoviocytes, chondrocytes, and osteoclasts secrete different proinflammatory factors, including many cytokines, angiogenesis-stimulating molecules and others. Recent studies reveal that curcumin, a natural dietary anti-inflammatory compound, can modulate the response of the cells engaging in RA course. This review comprises detailed data about the pathogenesis and inflammation process in rheumatoid arthritis and demonstrates scientific investigations about the molecular interactions between curcumin and immune cells responsible for rheumatoid arthritis development to discuss this herbal drug’s immunoregulatory role in RA treatment.
Collapse
Affiliation(s)
- Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Kamil Więcek
- Department of Biotechnology, Wroclaw University, 50-383 Wroclaw, Poland;
| | - Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Correspondence:
| |
Collapse
|
85
|
Xu Y, Chen F. Current Status of Functional Studies on Circular RNAs in Rheumatoid Arthritis and Their Potential Role as Diagnostic Biomarkers. J Inflamm Res 2021; 14:1185-1193. [PMID: 33833541 PMCID: PMC8020583 DOI: 10.2147/jir.s302846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs), a new class of endogenous non-coding RNAs (ncRNAs), are highly stable and exhibit tissue-specific expression. Accumulating evidence has indicated that circRNAs play crucial roles in the development and progression of multiple diseases. Notably, circRNAs, important epigenetic modulators of gene expression in inflammation and autoimmune regulation, have a close association with the pathogenesis of rheumatoid arthritis (RA). RA, one of the most common systemic autoimmune diseases, is characterized by synovial hyperplasia and inflammation, and cartilage and bone destruction. Here, we focus on the roles of circRNAs in macrophage, synovial tissues, fibroblast-like synoviocytes (FLSs), and cartilage tissues in pathogenesis and progression of RA, highlighting the potential of circRNAs in the blood as diagnostic biomarkers, and aiming at providing new insights into the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,School of Pharmacy, The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People's Republic of China
| | - Feihu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,School of Pharmacy, The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People's Republic of China
| |
Collapse
|
86
|
Luque-Tévar M, Perez-Sanchez C, Patiño-Trives AM, Barbarroja N, Arias de la Rosa I, Abalos-Aguilera MC, Marin-Sanz JA, Ruiz-Vilchez D, Ortega-Castro R, Font P, Lopez-Medina C, Romero-Gomez M, Rodriguez-Escalera C, Perez-Venegas J, Ruiz-Montesinos MD, Dominguez C, Romero-Barco C, Fernandez-Nebro A, Mena-Vazquez N, Marenco JL, Uceda-Montañez J, Toledo-Coello MD, Aguirre MA, Escudero-Contreras A, Collantes-Estevez E, Lopez-Pedrera C. Integrative Clinical, Molecular, and Computational Analysis Identify Novel Biomarkers and Differential Profiles of Anti-TNF Response in Rheumatoid Arthritis. Front Immunol 2021; 12:631662. [PMID: 33833756 PMCID: PMC8022208 DOI: 10.3389/fimmu.2021.631662] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/15/2021] [Indexed: 12/29/2022] Open
Abstract
Background: This prospective multicenter study developed an integrative clinical and molecular longitudinal study in Rheumatoid Arthritis (RA) patients to explore changes in serologic parameters following anti-TNF therapy (TNF inhibitors, TNFi) and built on machine-learning algorithms aimed at the prediction of TNFi response, based on clinical and molecular profiles of RA patients. Methods: A total of 104 RA patients from two independent cohorts undergoing TNFi and 29 healthy donors (HD) were enrolled for the discovery and validation of prediction biomarkers. Serum samples were obtained at baseline and 6 months after treatment, and therapeutic efficacy was evaluated. Serum inflammatory profile, oxidative stress markers and NETosis-derived bioproducts were quantified and miRNomes were recognized by next-generation sequencing. Then, clinical and molecular changes induced by TNFi were delineated. Clinical and molecular signatures predictors of clinical response were assessed with supervised machine learning methods, using regularized logistic regressions. Results: Altered inflammatory, oxidative and NETosis-derived biomolecules were found in RA patients vs. HD, closely interconnected and associated with specific miRNA profiles. This altered molecular profile allowed the unsupervised division of three clusters of RA patients, showing distinctive clinical phenotypes, further linked to the TNFi effectiveness. Moreover, TNFi treatment reversed the molecular alterations in parallel to the clinical outcome. Machine-learning algorithms in the discovery cohort identified both, clinical and molecular signatures as potential predictors of response to TNFi treatment with high accuracy, which was further increased when both features were integrated in a mixed model (AUC: 0.91). These results were confirmed in the validation cohort. Conclusions: Our overall data suggest that: 1. RA patients undergoing anti-TNF-therapy conform distinctive clusters based on altered molecular profiles, which are directly linked to their clinical status at baseline. 2. Clinical effectiveness of anti-TNF therapy was divergent among these molecular clusters and associated with a specific modulation of the inflammatory response, the reestablishment of the altered oxidative status, the reduction of NETosis, and the reversion of related altered miRNAs. 3. The integrative analysis of the clinical and molecular profiles using machine learning allows the identification of novel signatures as potential predictors of therapeutic response to TNFi therapy.
Collapse
Affiliation(s)
- Maria Luque-Tévar
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Carlos Perez-Sanchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Alejandra Mª Patiño-Trives
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Nuria Barbarroja
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Ivan Arias de la Rosa
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Mª Carmen Abalos-Aguilera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Juan Antonio Marin-Sanz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Desiree Ruiz-Vilchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Rafaela Ortega-Castro
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Pilar Font
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Clementina Lopez-Medina
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain.,Hospital Universitario de Jaen, Jaén, Spain.,Hospital Universitario Virgen Macarena, Sevilla, Spain.,Hospital Clínico Universitario, Malaga, Spain.,Hospital Regional Universitario de Malaga, Malaga, Spain.,Hospital Universitario Virgen de Valme, Sevilla, Spain.,Hospital Universitario de Jerez de la Frontera, Cádiz, Spain
| | - Montserrat Romero-Gomez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | - M Angeles Aguirre
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Alejandro Escudero-Contreras
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Eduardo Collantes-Estevez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| | - Chary Lopez-Pedrera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain
| |
Collapse
|
87
|
Khanna N, Kumar A, Pawar SV. A Review on Rheumatoid Arthritis Interventions and Current Developments. Curr Drug Targets 2021; 22:463-483. [PMID: 33243118 DOI: 10.2174/1389450121999201125200558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/08/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis is a chronic autoimmune disorder characterized by inflammation, swelling, and joint destruction primarily affecting the peripheral joints. In recent years, RA has become an alarming concern affecting more than 1.5% of the population worldwide. The majority of the drugs in clinical trials for rheumatoid arthritis are immunomodulatory. The development of novel drugs for RA is impending and scientists are exploring new strategies through various innovative approaches for RA drug development. Treat-to-target and window of opportunity hypothesis are the new approaches that are used to treat, improve outcomes, and prevent long-term use of ineffective therapy, respectively. Novel therapeutic agents (e.g. GM-CSF inhibitors, Matrix metalloproteinase inhibitors) and delivery systems (e.g., Liposomes, Superparamagnetic iron oxide nano particles (SPIONs)) are under investigation for more target based therapy with reduced side effects and toxicity. The new drug discovery and repositioning of previously FDA-approved drugs are also being considered for chronic inflammatory disorder. The review encompasses a vast array of information, including genetics, etiology, clinical symptoms, current treatment, and newer therapeutics approaches, focused on the development of RA interventions. The introduction of the bioinformatics-based approach in RA has also been significantly discussed in the review. This review provides a general understanding of the challenges and uncertainties in the treatment of RA and summarizes the evolving scenario as well as innovative approaches taken into consideration for drug development in rheumatoid arthritis.
Collapse
Affiliation(s)
- Nikita Khanna
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| |
Collapse
|
88
|
Deng X, Zeng M, Wang X, Liu J, Ma Y, Wang X, Xu L. Preparation and characterization of cyclic citrullinated peptide-immobilized latex beads for measurement of anti-citrillinated protein antibody through latex particle-enhanced turbidimetric immunoassay. J Chromatogr A 2021; 1642:462000. [PMID: 33684874 DOI: 10.1016/j.chroma.2021.462000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/15/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
The anti-citrillinated protein antibody (ACPA) plays an important role in early diagnosis of rheumatoid arthritis (RA), and is usually detected by using cyclic citrullinated peptide (CCP) as antigen. The ACPA against CCP test is usually performed utilizing enzyme-linked immunosorbent assay (ELISA), but the ELISA is expensive and time-consuming. Here, latex particle-enhanced turbidimetric immunoassay (LTIA) based on CCP-immobilized latex bead was proposed for fast measurements of ACPA of RA patients. CCP-immobilized latex bead was fabricated through three methods, including direct coupling, overall coupling and layer by layer coupling. According to the optimized experiments, layer-by-layer coupling was the best method with advantages of time-saving, simple operation and good repeatability. In addition, a spacer arm of appropriate length between latex beads and CCP could avoid stereoscopic obstacles and make ACPA closer to CCP. The CCP-immobilized latex bead based on layer by layer coupling (CCP-LB-LLC) was used for assembling the homemade kit, which was applied in fast measurements of ACPA through LTIA. The homemade kit possessed a low limit of detection (0.2 U/mL) and an acceptable the batch-to-batch reproducibility. In addition, the homemade kit can be stored at 4 °C for at least one month. When used to detect 20 clinical samples, the results of homemade kit were consistent with commercial ELISA. Furthermore, LTIA based on the homemade kit was simpler and cheaper than ELISA. These results demonstrated that the homemade kit could be useful for diagnosis of RA patients.
Collapse
Affiliation(s)
- Xiyan Deng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Min Zeng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xuan Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Jiyang Liu
- School of Pharmacy, Tianjin Medical College, Tianjin, 300222, PR China
| | - Yuanchun Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xianhua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China.
| | - Liang Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China; School of Pharmacy, Tianjin Medical College, Tianjin, 300222, PR China.
| |
Collapse
|
89
|
Li S, Du J, Gan H, Chen J, Zhou Y, Tian J, Ling G, Li F. Resveratrol promotes apoptosis and G2/M cell cycle arrest of fibroblast-like synoviocytes in rheumatoid arthritis through regulation of autophagy and the serine-threonine kinase-p53 axis. Arch Med Sci 2021; 20:280-288. [PMID: 38414451 PMCID: PMC10895956 DOI: 10.5114/aoms/119022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/15/2020] [Indexed: 02/29/2024] Open
Abstract
Introduction Resveratrol, a polyphenol extracted from many plant species, has emerged as a promising pro-apoptotic agent in various cancer cells. However, the role of resveratrol in cell proliferation and apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis (RA-FLS) is not fully understood. The study was aimed at elucidating the role of resveratrol in cell proliferation and apoptosis of RA-FLS and the underlying molecular mechanism. Material and methods Cultured RA-FLSs were subjected to tumour necrosis factor α (TNF-α). The cell proliferation was measured by Cell Counting Kit-8 assay. Cell apoptosis and cell cycle of RA-FLSs were determined by flow cytometry. The levels of apoptosis or autophagy or cell cycle-related protein were detected by immunoblot analysis. Results In our study, we confirmed that resveratrol reversed TNF-α mediated cell proliferation in RA-FLS. Meanwhile, resveratrol blocked cells at the G2/M stage and reduced the ratio of S phase cells through upregulation of p53 and consequently led to apoptotic cell death. Quite interestingly, we found that resveratrol reversed TNF-α-induced autophagy. Inhibition of autophagy by resveratrol or autophagy inhibitor or Beclin-1 siRNA suppressed TNF-α mediated cell survival and promoted cell apoptosis. However, the autophagy inducer rapamycin (RAPA) reversed the effect of resveratrol on autophagy and cell proliferation. Mechanistic studies revealed that resveratrol inhibited the activation of the phosphoinositide 3-kinases/serine-threonine kinase (PI3K/AKT) pathway. Inhibition of PI3K/AKT pathway by inhibitor LY294002 or resveratrol increased the expression of p53 and decreased the expression of cycle protein (cyclin B1), which further led to block cells in the G2/M arrest. Conclusions Our preliminary study indicated that resveratrol may suppress RA-FLS cell survival and promote apoptosis at least partly through regulation of autophagy and the AKT-p53 axis.
Collapse
Affiliation(s)
- Shu Li
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinfeng Du
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haina Gan
- Department of Rheumatology and Immunology, The First People's Hospital of Changde City, Changde, Hunan, China
| | - Jinwei Chen
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Zhou
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Tian
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guanghui Ling
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fen Li
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
90
|
NFKB1 promoter -94 insertion/deletion ATTG polymorphism (rs28362491) is associated with severity and disease progression of rheumatoid arthritis through interleukin-6 levels modulation in Egyptian patients. Clin Rheumatol 2021; 40:2927-2937. [PMID: 33459954 DOI: 10.1007/s10067-021-05584-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is an inflammatory autoimmune disorder, which can cause progressive and functional disability. Previous data suggests that some inflammatory cytokines are dysregulated in patients with RA. Polymorphisms in the NFKB1 gene were studied in different populations with RA. Specific studies showed that the NFKB1 promoter -94ins/delATTG (rs28362491) polymorphism appears to be correlated with alterations in the IL-6 expression and may lead to disease development. We aimed to evaluate the association between the NFKB1 -94ins/delATTG polymorphism and biochemical, and clinical markers for severity of RA in Egyptian patients. METHODS Study subjects included 196 RA patients from the Egyptian population. NFKB1 -94ins/delATTG polymorphism was genotyped by real-time PCR using the TaqMan assay. Concentrations of plasma IL-6 were assessed using the ELISA method. RESULTS The frequencies of (del/del + ins/del) genotype in cases with erosive arthritis were significantly increased as compared to cases with non-erosive arthritis (63.0% vs. 47.7%, OR = 1.86, 95% CI: 1.05-3.30, p: 0.043). Carriers of del allele had high activity and severity markers compared with those of ins/ins genotype. The del allele was significantly associated with higher IL-6 levels in a dose-dependent manner. Plasma levels of IL-6 were significantly higher in the del/del (41.4 ± 16.2 pg/ml) and ins/del (19.1 ± 12.4 pg/ml) genotype when compared with the ins/ins genotype (11.4 ± 4.21 pg/ml). In a multivariate analysis of variance, including confounding factors associated with higher IL-6 levels (RF, disease duration, and DAS28), the NFKB1 -94ins/delATTG polymorphism retained its role. Logistic regression analyses revealed that high IL-6 plasma levels independently associated with an increased risk of presenting erosive RA, while -94ins/delATTG polymorphism has no direct association with the progression of erosive arthritis. CONCLUSION Our data indicate that the NFKB1 -94ins/delATTG polymorphism contributes to the severity and progression of RA through IL-6 levels modulation in Egyptian patients. Key Points • Carriers of del allele had high activity and severity markers compared with those of ins/ins genotype. • In RA patients, the del allele was significantly associated with higher IL-6 levels in a dose-dependent manner. • IL-6 plasma levels are independently associated with an increased risk of presenting erosive arthritis. • The NFKB1 -94ins/delATTG polymorphism contributes to the severity and progression of RA through IL-6 levels modulation in Egyptian patients.
Collapse
|
91
|
Chimenti MS, Fonti GL, Conigliaro P, Triggianese P, Bianciardi E, Coviello M, Lombardozzi G, Tarantino G, Niolu C, Siracusano A, Perricone R. The burden of depressive disorders in musculoskeletal diseases: is there an association between mood and inflammation? Ann Gen Psychiatry 2021; 20:1. [PMID: 33397417 PMCID: PMC7783979 DOI: 10.1186/s12991-020-00322-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
IMPORTANCE Evidence emerged concerning how inflammatory arthritis and mood disorders can often occur in the same patient and show a similar clinical pattern. An overview of the rheumatological and psychiatric aspects of these diseases can certainly be useful for the improvement of patients' clinical and therapeutic management. OBJECTIVE The aim of this narrative review was to summarize existing literature about common pathogenetic and clinical aspects as a means of improving management and therapeutic approach in patients affected by rheumatoid arthritis, psoriatic arthritis and spondyloarthritis. Outcomes such as disease activity indexes and patient reported outcomes (PROs) were considered. FINDINGS Common pathogenetic pathways emerged between inflammatory arthritis and mood disorders. Pro-inflammatory mechanisms, such as TNFα, IL-6, IL-17 and oxidative stress factors as well as neurotransmitter alterations at the level of CNS and blood-brain barrier (BBB) cells are involved. The activation of these common pathogenetic pathways is, also, affected by the same triggers, such as smoking, stress, lifestyle, and evidence has emerged concerning the possibility of the clinical efficacy of using the same therapeutic approaches. CONCLUSIONS The main causes of the variability in clinical studies outcomes are the rheumatological diseases considered, the prevalence of depression in the general population and in patients with rheumatological diseases and the type of depressive symptom examined. Patients affected by inflammatory arthritis can present symptoms and signs in common with mood disorders, leading to possible clinical overlap. There are still few studies analyzing this concept: they are extremely heterogeneous, both in the characteristics of the population taken into consideration and in the methods used for the definition of depressive disorder, but the suggestions of the data obtained so far are promising and deserve to be pursued.
Collapse
Affiliation(s)
- Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giulia Lavinia Fonti
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emanuela Bianciardi
- Psychiatric Chair, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, Italy.
| | - Marialuce Coviello
- Psychiatric Chair, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, Italy
| | - Ginevra Lombardozzi
- Psychiatric Chair, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, Italy
| | - Giulia Tarantino
- Psychiatric Chair, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, Italy
| | - Cinzia Niolu
- Psychiatric Chair, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, Italy
| | - Alberto Siracusano
- Psychiatric Chair, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, Italy
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
92
|
Fernández-Rodríguez JA, Almonte-Becerril M, Ramil-Gómez O, Hermida-Carballo L, Viñas-Diz S, Vela-Anero Á, Concha Á, Camacho-Encina M, Blanco FJ, López-Armada MJ. Autophagy Activation by Resveratrol Reduces Severity of Experimental Rheumatoid Arthritis. Mol Nutr Food Res 2021; 65:e2000377. [PMID: 33184983 DOI: 10.1002/mnfr.202000377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/14/2020] [Indexed: 12/11/2022]
Abstract
SCOPE Previous work reported that dietary supplementation with resveratrol lowers synovial hyperplasia, inflammatory and oxidative damage in an antigen-induced arthritis (AIA) model. Here, it is investigated whether resveratrol can regulate the abnormal synovial proliferation by inducing autophagy and controlling the associated inflammatory response. METHODS AND RESULTS Animals treated with resveratrol 8 weeks before AIA induction show the highest significant signal for microtubule-associated protein 1 light chain 3 by confocal microscopy. Besides, resveratrol significantly reduces p62 expression, but it does not increase the signal of beclin-1. Also, active caspase-3 expression, as well as poly(ADP-ribose) polymerase, is upregulated in the AIA group, and is significantly reduced in resveratrol-treated AIA group. Resveratrol also mitigates angiopoietin-1 and vascular endothelial growth factor signals. Finally, resveratrol significantly reduces the serum levels of IL-1β, C reactive protein, and prostaglandin E2, as well as nuclear factor κB synovial tissue expression, which shows a significant correlation with p62 expression. CONCLUSION Dietary supplementation with resveratrol induces the noncanonical autophagy pathway and limits the cross-talk with inflammation, which in consequence modulates the synovial hyperplasia. Preventive strategies that incorporate dietary intervention with resveratrol may offer a potential therapeutic alternative to drugs to influence the risk of rheumatoid arthritis and influence its course.
Collapse
Affiliation(s)
- Jennifer A Fernández-Rodríguez
- Grupo de Investigación en Envejecimiento e Inflamación, SERGAS, Complexo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Agrupación Estratégica CICA-INIBIC, As Xubias 84, A Coruña, 15006, Spain
| | - Maylin Almonte-Becerril
- Grupo de Investigación en Envejecimiento e Inflamación, SERGAS, Complexo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Agrupación Estratégica CICA-INIBIC, As Xubias 84, A Coruña, 15006, Spain
- Universidad Intercultural Estado de Puebla, Calle Principal a Lipuntahuaca S/N, Lipuntahuaca, Puebla, 73475, México
| | - Olalla Ramil-Gómez
- Grupo de Investigación en Envejecimiento e Inflamación, SERGAS, Complexo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Agrupación Estratégica CICA-INIBIC, As Xubias 84, A Coruña, 15006, Spain
| | - Laura Hermida-Carballo
- Grupo de Investigación en Envejecimiento e Inflamación, SERGAS, Complexo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Agrupación Estratégica CICA-INIBIC, As Xubias 84, A Coruña, 15006, Spain
| | - Susana Viñas-Diz
- Grupo de Investigación en Envejecimiento e Inflamación, SERGAS, Complexo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Agrupación Estratégica CICA-INIBIC, As Xubias 84, A Coruña, 15006, Spain
- Departamento de Ciencias Biomédicas, Medicina y Fisioterapia, Universidade da Coruña (UDC), Campus de Oza, A Coruña, 15006, Spain
| | - Ángela Vela-Anero
- Grupo de Terapia Celular e Medicina Regenerativa, UDC, Campus de Oza, A Coruña, 15006, Spain
| | - Ángel Concha
- Servicio de Patología, INIBIC, SERGAS, As Xubias 84, A Coruña, 15006, Spain
| | - María Camacho-Encina
- Grupo de Investigación en Reumatología, Agrupación Estratégica CICA-INIBIC, SERGAS, As Xubias, 84, A Coruña, 15006, Spain
| | - Francisco J Blanco
- Grupo de Investigación en Reumatología, Agrupación Estratégica CICA-INIBIC, SERGAS, As Xubias, 84, A Coruña, 15006, Spain
| | - María J López-Armada
- Grupo de Investigación en Envejecimiento e Inflamación, SERGAS, Complexo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Agrupación Estratégica CICA-INIBIC, As Xubias 84, A Coruña, 15006, Spain
| |
Collapse
|
93
|
Bilal M, Qindeel M, Nunes LV, Duarte MTS, Ferreira LFR, Soriano RN, Iqbal HMN. Marine-Derived Biologically Active Compounds for the Potential Treatment of Rheumatoid Arthritis. Mar Drugs 2020; 19:10. [PMID: 33383638 PMCID: PMC7823916 DOI: 10.3390/md19010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease with a prevalence rate of up to 1% and is significantly considered a common worldwide public health concern. Commercially, several traditional formulations are available to treat RA to some extent. However, these synthetic compounds exert toxicity and considerable side effects even at lower therapeutic concentrations. Considering the above-mentioned critiques, research is underway around the world in finding and exploiting potential alternatives. For instance, marine-derived biologically active compounds have gained much interest and are thus being extensively utilized to confront the confines of in practice counterparts, which have become ineffective for 21st-century medical settings. The utilization of naturally available bioactive compounds and their derivatives can minimize these synthetic compounds' problems to treat RA. Several marine-derived compounds exhibit anti-inflammatory and antioxidant properties and can be effectively used for therapeutic purposes against RA. The results of several studies ensured that the extraction of biologically active compounds from marine sources could provide a new and safe source for drug development against RA. Finally, current challenges, gaps, and future perspectives have been included in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Leonardo Vieira Nunes
- Department of Medicine, Federal University of Juiz de Fora, Juiz de Fora-MG 36036-900, Brazil;
| | | | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil;
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares-MG 35010-180, Brazil;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
94
|
Targeted therapies in interstitial lung disease secondary to systemic autoimmune rheumatic disease. Current status and future development. Autoimmun Rev 2020; 20:102742. [PMID: 33333235 DOI: 10.1016/j.autrev.2020.102742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/25/2020] [Indexed: 12/22/2022]
Abstract
Autoimmune rheumatic diseases (ARD) are characterized by systemic manifestations and multiple organ involvement, including the lung. Interstitial Lung Disease (ILD) is a cardinal manifestation of lung involvement in patients with ARD and is associated with significant morbidity and mortality. Corticosteroids and immunosuppressive drugs are used as first -line treatment. Targeted therapies, such as biological disease modifying antirheumatic drugs (DMARDS) and anti- fibrotic agents are new treatment options. In this review we discuss the role of targeted therapies in patients with ILD secondary to ARD.
Collapse
|
95
|
Biomechanical Particularities in the Therapy of the Rheumatic Knee. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In rheumatoid arthritis, the joints of the lower extremities are almost always affected. This is most conspicuous in the knee joint. In rheumatics, inflammatory osteoarthritis manifests itself comparably earlier than in patients with osteoarthritis. The focus of attention was primarily on the synovia with its destruction process and secondary changes. Now, driven by experimental research, dendritic cells and fibroblasts and molecular features are moving into the clinician’s field of vision. Even in joints that appear to be in remission with no swelling or pain, the activity of these cells leads to changes in the capsule-ligaments. The complex deformities and instabilities caused by this, in conjunction with atrophy of the inter-articular musculature, have an impact on the activities of daily life (ADL). If these biomechanical aspects of the knee joint are not taken into account early on in therapy, the frequency of primary and secondary surgical treatment increases. The timely recognition of biomechanical pathologies and consistent treatment can contribute to improving the patient situation in addition to adequate medication therapy.
Collapse
|
96
|
Effects of Biological Therapies on Molecular Features of Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21239067. [PMID: 33260629 PMCID: PMC7731249 DOI: 10.3390/ijms21239067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disease primarily affecting the joints, and closely related to specific autoantibodies that mostly target modified self-epitopes. Relevant findings in the field of RA pathogenesis have been described. In particular, new insights come from studies on synovial fibroblasts and cells belonging to the innate and adaptive immune system, which documented the aberrant production of inflammatory mediators, oxidative stress and NETosis, along with relevant alterations of the genome and on the regulatory epigenetic mechanisms. In recent years, the advances in the understanding of RA pathogenesis by identifying key cells and cytokines allowed the development of new targeted disease-modifying antirheumatic drugs (DMARDs). These drugs considerably improved treatment outcomes for the majority of patients. Moreover, numerous studies demonstrated that the pharmacological therapy with biologic DMARDs (bDMARDs) promotes, in parallel to their clinical efficacy, significant improvement in all these altered molecular mechanisms. Thus, continuous updating of the knowledge of molecular processes associated with the pathogenesis of RA, and on the specific effects of bDMARDs in the correction of their dysregulation, are essential in the early and correct approach to the treatment of this complex autoimmune disorder. The present review details basic mechanisms related to the physiopathology of RA, along with the core mechanisms of response to bDMARDs.
Collapse
|
97
|
Yang Z, Lin SD, Zhan F, Liu Y, Zhan YW. LncRNA GAS5 alleviates rheumatoid arthritis through regulating miR-222-3p/Sirt1 signalling axis. Autoimmunity 2020; 54:13-22. [PMID: 33215529 DOI: 10.1080/08916934.2020.1846183] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune disease that affects millions of people. Fibroblast-like synoviocytes (FLSs) located in rheumatoid panni play a pivotal role in the formation of RA. The long noncoding RNA (lncRNA) GAS5 is reportedly downregulated in rheumatoid arthritis. However, its detailed mechanism in RA remains to be explored. This study investigated the roles and related mechanisms of GAS5 in RA. METHODS The expression levels of GAS5, miR-222-3p, and sirtuin 1 (Sirt1) were evaluated by quantitative PCR (qPCR). Cell proliferation was analyzed by CCK-8 and BrdU assays. Cell apoptosis was assessed by flow cytometry and western blotting. Enzyme-linked immunosorbent assay (ELISA) was utilized to evaluate the levels of TNF-α, IL-1β, and IL-6. The interaction between GAS5 or Sirt1 and miR-222-3p was predicted by starBase and validated by dual-luciferase reporter assay. RESULTS GAS5 expression was found to be downregulated in the serum samples of RA patients and in RA-FLSs. GAS5 overexpression or the inhibition of miR-222-3p impeded the activity of RA-FLSs by repressing their proliferation and inflammation and by promoting apoptosis. Mechanistically, GAS5 indirectly regulates Sirt1 expression by binding miR-222-3p. Further experiments confirmed that Sirt1 overexpression restored the anti-RA activity of GAS5 under miR-222-3p mimic. CONCLUSIONS The miR-222-3p/Sirt1 axis was found to be critical for the function of GAS5 in regulating the proliferation, inflammation, and apoptosis of RA-FLSs. These data indicate GAS5 activation as a potential therapeutic strategy for RA progression.
Collapse
Affiliation(s)
- Zhou Yang
- Department of Rheumatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, P. R. China
| | - Shu-Dian Lin
- Department of Rheumatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, P. R. China
| | - Feng Zhan
- Department of Rheumatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, P. R. China
| | - Ying Liu
- Department of Rheumatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, P. R. China
| | - Yu-Wei Zhan
- Department of Rheumatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, P. R. China
| |
Collapse
|
98
|
Zhang C. Flare-up of cytokines in rheumatoid arthritis and their role in triggering depression: Shared common function and their possible applications in treatment (Review). Biomed Rep 2020; 14:16. [PMID: 33269077 PMCID: PMC7694594 DOI: 10.3892/br.2020.1392] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/31/2020] [Indexed: 01/01/2023] Open
Abstract
Chronic illnesses are associated with an increased risk of depression and anxiety. Rheumatoid arthritis (RA) is a chronic autoimmune disease that typically causes damage to the joints. RA extensively impacts patients, both physically and psychologically. Depression is a common comorbid disorder with RA, which leads to worsened health outcomes. There are several cytokines that are active in the joints of patients with RA. Inflammatory cytokines serve important roles in the key processes in the joints, which usually cause inflammation, articular damage and other comorbidities associated with RA. The key role of inflammatory cytokines could be attributed to their interactions within signaling pathways. In RA, IL-1, and the cytokines of TNF-α, IL-6 and IL-18 are primarily involved. Furthermore, depression is hypothesized to be strongly associated with systemic inflammation, particularly with dysregulation of the cytokine network. The present review summarizes the current state of knowledge on these two diseases from the perspective of inflammation and cytokines, and emphasizes the possible bridge between them by exploring the involvement of systemic cytokines in both conditions.
Collapse
Affiliation(s)
- Chunhai Zhang
- Thyroid Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin 1300332, P.R. China
| |
Collapse
|
99
|
Hushmandi K, Bokaie S, Hashemi M, Moghadam ER, Raei M, Hashemi F, Bagheri M, Habtemariam S, Nabavi SM. A review of medications used to control and improve the signs and symptoms of COVID-19 patients. Eur J Pharmacol 2020; 887:173568. [PMID: 32956644 PMCID: PMC7501068 DOI: 10.1016/j.ejphar.2020.173568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
In December 2019, an unprecedented outbreak of pneumonia associated with a novel coronavirus disease 2019 (COVID-19) emerged in Wuhan City, Hubei province, China. The virus that caused the disease was officially named by the World Health Organization (WHO) as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). According to the high transmission rate of SARS-CoV-2, it became a global pandemic and public health emergency within few months. Since SARS-CoV-2 is genetically 80% homologous with the SARS-CoVs family, it is hypothesized that medications developed for the treatment of SARS-CoVs may be useful in the control and management of SARS-CoV-2. In this regard, some medication being tested in clinical trials and in vitro studies include anti-viral RNA polymerase inhibitors, HIV-protease inhibitors, anti-inflammatory agents, angiotensin converting enzyme type 2 (ACE 2) blockers, and some other novel medications. In this communication, we reviewed the general characteristics of medications, medical usage, mechanism of action, as well as SARS-CoV-2 related trials.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Farid Hashemi
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Bagheri
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent, ME4 4TB, United Kingdom
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
100
|
Thomas K, Lazarini A, Kaltsonoudis E, Drosos A, Papalopoulos I, Sidiropoulos P, Tsatsani P, Gazi S, Pantazi L, Boki KA, Katsimbri P, Boumpas D, Fragkiadaki K, Tektonidou M, Sfikakis PP, Karagianni K, Sakkas LI, Grika EP, Vlachoyiannopoulos PG, Evangelatos G, Iliopoulos A, Dimitroulas T, Garyfallos A, Melissaropoulos K, Georgiou P, Areti M, Georganas C, Vounotrypidis P, Kitas GD, Vassilopoulos D. Treatment patterns and achievement of the treat-to-target goals in a real-life rheumatoid arthritis patient cohort: data from 1317 patients. Ther Adv Musculoskelet Dis 2020; 12:1759720X20937132. [PMID: 33062066 PMCID: PMC7534096 DOI: 10.1177/1759720x20937132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Data regarding the real-life predictors of low disease activity (LDA) in rheumatoid arthritis (RA) patients are limited. Our aim was to evaluate the rate and predictors of LDA and treatment patterns in RA. Methods This was a multicenter, prospective, RA cohort study where patients were evaluated in two different time points approximately 12 months apart. Statistical analysis was performed in order to identify predictors of LDA while patterns of disease-modifying anti-rheumatic drug [DMARDs; conventional synthetic (csDMARD) or biologic (bDMARD)] and glucocorticoid (GC) use were also recorded. Results The total number of patients included was 1317 (79% females, mean age: 62.9 years, mean disease duration: 10.3 years). After 1 year, 57% had achieved LDA (DAS28ESR<3.2) while 43% did not (34%: moderate disease activity: DAS28ESR ⩾3.2 to <5.1, 9%: high disease activity, DAS28ESR ⩾5.1). By multivariate analysis, male sex was positively associated with LDA [odds ratio (OR) = 2.29 p < 0.001] whereas advanced age (OR = 0.98, p = 0.005), high Health Assessment Questionnaire (HAQ) score (OR = 0.57, p < 0.001), use of GCs (OR = 0.75, p = 0.037) or ⩾2 bDMARDs (OR = 0.61, p = 0.002), high co-morbidity index (OR = 0.86, p = 0.011) and obesity (OR = 0.62, p = 0.002) were negative predictors of LDA. During follow-up, among active patients (DAS28ESR >3.2), 21% initiated (among csDMARDs users) and 22% switched (among bDMARDs users) their bDMARDs. Conclusion In a real-life RA cohort, during 1 year of follow-up, 43% of patients do not reach treatment targets while only ~20% of those with active RA started or switched their bDMARDs. Male sex, younger age, lower HAQ, body mass index and co-morbidity index were independent factors associated with LDA while use of GCs or ⩾2 bDMARDs were negative predictors.
Collapse
Affiliation(s)
- Konstantinos Thomas
- Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Argiro Lazarini
- Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Ioannis Papalopoulos
- Clinical Immunology and Allergy Department, University of Crete, Heraklion, Greece
| | | | | | | | - Lina Pantazi
- Rheumatology Unit, Sismanoglio Hospital, Athens, Greece
| | | | - Pelagia Katsimbri
- Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Boumpas
- Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kalliopi Fragkiadaki
- Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Tektonidou
- Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P Sfikakis
- Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Lazaros I Sakkas
- Department of Rheumatology, University of Thessaly, Larissa, Greece
| | - Eleftheria P Grika
- Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | - Dimitrios Vassilopoulos
- Joint Rheumatology Program, Clinical Immunology-Rheumatology Unit, 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, Hippokration General Hospital, 114 Vass. Sophias Avenue, Athens, 115 27, Greece
| |
Collapse
|