51
|
Huang S, Jiang H, Hu H, Lv D. Targeting AQP4 localization as a novel therapeutic target in CNS edema. Acta Biochim Biophys Sin (Shanghai) 2021; 53:269-272. [PMID: 33301561 DOI: 10.1093/abbs/gmaa158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Shifang Huang
- Department of Pharmacology, Yongzhou Vocational Technical College, Yongzhou 425000, China
| | - Honglu Jiang
- Department of Pharmacology, Yongzhou Radio and TV University, Yongzhou 425000, China
| | - Haoliang Hu
- Department of Pharmacology, Yongzhou Vocational Technical College, Yongzhou 425000, China
| | - Deguan Lv
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA 92037, USA
| |
Collapse
|
52
|
Behl T, Kaur G, Sehgal A, Bhardwaj S, Singh S, Buhas C, Judea-Pusta C, Uivarosan D, Munteanu MA, Bungau S. Multifaceted Role of Matrix Metalloproteinases in Neurodegenerative Diseases: Pathophysiological and Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms22031413. [PMID: 33573368 PMCID: PMC7866808 DOI: 10.3390/ijms22031413] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegeneration is the pathological condition, in which the nervous system or neuron loses its structure, function, or both, leading to progressive degeneration or the death of neurons, and well-defined associations of tissue system, resulting in clinical manifestations. Neuroinflammation has been shown to precede neurodegeneration in several neurodegenerative diseases (NDs). No drug is yet known to delay or treat neurodegeneration. Although the etiology and potential causes of NDs remain widely indefinable, matrix metalloproteinases (MMPs) evidently have a crucial role in the progression of NDs. MMPs, a protein family of zinc (Zn2+)-containing endopeptidases, are pivotal agents that are involved in various biological and pathological processes in the central nervous system (CNS). The current review delineates the several emerging evidence demonstrating the effects of MMPs in the progression of NDs, wherein they regulate several processes, such as (neuro)inflammation, microglial activation, amyloid peptide degradation, blood brain barrier (BBB) disruption, dopaminergic apoptosis, and α-synuclein modulation, leading to neurotoxicity and neuron death. Published papers to date were searched via PubMed, MEDLINE, etc., while using selective keywords highlighted in our manuscript. We also aim to shed a light on pathophysiological effect of MMPs in the CNS and focus our attention on its detrimental and beneficial effects in NDs, with a special focus on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS), and Huntington's disease (HD), and discussed various therapeutic strategies targeting MMPs, which could serve as potential modulators in NDs. Over time, several agents have been developed in order to overcome challenges and open up the possibilities for making selective modulators of MMPs to decipher the multifaceted functions of MMPs in NDs. There is still a greater need to explore them in clinics.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Gagandeep Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Shaveta Bhardwaj
- Department of Pharmacology, GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana 141104, Punjab, India;
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Camelia Buhas
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (C.J.-P.)
| | - Claudia Judea-Pusta
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (C.J.-P.)
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
53
|
Vieira da Silva I, P. Soares B, Pimpão C, M. A. Pinto R, Costa T, Freire JPB, Corrent E, Chalvon-Demersay T, Prates JAM, Lopes PA, Soveral G. Glutamine and cystine-enriched diets modulate aquaporins gene expression in the small intestine of piglets. PLoS One 2021; 16:e0245739. [PMID: 33465153 PMCID: PMC7815100 DOI: 10.1371/journal.pone.0245739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
The regulation of glycerol permeability in the gastrointestinal tract is crucial to control fat deposition, lipolysis and gluconeogenesis. Knowing that the amino acid glutamine is a physiological regulator of gluconeogenesis, whereas cystine promotes adiposity, herein we investigated the effects of dietary supplementation with glutamine and cystine on the serum biochemical parameters of piglets fed on amino acid-enriched diets, as well as on the transcriptional profile of membrane water and glycerol channels aquaporins (AQPs) in the ileum portion of the small intestine and its impact on intestinal permeability. Twenty male piglets with an initial body weight of 8.8 ± 0.89 kg were allocated to four dietary treatments (n = 5) and received, during a four week-period, a basal diet without supplementation (control) or supplemented with 8 kg/ton of glutamine (Gln), cystine (Cys) or the combination of the two amino acids in equal proportions (Gln + Cys). Most biochemical parameters were found improved in piglets fed Gln and Cys diet. mRNA levels of AQP3 were found predominant over the others. Both amino acids, individually or combined, were responsible for a consistent downregulation of AQP1, AQP7 and AQP10, without impacting on water permeability. Conversely, Cys enriched diet upregulated AQP3 enhancing basolateral membranes glycerol permeability and downregulating glycerol kinase (GK) of intestinal cells. Altogether, our data reveal that amino acids dietary supplementation can modulate intestinal AQPs expression and unveil AQP3 as a promising target for adipogenesis regulation.
Collapse
Affiliation(s)
- Inês Vieira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Dept. Bioquímica e Biologia Humana, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Bárbara P. Soares
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Dept. Bioquímica e Biologia Humana, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Dept. Bioquímica e Biologia Humana, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Rui M. A. Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- JCS, Laboratório de Análises Clínicas Dr. Joaquim Chaves, Algés, Portugal
| | - Teresa Costa
- Indukern Portugal, Lda., Centro Empresarial Sintra Estoril II, Sintra, Portugal
| | - João P. B. Freire
- LEAF—Linking Engineering, Agriculture and Food, Departamento de Ciências e Engenharia de Biossistemas, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
| | | | | | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Paula A. Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (PAL); (GS)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Dept. Bioquímica e Biologia Humana, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (PAL); (GS)
| |
Collapse
|
54
|
Meyfour A, Pahlavan S, Mirzaei M, Krijgsveld J, Baharvand H, Salekdeh GH. The quest of cell surface markers for stem cell therapy. Cell Mol Life Sci 2021; 78:469-495. [PMID: 32710154 PMCID: PMC11073434 DOI: 10.1007/s00018-020-03602-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Stem cells and their derivatives are novel pharmaceutics that have the potential for use as tissue replacement therapies. However, the heterogeneous characteristics of stem cell cultures have hindered their biomedical applications. In theory and practice, when cell type-specific or stage-specific cell surface proteins are targeted by unique antibodies, they become highly efficient in detecting and isolating specific cell populations. There is a growing demand to identify reliable and actionable cell surface markers that facilitate purification of particular cell types at specific developmental stages for use in research and clinical applications. The identification of these markers as very important members of plasma membrane proteins, ion channels, transporters, and signaling molecules has directly benefited from proteomics and tools for proteomics-derived data analyses. Here, we review the methodologies that have played a role in the discovery of cell surface markers and introduce cutting edge single cell proteomics as an advanced tool. We also discuss currently available specific cell surface markers for stem cells and their lineages, with emphasis on the nervous system, heart, pancreas, and liver. The remaining gaps that pertain to the discovery of these markers and how single cell proteomics and identification of surface markers associated with the progenitor stages of certain terminally differentiated cells may pave the way for their use in regenerative medicine are also discussed.
Collapse
Affiliation(s)
- Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, Heidelberg, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem St, P.O. Box: 16635-148, 1665659911, Tehran, Iran.
| |
Collapse
|
55
|
Zannetti A, Benga G, Brunetti A, Napolitano F, Avallone L, Pelagalli A. Role of Aquaporins in the Physiological Functions of Mesenchymal Stem Cells. Cells 2020; 9:2678. [PMID: 33322145 PMCID: PMC7763964 DOI: 10.3390/cells9122678] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aquaporins (AQPs) are a family of membrane water channel proteins that control osmotically-driven water transport across cell membranes. Recent studies have focused on the assessment of fluid flux regulation in relation to the biological processes that maintain mesenchymal stem cell (MSC) physiology. In particular, AQPs seem to regulate MSC proliferation through rapid regulation of the cell volume. Furthermore, several reports have shown that AQPs play a crucial role in modulating MSC attachment to the extracellular matrix, their spread, and migration. Shedding light on how AQPs are able to regulate MSC physiological functions can increase our knowledge of their biological behaviours and improve their application in regenerative and reparative medicine.
Collapse
Affiliation(s)
- Antonella Zannetti
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145 Naples, Italy;
| | - Gheorghe Benga
- Romanian Academy, Cluj-Napoca Branch, Strada Republicii 9, 400015 Cluj-Napoca, Romania;
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
| | - Francesco Napolitano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Veterinaria 1, 80137 Naples, Italy; (F.N.); (L.A.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Veterinaria 1, 80137 Naples, Italy; (F.N.); (L.A.)
| | - Alessandra Pelagalli
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145 Naples, Italy;
- Department of Advanced Biomedical Sciences, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
56
|
Brassica Bioactives Could Ameliorate the Chronic Inflammatory Condition of Endometriosis. Int J Mol Sci 2020; 21:ijms21249397. [PMID: 33321760 PMCID: PMC7763502 DOI: 10.3390/ijms21249397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a chronic, inflammatory, hormone-dependent disease characterized by histological lesions produced by the presence of endometrial tissue outside the uterine cavity. Despite the fact that an estimated 176 million women are affected worldwide by this gynecological disorder, risk factors that cause endometriosis have not been properly defined and current treatments are not efficient. Although the interaction between diet and human health has been the focus of many studies, little information about the correlation of foods and their bioactive derivates with endometriosis is available. In this framework, Brassica crops have emerged as potential candidates for ameliorating the chronic inflammatory condition of endometriosis, due to their abundant content of health-promoting compounds such as glucosinolates and their hydrolysis products, isothiocyanates. Several inflammation-related signaling pathways have been included among the known targets of isothiocyanates, but those involving aquaporin water channels have an important role in endometriosis. Therefore, the aim of this review is to highlight the promising effects of the phytochemicals present in Brassica spp. as major candidates for inclusion in a dietary approach aiming to improve the inflammatory condition of women affected with endometriosis. This review points out the potential roles of glucosinolates and isothiocyanates from Brassicas as anti-inflammatory compounds, which might contribute to a reduction in endometriosis symptoms. In view of these promising results, further investigation of the effect of glucosinolates on chronic inflammatory diseases, either as diet coadjuvants or as therapeutic molecules, should be performed. In addition, we highlight the involvement of aquaporins in the maintenance of immune homeostasis. In brief, glucosinolates and the modulation of cellular water by aquaporins could shed light on new approaches to improve the quality of life for women with endometriosis.
Collapse
|
57
|
Zhang H, Liu J, Liu Y, Su C, Fan G, Lu W, Feng L. Hypertonic saline improves brain edema resulting from traumatic brain injury by suppressing the NF-κB/IL-1β signaling pathway and AQP4. Exp Ther Med 2020; 20:71. [PMID: 32963601 PMCID: PMC7490798 DOI: 10.3892/etm.2020.9199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/17/2020] [Indexed: 12/05/2022] Open
Abstract
Although hypertonic saline (HS) has been extensively applied to treat brain edema in the clinic, the precise mechanism underlying its function remains poorly understood. Therefore, the aim of the present study was to investigate the therapeutic mechanism of HS in brain edema in terms of aquaporins and inflammatory factors. In the present study, traumatic brain injury (TBI) was established in male adult Sprague-Dawley rats, which were continuously administered 10% HS by intravenous injection for 2 days. In addition, brain edema and brain water content were detected by MRI and wet/dry ratio analysis and histological examination, respectively. Immunohistochemical staining for albumin and western blotting for occludin, zonula occludens-1 and claudin-5 was performed to evaluate the integrity of the blood-brain barrier. Aquaporin 4 (AQP4) expression was also analyzed using western blotting and reverse transcription-quantitative PCR, whilst interleukin (IL)-1β and NF-κB levels were measured using ELISA. It was demonstrated that HS treatment significantly reduced brain edema in TBI rats and downregulated AQP4 expression in cerebral cortical tissues around the contusion site. In addition, IL-1β and NF-κB levels were found to be downregulated after 10% HS treatment. Therefore, results from the present study suggested that HS may protect against brain edema induced by TBI by modulating the expression levels of AQP4, NF-κB and IL-1β.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Jun Liu
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Yunzhen Liu
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Chunhai Su
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Gaoyang Fan
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Wenpeng Lu
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Lei Feng
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| |
Collapse
|
58
|
Ikarashi N, Kon R, Nagoya C, Ishikura A, Sugiyama Y, Takahashi J, Sugiyama K. Effect of Astaxanthin on the Expression and Activity of Aquaporin-3 in Skin in an In-Vitro Study. Life (Basel) 2020; 10:life10090193. [PMID: 32932769 PMCID: PMC7554991 DOI: 10.3390/life10090193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione) is a red lipophilic pigment with strong antioxidant action. Oral or topical administration of astaxanthin has been reported to improve skin function, including increasing skin moisture. In this study, we examined the mechanism by which astaxanthin improves skin function by focusing on the water channel aquaporin-3 (AQP3), which plays important roles in maintaining skin moisture and function. When astaxanthin was added to PHK16-0b or HaCaT cells, the mRNA expression level of AQP3 increased significantly in a concentration-dependent manner in both cell lines. The AQP3 protein expression level was also confirmed to increase when astaxanthin was added to HaCaT cells. Similarly, when astaxanthin was added to 3D human epidermis model EpiSkin, AQP3 expression increased. Furthermore, when glycerol and astaxanthin were simultaneously added to EpiSkin, glycerol permeability increased significantly compared with that observed for the addition of glycerol alone. We demonstrated that astaxanthin increases AQP3 expression in the skin and enhances AQP3 activity. This result suggests that the increased AQP3 expression in the skin is associated with the increase in skin moisture by astaxanthin. Thus, we consider astaxanthin useful for treating dry skin caused by decreased AQP3 due to factors such as diabetes mellitus and aging.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan;
- Correspondence: (N.I.); (K.S.); Tel.: +81-3-5498-5918 (N.I.)
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan;
| | - Chika Nagoya
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (C.N.); (A.I.); (Y.S.)
| | - Airi Ishikura
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (C.N.); (A.I.); (Y.S.)
| | - Yuri Sugiyama
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (C.N.); (A.I.); (Y.S.)
| | - Jiro Takahashi
- Fuji Chemical Industries Co., Ltd., 1 Gohkakizawa, Kamiichi-machi, Nakaniikawa-gun, Toyama 930-0405, Japan;
| | - Kiyoshi Sugiyama
- Department of Functional Molecular Kinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Correspondence: (N.I.); (K.S.); Tel.: +81-3-5498-5918 (N.I.)
| |
Collapse
|
59
|
Pizzoni A, Bazzi Z, Di Giusto G, Alvarez CL, Rivarola V, Capurro C, Schwarzbaum PJ, Ford P. Release of ATP by TRPV4 activation is dependent upon the expression of AQP2 in renal cells. J Cell Physiol 2020; 236:2559-2571. [PMID: 33094506 DOI: 10.1002/jcp.30013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/18/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022]
Abstract
Increasing evidence indicates that aquaporins (AQPs) exert an influence in cell signaling by the interplay with the transient receptor potential vanilloid 4 (TRPV4) channel. We previously found that TRPV4 physically and functionally interacts with AQP2 in cortical collecting ducts (CCD) cells, favoring cell volume regulation and cell migration. Because TRPV4 was implicated in ATP release in several tissues, we investigated the possibility that TRPV4/AQP2 interaction influences ATP release in CCD cells. Using two CCD cell lines expressing or not AQP2, we measured extracellular ATP (ATPe) under TRPV4 activation and intracellular Ca2+ under ATP addition. We found that AQP2 is critical for the release of ATP induced by TRPV4 activation. This ATP release occurs by an exocytic and a conductive route. ATPe, in turn, stimulates purinergic receptors leading to ATPe-induced ATP release by a Ca2+ -dependent mechanism. We propose that AQP2 by modulating Ca2+ and ATP differently could explain AQP2-increased cell migration.
Collapse
Affiliation(s)
- Alejandro Pizzoni
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Zaher Bazzi
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini," Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Química Biológica Superior, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gisela Di Giusto
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cora L Alvarez
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini," Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Química Biológica Superior, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Rivarola
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Capurro
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo J Schwarzbaum
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini," Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Química Biológica Superior, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Ford
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
60
|
Expression, Distribution and Role of Aquaporins in Various Rhinologic Conditions. Int J Mol Sci 2020; 21:ijms21165853. [PMID: 32824013 PMCID: PMC7461600 DOI: 10.3390/ijms21165853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are water-specific membrane channel proteins that regulate cellular and organismal water homeostasis. The nose, an organ with important respiratory and olfactory functions, is the first organ exposed to external stimuli. Nose-related topics such as allergic rhinitis (AR) and chronic rhinosinusitis (CRS) have been the subject of extensive research. These studies have reported that mechanisms that drive the development of multiple inflammatory diseases that occur in the nose and contribute to the process of olfactory recognition of compounds entering the nasal cavity involve the action of water channels such as AQPs. In this review, we provide a comprehensive overview of the relationship between AQPs and rhinologic conditions, focusing on the current state of knowledge and mechanisms that link AQPs and rhinologic conditions. Key conclusions include the following: (1) Various AQPs are expressed in both nasal mucosa and olfactory mucosa; (2) the expression of AQPs in these tissues is different in inflammatory diseases such as AR or CRS, as compared with that in normal tissues; (3) the expression of AQPs in CRS differs depending on the presence or absence of nasal polyps; and (4) the expression of AQPs in tissues associated with olfaction is different from that in the respiratory epithelium.
Collapse
|
61
|
Alimajstorovic Z, Westgate CSJ, Jensen RH, Eftekhari S, Mitchell J, Vijay V, Seneviratne SY, Mollan SP, Sinclair AJ. Guide to preclinical models used to study the pathophysiology of idiopathic intracranial hypertension. Eye (Lond) 2020; 34:1321-1333. [PMID: 31896803 PMCID: PMC7376028 DOI: 10.1038/s41433-019-0751-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/24/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Idiopathic intracranial hypertension (IIH) is characterised by raised intracranial pressure (ICP) and papilloedema in the absence of an identifiable secondary cause typically occurring in young women with obesity. The impact is considerable with the potential for blindness, chronic disabling headaches, future risk of cardiovascular disease and marked healthcare utilisation. There have been marked advances in our understanding the pathophysiology of IIH including the role of androgen excess. Insight into pathophysiological underpinnings has arisen from astute clinical observations, studies, and an array of preclinical models. This article summarises the current literature pertaining to the pathophysiology of IIH. The current preclinical models relevant to gaining mechanistic insights into IIH are then discussed. In vitro and in vivo models which study CSF secretion and the effect of potentially pathogenic molecules have started to glean important mechanistic insights. These models are also useful to evaluate novel therapeutic targets to abrogate CSF secretion. Importantly, in vitro CSF secretion assays translate into relevant changes in ICP in vivo. Models of CSF absorption pertinent to IIH, are less well established but highly relevant and of future interest. There is no fully developed in vivo model of IIH but this remains an area of importance. Progress is being made to improve our understanding of the underlying aetiology in IIH including the characterisation of disease biomarkers and their mechanistic role in driving disease pathology. Preclinical models, used to evaluate IIH mechanisms are yielding important mechanistic insights. Further work to refine these techniques will provide translatable insights into disease aetiology.
Collapse
Affiliation(s)
- Zerin Alimajstorovic
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Connar S J Westgate
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Neurology, Danish Headache Centre, Rigshospitalet-Glostrup, Glostrup Research Institute, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| | - Rigmor H Jensen
- Department of Neurology, Danish Headache Centre, Rigshospitalet-Glostrup, Glostrup Research Institute, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| | - Sajedeh Eftekhari
- Department of Neurology, Danish Headache Centre, Rigshospitalet-Glostrup, Glostrup Research Institute, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| | - James Mitchell
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Vivek Vijay
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Senali Y Seneviratne
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Susan P Mollan
- Birmingham Neuro-Ophthalmology, Queen Elizabeth Hospital, Birmingham, UK
| | - Alexandra J Sinclair
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
- Birmingham Neuro-Ophthalmology, Queen Elizabeth Hospital, Birmingham, UK.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK.
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK.
| |
Collapse
|
62
|
Chow PH, Bowen J, Yool AJ. Combined Systematic Review and Transcriptomic Analyses of Mammalian Aquaporin Classes 1 to 10 as Biomarkers and Prognostic Indicators in Diverse Cancers. Cancers (Basel) 2020; 12:E1911. [PMID: 32679804 PMCID: PMC7409285 DOI: 10.3390/cancers12071911] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Aquaporin (AQP) channels enable regulated transport of water and solutes essential for fluid homeostasis, but they are gaining attention as targets for anticancer therapies. Patterns of AQP expression and survival rates for patients were evaluated by systematic review (PubMed and Embase) and transcriptomic analyses of RNAseq data (Human Protein Atlas database). Meta-analyses confirmed predominantly negative associations between AQP protein and RNA expression levels and patient survival times, most notably for AQP1 in lung, breast and prostate cancers; AQP3 in esophageal, liver and breast cancers; and AQP9 in liver cancer. Patterns of AQP expression were clustered for groups of cancers and associated with risk of death. A quantitative transcriptomic analysis of AQP1-10 in human cancer biopsies similarly showed that increased transcript levels of AQPs 1, 3, 5 and 9 were most frequently associated with poor survival. Unexpectedly, increased AQP7 and AQP8 levels were associated with better survival times in glioma, ovarian and endometrial cancers, and increased AQP11 with better survival in colorectal and breast cancers. Although molecular mechanisms of aquaporins in pathology or protection remain to be fully defined, results here support the hypothesis that overexpression of selected classes of AQPs differentially augments cancer progression. Beyond fluid homeostasis, potential roles for AQPs in cancers (suggested from an expanding appreciation of their functions in normal tissues) include cell motility, membrane process extension, transport of signaling molecules, control of proliferation and apoptosis, increased mechanical compliance, and gas exchange. AQP expression also has been linked to differences in sensitivity to chemotherapy treatments, suggesting possible roles as biomarkers for personalized treatments. Development of AQP pharmacological modulators, administered in cancer-specific combinations, might inspire new interventions for controlling malignant carcinomas.
Collapse
Affiliation(s)
| | | | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia; (P.H.C.); (J.B.)
| |
Collapse
|
63
|
Kalampokis IF, Erban A, Amillis S, Diallinas G, Kopka J, Aliferis KA. Untargeted metabolomics as a hypothesis-generation tool in plant protection product discovery: Highlighting the potential of trehalose and glycerol metabolism of fungal conidiospores as novel targets. Metabolomics 2020; 16:79. [PMID: 32601735 DOI: 10.1007/s11306-020-01699-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The production of high quality and safe food represents a main priority for the agri-food sector in the effort to sustain the exponentially growing human population. Nonetheless, there are major challenges that require the discovery of new, alternative, and improved plant protection products (PPPs). Focusing on fungal plant pathogens, the dissection of mechanisms that are essential for their survival provides insights that could be exploited towards the achievement of the aforementioned aim. In this context, the germination of fungal spores, which are essential structures for their dispersal, survival, and pathogenesis, represents a target of high potential for PPPs. To the best of our knowledge, no PPPs that target the germination of fungal spores currently exist. OBJECTIVES Within this context, we have mined for changes in the metabolite profiles of the model fungus Aspergillus nidulans FGSC A4 conidiospores during germination, in an effort to discover key metabolites and reactions that could potentially become targets of PPPs. METHODS Untargeted GC/EI-TOF/MS metabolomics and multivariate analyses were employed to monitor time-resolved changes in the metabolomes of germinating A. nidulans conidiospores. RESULTS Analyses revealed that trehalose hydrolysis plays a pivotal role in conidiospore germination and highlighted the osmoregulating role of the sugar alcohols, glycerol, and mannitol. CONCLUSION The ineffectiveness to introduce active ingredients that exhibit new mode(s)-of-action as fungicides, dictates the urge for the discovery of PPPs, which could be exploited to combat major plant protection issues. Based on the crucial role of trehalose hydrolysis in conidiospore dormancy breakage, and the subsequent involvement of glycerol in their germination, it is plausible to suggest their biosynthesis pathways as potential novel targets for the next-generation antifungal PPPs. Our study confirmed the applicability of untargeted metabolomics as a hypothesis-generation tool in PPPs' research and discovery.
Collapse
Affiliation(s)
- Ioannis F Kalampokis
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Sotirios Amillis
- Department of Biology, National and Kapodistrian University of Athens, 15784, Panepistimioupolis, Athens, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, 15784, Panepistimioupolis, Athens, Greece
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Konstantinos A Aliferis
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece.
- Department of Plant Science, McGill University, 21111 Lakeshore Road, Montréal, H9X 3V9, Canada.
| |
Collapse
|
64
|
Cash A, Theus MH. Mechanisms of Blood-Brain Barrier Dysfunction in Traumatic Brain Injury. Int J Mol Sci 2020; 21:ijms21093344. [PMID: 32397302 PMCID: PMC7246537 DOI: 10.3390/ijms21093344] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injuries (TBIs) account for the majority of injury-related deaths in the United States with roughly two million TBIs occurring annually. Due to the spectrum of severity and heterogeneity in TBIs, investigation into the secondary injury is necessary in order to formulate an effective treatment. A mechanical consequence of trauma involves dysregulation of the blood–brain barrier (BBB) which contributes to secondary injury and exposure of peripheral components to the brain parenchyma. Recent studies have shed light on the mechanisms of BBB breakdown in TBI including novel intracellular signaling and cell–cell interactions within the BBB niche. The current review provides an overview of the BBB, novel detection methods for disruption, and the cellular and molecular mechanisms implicated in regulating its stability following TBI.
Collapse
Affiliation(s)
- Alison Cash
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
| | - Michelle H. Theus
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
- The Center for Regenerative Medicine, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: 1-540-231-0909; Fax: 1-540-231-7425
| |
Collapse
|
65
|
Differential Aquaporin Response to Distinct Effects of Two Zn Concentrations after Foliar Application in Pak Choi (Brassica rapa L.) Plants. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10030450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Zinc (Zn) is considered an essential element with beneficial effects on plant cells; however, as a heavy metal, it may induce adverse effects on plants if its concentration exceeds a threshold. In this work, the effects of short-term and prolonged application of low (25 µM) and high (500 µM) Zn concentrations on pak choi (Brassica rapa L.) plants were evaluated. For this, two experiments were conducted. In the first, the effects of short-term (15 h) and partial foliar application were evaluated, and in the second a long-term (15 day) foliar application was applied. The results indicate that at short-term, Zn may induce a rapid hydraulic signal from the sprayed leaves to the roots, leading to changes in root hydraulic conductance but without effects on the whole-leaf gas exchange parameters. Root accumulation of Zn may prevent leaf damage. The role of different root and leaf aquaporin isoforms in the mediation of this signal is discussed, since significant variations in PIP1 and PIP2 gene expression were observed. In the second experiment, low Zn concentration had a beneficial effect on plant growth and specific aquaporin isoforms were differentially regulated at the transcriptional level in the roots. By contrast, the high Zn concentration had a detrimental effect on growth, with reductions in the root hydraulic conductance, leaf photosynthesis rate and Ca2+ uptake in the roots. The abundance of the PIP1 isoforms was significantly increased during this response. Therefore, a 25 µM Zn dose resulted in a positive effect in pak choi growth through an increased root hydraulic conductance.
Collapse
|
66
|
Tulek A, Vieira AR, Weber ML, Bezamat M, Deeley K, Stenhagen KR, Sehic A, Sovik JB, Mulic A. Aquaporins' Influence on Different Dental Erosive Wear Phenotypes in Humans. Caries Res 2020; 54:165-175. [PMID: 32045909 DOI: 10.1159/000505965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/16/2020] [Indexed: 11/19/2022] Open
Abstract
Dental erosive wear is a multifactorial condition of high prevalence. Nowadays, there is an emphasis on discovering individual genetic predisposition for the development of this condition. Aquaporins (AQPs) are water channel proteins expressed in salivary glands, as well as during tooth development. They are involved in salivary secretion and composition and linked to physiological protection of the oral cavity. The aim of this study was to explore the relationship between different dental erosive wear phenotypes, AQP genes, and selected environmental factors. Data from 705 dental patients were used to investigate the association between dental erosive wear phenotypes and AQPs' single-nucleotide variants. Phenotypes were further analyzed considering diet and oral hygiene data, using logistic regression analysis, as implemented in PLINK, with the assumption that dental erosive wear is a complex gene-environment model. Associations were found between severe erosive tooth wear and rs2878771 (AQP2) for the genotypic (p = 0.02) and dominant (p = 0.03) models, and rs3736309 (AQP5) for the allelic model (p = 0.02). Logistic regression analyses, after implementing the Bonferroni correction, showed that several significant associations were present when covariates were included, suggesting that a strong environmental component is present. Our results show that dental erosive wear establishes under a gene-environmental complex model.
Collapse
Affiliation(s)
- Amela Tulek
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway,
| | - Alexandre Rezende Vieira
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Megan L Weber
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mariana Bezamat
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kathleen Deeley
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Amer Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Jenny Bogstad Sovik
- Department of Cariology, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Aida Mulic
- Nordic Institute of Dental Materials, Oslo, Norway
| |
Collapse
|
67
|
Hosoi K, Yao C, Hasegawa T, Yoshimura H, Akamatsu T. Dynamics of Salivary Gland AQP5 under Normal and Pathologic Conditions. Int J Mol Sci 2020; 21:ijms21041182. [PMID: 32053992 PMCID: PMC7072788 DOI: 10.3390/ijms21041182] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
AQP5 plays an important role in the salivary gland function. The mRNA and protein for aquaporin 5 (AQP5) are expressed in the acini from embryonic days E13-16 and E17-18, respectively and for entire postnatal days. Ligation-reopening of main excretory duct induces changes in the AQP5 level which would give an insight for mechanism of regeneration/self-duplication of acinar cells. The AQP5 level in the submandibular gland (SMG) decreases by chorda tympani denervation (CTD) via activation autophagosome, suggesting that its level in the SMG under normal condition is maintained by parasympathetic nerve. Isoproterenol (IPR), a β-adrenergic agonist, raised the levels of membrane AQP5 protein and its mRNA in the parotid gland (PG), suggesting coupling of the AQP5 dynamic and amylase secretion-restoration cycle. In the PG, lipopolysaccharide (LPS) is shown to activate mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signalings and potentially downregulate AQP5 expression via cross coupling of activator protein-1 (AP-1) and NF-κB. In most species, Ser-156 and Thr-259 of AQP5 are experimentally phosphorylated, which is enhanced by cAMP analogues and forskolin. cAMP-dependent phosphorylation of AQP5 does not seem to be markedly involved in regulation of its intracellular trafficking but seems to play a role in its constitutive expression and lateral diffusion in the cell membrane. Additionally, Ser-156 phosphorylation may be important for cancer development.
Collapse
Affiliation(s)
- Kazuo Hosoi
- Department of Molecular Oral Physiology, Division of Oral Science, Graduate School of Biomedical Sciences, Tokushima University, Tokushima-shi, Tokushima 770-8504, Japan; (C.Y.); (T.H.); (T.A.)
- Kosei Pharmaceutical Co., Ltd., Osaka-shi, Osaka 540–0039, Japan
- Correspondence: (K.H.); (H.Y.)
| | - Chenjuan Yao
- Department of Molecular Oral Physiology, Division of Oral Science, Graduate School of Biomedical Sciences, Tokushima University, Tokushima-shi, Tokushima 770-8504, Japan; (C.Y.); (T.H.); (T.A.)
| | - Takahiro Hasegawa
- Department of Molecular Oral Physiology, Division of Oral Science, Graduate School of Biomedical Sciences, Tokushima University, Tokushima-shi, Tokushima 770-8504, Japan; (C.Y.); (T.H.); (T.A.)
| | - Hiroshi Yoshimura
- Department of Molecular Oral Physiology, Division of Oral Science, Graduate School of Biomedical Sciences, Tokushima University, Tokushima-shi, Tokushima 770-8504, Japan; (C.Y.); (T.H.); (T.A.)
- Correspondence: (K.H.); (H.Y.)
| | - Tetsuya Akamatsu
- Department of Molecular Oral Physiology, Division of Oral Science, Graduate School of Biomedical Sciences, Tokushima University, Tokushima-shi, Tokushima 770-8504, Japan; (C.Y.); (T.H.); (T.A.)
- Field of Biomolecular Functions and Technology, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima-shi, Tokushima 770-8513, Japan
| |
Collapse
|
68
|
Kosicka E, Lesicki A, Pieńkowska JR. Molluscan aquaporins: an overview, with some notes on their role in the entry into aestivation in gastropods. MOLLUSCAN RESEARCH 2020. [DOI: 10.1080/13235818.2020.1716442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ewa Kosicka
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Andrzej Lesicki
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna R. Pieńkowska
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
69
|
Kitchen P, Salman MM, Pickel SU, Jennings J, Törnroth-Horsefield S, Conner MT, Bill RM, Conner AC. Water channel pore size determines exclusion properties but not solute selectivity. Sci Rep 2019; 9:20369. [PMID: 31889130 PMCID: PMC6937295 DOI: 10.1038/s41598-019-56814-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/12/2019] [Indexed: 11/24/2022] Open
Abstract
Aquaporins (AQPs) are a ubiquitous family of transmembrane water channel proteins. A subgroup of AQP water channels also facilitates transmembrane diffusion of small, polar solutes. A constriction within the pore, the aromatic/arginine (ar/R) selectivity filter, is thought to control solute permeability: previous studies on single representative water channel proteins suggest narrow channels conduct water, whilst wider channels permit passage of solutes. To assess this model of selectivity, we used mutagenesis, permeability measurements and in silico comparisons of water-specific as well as glycerol-permeable human AQPs. Our studies show that single amino acid substitutions in the selectivity filters of AQP1, AQP4 and AQP3 differentially affect glycerol and urea permeability in an AQP-specific manner. Comparison between in silico-calculated channel cross-sectional areas and in vitro permeability measurements suggests that selectivity filter cross-sectional area predicts urea but not glycerol permeability. Our data show that substrate discrimination in water channels depends on a complex interplay between the solute, pore size, and polarity, and that using single water channel proteins as representative models has led to an underestimation of this complexity.
Collapse
Affiliation(s)
- Philip Kitchen
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Simone U Pickel
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Jordan Jennings
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Matthew T Conner
- School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wulfruna St, Wolverhampton, UK
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Alex C Conner
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
70
|
Oliveira Pinho J, Matias M, Gaspar MM. Emergent Nanotechnological Strategies for Systemic Chemotherapy against Melanoma. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1455. [PMID: 31614947 PMCID: PMC6836019 DOI: 10.3390/nano9101455] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Melanoma is an aggressive form of skin cancer, being one of the deadliest cancers in the world. The current treatment options involve surgery, radiotherapy, targeted therapy, immunotherapy and the use of chemotherapeutic agents. Although the last approach is the most used, the high toxicity and the lack of efficacy in advanced stages of the disease have demanded the search for novel bioactive molecules and/or efficient drug delivery systems. The current review aims to discuss the most recent advances on the elucidation of potential targets for melanoma treatment, such as aquaporin-3 and tyrosinase. In addition, the role of nanotechnology as a valuable strategy to effectively deliver selective drugs is emphasized, either incorporating/encapsulating synthetic molecules or natural-derived compounds in lipid-based nanosystems such as liposomes. Nanoformulated compounds have been explored for their improved anticancer activity against melanoma and promising results have been obtained. Indeed, they displayed improved physicochemical properties and higher accumulation in tumoral tissues, which potentiated the efficacy of the compounds in pre-clinical experiments. Overall, these experiments opened new doors for the discovery and development of more effective drug formulations for melanoma treatment.
Collapse
Affiliation(s)
- Jacinta Oliveira Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
71
|
Reppetti J, Reca A, Seyahian EA, Medina Y, Martínez N, Szpilbarg N, Damiano AE. Intact caveolae are required for proper extravillous trophoblast migration and differentiation. J Cell Physiol 2019; 235:3382-3392. [DOI: 10.1002/jcp.29226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Julieta Reppetti
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)‐CONICET‐ Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - Alejandra Reca
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)‐CONICET‐ Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - E. Abril Seyahian
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)‐CONICET‐ Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - Yollyseth Medina
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)‐CONICET‐ Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - Nora Martínez
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)‐CONICET‐ Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - Natalia Szpilbarg
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)‐CONICET‐ Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - Alicia E. Damiano
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)‐CONICET‐ Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Buenos Aires Argentina
| |
Collapse
|
72
|
Bordone MP, Salman MM, Titus HE, Amini E, Andersen JV, Chakraborti B, Diuba AV, Dubouskaya TG, Ehrke E, Espindola de Freitas A, Braga de Freitas G, Gonçalves RA, Gupta D, Gupta R, Ha SR, Hemming IA, Jaggar M, Jakobsen E, Kumari P, Lakkappa N, Marsh APL, Mitlöhner J, Ogawa Y, Paidi RK, Ribeiro FC, Salamian A, Saleem S, Sharma S, Silva JM, Singh S, Sulakhiya K, Tefera TW, Vafadari B, Yadav A, Yamazaki R, Seidenbecher CI. The energetic brain - A review from students to students. J Neurochem 2019; 151:139-165. [PMID: 31318452 DOI: 10.1111/jnc.14829] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia-neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic ('housekeeping') cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non-neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.
Collapse
Affiliation(s)
- Melina Paula Bordone
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Haley E Titus
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elham Amini
- Department of Medicine, University Kebangsaan Malaysia Medical Centre (HUKM), Cheras, Kuala Lumpur, Malaysia
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Artem V Diuba
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatsiana G Dubouskaya
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Eric Ehrke
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Andiara Espindola de Freitas
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, California, USA
| | | | | | | | - Richa Gupta
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Sharon R Ha
- Baylor College of Medicine, Houston, Texas, USA
| | - Isabel A Hemming
- Brain Growth and Disease Laboratory, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,School of Medicine and Pharmacology, The University of Western Australia, Crawley, Australia
| | - Minal Jaggar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Punita Kumari
- Defense Institute of Physiology and allied sciences, Defense Research and Development Organization, Timarpur, Delhi, India
| | - Navya Lakkappa
- Department of Pharmacology, JSS college of Pharmacy, Ooty, India
| | - Ashley P L Marsh
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jessica Mitlöhner
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
| | - Yuki Ogawa
- The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | | | | | - Ahmad Salamian
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Suraiya Saleem
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sorabh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Joana M Silva
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
| | - Shripriya Singh
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Kunjbihari Sulakhiya
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Tesfaye Wolde Tefera
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Behnam Vafadari
- Institute of environmental medicine, UNIKA-T, Technical University of Munich, Munich, Germany
| | - Anuradha Yadav
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Reiji Yamazaki
- Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
73
|
Huang Y, Li SN, Zhou XY, Zhang LX, Chen GX, Wang TH, Xia QJ, Liang N, Zhang X. The Dual Role of AQP4 in Cytotoxic and Vasogenic Edema Following Spinal Cord Contusion and Its Possible Association With Energy Metabolism via COX5A. Front Neurosci 2019; 13:584. [PMID: 31258460 PMCID: PMC6587679 DOI: 10.3389/fnins.2019.00584] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 05/23/2019] [Indexed: 02/05/2023] Open
Abstract
Spinal cord edema, mainly including vasogenic and cytotoxic edema, influences neurological outcome after spinal cord contusion (SCC). Aquaporin 4 (AQP4) is the most ubiquitous water channel in the central nervous system (CNS), which is a rate-limiting factor in vasogenic edema expressing in brain injury, and it contributes to the formation of cytotoxic edema locating in astrocytes. However, little is known about the regulatory mechanism of AQP4 within vasogenic and cytotoxic edema in SCC, and whether the regulation mechanism of AQP4 is related to Cytochrome coxidase (COX5A) affecting energy metabolism. Therefore, the SCC model is established by Allen’s method, and the degree of edema and neuronal area is measured. The motor function of rats is evaluated by the Basso, Beattie, and Bresnahan (BBB) scoring system. Meanwhile, AQP4 and COX5A are detected by real-time quantitative PCR (qRT-PCR) and western blot (WB). The localization of targeted protein is exhibited by immunohistochemical staining (IHC) and immunofluorescence (IF). Additionally, the methodology of AQP4 lentivirus-mediated RNA interference (AQP4-RNAi) is used to reveal the effect on edema of SCC and the regulating molecular mechanism. Firstly, we observe that the tissue water content increases after SCC and decreases after the peak value of tissue water content at 3 days (P < 0.05) with abundant expression of AQP4 protein locating around vascular endothelial cells (VECs), which suggests that the increasing AQP4 promotes water reabsorption and improves vasogenic edema in the early stage of SCC. However, the neuronal area is larger than in the sham group in the 7 days (P < 0.05) with the total water content of spinal cord decrease. Meanwhile, AQP4 migrates from VECs to neuronal cytomembrane, which indicates that AQP4 plays a crucial role in aggravating the formation and development of cytotoxic edema in the middle stages of SCC. Secondly, AQP4-RNAi is used to elucidate the mechanism of AQP4 to edema of SCC. The neuronal area shrinks and the area of cytotoxic edema reduces after AQP4 downregulation. The BBB scores are significantly higher than in the vector group after AQP4-RNAi at 5, 7, and 14 (P < 0.05). There is a relationship between AQP4 and COX5A shown by bioinformatics analysis. After AQP4 inhibition, the expression of COX5A is significantly upregulated in the swelling astrocytes. Therefore, the inhibition of AQP4 expression reduces cytotoxic edema in SCC and improves motor function, which may be associated with upregulation of COX5A via affecting energy metabolism. Moreover, it is not clear how the inhibition of AQP4 directly causes the upregulation of COX5A.
Collapse
Affiliation(s)
- Yuan Huang
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Sheng-Nan Li
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiu-Ya Zhou
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | | | - Gang-Xian Chen
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, China.,Institute of Neurological Diseases, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Jie Xia
- Institute of Neurological Diseases, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Liang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
74
|
Expression analysis of the aquaporins during zebrafish embryonic development. Gene Expr Patterns 2019; 32:38-43. [DOI: 10.1016/j.gep.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/17/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022]
|
75
|
Choi YS, Park JH, Yoon JK, Yoon JS, Kim JS, Lee JH, Yun BH, Park JH, Seo SK, Cho S, Lee BS, Taylor HS. Potential roles of aquaporin 9 in the pathogenesis of endometriosis. ACTA ACUST UNITED AC 2019; 25:373-384. [DOI: 10.1093/molehr/gaz025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/09/2019] [Indexed: 12/14/2022]
Abstract
AbstractAquaporins (AQPs) are involved in cell migration, proliferation and carcinogenesis in tumor development and physiologic inflammatory processes, but their associations with endometriosis have not been fully evaluated. In this study, tissue samples were obtained from women undergoing laparoscopic surgery for endometriosis and other benign conditions. Analysis of expressions of AQP subtypes in eutopic and ectopic endometrium of patients with endometriosis (Eu-EMS and Ect-EMS, respectively) and eutopic endometrium of control patients without endometriosis (Eu-CTL) were performed using the NanoString nCounter System and western blotting. Human endometrial stromal cells (HESCs) were cultured and transfected with the siRNA of the AQP of interest. Among the AQP1–9 subtypes, endometrial expression of AQP2 and AQP8 was significantly increased, whereas AQP9 expression was significantly decreased in the Eu-EMS group compared to the Eu-CTL group. Comparison of expression of AQP2, AQP8 and AQP9 among Eu-EMS, Ect-EMS and Eu-CTL groups revealed significant differences for only AQP9. Expression of AQP9 in the Eu-EMS group was decreased compared with that in Eu-CTL. After transfection of AQP9 siRNA in HESCs, expressions of MMP2 and MMP9 were significantly elevated. Increased expression of phosphorylated ERK 1/2 and phosphorylated p38 MAPK proteins after transfection was also confirmed using western blot analysis. Increased migration and invasion potentials of HESCs after transfection were determined by migration and wound healing assays. These findings suggest that AQP9 may be involved in the pathogenesis of endometriosis and warrant further investigation as a potential therapeutic target for treating endometriosis.
Collapse
Affiliation(s)
- Young Sik Choi
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyun Park
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong-Kee Yoon
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Sun Yoon
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Sook Kim
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hoon Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Bo Hyun Yun
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Hyun Park
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - SiHyun Cho
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Byung Seok Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
76
|
Verkerk AO, Lodder EM, Wilders R. Aquaporin Channels in the Heart-Physiology and Pathophysiology. Int J Mol Sci 2019; 20:ijms20082039. [PMID: 31027200 PMCID: PMC6514906 DOI: 10.3390/ijms20082039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian aquaporins (AQPs) are transmembrane channels expressed in a large variety of cells and tissues throughout the body. They are known as water channels, but they also facilitate the transport of small solutes, gasses, and monovalent cations. To date, 13 different AQPs, encoded by the genes AQP0–AQP12, have been identified in mammals, which regulate various important biological functions in kidney, brain, lung, digestive system, eye, and skin. Consequently, dysfunction of AQPs is involved in a wide variety of disorders. AQPs are also present in the heart, even with a specific distribution pattern in cardiomyocytes, but whether their presence is essential for proper (electro)physiological cardiac function has not intensively been studied. This review summarizes recent findings and highlights the involvement of AQPs in normal and pathological cardiac function. We conclude that AQPs are at least implicated in proper cardiac water homeostasis and energy balance as well as heart failure and arsenic cardiotoxicity. However, this review also demonstrates that many effects of cardiac AQPs, especially on excitation-contraction coupling processes, are virtually unexplored.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Elisabeth M Lodder
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
77
|
Camilleri M, Carlson P, Chedid V, Vijayvargiya P, Burton D, Busciglio I. Aquaporin Expression in Colonic Mucosal Biopsies From Irritable Bowel Syndrome With Diarrhea. Clin Transl Gastroenterol 2019; 10:e00019. [PMID: 31033595 PMCID: PMC6602785 DOI: 10.14309/ctg.0000000000000019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/31/2019] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Aquaporin (AQP) channels are involved in regulating fluid homeostasis in the colon. Several AQP channels were detected in human colon epithelial cells. In a previous study, rats fed 1% (wt/wt) sodium cholate had increased AQP3, 7, and 8 levels, suggesting AQP involvement in bile acid diarrhea (BAD). Our aim was to compare AQP expressions in rectosigmoid mucosal (RSM) biopsies from patients with irritable bowel syndrome-diarrhea (IBS-D) (divided into those with normal or high fecal BA excretion) and in patients with IBS-constipation (IBS-C) compared with healthy controls. METHODS In RSM biopsies from 44 patients with IBS-D (with normal (<) or high (>2,337 μmol/48 hours (BAD)) fecal BA excretion), 10 patients with IBS-C, and 17 healthy controls, we measured expressions of AQP1, 3, 7, and 8, with RT-PCR (housekeeper gene GAPDH). We analyzed RNA for expression by RT-PCR assays, with expression calculated using 2-based fold-change. Comparisons of IBS groups were corrected for false detection rate (Bonferroni correction for 12 comparisons; P < 0.0042). AQP protein measurements on biopsies from 3 healthy controls, 3 patients with IBS-D, and 3 patients with BAD were performed by western blots (GAPDH housekeeping protein). RESULTS In RSM from patients with IBS-D (but not IBS-C), mRNA expression of AQP3 was decreased, and AQP7 and 8 were increased relative to controls. Fold differences were not different in IBS-D with or without BAD. Western blots confirmed increased expression of AQP7 and 8 and decreased AQP3 proteins in biopsies from patients with IBS-D compared with controls. CONCLUSIONS Increased AQP7 and 8 and decreased AQP3 expressions in RSM suggest that further studies on AQPs' potential role in the pathophysiology of diarrhea in IBS-D are warranted.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Minnesota, USA
| | - Paula Carlson
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Minnesota, USA
| | - Victor Chedid
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Minnesota, USA
| | - Priya Vijayvargiya
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Minnesota, USA
| | - Duane Burton
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Minnesota, USA
| | - Irene Busciglio
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Minnesota, USA
| |
Collapse
|
78
|
Abir-Awan M, Kitchen P, Salman MM, Conner MT, Conner AC, Bill RM. Inhibitors of Mammalian Aquaporin Water Channels. Int J Mol Sci 2019; 20:ijms20071589. [PMID: 30934923 PMCID: PMC6480248 DOI: 10.3390/ijms20071589] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/29/2023] Open
Abstract
Aquaporins (AQPs) are water channel proteins that are essential to life, being expressed in all kingdoms. In humans, there are 13 AQPs, at least one of which is found in every organ system. The structural biology of the AQP family is well-established and many functions for AQPs have been reported in health and disease. AQP expression is linked to numerous pathologies including tumor metastasis, fluid dysregulation, and traumatic injury. The targeted modulation of AQPs therefore presents an opportunity to develop novel treatments for diverse conditions. Various techniques such as video microscopy, light scattering and fluorescence quenching have been used to test putative AQP inhibitors in both AQP-expressing mammalian cells and heterologous expression systems. The inherent variability within these methods has caused discrepancy and many molecules that are inhibitory in one experimental system (such as tetraethylammonium, acetazolamide, and anti-epileptic drugs) have no activity in others. Some heavy metal ions (that would not be suitable for therapeutic use) and the compound, TGN-020, have been shown to inhibit some AQPs. Clinical trials for neuromyelitis optica treatments using anti-AQP4 IgG are in progress. However, these antibodies have no effect on water transport. More research to standardize high-throughput assays is required to identify AQP modulators for which there is an urgent and unmet clinical need.
Collapse
Affiliation(s)
- Mohammed Abir-Awan
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Philip Kitchen
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA.
| | - Matthew T Conner
- Research Institute of Health Sciences, School of Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Alex C Conner
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
79
|
Snuggs JW, Day RE, Bach FC, Conner MT, Bunning RAD, Tryfonidou MA, Le Maitre CL. Aquaporin expression in the human and canine intervertebral disc during maturation and degeneration. JOR Spine 2019; 2:e1049. [PMID: 31463463 PMCID: PMC6686802 DOI: 10.1002/jsp2.1049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
The intervertebral disc (IVD) is a highly hydrated tissue, the rich proteoglycan matrix imbibes water, enabling the disc to withstand compressive loads. During aging and degeneration increased matrix degradation leads to dehydration and loss of function. Aquaporins (AQP) are a family of transmembrane channel proteins that selectively allow the passage of water in and out of cells and are responsible for maintaining water homeostasis in many tissues. Here, the expression of all 13 AQPs at gene and protein level was investigated in human and canine nondegenerate and degenerate IVDs to develop an understanding of the role of AQPs during degeneration. Furthermore, in order to explore the transition of notochordal cells (NCs) towards nucleus pulposus (NP) cells, AQP expression was investigated in canine IVDs enriched in NCs to understand the role of AQPs in IVD maturation. AQP0, 1, 2, 3, 4, 5, 6, 7, and 9 were expressed at gene and protein level in both nondegenerate and degenerate human NP tissue. AQP2 and 7 immunopositivity increased with degeneration in human NP tissue, whereas AQP4 expression decreased with degeneration in a similar way to AQP1 and 5 shown previously. All AQP proteins that were identified in human NP tissue were also expressed in canine NP tissue. AQP2, 5, 6, and 9 were found to localize to vacuole-like membranes and cell membranes in NC cells. In conclusion, AQPs were abundantly expressed in human and canine IVDs. The expression of many AQP isotypes potentially alludes to multifaceted functions related to adaption of NP cells to the conditions they encounter within their microenvironment in health and degeneration. The presence of AQPs within the IVD may suggest an adaptive role for these water channels during the development and maintenance of the healthy, mature IVD.
Collapse
Affiliation(s)
- Joseph W. Snuggs
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Rebecca E. Day
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Frances C. Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Matthew T. Conner
- Faculty of Science and EngineeringUniversity of WolverhamptonWolverhamptonUK
| | | | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | |
Collapse
|
80
|
Michałek K, Grabowska M, Lepczyński A. Cellular localization and putative role of aquaporin-2 Ser-261 in the bovine kidney. JOURNAL OF ANIMAL AND FEED SCIENCES 2019. [DOI: 10.22358/jafs/103815/2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
81
|
Aikman B, de Almeida A, Meier-Menches SM, Casini A. Aquaporins in cancer development: opportunities for bioinorganic chemistry to contribute novel chemical probes and therapeutic agents. Metallomics 2019; 10:696-712. [PMID: 29766198 DOI: 10.1039/c8mt00072g] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aquaporins (AQPs) are membrane proteins allowing permeation of water, glycerol & hydrogen peroxide across biomembranes, and playing an important role in water homeostasis in different organs, exocrine gland secretion, urine concentration, skin moisturization, fat metabolism and neural signal transduction. Notably, a large number of studies showed that AQPs are closely associated with cancer biological functions and expressed in more than 20 human cancer cell types. Furthermore, AQP expression is positively correlated with tumour types, grades, proliferation, migration, angiogenesis, as well as tumour-associated oedema, rendering these membrane channels attractive as both diagnostic and therapeutic targets in cancer. Recent developments in the field of AQPs modulation have identified coordination metal-based complexes as potent and selective inhibitors of aquaglyceroporins, opening new avenues in the application of inorganic compounds in medicine and chemical biology. The present review is aimed at providing an overview on AQP structure and function, mainly in relation to cancer. In this context, the exploration of coordination metal compounds as possible inhibitors of aquaporins may open the way to novel chemical approaches to study AQP roles in tumour growth and potentially to new drug families. Thus, we describe recent results in the field and reflect upon the potential of inorganic chemistry in providing compounds to modulate the activity of "elusive" membrane targets as the aquaporins.
Collapse
Affiliation(s)
- Brech Aikman
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
| | | | | | | |
Collapse
|
82
|
Nesverova V, Törnroth-Horsefield S. Phosphorylation-Dependent Regulation of Mammalian Aquaporins. Cells 2019; 8:cells8020082. [PMID: 30678081 PMCID: PMC6406877 DOI: 10.3390/cells8020082] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Water homeostasis is fundamental for cell survival. Transport of water across cellular membranes is governed by aquaporins—tetrameric integral membrane channels that are highly conserved throughout the prokaryotic and eukaryotic kingdoms. In eukaryotes, specific regulation of these channels is required and is most commonly carried out by shuttling the protein between cellular compartments (trafficking) or by opening and closing the channel (gating). Structural and functional studies have revealed phosphorylation as a ubiquitous mechanism in aquaporin regulation by both regulatory processes. In this review we summarize what is currently known about the phosphorylation-dependent regulation of mammalian aquaporins. Focusing on the water-specific aquaporins (AQP0–AQP5), we discuss how gating and trafficking are controlled by phosphorylation and how phosphorylation affects the binding of aquaporins to regulatory proteins, thereby highlighting structural details and dissecting the contribution of individual phosphorylated residues when possible. Our aim is to provide an overview of the mechanisms behind how aquaporin phosphorylation controls cellular water balance and to identify key areas where further studies are needed.
Collapse
Affiliation(s)
- Veronika Nesverova
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Box 124, 221 00 Lund, Sweden.
| | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Box 124, 221 00 Lund, Sweden.
| |
Collapse
|
83
|
Farhadi E, Mahmoudi M, Rahmani F, Yousefi B, Sarafnejad A, Kavosi H, Karimizadeh E, Jamshidi A, Gharibdoost F. Attenuation of aquaporin-3 and epidermal growth factor receptor expression and activation in systemic sclerosis dermal fibroblasts. J Cell Physiol 2018; 234:12876-12883. [PMID: 30536805 DOI: 10.1002/jcp.27952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Impaired wound healing and skin dehydration are the mainstay of systemic sclerosis (SSc) cutaneous manifestations. Aquaporin-3 (AQP3) has a pivotal role in skin hydration and wound healing. Epidermal growth factor receptor (EGFR) activation is impaired in SSc fibroblasts. It is unclear whether AQP3 downregulation or epidermal growth factor (EGF) signaling are the primary points of dysregulation in SSc patients. METHODS Skin punch biopsies were obtained from 10 SSc patients and 10 healthy subjects. The mRNA and/or protein expression levels of AQP3, EGFR/p-EGFR, matrix metalloproteinase-1/2/9 (MMP-1/2/9), and tissue inhibitors of metalloproteinase-1 (TIMP1) at baseline and after EGF and transforming growth factor-β1 (TGF-β1) treatment was evaluated in extracted fibroblasts using real-time polymerase chain reaction and western blot analysis. RESULTS SSc fibroblasts expressed lower AQP3 and EGFR, compared with normal fibroblasts. Normal fibroblasts increased AQP3 expression in response to EGF whereas AQP3 expression had no change in EGF-treated-SSc fibroblasts. Likewise, EGFR was activated in response to EGF in the normal group but not SSc group. Baseline expression of MMP-1/2/9 and TIMP1 was not different between SSc and controls. EGF treatment did not result in alteration of any MMPs expression in either of the groups. Combination treatment resulted in a significant upregulation of MMP-1 in normal fibroblasts compared with SSc fibroblasts, while in SSc fibroblasts MMP-9 expression was upregulated in response to treatment with TGF-β1 only. CONCLUSION Downregulation of AQP3 expression in SSc fibroblasts may be related to reduced EGFR expression and activation. TGF-β1 (alone or in combination with EGF) only can upregulate AQP3 expression in SSc fibroblasts so, TGF-β1 affect MMP-1 and MMP-9 just in SSc fibroblasts.
Collapse
Affiliation(s)
- Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Rahmani
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abdolfattah Sarafnejad
- Department of Immunology, School of Public Health and Institute of Public Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Kavosi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Karimizadeh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
84
|
Ozu M, Galizia L, Acuña C, Amodeo G. Aquaporins: More Than Functional Monomers in a Tetrameric Arrangement. Cells 2018; 7:E209. [PMID: 30423856 PMCID: PMC6262540 DOI: 10.3390/cells7110209] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/27/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) function as tetrameric structures in which each monomer has its own permeable pathway. The combination of structural biology, molecular dynamics simulations, and experimental approaches has contributed to improve our knowledge of how protein conformational changes can challenge its transport capacity, rapidly altering the membrane permeability. This review is focused on evidence that highlights the functional relationship between the monomers and the tetramer. In this sense, we address AQP permeation capacity as well as regulatory mechanisms that affect the monomer, the tetramer, or tetramers combined in complex structures. We therefore explore: (i) water permeation and recent evidence on ion permeation, including the permeation pathway controversy-each monomer versus the central pore of the tetramer-and (ii) regulatory mechanisms that cannot be attributed to independent monomers. In particular, we discuss channel gating and AQPs that sense membrane tension. For the latter we propose a possible mechanism that includes the monomer (slight changes of pore shape, the number of possible H-bonds between water molecules and pore-lining residues) and the tetramer (interactions among monomers and a positive cooperative effect).
Collapse
Affiliation(s)
- Marcelo Ozu
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| | - Luciano Galizia
- Instituto de investigaciones Médicas A. Lanari, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1427ARO, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Canales Iónicos, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Buenos Aires C1427ARO, Argentina.
| | - Cynthia Acuña
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| |
Collapse
|
85
|
Szpilbarg N, Martínez NA, Di Paola M, Reppetti J, Medina Y, Seyahian A, Castro Parodi M, Damiano AE. New Insights Into the Role of Placental Aquaporins and the Pathogenesis of Preeclampsia. Front Physiol 2018; 9:1507. [PMID: 30425647 PMCID: PMC6218616 DOI: 10.3389/fphys.2018.01507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023] Open
Abstract
Accumulated evidence suggests that an abnormal placentation and an altered expression of a variety of trophoblast transporters are associated to preeclampsia. In this regard, an abnormal expression of AQP3 and AQP9 was reported in these placentas. Recent data suggests that placental AQPs are not only water channel proteins and that may participate in relevant processes required for a normal placental development, such as cell migration and apoptosis. Recently we reported that a normal expression of AQP3 is required for the migration of extravillous trophoblast (EVT) cells. Thus, alterations in this protein might lead to an insufficient transformation of the maternal spiral arteries resulting in fluctuations of oxygen tension, a potent stimulus for oxidative damage and trophoblast apoptosis. In this context, the increase of oxygen and nitrogen reactive species could nitrate AQP9, producing the accumulation of a non-functional protein affecting the survival of the villous trophoblast (VT). This may trigger the exacerbated release of apoptotic VT fragments into maternal circulation producing the systemic endothelial dysfunction underlying the maternal syndrome. Therefore, our hypothesis is that the alteration in the expression of placental AQPs observed at the end of gestation may take place during the trophoblast stem cell differentiation, disturbing both EVT and VT cells development, or during the VT differentiation and turnover. In both situations, VT is affected and at last the maternal vascular system is activated leading to the clinical manifestations of preeclampsia.
Collapse
Affiliation(s)
- Natalia Szpilbarg
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora A Martínez
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauricio Di Paola
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Reppetti
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yollyseth Medina
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Abril Seyahian
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauricio Castro Parodi
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia E Damiano
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
86
|
Fujinaka CM, Waas M, Gundry RL. Mass Spectrometry-Based Identification of Extracellular Domains of Cell Surface N-Glycoproteins: Defining the Accessible Surfaceome for Immunophenotyping Stem Cells and Their Derivatives. Methods Mol Biol 2018; 1722:57-78. [PMID: 29264798 DOI: 10.1007/978-1-4939-7553-2_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human stem cells and their progeny are valuable for a variety of research applications and have the potential to revolutionize approaches to regenerative medicine. However, we currently have limited tools to permit live isolation of homogeneous populations of cells apt for mechanistic studies or cellular therapies. While these challenges can be overcome through the use of immunophenotyping based on accessible cell surface markers, the success of this process depends on the availability of reliable antibodies and well-characterized markers, which are lacking for most stem cell lineages. This chapter outlines an iterative process for the development of new cell surface marker barcodes for identifying and selecting stem cell derived progeny of specific cell types, subtypes, and maturation stages, where antibody-independent identification of cell surface proteins is achieved using a modern chemoproteomic approach to specifically identify N-glycoproteins localized to the cell surface. By taking advantage of a large repository of available cell surfaceome data, proteins that are unlikely to confer cell type specificity can be rapidly eliminated from consideration. Subsequently, targeted quantitation by mass spectrometry can be used to refine candidates of interest, and a bioinformatic visualization tool is key to mapping experimental data to candidate protein sequences for the purpose of epitope selection during the antibody development phase. Overall, the process of developing cell surface barcodes for immunophenotyping is iterative and can include multiple rounds of discovery, refinement, and validation depending on the phenotypic resolution required.
Collapse
Affiliation(s)
- Chelsea M Fujinaka
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthew Waas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
87
|
Calvanese L, D'Auria G, Vangone A, Falcigno L, Oliva R. Structural Basis for Mutations of Human Aquaporins Associated to Genetic Diseases. Int J Mol Sci 2018; 19:E1577. [PMID: 29799470 PMCID: PMC6032259 DOI: 10.3390/ijms19061577] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Aquaporins (AQPs) are among the best structural-characterized membrane proteins, fulfilling the role of allowing water flux across cellular membranes. Thus far, 34 single amino acid polymorphisms have been reported in HUMSAVAR for human aquaporins as disease-related. They affect AQP2, AQP5 and AQP8, where they are associated with nephrogenic diabetes insipidus, keratoderma and colorectal cancer, respectively. For half of these mutations, although they are mostly experimentally characterized in their dysfunctional phenotypes, a structural characterization at a molecular level is still missing. In this work, we focus on such mutations and discuss what the structural defects are that they appear to cause. To achieve this aim, we built a 3D molecular model for each mutant and explored the effect of the mutation on all of their structural features. Based on these analyses, we could collect the structural defects of all the pathogenic mutations (here or previously analysed) under few main categories, that we found to nicely correlate with the experimental phenotypes reported for several of the analysed mutants. Some of the structural analyses we present here provide a rationale for previously experimentally observed phenotypes. Furthermore, our comprehensive overview can be used as a reference frame for the interpretation, on a structural basis, of defective phenotypes of other aquaporin pathogenic mutants.
Collapse
MESH Headings
- Amino Acid Sequence
- Aquaporin 2/chemistry
- Aquaporin 2/genetics
- Aquaporin 2/metabolism
- Aquaporin 5/chemistry
- Aquaporin 5/genetics
- Aquaporin 5/metabolism
- Aquaporins/chemistry
- Aquaporins/genetics
- Aquaporins/metabolism
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Databases, Protein
- Diabetes Insipidus, Nephrogenic/genetics
- Diabetes Insipidus, Nephrogenic/metabolism
- Diabetes Insipidus, Nephrogenic/pathology
- Gene Expression
- Genetic Predisposition to Disease
- Genotype
- Humans
- Keratoderma, Palmoplantar/genetics
- Keratoderma, Palmoplantar/metabolism
- Keratoderma, Palmoplantar/pathology
- Models, Molecular
- Mutation
- Phenotype
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Multimerization
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Luisa Calvanese
- CIRPeB, University of Naples Federico II, Napoli I-80134, Italy.
| | - Gabriella D'Auria
- CIRPeB, University of Naples Federico II, Napoli I-80134, Italy.
- Department of Pharmacy, University of Naples Federico II, Napoli I-80134, Italy.
- Institute of Biostructures and Bioimaging, CNR, Napoli I-80134, Italy.
| | - Anna Vangone
- Bijvoet Center for Biomolecular Research, Faculty of Science, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Lucia Falcigno
- CIRPeB, University of Naples Federico II, Napoli I-80134, Italy.
- Department of Pharmacy, University of Naples Federico II, Napoli I-80134, Italy.
- Institute of Biostructures and Bioimaging, CNR, Napoli I-80134, Italy.
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Napoli I-80143, Italy.
| |
Collapse
|
88
|
Kourghi M, De Ieso ML, Nourmohammadi S, Pei JV, Yool AJ. Identification of Loop D Domain Amino Acids in the Human Aquaporin-1 Channel Involved in Activation of the Ionic Conductance and Inhibition by AqB011. Front Chem 2018; 6:142. [PMID: 29755973 PMCID: PMC5934433 DOI: 10.3389/fchem.2018.00142] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/12/2018] [Indexed: 01/08/2023] Open
Abstract
Aquaporins are integral proteins that facilitate the transmembrane transport of water and small solutes. In addition to enabling water flux, mammalian Aquaporin-1 (AQP1) channels activated by cyclic GMP can carry non-selective monovalent cation currents, selectively blocked by arylsulfonamide compounds AqB007 (IC50 170 μM) and AqB011 (IC50 14 μM). In silico models suggested that ligand docking might involve the cytoplasmic loop D (between AQP1 transmembrane domains 4 and 5), but the predicted site of interaction remained to be tested. Work here shows that mutagenesis of two conserved arginine residues in loop D slowed the activation of the AQP1 ion conductance and impaired the sensitivity of the channel to block by AqB011. Substitution of residues in loop D with proline showed effects on ion conductance amplitude that varied with position, suggesting that the structural conformation of loop D is important for AQP1 channel gating. Human AQP1 wild type, AQP1 mutant channels with alanines substituted for two arginines (R159A+R160A), and mutants with proline substituted for single residues threonine (T157P), aspartate (D158P), arginine (R159P, R160P), or glycine (G165P) were expressed in Xenopus laevis oocytes. Conductance responses were analyzed by two-electrode voltage clamp. Optical osmotic swelling assays and confocal microscopy were used to confirm mutant and wild type AQP1-expressing oocytes were expressed in the plasma membrane. After application of membrane-permeable cGMP, R159A+R160A channels had a significantly slower rate of activation as compared with wild type, consistent with impaired gating. AQP1 R159A+R160A channels showed no significant block by AqB011 at 50 μM, in contrast to the wild type channel which was blocked effectively. T157P, D158P, and R160P mutations had impaired activation compared to wild type; R159P showed no significant effect; and G165P appeared to augment the conductance amplitude. These findings provide evidence for the role of the loop D as a gating domain for AQP1 ion channels, and identify the likely site of interaction of AqB011 in the proximal loop D sequence.
Collapse
Affiliation(s)
- Mohamad Kourghi
- Aquaporin Physiology and Drug Discovery Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michael L De Ieso
- Aquaporin Physiology and Drug Discovery Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Saeed Nourmohammadi
- Aquaporin Physiology and Drug Discovery Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jinxin V Pei
- Aquaporin Physiology and Drug Discovery Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrea J Yool
- Aquaporin Physiology and Drug Discovery Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
89
|
Meli R, Pirozzi C, Pelagalli A. New Perspectives on the Potential Role of Aquaporins (AQPs) in the Physiology of Inflammation. Front Physiol 2018; 9:101. [PMID: 29503618 PMCID: PMC5820367 DOI: 10.3389/fphys.2018.00101] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022] Open
Abstract
Aquaporins (AQPs) are emerging, in the last few decades, as critical proteins regulating water fluid homeostasis in cells involved in inflammation. AQPs represent a family of ubiquitous membrane channels that regulate osmotically water flux in various tissues and sometimes the transport of small solutes, including glycerol. Extensive data indicate that AQPs, working as water channel proteins, regulate not only cell migration, but also common events essential for inflammatory response. The involvement of AQPs in several inflammatory processes, as demonstrated by their dysregulation both in human and animal diseases, identifies their new role in protection and response to different noxious stimuli, including bacterial infection. This contribution could represent a new key to clarify the dilemma of host-pathogen communications, and opens up new scenarios regarding the investigation of the modulation of specific AQPs, as target for new pharmacological therapies. This review provides updated information on the underlying mechanisms of AQPs in the regulation of inflammatory responses in mammals and discusses the broad spectrum of options that can be tailored for different diseases and their pharmacological treatment.
Collapse
Affiliation(s)
- Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Naples, Italy
| |
Collapse
|
90
|
Pizzoni A, López González M, Di Giusto G, Rivarola V, Capurro C, Ford P. AQP2 can modulate the pattern of Ca
2+
transients induced by store‐operated Ca
2+
entry under TRPV4 activation. J Cell Biochem 2018; 119:4120-4133. [DOI: 10.1002/jcb.26612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Alejandro Pizzoni
- Laboratorio de Biomembranas, Facultad de Medicina, Departamento de Ciencias FisiológicasUniversidad de Buenos AiresBuenos AiresArgentina
- CONICET‐Universidad de Buenos AiresInstituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO)Buenos AiresArgentina
| | - Macarena López González
- Laboratorio de Biomembranas, Facultad de Medicina, Departamento de Ciencias FisiológicasUniversidad de Buenos AiresBuenos AiresArgentina
| | - Gisela Di Giusto
- Laboratorio de Biomembranas, Facultad de Medicina, Departamento de Ciencias FisiológicasUniversidad de Buenos AiresBuenos AiresArgentina
- CONICET‐Universidad de Buenos AiresInstituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO)Buenos AiresArgentina
| | - Valeria Rivarola
- Laboratorio de Biomembranas, Facultad de Medicina, Departamento de Ciencias FisiológicasUniversidad de Buenos AiresBuenos AiresArgentina
- CONICET‐Universidad de Buenos AiresInstituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO)Buenos AiresArgentina
| | - Claudia Capurro
- Laboratorio de Biomembranas, Facultad de Medicina, Departamento de Ciencias FisiológicasUniversidad de Buenos AiresBuenos AiresArgentina
- CONICET‐Universidad de Buenos AiresInstituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO)Buenos AiresArgentina
| | - Paula Ford
- Laboratorio de Biomembranas, Facultad de Medicina, Departamento de Ciencias FisiológicasUniversidad de Buenos AiresBuenos AiresArgentina
- CONICET‐Universidad de Buenos AiresInstituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO)Buenos AiresArgentina
| |
Collapse
|
91
|
Forecki J, Van Antwerp DJ, Lujan SM, Merzdorf CS. Roles for Xenopus aquaporin-3b (aqp3.L) during gastrulation: Fibrillar fibronectin and tissue boundary establishment in the dorsal margin. Dev Biol 2018; 433:3-16. [PMID: 29113748 DOI: 10.1016/j.ydbio.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/02/2023]
Abstract
Aquaporins and aquaglyceroporins are a large family of membrane channel proteins that allow rapid movement of water and small, uncharged solutes into and out of cells along concentration gradients. Recently, aquaporins have been gaining recognition for more complex biological roles than the regulation of cellular osmotic homeostasis. We have identified a specific expression pattern for Xenopus aqp3b (also called aqp3.L) during gastrulation, where it is localized to the sensorial (deep) layer of the blastocoel roof and dorsal margin. Interference with aqp3b expression resulted in loss of fibrillar fibronectin matrix in Brachet's cleft at the dorsal marginal zone, but not on the free surface of the blastocoel. Detailed observation showed that the absence of fibronectin matrix correlated with compromised border integrities between involuted mesendoderm and noninvoluted ectoderm in the marginal zone. Knockdown of aqp3b also led to delayed closure of the blastopore, suggesting defects in gastrulation movements. Radial intercalation was not affected in aqp3b morphants, while the data presented are consistent with impeded convergent extension movements of the dorsal mesoderm in response to loss of aqp3b. Our emerging model suggests that aqp3b is part of a mechanism that promotes proper interaction between cells and the extracellular matrix, thereby playing a critical role in gastrulation.
Collapse
Affiliation(s)
- Jennifer Forecki
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA.
| | - Daniel J Van Antwerp
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA.
| | - Sean M Lujan
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA.
| | - Christa S Merzdorf
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
92
|
|
93
|
Are Aquaporins (AQPs) the Gateway that Conduits Nutrients, Persistent Organic Pollutants and Perfluoroalkyl Substances (PFASs) into Plants? ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40362-017-0045-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
94
|
Purification and functional comparison of nine human Aquaporins produced in Saccharomyces cerevisiae for the purpose of biophysical characterization. Sci Rep 2017; 7:16899. [PMID: 29203835 PMCID: PMC5715081 DOI: 10.1038/s41598-017-17095-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022] Open
Abstract
The sparse number of high-resolution human membrane protein structures severely restricts our comprehension of molecular physiology and ability to exploit rational drug design. In the search for a standardized, cheap and easily handled human membrane protein production platform, we thoroughly investigated the capacity of S. cerevisiae to deliver high yields of prime quality human AQPs, focusing on poorly characterized members including some previously shown to be difficult to isolate. Exploiting GFP labeled forms we comprehensively optimized production and purification procedures resulting in satisfactory yields of all nine AQP targets. We applied the obtained knowledge to successfully upscale purification of histidine tagged human AQP10 produced in large bioreactors. Glycosylation analysis revealed that AQP7 and 12 were O-glycosylated, AQP10 was N-glycosylated while the other AQPs were not glycosylated. We furthermore performed functional characterization and found that AQP 2, 6 and 8 allowed flux of water whereas AQP3, 7, 9, 10, 11 and 12 also facilitated a glycerol flux. In conclusion, our S. cerevisiae platform emerges as a powerful tool for isolation of functional, difficult-to-express human membrane proteins suitable for biophysical characterization.
Collapse
|
95
|
Sutka M, Amodeo G, Ozu M. Plant and animal aquaporins crosstalk: what can be revealed from distinct perspectives. Biophys Rev 2017; 9:545-562. [PMID: 28871493 DOI: 10.1007/s12551-017-0313-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023] Open
Abstract
Aquaporins (AQPs) can be revisited from a distinct and complementary perspective: the outcome from analyzing them from both plant and animal studies. (1) The approach in the study. Diversity found in both kingdoms contrasts with the limited number of crystal structures determined within each group. While the structure of almost half of mammal AQPs was resolved, only a few were resolved in plants. Strikingly, the animal structures resolved are mainly derived from the AQP2-lineage, due to their important roles in water homeostasis regulation in humans. The difference could be attributed to the approach: relevance in animal research is emphasized on pathology and in consequence drug screening that can lead to potential inhibitors, enhancers and/or regulators. By contrast, studies on plants have been mainly focused on the physiological role that AQPs play in growth, development and stress tolerance. (2) The transport capacity. Besides the well-described AQPs with high water transport capacity, large amount of evidence confirms that certain plant AQPs can carry a large list of small solutes. So far, animal AQP list is more restricted. In both kingdoms, there is a great amount of evidence on gas transport, although there is still an unsolved controversy around gas translocation as well as the role of the central pore of the tetramer. (3) More roles than expected. We found it remarkable that the view of AQPs as specific channels has evolved first toward simple transporters to molecules that can experience conformational changes triggered by biochemical and/or mechanical signals, turning them also into signaling components and/or behave as osmosensor molecules.
Collapse
Affiliation(s)
- Moira Sutka
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Marcelo Ozu
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
96
|
Lind U, Järvå M, Alm Rosenblad M, Pingitore P, Karlsson E, Wrange AL, Kamdal E, Sundell K, André C, Jonsson PR, Havenhand J, Eriksson LA, Hedfalk K, Blomberg A. Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals differential expression in response to changes in salinity. PLoS One 2017; 12:e0181192. [PMID: 28715506 PMCID: PMC5513457 DOI: 10.1371/journal.pone.0181192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Barnacles are sessile macro-invertebrates, found along rocky shores in coastal areas worldwide. The euryhaline bay barnacle Balanus improvisus (Darwin, 1854) (= Amphibalanus improvisus) can tolerate a wide range of salinities, but the molecular mechanisms underlying the osmoregulatory capacity of this truly brackish species are not well understood. Aquaporins are pore-forming integral membrane proteins that facilitate transport of water, small solutes and ions through cellular membranes, and that have been shown to be important for osmoregulation in many organisms. The knowledge of the function of aquaporins in crustaceans is, however, limited and nothing is known about them in barnacles. We here present the repertoire of aquaporins from a thecostracan crustacean, the barnacle B. improvisus, based on genome and transcriptome sequencing. Our analyses reveal that B. improvisus contains eight genes for aquaporins. Phylogenetic analysis showed that they represented members of the classical water aquaporins (Aqp1, Aqp2), the aquaglyceroporins (Glp1, Glp2), the unorthodox aquaporin (Aqp12) and the arthropod-specific big brain aquaporin (Bib). Interestingly, we also found two big brain-like proteins (BibL1 and BibL2) constituting a new group of aquaporins not yet described in arthropods. In addition, we found that the two water-specific aquaporins were expressed as C-terminal splice variants. Heterologous expression of some of the aquaporins followed by functional characterization showed that Aqp1 transported water and Glp2 water and glycerol, agreeing with the predictions of substrate specificity based on 3D modeling and phylogeny. To investigate a possible role for the B. improvisus aquaporins in osmoregulation, mRNA expression changes in adult barnacles were analysed after long-term acclimation to different salinities. The most pronounced expression difference was seen for AQP1 with a substantial (>100-fold) decrease in the mantle tissue in low salinity (3 PSU) compared to high salinity (33 PSU). Our study provides a base for future mechanistic studies on the role of aquaporins in osmoregulation.
Collapse
Affiliation(s)
- Ulrika Lind
- Department of Marine Sciences, Lundberg laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Michael Järvå
- Department of Chemistry and Molecular Biology, Lundberg laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Alm Rosenblad
- Department of Marine Sciences, National Infrastructure of Bioinformatics (NBIS), Lundberg laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Piero Pingitore
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emil Karlsson
- Department of Marine Sciences, Lundberg laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Lisa Wrange
- RISE Research Institute of Sweden, Section for Chemistry and Materials, Borås, Sweden
| | - Emelie Kamdal
- Department of Chemistry and Molecular Biology, Lundberg laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Carl André
- Department of Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Per R. Jonsson
- Department of Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Jon Havenhand
- Department of Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Leif A. Eriksson
- Department of Chemistry and Molecular Biology, Lundberg laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Hedfalk
- Department of Chemistry and Molecular Biology, Lundberg laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Anders Blomberg
- Department of Marine Sciences, Lundberg laboratory, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
97
|
Patil R, Wang H, Sharif NA, Mitra A. Aquaporins: Novel Targets for Age-Related Ocular Disorders. J Ocul Pharmacol Ther 2017. [PMID: 28632458 DOI: 10.1089/jop.2017.0024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aquaporins (AQPs), a large family of membrane protein channels that facilitate transport of water and other small solutes, play important roles in physiological functions and human diseases. Up till now, 13 types of AQPs, numbered 0 through 12, have been identified in various mammalian tissues. Homologous genes for AQPs in amphibians, insects, and bacteria highlight the evolutionary conservation and, thus, the importance of these membrane channels. Many members of the AQP family are expressed in the eye. AQP1, which is a water-selective channel, is expressed in the anterior chamber (cornea, ciliary body, trabecular meshwork) and posterior chamber (retina and microvessels in choroid), controlling the fluid homeostasis in the eye. Mice knockout studies have indicated that AQP1 plays an important function in the eye by suggesting its role in aqueous humor dynamics and retina angiogenesis. This review will focus on the role of AQP1 as a novel target for ocular disorders such as glaucoma and age-related macular degeneration, and it will discuss challenges and advances in identifying modulators of AQP1 function that could be useful in clinical applications.
Collapse
Affiliation(s)
- Rajkumar Patil
- 1 Singapore Eye Research Institute , Singapore, Singapore
- 2 Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School , Singapore, Singapore
| | - Haishan Wang
- 3 Institute of Molecular and Cell Biology , A*STAR, Singapore, Singapore
| | | | - Alok Mitra
- 5 School of Biological Sciences, University of Auckland , Auckland, New Zealand
| |
Collapse
|
98
|
Sonah H, Deshmukh RK, Labbé C, Bélanger RR. Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Sci Rep 2017; 7:2771. [PMID: 28584277 PMCID: PMC5459863 DOI: 10.1038/s41598-017-02877-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/19/2017] [Indexed: 01/11/2023] Open
Abstract
Aquaporins (AQPs) are of vital importance in the cellular transport system of all living organisms. In this study, genome-wide identification, distribution, and characterization of AQPs were determined in Arabidopsis lyrata, Capsella grandiflora, C. rubella, Eutrema salsugineum, Brassica rapa, B. oleracea, and B. napus (canola). Classification and phylogeny of AQPs revealed the loss of XIPs and NIP-IIIs in all species. Characterization of distinctive AQP features showed a high level of conservation in spacing between NPA-domains, and selectivity filters. Interestingly, TIP3s were found to be highly expressed in developing seeds, suggesting their role in seed desiccation. Analysis of available RNA-seq data obtained under biotic and abiotic stresses led to the identification of AQPs involved in stress tolerance mechanisms in canola. In addition, analysis of the effect of ploidy level, and resulting gene dose effect performed with the different combinations of Brassica A and C genomes revealed that more than 70% of AQPs expression were dose-independent, thereby supporting their role in stress alleviation. This first in-depth characterization of Brassicaceae AQPs highlights transport mechanisms and related physiological processes that could be exploited in breeding programs of stress-tolerant cultivars.
Collapse
Affiliation(s)
- Humira Sonah
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Rupesh K Deshmukh
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Caroline Labbé
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Richard R Bélanger
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
99
|
McCloskey KD, Vahabi B, Fry CH. Is electrolyte transfer across the urothelium important?: ICI-RS 2015. Neurourol Urodyn 2017; 36:863-868. [PMID: 28444701 DOI: 10.1002/nau.23085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/12/2016] [Indexed: 11/08/2022]
Abstract
AIMS This article summarizes discussion at the International Consultation on Incontinence Research Society (ICI-RS) 2015 meeting of urine modification in the urinary tract by the urothelium. It considers the literature and proposes pertinent questions that need to be addressed to understand this phenomenon within a physiological context. METHODS Following the ICI-RS meeting, publications in PubMed relating to urine modification in the renal pelvis, ureter, and bladder were reviewed. RESULTS Historically, the urothelium has been simply considered as a passive, impermeable barrier, preventing contact between urine and the underlying cells. In addition to the ability of the umbrella cells to modify the surface area of the urothelium during bladder filling, the urothelium may also be involved in modifying urine composition. Several lines of evidence support the hypothesis that electrolytes and water can be reabsorbed by the urothelium and that this may have physiological relevance. Firstly, urothelial cells express several types of aquaporins and ion channels; the membrane expression of which is modulated by the extracellular concentration of ions including Na+ . Secondly, studies of urine composition in the renal pelvis and bladder demonstrate urine modification, indicating that water and/or electrolyte transport has occurred. Thirdly, hibernating mammals, with urothelial and bladder wall histology similar to non-hibernating mammals are known to produce and reabsorb urine daily, during long periods of hibernation. CONCLUSIONS The phenomenon of urine modification by the urothelium may be physiologically important during normal bladder filling. Research should be focused on investigating how this may change in conditions of urinary dysfunction.
Collapse
Affiliation(s)
- Karen D McCloskey
- School of Medicine, Dentistry and Biomedical Sciences, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Bahareh Vahabi
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Christopher H Fry
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
100
|
Lee MY, Hackelberg S, Green KL, Lunghamer KG, Kurioka T, Loomis BR, Swiderski DL, Duncan RK, Raphael Y. Survival of human embryonic stem cells implanted in the guinea pig auditory epithelium. Sci Rep 2017; 7:46058. [PMID: 28387239 PMCID: PMC5384248 DOI: 10.1038/srep46058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/10/2017] [Indexed: 01/05/2023] Open
Abstract
Hair cells in the mature cochlea cannot spontaneously regenerate. One potential approach for restoring hair cells is stem cell therapy. However, when cells are transplanted into scala media (SM) of the cochlea, they promptly die due to the high potassium concentration. We previously described a method for conditioning the SM to make it more hospitable to implanted cells and showed that HeLa cells could survive for up to a week using this method. Here, we evaluated the survival of human embryonic stem cells (hESC) constitutively expressing GFP (H9 Cre-LoxP) in deaf guinea pig cochleae that were pre-conditioned to reduce potassium levels. GFP-positive cells could be detected in the cochlea for at least 7 days after the injection. The cells appeared spherical or irregularly shaped, and some were aggregated. Flushing SM with sodium caprate prior to transplantation resulted in a lower proportion of stem cells expressing the pluripotency marker Oct3/4 and increased cell survival. The data demonstrate that conditioning procedures aimed at transiently reducing the concentration of potassium in the SM facilitate survival of hESCs for at least one week. During this time window, additional procedures can be applied to initiate the differentiation of the implanted hESCs into new hair cells.
Collapse
Affiliation(s)
- Min Young Lee
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA.,Department of Otorhinolaryngology and Head &Neck Surgery, Dankook University Hospital, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Korea
| | - Sandra Hackelberg
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Kari L Green
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Kelly G Lunghamer
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Takaomi Kurioka
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Benjamin R Loomis
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - R Keith Duncan
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| |
Collapse
|