51
|
Bile acids and their receptors during liver regeneration: "Dangerous protectors". Mol Aspects Med 2017; 56:25-33. [PMID: 28302491 DOI: 10.1016/j.mam.2017.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/07/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
Tissue repair is orchestrated by a finely tuned interplay between processes of regeneration, inflammation and cell protection, allowing organisms to restore their integrity after partial loss of cells or organs. An important, although largely unexplored feature is that after injury and during liver repair, liver functions have to be maintained to fulfill the peripheral demand. This is particularly critical for bile secretion, which has to be finely modulated in order to preserve liver parenchyma from bile-induced injury. However, mechanisms allowing the liver to maintain biliary homeostasis during repair after injury are not completely understood. Besides cytokines and growth factors, bile acids (BA) and their receptors constitute an insufficiently explored signaling network during liver regeneration and repair. BA signal through both nuclear (mainly Farnesoid X Receptor, FXR) and membrane (mainly G Protein-coupled BA Receptor 1, GPBAR-1 or TGR5) receptors which distributions are large in the organism, and which activation elicits a wide array of biological responses. While a number of studies have been dedicated to FXR signaling in liver repair processes, TGR5 remains poorly explored in this context. Because of the massive and potentially harmful BA overload that faces the remnant liver after partial ablation or destruction, both BA-induced adaptive and proliferative responses may stand in a central position to contribute to the regenerative response. Based on the available literature, both BA receptors may act in synergy during the regeneration process, in order to protect the remnant liver and maintain biliary homeostasis, otherwise potentially toxic BA overload would result in parenchymal insult and compromise optimal restoration of a functional liver mass.
Collapse
|
52
|
Hassan HM, Guo H, Yousef BA, Ping-Ping D, Zhang L, Jiang Z. Dexamethasone Pretreatment Alleviates Isoniazid/Lipopolysaccharide Hepatotoxicity: Inhibition of Inflammatory and Oxidative Stress. Front Pharmacol 2017; 8:133. [PMID: 28360859 PMCID: PMC5350150 DOI: 10.3389/fphar.2017.00133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
Isoniazid (INH) remains a cornerstone key constitute of the current tuberculosis management strategy, but its hepatotoxic potentiality remains a significant clinical problem. Our previous findings succeed to establish a rat model of INH hepatotoxicity employing the inflammatory stress theory in which non-injurious doses of inflammatory-mediating agent bacterial lipopolysaccharides (LPS) augmented the toxicity of INH that assist to uncover the mechanisms behind INH hepatotoxicity. Following LPS exposure, several inflammatory cells are activated and it is likely that the consequences of this activation rather than direct hepatocellular effects of LPS underlie the ability of LPS to augment toxic responses. In this study, we investigated the potential protective role of the anti-inflammatory agent dexamethasone (DEX), a potent synthetic glucocorticoid, in INH/LPS hepatotoxic rat model. DEX pre-treatment successfully eliminates the components of the inflammatory stress as shown through analysis of blood biochemistry and liver histopathology. DEX potentiated hepatic anti-oxidant mechanisms while serum and hepatic lipid profiles were reduced. However, DEX administration was not able to revoke the principal effects of cytochrome P450 2E1 (CYP2E1) in INH/LPS-induced liver damage. In conclusion, this study illustrated the DEX-preventive capabilities on INH/LPS-induced hepatotoxicity model through DEX-induced potent anti-inflammatory activity whereas the partial toxicity seen in the model could be attributed to the expression of hepatic CYP2E1. These findings potentiate the clinical applications of DEX co-administration with INH therapy in order to reduce the potential incidences of hepatotoxicity.
Collapse
Affiliation(s)
- Hozeifa M Hassan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China; Department of Pharmacology, Faculty of Pharmacy, University of GeziraWad-Medani, Sudan
| | - Hongli Guo
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing, China
| | - Bashir A Yousef
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China; Department of Pharmacology, Faculty of Pharmacy, University of KhartoumKhartoum, Sudan
| | - Ding Ping-Ping
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing, China
| |
Collapse
|
53
|
Guo C, Chen WD, Wang YD. TGR5, Not Only a Metabolic Regulator. Front Physiol 2016; 7:646. [PMID: 28082913 PMCID: PMC5183627 DOI: 10.3389/fphys.2016.00646] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022] Open
Abstract
G-protein-coupled bile acid receptor, Gpbar1 (TGR5), is a member of G-protein-coupled receptor (GPCR) superfamily. High levels of TGR5 mRNA were detected in several tissues such as small intestine, stomach, liver, lung, especially in placenta and spleen. TGR5 is not only the receptor for bile acids, but also the receptor for multiple selective synthetic agonists such as 6α-ethyl-23(S)-methyl-cholic acid (6-EMCA, INT-777) and a series of 4-benzofuranyloxynicotinamde derivatives to regulate different signaling pathways such as nuclear factor κB (NF-κB), AKT, and extracellular signal-regulated kinases (ERK). TGR5, as a metabolic regulator, is involved in energy homeostasis, bile acid homeostasis, as well as glucose metabolism. More recently, our group and others have extended the functions of TGR5 to more than metabolic regulation, which include inflammatory response, cancer and liver regeneration. These findings highlight TGR5 as a potential drug target for different diseases. This review summarizes the basic information of TGR5 and its new functions.
Collapse
Affiliation(s)
- Cong Guo
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology Beijing, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan UniversityKaifeng, China; Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical UniversityHohhot, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology Beijing, China
| |
Collapse
|
54
|
van Mierlo KMC, Schaap FG, Dejong CHC, Olde Damink SWM. Liver resection for cancer: New developments in prediction, prevention and management of postresectional liver failure. J Hepatol 2016; 65:1217-1231. [PMID: 27312944 DOI: 10.1016/j.jhep.2016.06.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatic failure is a feared complication that accounts for up to 75% of mortality after extensive liver resection. Despite improved perioperative care, the increasing complexity and extensiveness of surgical interventions, in combination with an expanding number of resections in patients with compromised liver function, still results in an incidence of postresectional liver failure (PLF) of 1-9%. Preventive measures aim to enhance future remnant liver size and function. Numerous non-invasive techniques to assess liver function and predict remnant liver volume are being developed, along with introduction of novel surgical strategies that augment growth of the future remnant liver. Detection of PLF is often too late and treatment is primarily symptomatic. Current therapeutic research focuses on ([bio]artificial) liver function support and regenerative medicine. In this review we discuss the current state and new developments in prediction, prevention and management of PLF, in light of novel insights into the aetiology of this complex syndrome. LAY SUMMARY Liver failure is the main cause of death after partial liver resection for cancer, and is presumably caused by an insufficient quantity and function of the liver remnant. Detection of liver failure is often too late, and current treatment focuses on relieve of symptoms. New research initiatives explore artificial support of liver function and stimulation of regrowth of the remnant liver.
Collapse
Affiliation(s)
- Kim M C van Mierlo
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Frank G Schaap
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Cornelis H C Dejong
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; Department of Surgery, Institute of Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom.
| |
Collapse
|
55
|
Zhan X, Wang F, Bi Y, Ji B. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2016; 311:G343-55. [PMID: 27418683 PMCID: PMC5076005 DOI: 10.1152/ajpgi.00372.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/06/2016] [Indexed: 01/31/2023]
Abstract
Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere.
Collapse
Affiliation(s)
- Xianbao Zhan
- 1Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| | - Fan Wang
- 1Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| | - Yan Bi
- 2Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| |
Collapse
|
56
|
Xu X, Liu Z, Wang J, Ling Q, Xie H, Guo H, Wei X, Zhou L, Zheng S. miRNA profiles in livers with different mass deficits after partial hepatectomy and miR-106b~25 cluster accelerating hepatocyte proliferation in rats. Sci Rep 2016; 6:31267. [PMID: 27507706 PMCID: PMC4978973 DOI: 10.1038/srep31267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
Partial hepatectomy (PH) promotes the reentry of quiescent hepatocytes into cell cycle for regrowth. miRNA profiles in livers with different mass deficits after PH have not been investigated and miRNAs implicated in liver regeneration remain unclear. We generated miRNA profiles from normal and remnant livers at 6, 12, 24, and 36 hours after 1/3 or 2/3PH using microarrays. Compared with normal livers, the proportion of altered miRNAs decreased with time after 1/3PH, but increased after 2/3PH. Most of altered miRNAs between 1/3 and 2/3PH exhibited similar up- or down-regulation, but lower expression magnitude for 1/3PH. Among differentially expressed miRNAs between 2/3PH with robust DNA replication and 1/3PH with a minimal replicative response, we identified miR-101a, miR-92a, miR-25, miR-93 and miR-106b as key regulators of cell cycle. In 2/3PH model, overexpression of miR-106b~25 cluster tended to accelerate liver regeneration, while inhibition of miR-106b~25 cluster markedly repressed regenerative response and delayed recovery of liver function. Mechanistically, RB1 and KAT2B with cell cycle arrest activity were identified as novel targets of miR-106b/93 and miR-25, respectively. Overall, we featured miRNA profiles and dynamics after 1/3 and 2/3PH, and identified miR-106b~25 cluster as being involved in timely cell cycle entry of hepatocytes after PH.
Collapse
Affiliation(s)
- Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhikun Liu
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianguo Wang
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, China
| | - Qi Ling
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyang Xie
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, China
| | - Haijun Guo
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, China
| | - Xuyong Wei
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, China
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
57
|
Reid LM. Stem/progenitor cells and reprogramming (plasticity) mechanisms in liver, biliary tree, and pancreas. Hepatology 2016; 64:4-7. [PMID: 27102721 DOI: 10.1002/hep.28606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Lola M Reid
- Department of Cell Biology and Physiology Program in Molecular Biology and Biotechnology, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
58
|
Bai P, Ye H, Xie M, Saxena P, Zulewski H, Charpin-El Hamri G, Djonov V, Fussenegger M. A synthetic biology-based device prevents liver injury in mice. J Hepatol 2016; 65:84-94. [PMID: 27067456 PMCID: PMC4914822 DOI: 10.1016/j.jhep.2016.03.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/09/2016] [Accepted: 03/17/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS The liver performs a panoply of complex activities coordinating metabolic, immunologic and detoxification processes. Despite the liver's robustness and unique self-regeneration capacity, viral infection, autoimmune disorders, fatty liver disease, alcohol abuse and drug-induced hepatotoxicity contribute to the increasing prevalence of liver failure. Liver injuries impair the clearance of bile acids from the hepatic portal vein which leads to their spill over into the peripheral circulation where they activate the G-protein-coupled bile acid receptor TGR5 to initiate a variety of hepatoprotective processes. METHODS By functionally linking activation of ectopically expressed TGR5 to an artificial promoter controlling transcription of the hepatocyte growth factor (HGF), we created a closed-loop synthetic signalling network that coordinated liver injury-associated serum bile acid levels to expression of HGF in a self-sufficient, reversible and dose-dependent manner. RESULTS After implantation of genetically engineered human cells inside auto-vascularizing, immunoprotective and clinically validated alginate-poly-(L-lysine)-alginate beads into mice, the liver-protection device detected pathologic serum bile acid levels and produced therapeutic HGF levels that protected the animals from acute drug-induced liver failure. CONCLUSIONS Genetically engineered cells containing theranostic gene circuits that dynamically interface with host metabolism may provide novel opportunities for preventive, acute and chronic healthcare. LAY SUMMARY Liver diseases leading to organ failure may go unnoticed as they do not trigger any symptoms or significant discomfort. We have designed a synthetic gene circuit that senses excessive bile acid levels associated with liver injuries and automatically produces a therapeutic protein in response. When integrated into mammalian cells and implanted into mice, the circuit detects the onset of liver injuries and coordinates the production of a protein pharmaceutical which prevents liver damage.
Collapse
Affiliation(s)
- Peng Bai
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Haifeng Ye
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Henryk Zulewski
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Faculty of Medicine, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland; Division of Endocrinology and Diabetes, Stadtspital Triemli, Birmensdorferstrasse 497, CH-8063 Zurich, Switzerland
| | - Ghislaine Charpin-El Hamri
- Département Génie Biologique, Université Claude Bernard 1, 43 Boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France
| | - Valentin Djonov
- Institute of Anatomy, University of Berne, Baltzerstrasse 2, CH-3000 Berne, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
59
|
Duan XP, Meng Q, Liu KX. Nuclear receptor FXR: A potential therapeutic target for non-alcoholic steatohepatitis. Shijie Huaren Xiaohua Zazhi 2016; 24:2289-2297. [DOI: 10.11569/wcjd.v24.i15.2289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a very common chronic liver disease all over the world. The high incidence of NAFLD is closely related to obesity, diabetes and metabolic disorders. Insulin resistance and dyslipidemia following the hepatic proinflammatory response and fibrosis are the primary features of NAFLD deterioration. Nuclear receptor farnesoid X receptor (FXR) regulates lipid metabolism and homeostasis. Clarification of FXR function and features can provide a better understanding of the pathophysiological characteristics of non-alcoholic steatohepatitis (NASH) and illuminate the mechanism of NAFLD/NASH potential therapeutic targets. FXR activation can inhibit the de novo hepatic lipogenesis, improve insulin sensitivity and protect against bile acid-induced cytotoxicity. Clinical studies indicated that FXR agonists or modulators are very promising for the clinical treatment of NAFLD and NASH. This review focuses on the important regulatory role of FXR in NASH.
Collapse
|
60
|
Wilson A, McLean C, Kim RB. Trimethylamine-N-oxide: a link between the gut microbiome, bile acid metabolism, and atherosclerosis. Curr Opin Lipidol 2016; 27:148-54. [PMID: 26959704 DOI: 10.1097/mol.0000000000000274] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This article evaluates the link between trimethylamine-N-oxide (TMAO) and bile acids and the consequent impact on the development of atherosclerosis. RECENT FINDINGS Elevation in plasma TMAO concentrations is associated with an increased risk of cardiovascular disease in many different patient cohorts. In addition to the recently identified direct effects of TMAO on the development of atherosclerosis, other components involved in TMAO metabolism may also have an impact. Furthermore, the relationship between TMAO and bile acid regulation is emerging as a possible mediator of atherosclerosis. SUMMARY Studies that are emerging highlight the mechanistic relationship of TMAO to the development atherosclerosis in addition to its role as disease biomarker. The interplay between TMAO and bile acid metabolism mediated through multiple factors, such as the gut microbiome, farnesoid X receptor signaling, and flavin monooxygenase 3 activity may help identify another pathway by which atherosclerosis occurs. In this review, we discuss the most recent data regarding atherosclerosis, TMAO, and bile acid metabolism.
Collapse
Affiliation(s)
- Aze Wilson
- aDivisions of Clinical Pharmacology bGastroenterology, Department of Medicine cDepartment of Physiology and Pharmacology, Western University, London, ON, Canada
| | | | | |
Collapse
|
61
|
Liu HX, Keane R, Sheng L, Wan YJY. Implications of microbiota and bile acid in liver injury and regeneration. J Hepatol 2015; 63:1502-10. [PMID: 26256437 PMCID: PMC4654653 DOI: 10.1016/j.jhep.2015.08.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/15/2015] [Accepted: 08/02/2015] [Indexed: 02/07/2023]
Abstract
Studies examining the mechanisms by which the liver incurs injury and then regenerates usually focus on factors and pathways directly within the liver, neglecting the signaling derived from the gut-liver axis. The intestinal content is rich in microorganisms as well as metabolites generated from both the host and colonizing bacteria. Through the gut-liver axis, this complex "soup" exerts an immense impact on liver integrity and function. This review article summarizes data published in the past 30 years demonstrating the signaling derived from the gut-liver axis in relation to liver injury and regeneration. Due to the intricate networks of implicated pathways as well as scarcity of available mechanistic data, it seems that nutrigenomic, metabolomics, and microbiota profiling approaches are warranted to provide a better understanding regarding the interplay and impact between nutrition, bacteria, and host response in influencing liver function and healing. Therefore elucidating the possible molecular mechanisms that link microbiota alteration to host physiological response and vice versa.
Collapse
Affiliation(s)
- Hui-Xin Liu
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, CA, USA
| | - Ryan Keane
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, CA, USA
| | - Lili Sheng
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, CA, USA.
| |
Collapse
|
62
|
Berasain C, Avila MA. Regulation of hepatocyte identity and quiescence. Cell Mol Life Sci 2015; 72:3831-51. [PMID: 26089250 PMCID: PMC11114060 DOI: 10.1007/s00018-015-1970-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/23/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022]
Abstract
The liver is a highly differentiated organ with a central role in metabolism, detoxification and systemic homeostasis. To perform its multiple tasks, liver parenchymal cells, the hepatocytes, express a large complement of enabling genes defining their complex phenotype. This phenotype is progressively acquired during fetal development and needs to be maintained in adulthood to guarantee the individual's survival. Upon injury or loss of functional mass, the liver displays an extraordinary regenerative response, mainly based on the proliferation of hepatocytes which otherwise are long-lived quiescent cells. Increasing observations suggest that loss of hepatocellular differentiation and quiescence underlie liver malfunction in chronic liver disease and pave the way for hepatocellular carcinoma development. Here, we briefly review the essential mechanisms leading to the acquisition of liver maturity. We also identify the key molecular factors involved in the preservation of hepatocellular homeostasis and finally discuss potential strategies to preserve liver identity and function.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology, CIMA, University of Navarra, CIBEREHD, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avda. Pio XII, n55, 31008, Pamplona, Spain.
| | - Matías A Avila
- Division of Hepatology, CIMA, University of Navarra, CIBEREHD, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avda. Pio XII, n55, 31008, Pamplona, Spain.
| |
Collapse
|
63
|
Affiliation(s)
- Matias A Avila
- Division of Hepatology, CIMA-University of Navarra and IDISNA and CIBEREHD, University of Navarra Clinic, Pamplona, Spain.
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari and IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
64
|
Reid LM. Paradoxes in studies of liver regeneration: Relevance of the parable of the blind men and the elephant. Hepatology 2015; 62:330-3. [PMID: 26013054 DOI: 10.1002/hep.27917] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Lola M Reid
- Department of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
65
|
Chen M, Suzuki A, Borlak J, Andrade RJ, Lucena MI. Drug-induced liver injury: Interactions between drug properties and host factors. J Hepatol 2015; 63:503-14. [PMID: 25912521 DOI: 10.1016/j.jhep.2015.04.016] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/13/2022]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a common cause for drug withdrawal from the market and although infrequent, DILI can result in serious clinical outcomes including acute liver failure and the need for liver transplantation. Eliminating the iatrogenic "harm" caused by a therapeutic intent is a priority in patient care. However, identifying culprit drugs and individuals at risk for DILI remains challenging. Apart from genetic factors predisposing individuals at risk, the role of the drugs' physicochemical and toxicological properties and their interactions with host and environmental factors need to be considered. The influence of these factors on mechanisms involved in DILI is multi-layered. In this review, we summarize current knowledge on 1) drug properties associated with hepatotoxicity, 2) host factors considered to modify an individuals' risk for DILI and clinical phenotypes, and 3) drug-host interactions. We aim at clarifying knowledge gaps needed to be filled in as to improve risk stratification in patient care. We therefore broadly discuss relevant areas of future research. Emerging insight will stimulate new investigational approaches to facilitate the discovery of clinical DILI risk modifiers in the context of disease complexity and associated interactions with drug properties, and hence will be able to move towards safety personalized medicine.
Collapse
Affiliation(s)
- Minjun Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Ayako Suzuki
- Gastroenterology, Central Arkansas Veterans Healthcare System, Little Rock, AR, United States; Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jürgen Borlak
- Center of Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Raúl J Andrade
- Unidad de Gestión Clínica de Enfermedades Digestivas, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Enfermedades Digestivas, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
66
|
Li T, Apte U. Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:263-302. [PMID: 26233910 DOI: 10.1016/bs.apha.2015.04.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid-soluble vitamins. Bile acid synthesis, transport, and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis, and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug, and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport, and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration, and carcinogenesis.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
67
|
Jourdainne V, Péan N, Doignon I, Humbert L, Rainteau D, Tordjmann T. The Bile Acid Receptor TGR5 and Liver Regeneration. Dig Dis 2015; 33:319-26. [PMID: 26045264 DOI: 10.1159/000371668] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Most of the literature on the bile acid (BA) membrane receptor TGR5 is dedicated to its potential role in the metabolic syndrome, through its regulatory impact on energy expenditure, insulin and GLP-1 secretion, and inflammatory processes. While the receptor was cloned in 2002, very little data are available on TGR5 functions in the normal and diseased liver. However, TGR5 is highly expressed in Kupffer cells and liver endothelial cells, and is particularly enriched in the biliary tract [cholangiocytes and gallbladder (GB) smooth muscle cells]. We recently demonstrated that TGR5 has a crucial protective impact on the liver in case of BA overload, including after partial hepatectomy. KEY MESSAGES TGR5-KO mice after PH exhibited periportal bile infarcts, excessive hepatic inflammation and defective adaptation of biliary composition (bicarbonate and chloride). Most importantly, TGR5-KO mice had a more hydrophobic BA pool, with more secondary BA than WT animals, suggesting that TGR5-KO bile may be harmful for the liver, mainly in situations of BA overload. As GB is both the tissue displaying the highest level of TGR5 expression and a crucial physiological site for the regulation of BA pool hydrophobicity by reducing secondary BA, we investigated whether TGR5 may control BA pool composition through an impact on GB. Preliminary data suggest that in the absence of TGR5, reduced GB filling dampens the cholecystohepatic shunt, resulting in more secondary BA, more hydrophobic BA pool and extensive liver injury in case of BA overload. CONCLUSIONS In the setting of BA overload, TGR5 is protective of the liver through the regulation of not only secretory and inflammatory processes, but also through the control of BA pool composition, at least in part by targeting the GB. Thereby, TGR5 appears to be crucial for protecting the regenerating liver from BA overload.
Collapse
|
68
|
Huang F, Wang T, Lan Y, Yang L, Pan W, Zhu Y, Lv B, Wei Y, Shi H, Wu H, Zhang B, Wang J, Duan X, Hu Z, Wu X. Deletion of mouse FXR gene disturbs multiple neurotransmitter systems and alters neurobehavior. Front Behav Neurosci 2015; 9:70. [PMID: 25870546 PMCID: PMC4378301 DOI: 10.3389/fnbeh.2015.00070] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/03/2015] [Indexed: 12/14/2022] Open
Abstract
Farnesoid X receptor (FXR) is a nuclear hormone receptor involved in bile acid synthesis and homeostasis. Dysfunction of FXR is involved in cholestasis and atherosclerosis. FXR is prevalent in liver, gallbladder, and intestine, but it is not yet clear whether it modulates neurobehavior. In the current study, we tested the hypothesis that mouse FXR deficiency affects a specific subset of neurotransmitters and results in an unique behavioral phenotype. The FXR knockout mice showed less depressive-like and anxiety-related behavior, but increased motor activity. They had impaired memory and reduced motor coordination. There were changes of glutamatergic, GABAergic, serotoninergic, and norepinephrinergic neurotransmission in either hippocampus or cerebellum. FXR deletion decreased the amount of the GABA synthesis enzyme GAD65 in hippocampus but increased GABA transporter GAT1 in cerebral cortex. FXR deletion increased serum concentrations of many bile acids, including taurodehydrocholic acid, taurocholic acid, deoxycholic acid (DCA), glycocholic acid (GCA), tauro-α-muricholic acid, tauro-ω-muricholic acid, and hyodeoxycholic acid (HDCA). There were also changes in brain concentrations of taurocholic acid, taurodehydrocholic acid, tauro-ω-muricholic acid, tauro-β-muricholic acid, deoxycholic acid, and lithocholic acid (LCA). Taken together, the results from studies with FXR knockout mice suggest that FXR contributes to the homeostasis of multiple neurotransmitter systems in different brain regions and modulates neurobehavior. The effect appears to be at least partially mediated by bile acids that are known to cross the blood-brain barrier (BBB) inducing potential neurotoxicity.
Collapse
Affiliation(s)
- Fei Huang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Tingting Wang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Yunyi Lan
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Li Yang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center Baton Rouge, LA, USA
| | - Yonghui Zhu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Boyang Lv
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Yuting Wei
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Hailian Shi
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Hui Wu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Beibei Zhang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Jie Wang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Xiaofeng Duan
- Pharmacy Department, Shanghai East Hospital Shanghai, China
| | - Zhibi Hu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Xiaojun Wu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| |
Collapse
|
69
|
Li G, L. Guo G. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration. Acta Pharm Sin B 2015; 5:93-8. [PMID: 26579433 PMCID: PMC4629218 DOI: 10.1016/j.apsb.2015.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 01/19/2023] Open
Abstract
The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy (PH) model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids (BAs) are ligands of farnesoid X receptor (FXR), a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potential use of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration.
Collapse
Key Words
- ABC, ATP-binding cassette
- AMPK, AMP-activated protein kinase
- BA, bile acid
- Bile acids
- C/EBPβ, CCAAT-enhancer binding protein β
- CA, cholic acid
- CDCA, chenodeoxycholic acid
- CTX, cerebrotendinous xanthomatosis
- CYP7A1, cholesterol 7alpha-hydroxylase
- CYP8B1, sterol 12α-hydroxylase
- Cyp27-KO, sterol 27-hydroxylase–knockout
- DDAH-1, dimethylarginineaminohydrolase-1
- ERK1/2, extracellular signal-regulated kinase 1/2
- FGF-15, fibroblast growth factor 15
- FGFR4, FGF receptor 4
- FOXM1b, forkhead boxm1b
- FXR, farnesoid X receptor
- Farnesoid X receptor
- Fibroblast growth factor 15
- Fxr-KO, Fxr-knockout
- GPBAR1 or TGR5, G protein-coupled BA receptor 1
- HEX, hematopoietically expressed homeobox
- JNK, c-Jun N-terminal kinase
- KC, Kupffer cells
- KO, knockout
- Liver regeneration
- Liver-intestine croass talk
- MAPK, mitogen-activated protein kinase
- MRP3, multidrug resistance associated protein 3
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor-κB
- PH, partial hepatectomy
- Rb, retinoblastoma
- SHP, small heterodimer partner
- STAT3, signal transducer and activator of transcription 3
- TH, thyroid hormone
- THR, TH receptor
- Transmembrane G protein coupled receptor 5
- WT, wild type
- cAMP, cyclic adenosine monophosphate
- hepFxr-KO, hepatocyte-specific Fxr knockout
Collapse
|
70
|
Ali AH, Carey EJ, Lindor KD, Chen Y, Lin Y, Zheng Q, Zhu K, Pan J. Recent advances in the development of farnesoid X receptor agonists. ANNALS OF TRANSLATIONAL MEDICINE 2015. [PMID: 25705637 DOI: 10.3978/j.issn.2305-5839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Farnesoid X receptors (FXRs) are nuclear hormone receptors expressed in high amounts in body tissues that participate in bilirubin metabolism including the liver, intestines, and kidneys. Bile acids (BAs) are the natural ligands of the FXRs. FXRs regulate the expression of the gene encoding for cholesterol 7 alpha-hydroxylase, which is the rate-limiting enzyme in BA synthesis. In addition, FXRs play a critical role in carbohydrate and lipid metabolism and regulation of insulin sensitivity. FXRs also modulate live growth and regeneration during liver injury. Preclinical studies have shown that FXR activation protects against cholestasis-induced liver injury. Moreover, FXR activation protects against fatty liver injury in animal models of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), and improved hyperlipidemia, glucose intolerance, and insulin sensitivity. Obeticholic acid (OCA), a 6α-ethyl derivative of the natural human BA chenodeoxycholic acid (CDCA) is the first-in-class selective FXR agonist that is ~100-fold more potent than CDCA. Preliminary human clinical trials have shown that OCA is safe and effective. In a phase II clinical trial, administration of OCA was well-tolerated, increased insulin sensitivity and reduced markers of liver inflammation and fibrosis in patients with type II diabetes mellitus and NAFLD. In two clinical trials of OCA in patients with primary biliary cirrhosis (PBC), a progressive cholestatic liver disease, OCA significantly reduced serum alkaline phosphatase (ALP) levels, an important disease marker that correlates well with clinical outcomes of patients with PBC. Together, these studies suggest that FXR agonists could potentially be used as therapeutic tools in patients suffering from nonalcoholic fatty and cholestatic liver diseases. Larger and Longer-term studies are currently ongoing.
Collapse
Affiliation(s)
- Ahmad H Ali
- Division of Gastroenterology and Hepatology, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA
| | - Elizabeth J Carey
- Division of Gastroenterology and Hepatology, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA
| | - Keith D Lindor
- Division of Gastroenterology and Hepatology, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA
| | - Yuanmei Chen
- 1 Department of Oncological Surgery, 2 Department of Radiation Oncology, 3 Department of Pathology, The Teaching Hospital of Fujian Medical University, Fujian Provincial Cancer Hospital, Fuzhou 350014, China
| | - Yu Lin
- 1 Department of Oncological Surgery, 2 Department of Radiation Oncology, 3 Department of Pathology, The Teaching Hospital of Fujian Medical University, Fujian Provincial Cancer Hospital, Fuzhou 350014, China
| | - Qingfeng Zheng
- 1 Department of Oncological Surgery, 2 Department of Radiation Oncology, 3 Department of Pathology, The Teaching Hospital of Fujian Medical University, Fujian Provincial Cancer Hospital, Fuzhou 350014, China
| | - Kunshou Zhu
- 1 Department of Oncological Surgery, 2 Department of Radiation Oncology, 3 Department of Pathology, The Teaching Hospital of Fujian Medical University, Fujian Provincial Cancer Hospital, Fuzhou 350014, China
| | - Jianji Pan
- 1 Department of Oncological Surgery, 2 Department of Radiation Oncology, 3 Department of Pathology, The Teaching Hospital of Fujian Medical University, Fujian Provincial Cancer Hospital, Fuzhou 350014, China
| |
Collapse
|
71
|
Ali AH, Carey EJ, Lindor KD. Recent advances in the development of farnesoid X receptor agonists. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:5. [PMID: 25705637 DOI: 10.3978/j.issn.2305-5839.2014.12.06] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/21/2014] [Indexed: 12/13/2022]
Abstract
Farnesoid X receptors (FXRs) are nuclear hormone receptors expressed in high amounts in body tissues that participate in bilirubin metabolism including the liver, intestines, and kidneys. Bile acids (BAs) are the natural ligands of the FXRs. FXRs regulate the expression of the gene encoding for cholesterol 7 alpha-hydroxylase, which is the rate-limiting enzyme in BA synthesis. In addition, FXRs play a critical role in carbohydrate and lipid metabolism and regulation of insulin sensitivity. FXRs also modulate live growth and regeneration during liver injury. Preclinical studies have shown that FXR activation protects against cholestasis-induced liver injury. Moreover, FXR activation protects against fatty liver injury in animal models of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), and improved hyperlipidemia, glucose intolerance, and insulin sensitivity. Obeticholic acid (OCA), a 6α-ethyl derivative of the natural human BA chenodeoxycholic acid (CDCA) is the first-in-class selective FXR agonist that is ~100-fold more potent than CDCA. Preliminary human clinical trials have shown that OCA is safe and effective. In a phase II clinical trial, administration of OCA was well-tolerated, increased insulin sensitivity and reduced markers of liver inflammation and fibrosis in patients with type II diabetes mellitus and NAFLD. In two clinical trials of OCA in patients with primary biliary cirrhosis (PBC), a progressive cholestatic liver disease, OCA significantly reduced serum alkaline phosphatase (ALP) levels, an important disease marker that correlates well with clinical outcomes of patients with PBC. Together, these studies suggest that FXR agonists could potentially be used as therapeutic tools in patients suffering from nonalcoholic fatty and cholestatic liver diseases. Larger and Longer-term studies are currently ongoing.
Collapse
Affiliation(s)
- Ahmad H Ali
- Division of Gastroenterology and Hepatology, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA
| | - Elizabeth J Carey
- Division of Gastroenterology and Hepatology, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA
| | - Keith D Lindor
- Division of Gastroenterology and Hepatology, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA
| |
Collapse
|
72
|
Fatty acid signaling: the new function of intracellular lipases. Int J Mol Sci 2015; 16:3831-55. [PMID: 25674855 PMCID: PMC4346929 DOI: 10.3390/ijms16023831] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 11/19/2014] [Accepted: 01/21/2015] [Indexed: 12/21/2022] Open
Abstract
Until recently, intracellular triacylglycerols (TAG) stored in the form of cytoplasmic lipid droplets have been considered to be only passive “energy conserves”. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed.
Collapse
|
73
|
Shao Y, Zhu B, Zheng R, Zhao X, Yin P, Lu X, Jiao B, Xu G, Yao Z. Development of urinary pseudotargeted LC-MS-based metabolomics method and its application in hepatocellular carcinoma biomarker discovery. J Proteome Res 2014; 14:906-16. [PMID: 25483141 DOI: 10.1021/pr500973d] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the pestilent malignancies leading to cancer-related death. Discovering effective biomarkers for HCC diagnosis is an urgent demand. To identify potential metabolite biomarkers, we developed a urinary pseudotargeted method based on liquid chromatography-hybrid triple quadrupole linear ion trap mass spectrometry (LC-QTRAP MS). Compared with nontargeted method, the pseudotargeted method can achieve better data quality, which benefits differential metabolites discovery. The established method was applied to cirrhosis (CIR) and HCC investigation. It was found that urinary nucleosides, bile acids, citric acid, and several amino acids were significantly changed in liver disease groups compared with the controls, featuring the dysregulation of purine metabolism, energy metabolism, and amino metabolism in liver diseases. Furthermore, some metabolites such as cyclic adenosine monophosphate, glutamine, and short- and medium-chain acylcarnitines were the differential metabolites of HCC and CIR. On the basis of binary logistic regression, butyrylcarnitine (carnitine C4:0) and hydantoin-5-propionic acid were defined as combinational markers to distinguish HCC from CIR. The area under curve was 0.786 and 0.773 for discovery stage and validation stage samples, respectively. These data show that the established pseudotargeted method is a complementary one of targeted and nontargeted methods for metabolomics study.
Collapse
Affiliation(s)
- Yaping Shao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, China
| | | | | | | | | | | | | | | | | |
Collapse
|