51
|
Dong H, Cronan JE. Temperature regulation of membrane composition in the Firmicute, Enterococcus faecalis, parallels that of Escherichia coli. Environ Microbiol 2021; 23:2683-2691. [PMID: 33830615 DOI: 10.1111/1462-2920.15512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/05/2021] [Indexed: 11/30/2022]
Abstract
Both Enterococcus faecalis and Escherichia coli can undergo abrupt temperature transitions in nature. E. coli changes the composition of its phospholipid acyl chains in response to shifts growth temperature. This is mediated by a naturally temperature sensitive enzyme, FabF (3-ketoacyl-acyl carrier protein synthase II), that elongates the 16 carbon unsaturated acyl chain palmitoleate to the 18 carbon unsaturated acyl chain, cis-vaccenate. FabF is more active at low temperatures resulting in increased incorporation of cis-vaccenoyl acyl chains into the membrane phospholipids. This response to temperature is an intrinsic property of FabF and does not require increased synthesis of the enzyme. We report that the FabF of the very divergent bacterium, E. faecalis, has properties very similar to E. coli FabF and is responsible for changing E. faecalis membrane phospholipid acyl chain composition in response to temperature. Moreover, expression E. faecalis FabF in an E. coli ∆fabF strain restores temperature regulation to the E. coli strain.
Collapse
Affiliation(s)
- Huijuan Dong
- Department of Microbiology, University of Illinois, Urbana, Illinois, 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois, 61801, USA.,Department of Biochemistry, University of Illinois, Urbana, Illinois, 61801, USA
| |
Collapse
|
52
|
Dowhan W, Bogdanov M. Eugene P. Kennedy's Legacy: Defining Bacterial Phospholipid Pathways and Function. Front Mol Biosci 2021; 8:666203. [PMID: 33842554 PMCID: PMC8027125 DOI: 10.3389/fmolb.2021.666203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
In the 1950's and 1960's Eugene P. Kennedy laid out the blueprint for phospholipid biosynthesis in somatic cells and Escherichia coli, which have been coined the Kennedy Pathways for phospholipid biosynthesis. His research group continued to make seminal contributions in the area of phospholipids until his retirement in the early 1990's. During these years he mentored many young scientists that continued to build on his early discoveries and who also mentored additional scientists that continue to make important contributions in areas related to phospholipids and membrane biogenesis. This review will focus on the initial E. coli Kennedy Pathways and how his early contributions have laid the foundation for our current understanding of bacterial phospholipid genetics, biochemistry and function as carried on by his scientific progeny and others who have been inspired to study microbial phospholipids.
Collapse
Affiliation(s)
- William Dowhan
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
53
|
Deng R, Yang K, Lin D. Pentachlorophenol and ciprofloxacin present dissimilar joint toxicities with carbon nanotubes to Bacillus subtilis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116071. [PMID: 33218776 DOI: 10.1016/j.envpol.2020.116071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Discharged carbon nanotubes (CNTs) likely interact with co-existing organic contaminants (OCs) and pose joint toxicity to environmental microbes. Herein, hydrophobic pentachlorophenol (PCP) and hydrophilic ciprofloxacin (CIP) were used as representative OCs and their joint toxicities with CNTs to Bacillus subtilis were systematically investigated at cellular, biochemical, and omics levels. The 3-h bacterial growth half inhibitory concentrations of CNTs, PCP, and CIP were 12.5 ± 2.6, 3.5 ± 0.5, and 0.46 ± 0.03 mg/L, respectively, and they all could damage cell membrane, increase intracellular oxidative stress, and alter bacterial metabolomics and transcriptomics; while CNTs-PCP and CNTs-CIP binary exposures exhibited distinct additive and synergistic toxicities, respectively. CNTs increased bacterial bioaccumulation of PCP and CIP via destabilizing and damaging cell membrane. PCP reduced the bioaccumulation of CNTs, while CIP had no significant effect; this difference could be owing to the different effects of the two OCs on cell-surface hydrophobicity and CNTs electronegativity. The additive toxicity outcome upon CNTs-PCP co-exposure could be a result of the balance between the increased toxicity from increased PCP bioaccumulation and the decreased toxicity from decreased CNTs bioaccumulation. The increased bioaccumulation of CIP contributed to the synergistic toxicity upon CNTs-CIP co-exposure, as confirmed by the increased inhibition of topoisomerase Ⅳ activity and interference in gene expressions regulating ABC transporters and lysine biosynthesis. The findings provide novel insights into environmental risks of CNTs.
Collapse
Affiliation(s)
- Rui Deng
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China; Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
54
|
Ahmad A, Akram W, Bashir Z, Shahzadi I, Wang R, Abbas HMK, Hu D, Ahmed S, Xu X, Li G, Wu T. Functional and Structural Analysis of a Novel Acyltransferase from Pathogenic Phytophthora melonis. ACS OMEGA 2021; 6:1797-1808. [PMID: 33521421 PMCID: PMC7841795 DOI: 10.1021/acsomega.0c03186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/15/2020] [Indexed: 05/07/2023]
Abstract
This investigation characterizes an acyltransferase enzyme responsible for the pathogenicity of Phytophthora melonis. The protein was characterized in vitro for its physicochemical properties. The biochemical characterization, including thermal and pH stability, revealed the 35 °C temperature and 7.0 pH as the optimum conditions for the enzyme. Applying the Tween-80 solution enhanced the activity up to 124.9%. Comprehensive structural annotation revealed two domains, A (ranging from residues 260 to 620) and B (ranging from 141 to 219). Domain A had transglutaminase (T-Gase) elicitor properties, while B possessed antifreeze features. Rigorous sequence characterization of the acyltransferase tagged it as a low-temperature-resistant protein. Further, the taxonomic distribution analysis of the protein highlighted three genera in Oomycetes, i.e., Pythium, Phytophthora, and Plasmopara, bearing this protein. However, some taxonomic groups other than Oomycetes (i.e., archaea and bacteria) also contained the protein. Functional studies of structurally analogous proteins spanned 10 different taxonomic groups. These revealed TGase elicitors (10%), phytopathogen effector proteins RxLR (4%), transporter family proteins (3%), and endonucleases (1%). Other analogues having one percent of their individual share were HIV tat-specific factor 1, protocadherin fat 4, transcription factor 1, and 3-hydroxyisobutyrate dehydrogenase. Because the plant infection by P. melonis is a complex process regulated by a profusion of extracellular signals secreted by both host plants and the pathogen, this study will be of help in interpreting the cross-talk in the host-pathogen system.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Vegetable
Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong
Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Waheed Akram
- Vegetable
Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong
Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Zoobia Bashir
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Iqra Shahzadi
- School
of Resource and Environmental Science, Wuhan
University, Wuhan 430072, Hubei, China
| | - Rui Wang
- Vegetable
Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong
Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Hafiz Muhammad Khalid Abbas
- Vegetable
Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong
Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Du Hu
- Vegetable
Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong
Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Shakeel Ahmed
- Instituto
de Farmacia, Facultad de Ciencias, Universidad
Austral de Chile, Campus
Isla Teja, Valdivia 5090000, Chile
| | - Xiaomei Xu
- Vegetable
Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong
Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Guihua Li
- Vegetable
Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong
Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Tingquan Wu
- Vegetable
Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong
Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| |
Collapse
|
55
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021. [PMID: 34046426 DOI: 10.3389/fmolb.2021.634438/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
- Jessica R Willdigg
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
56
|
The Bactericidal Fatty Acid Mimetic 2CCA-1 Selectively Targets Pneumococcal Extracellular Polyunsaturated Fatty Acid Metabolism. mBio 2020; 11:mBio.03027-20. [PMID: 33323510 PMCID: PMC7773995 DOI: 10.1128/mbio.03027-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fatty acid biosynthesis is an attractive antibiotic target, as it affects the supply of membrane phospholipid building blocks. In Streptococcus pneumoniae, it is not sufficient to target only the endogenous fatty acid synthesis machinery, as uptake of host fatty acids may bypass this inhibition. Streptococcus pneumoniae, a major cause of pneumonia, sepsis, and meningitis worldwide, has the nasopharynges of small children as its main ecological niche. Depletion of pneumococci from this niche would reduce the disease burden and could be achieved using small molecules with narrow-spectrum antibacterial activity. We identified the alkylated dicyclohexyl carboxylic acid 2CCA-1 as a potent inducer of autolysin-mediated lysis of S. pneumoniae, while having low activity against Staphylococcus aureus. 2CCA-1-resistant strains were found to have inactivating mutations in fakB3, known to be required for uptake of host polyunsaturated fatty acids, as well as through inactivation of the transcriptional regulator gene fabT, vital for endogenous, de novo fatty acid synthesis regulation. Structure activity relationship exploration revealed that, besides the central dicyclohexyl group, the fatty acid-like structural features of 2CCA-1 were essential for its activity. The lysis-inducing activity of 2CCA-1 was considerably more potent than that of free fatty acids and required growing bacteria, suggesting that 2CCA-1 needs to be metabolized to exert its antimicrobial activity. Total lipid analysis of 2CCA-1 treated bacteria identified unique masses that were modeled to 2CCA-1 containing lysophosphatidic and phosphatidic acid in wild-type but not in fakB3 mutant bacteria. This suggests that 2CCA-1 is metabolized as a fatty acid via FakB3 and utilized as a phospholipid building block, leading to accumulation of toxic phospholipid species. Analysis of FabT-mediated fakB3 expression elucidates how the pneumococcus could ensure membrane homeostasis and concurrent economic use of host-derived fatty acids.
Collapse
|
57
|
Blanco P, Corona F, Martinez JL. Mechanisms and phenotypic consequences of acquisition of tigecycline resistance by Stenotrophomonas maltophilia. J Antimicrob Chemother 2020; 74:3221-3230. [PMID: 31369109 DOI: 10.1093/jac/dkz326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/17/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES To elucidate the potential mutation-driven mechanisms involved in the acquisition of tigecycline resistance by the opportunistic pathogen Stenotrophomonas maltophilia. The mutational trajectories and their effects on bacterial fitness, as well as cross-resistance and/or collateral susceptibility to other antibiotics, were also addressed. METHODS S. maltophilia populations were submitted to experimental evolution in the presence of increasing concentrations of tigecycline for 30 days. The genetic mechanisms involved in the acquisition of tigecycline resistance were determined by WGS. Resistance was evaluated by performing MIC assays. Fitness of the evolved populations and individual clones was assessed by measurement of the maximum growth rates. RESULTS All the tigecycline-evolved populations attained high-level resistance to tigecycline following different mutational trajectories, yet with some common elements. Among the mechanisms involved in low susceptibility to tigecycline, mutations in the SmeDEF efflux pump negative regulator smeT, changes in proteins involved in the biogenesis of the ribosome and modifications in the LPS biosynthesis pathway seem to play a major role. Besides tigecycline resistance, the evolved populations presented cross-resistance to other antibiotics, such as aztreonam and quinolones, and they were hypersusceptible to fosfomycin, suggesting a possible combination treatment. Further, we found that the selected resistance mechanisms impose a relevant fitness cost when bacteria grow in the absence of antibiotic. CONCLUSIONS Mutational resistance to tigecycline was easily selected during exposure to this antibiotic. However, the fitness cost may compromise the maintenance of S. maltophilia tigecycline-resistant populations in the absence of antibiotic.
Collapse
Affiliation(s)
- Paula Blanco
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | | |
Collapse
|
58
|
Blanken D, Foschepoth D, Serrão AC, Danelon C. Genetically controlled membrane synthesis in liposomes. Nat Commun 2020; 11:4317. [PMID: 32859896 PMCID: PMC7455746 DOI: 10.1038/s41467-020-17863-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/19/2020] [Indexed: 12/21/2022] Open
Abstract
Lipid membranes, nucleic acids, proteins, and metabolism are essential for modern cellular life. Synthetic systems emulating the fundamental properties of living cells must therefore be built upon these functional elements. In this work, phospholipid-producing enzymes encoded in a synthetic minigenome are cell-free expressed within liposome compartments. The de novo synthesized metabolic pathway converts precursors into a variety of lipids, including the constituents of the parental liposome. Balanced production of phosphatidylethanolamine and phosphatidylglycerol is realized, owing to transcriptional regulation of the activity of specific genes combined with a metabolic feedback mechanism. Fluorescence-based methods are developed to image the synthesis and membrane incorporation of phosphatidylserine at the single liposome level. Our results provide experimental evidence for DNA-programmed membrane synthesis in a minimal cell model. Strategies are discussed to alleviate current limitations toward effective liposome growth and self-reproduction.
Collapse
Affiliation(s)
- Duco Blanken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - David Foschepoth
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Adriana Calaça Serrão
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Christophe Danelon
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
59
|
Jiang Y, Qin M, Guo Z. Substrate Recognition and Catalytic Mechanism of the Phosphate Acyltransferase PlsX from Bacillus subtilis. Chembiochem 2020; 21:2019-2028. [PMID: 32180316 DOI: 10.1002/cbic.202000015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/28/2020] [Indexed: 12/18/2022]
Abstract
Phosphate: acyl-acyl carrier protein (ACP) acyltransferase PlsX is a peripheral enzyme catalysing acyl transfer to orthophosphate in phospholipid synthesis. Little is known about how it recognises substrates and catalyses the acyl transfer. Here we show that its active site includes many residues lining a long, narrow gorge at the dimeric interface, two positive residues forming a positive ACP docking pad next to the interfacial gorge, and a number of strictly conserved residues significantly contributing to the catalytic activity. These findings suggest a substrate recognition mode and a catalytic mechanism that are different from those of phosphotransacetylases catalysing a similar acyl transfer reaction. The catalytic mechanism involves substrate activation and transition-state stabilization by two strictly conserved residues, Lys184 and Asn229. Another noticeable feature of the catalysis is the release of the acyl phosphate product near the membrane, which might facilitate its membrane insertion.
Collapse
Affiliation(s)
- Yiping Jiang
- Shenzhen Research Institute Hong Kong Branch of Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou) and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Mingming Qin
- Shenzhen Research Institute Hong Kong Branch of Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou) and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhihong Guo
- Shenzhen Research Institute Hong Kong Branch of Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou) and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
60
|
Allemann MN, Allen EE. Genetic regulation of the bacterial omega-3 polyunsaturated fatty acid biosynthesis pathway. J Bacteriol 2020; 202:JB.00050-20. [PMID: 32513681 PMCID: PMC8404712 DOI: 10.1128/jb.00050-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
A characteristic among many marine Gammaproteobacteria is the biosynthesis and incorporation of omega-3 polyunsaturated fatty acids into membrane phospholipids. The biosynthesis of eicosapentaenoic (EPA) and/or docosahexaenoic (DHA) acids is mediated by a polyketide/fatty acid synthase mechanism encoded by a set of five genes, pfaABCDE. This unique fatty acid synthesis pathway co-exists with the principal type II dissociated fatty acid synthesis pathway, which is responsible for the biosynthesis of core saturated, monounsaturated, and hydroxylated fatty acids used in phospholipid and lipid A biosynthesis. In this work, a genetic approach was undertaken to elucidate genetic regulation of the pfa genes in the model marine bacterium Photobacterium profundum SS9. Using a reporter gene fusion, we showed that expression of the pfa operon is down regulated in response to exogenous fatty acids, particularly long chain monounsaturated fatty acids. This regulation occurs independently of the canonical fatty acid regulators, FabR and FadR, present in P. profundum SS9. Transposon mutagenesis and screening of a library of mutants identified a novel transcriptional regulator, which we have designated pfaF, to be responsible for the observed regulation of the pfa operon in P. profundum SS9. Gel mobility shift and DNase I footprinting assays confirmed that PfaF binds the pfaA promoter and identified the PfaF binding site.Importance The production of long-chain omega-3 polyunsaturated fatty acids (PUFA) by marine Gammaproteobacteria, particularly those from deep-sea environments, has been known for decades. These unique fatty acids are produced by a polyketide-type mechanism and subsequently incorporated into the phospholipid membrane. While much research has focused on the biosynthesis genes, their products and the phylogenetic distribution of these gene clusters, no prior studies have detailed the genetic regulation of this pathway. This study describes how this pathway is regulated under various culture conditions and has identified and characterized a fatty acid responsive transcriptional regulator specific to PUFA biosynthesis.
Collapse
Affiliation(s)
- Marco N Allemann
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA USA
| | - Eric E Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
61
|
Orive-Milla N, Delmulle T, de Mey M, Faijes M, Planas A. Metabolic engineering for glycoglycerolipids production in E. coli: Tuning phosphatidic acid and UDP-glucose pathways. Metab Eng 2020; 61:106-119. [PMID: 32492511 DOI: 10.1016/j.ymben.2020.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Glycolipids are target molecules in biotechnology and biomedicine as biosurfactants, biomaterials and bioactive molecules. An engineered E. coli strain for the production of glycoglycerolipids (GGL) used the MG517 glycolipid synthase from M. genitalium for glucosyl transfer from UDPGlc to diacylglycerol acceptor (Mora-Buyé et al., 2012). The intracellular diacylglycerol pool proved to be the limiting factor for GGL production. Here we designed different metabolic engineering strategies to enhance the availability of precursor substrates for the glycolipid synthase by modulating fatty acids, acyl donor and phosphatidic acid biosynthesis. Knockouts of tesA, fadE and fabR genes involved in fatty acids degradation, overexpression of the transcriptional regulator FadR, the acyltransferases PlsB and C, and the pyrophosphatase Cdh for phosphatidic acid biosynthesis, as well as the phosphatase PgpB for conversion to diacylglycerol were explored with the aim of improving GGL titers. Among the different engineered strains, the ΔtesA strain co-expressing MG517 and a fusion PlsCxPgpB protein was the best producer, with a 350% increase of GGL titer compared to the parental strain expressing MG517 alone. Attempts to boost UDPGlc availability by overexpressing the uridyltransferase GalU or knocking out the UDP-sugar diphosphatase encoding gene ushA did not further improve GGL titers. Most of the strains produced GGL containing a variable number of glucosyl units from mono-to tetra-saccharides. Interestingly, the strains co-expressing Cdh showed a shift in the GGL profile towards the diglucosylated lipid (up to 80% of total GGLs) whereas the strains with a fadR knockout presented a higher amount of unsaturated acyl chains. In all cases, GGL production altered the lipidic composition of the E. coli membrane, observing that GGL replace phosphatidylethanolamine to maintain the overall membrane charge balance.
Collapse
Affiliation(s)
- Nuria Orive-Milla
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, Via Augusta 350, E-08017, Barcelona, Spain
| | - Tom Delmulle
- Centre for Synthetic Biology (CSB), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Marjan de Mey
- Centre for Synthetic Biology (CSB), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Magda Faijes
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, Via Augusta 350, E-08017, Barcelona, Spain.
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, Via Augusta 350, E-08017, Barcelona, Spain.
| |
Collapse
|
62
|
Frank MW, Yao J, Batte JL, Gullett JM, Subramanian C, Rosch JW, Rock CO. Host Fatty Acid Utilization by Staphylococcus aureus at the Infection Site. mBio 2020; 11:e00920-20. [PMID: 32430471 PMCID: PMC7240157 DOI: 10.1128/mbio.00920-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus utilizes the fatty acid (FA) kinase system to activate exogenous FAs for membrane synthesis. We developed a lipidomics workflow to determine the membrane phosphatidylglycerol (PG) molecular species synthesized by S. aureus at the thigh infection site. Wild-type S. aureus utilizes both host palmitate and oleate to acylate the 1 position of PG, and the 2 position is occupied by pentadecanoic acid arising from de novo biosynthesis. Inactivation of FakB2 eliminates the ability to assimilate oleate and inactivation of FakB1 reduces the content of saturated FAs and enhances oleate utilization. Elimination of FA activation in either ΔfakA or ΔfakB1 ΔfakB2 mutants does not impact growth. All S. aureus strains recovered from the thigh have significantly reduced branched-chain FAs and increased even-chain FAs compared to that with growth in rich laboratory medium. The molecular species pattern observed in the thigh was reproduced in the laboratory by growth in isoleucine-deficient medium containing exogenous FAs. S. aureus utilizes specific host FAs for membrane biosynthesis but also requires de novo FA biosynthesis initiated by isoleucine (or leucine) to produce pentadecanoic acid.IMPORTANCE The shortage of antibiotics against drug-resistant Staphylococcus aureus has led to the development of new drugs targeting the elongation cycle of fatty acid (FA) synthesis that are progressing toward the clinic. An objection to the use of FA synthesis inhibitors is that S. aureus can utilize exogenous FAs to construct its membrane, suggesting that the bacterium would bypass these therapeutics by utilizing host FAs instead. We developed a mass spectrometry workflow to determine the composition of the S. aureus membrane at the infection site to directly address how S. aureus uses host FAs. S. aureus strains that cannot acquire host FAs are as effective in establishing an infection as the wild type, but strains that require the utilization of host FAs for growth were attenuated in the mouse thigh infection model. We find that S. aureus does utilize host FAs to construct its membrane, but host FAs do not replace the requirement for pentadecanoic acid, a branched-chain FA derived from isoleucine (or leucine) that predominantly occupies the 2 position of S. aureus phospholipids. The membrane phospholipid structure of S. aureus mutants that cannot utilize host FAs indicates the isoleucine is a scarce resource at the infection site. This reliance on the de novo synthesis of predominantly pentadecanoic acid that cannot be obtained from the host is one reason why drugs that target fatty acid synthesis are effective in treating S. aureus infections.
Collapse
Affiliation(s)
- Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Justin L Batte
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jessica M Gullett
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
63
|
Toyotake Y, Nishiyama M, Yokoyama F, Ogawa T, Kawamoto J, Kurihara T. A Novel Lysophosphatidic Acid Acyltransferase of Escherichia coli Produces Membrane Phospholipids with a cis-vaccenoyl Group and Is Related to Flagellar Formation. Biomolecules 2020; 10:E745. [PMID: 32403425 PMCID: PMC7277886 DOI: 10.3390/biom10050745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Lysophosphatidic acid acyltransferase (LPAAT) introduces fatty acyl groups into the sn-2 position of membrane phospholipids (PLs). Various bacteria produce multiple LPAATs, whereas it is believed that Escherichia coli produces only one essential LPAAT homolog, PlsC-the deletion of which is lethal. However, we found that E. coli possesses another LPAAT homolog named YihG. Here, we show that overexpression of YihG in E. coli carrying a temperature-sensitive mutation in plsC allowed its growth at non-permissive temperatures. Analysis of the fatty acyl composition of PLs from the yihG-deletion mutant (∆yihG) revealed that endogenous YihG introduces the cis-vaccenoyl group into the sn-2 position of PLs. Loss of YihG did not affect cell growth or morphology, but ∆yihG cells swam well in liquid medium in contrast to wild-type cells. Immunoblot analysis showed that FliC was highly expressed in ∆yihG cells, and this phenotype was suppressed by expression of recombinant YihG in ∆yihG cells. Transmission electron microscopy confirmed that the flagellar structure was observed only in ∆yihG cells. These results suggest that YihG has specific functions related to flagellar formation through modulation of the fatty acyl composition of membrane PLs.
Collapse
Affiliation(s)
- Yosuke Toyotake
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Masayoshi Nishiyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
| | - Fumiaki Yokoyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
| | - Takuya Ogawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
| |
Collapse
|
64
|
Sastre DE, Pulschen AA, Basso LGM, Benites Pariente JS, Marques Netto CGC, Machinandiarena F, Albanesi D, Navarro MVAS, de Mendoza D, Gueiros-Filho FJ. The phosphatidic acid pathway enzyme PlsX plays both catalytic and channeling roles in bacterial phospholipid synthesis. J Biol Chem 2020; 295:2148-2159. [PMID: 31919098 DOI: 10.1074/jbc.ra119.011147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/19/2019] [Indexed: 12/29/2022] Open
Abstract
PlsX is the first enzyme in the pathway that produces phosphatidic acid in Gram-positive bacteria. It makes acylphosphate from acyl-acyl carrier protein (acyl-ACP) and is also involved in coordinating phospholipid and fatty acid biosyntheses. PlsX is a peripheral membrane enzyme in Bacillus subtilis, but how it associates with the membrane remains largely unknown. In the present study, using fluorescence microscopy, liposome sedimentation, differential scanning calorimetry, and acyltransferase assays, we determined that PlsX binds directly to lipid bilayers and identified its membrane anchoring moiety, consisting of a hydrophobic loop located at the tip of two amphipathic dimerization helices. To establish the role of the membrane association of PlsX in acylphosphate synthesis and in the flux through the phosphatidic acid pathway, we then created mutations and gene fusions that prevent PlsX's interaction with the membrane. Interestingly, phospholipid synthesis was severely hampered in cells in which PlsX was detached from the membrane, and results from metabolic labeling indicated that these cells accumulated free fatty acids. Because the same mutations did not affect PlsX transacylase activity, we conclude that membrane association is required for the proper delivery of PlsX's product to PlsY, the next enzyme in the phosphatidic acid pathway. We conclude that PlsX plays a dual role in phospholipid synthesis, acting both as a catalyst and as a chaperone protein that mediates substrate channeling into the pathway.
Collapse
Affiliation(s)
- Diego E Sastre
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; Grupo de Biofísica Molecular "Sergio Mascarenhas," Instituto de Física de São Carlos, Departamento de Biofísica Molecular, Universidade de São Paulo, São Carlos, SP 13560-970, Brazil
| | - André A Pulschen
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Luis G M Basso
- Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | | | | | - Federico Machinandiarena
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2002LRK, Argentina
| | - Daniela Albanesi
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2002LRK, Argentina
| | - Marcos V A S Navarro
- Grupo de Biofísica Molecular "Sergio Mascarenhas," Instituto de Física de São Carlos, Departamento de Biofísica Molecular, Universidade de São Paulo, São Carlos, SP 13560-970, Brazil
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2002LRK, Argentina.
| | - Frederico J Gueiros-Filho
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
65
|
Radka CD, Frank MW, Rock CO, Yao J. Fatty acid activation and utilization by Alistipes finegoldii, a representative Bacteroidetes resident of the human gut microbiome. Mol Microbiol 2020; 113:807-825. [PMID: 31876062 DOI: 10.1111/mmi.14445] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Members of the Bacteroidetes phylum, represented by Alistipes finegoldii, are prominent anerobic, Gram-negative inhabitants of the gut microbiome. The lipid biosynthetic pathways were analyzed using bioinformatic analyses, lipidomics, metabolic labeling and biochemistry to characterize exogenous fatty acid metabolism. A. finegoldii only produced the saturated fatty acids. The most abundant lipids were phosphatidylethanolamine (PE) and sulfonolipid (SL). Neither phosphatidylglycerol nor cardiolipin are present. PE synthesis is initiated by the PlsX/PlsY/PlsC pathway, whereas the SL pathway is related to sphingolipid biosynthesis. A. finegoldii incorporated medium-chain fatty acids (≤14 carbons) into PE and SL after their elongation, whereas long-chain fatty acids (≥16 carbons) were not elongated. Fatty acids >16 carbons were primarily incorporated into the 2-position of phosphatidylethanolamine at the PlsC step, the only biosynthetic enzyme that utilizes long-chain acyl-ACP. The ability to assimilate a broad-spectrum of fatty acid chain lengths present in the gut environment is due to the expression of two acyl-acyl carrier protein (ACP) synthetases. Acyl-ACP synthetase 1 had a substrate preference for medium-chain fatty acids and synthetase 2 had a substrate preference for long-chain fatty acids. This unique combination of synthetases allows A. finegoldii to utilize both the medium- and long-chain fatty acid nutrients available in the gut environment to assemble its membrane lipids.
Collapse
Affiliation(s)
- Christopher D Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
66
|
Sastre DE, Basso LGM, Trastoy B, Cifuente JO, Contreras X, Gueiros-Filho F, de Mendoza D, Navarro MVAS, Guerin ME. Membrane fluidity adjusts the insertion of the transacylase PlsX to regulate phospholipid biosynthesis in Gram-positive bacteria. J Biol Chem 2019; 295:2136-2147. [PMID: 31796629 DOI: 10.1074/jbc.ra119.011122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
PlsX plays a central role in the coordination of fatty acid and phospholipid biosynthesis in Gram-positive bacteria. PlsX is a peripheral membrane acyltransferase that catalyzes the conversion of acyl-ACP to acyl-phosphate, which is in turn utilized by the polytopic membrane acyltransferase PlsY on the pathway of bacterial phospholipid biosynthesis. We have recently studied the interaction between PlsX and membrane phospholipids in vivo and in vitro, and observed that membrane association is necessary for the efficient transfer of acyl-phosphate to PlsY. However, understanding the molecular basis of such a channeling mechanism remains a major challenge. Here, we disentangle the binding and insertion events of the enzyme to the membrane, and the subsequent catalysis. We show that PlsX membrane binding is a process mostly mediated by phospholipid charge, whereas fatty acid saturation and membrane fluidity remarkably influence the membrane insertion step. Strikingly, the PlsXL254E mutant, whose biological functionality was severely compromised in vivo but remains catalytically active in vitro, was able to superficially bind to phospholipid vesicles, nevertheless, it loses the insertion capacity, strongly supporting the importance of membrane insertion in acyl-phosphate delivery. We propose a mechanism in which membrane fluidity governs the insertion of PlsX and thus regulates the biosynthesis of phospholipids in Gram-positive bacteria. This model may be operational in other peripheral membrane proteins with an unprecedented impact in drug discovery/development strategies.
Collapse
Affiliation(s)
- Diego E Sastre
- Grupo de Biofísica Molecular "Sergio Mascarenhas," Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brasil.
| | - Luis G M Basso
- Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Beatriz Trastoy
- Structural Biology Unit, CIC bioGUNE Technological Park of Bizkaia, Derio, Vizcaya, Spain
| | - Javier O Cifuente
- Structural Biology Unit, CIC bioGUNE Technological Park of Bizkaia, Derio, Vizcaya, Spain
| | - Xabier Contreras
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; Instituto Biofisika, Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, 48940 Bizkaia, Spain; Departamento de Bioquímica, Universidad del País Vasco, Leioa, 48940 Bizkaia, Spain
| | - Frederico Gueiros-Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR), Rosario, Santa Fe, Argentina
| | - Marcos V A S Navarro
- Grupo de Biofísica Molecular "Sergio Mascarenhas," Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brasil
| | - Marcelo E Guerin
- Structural Biology Unit, CIC bioGUNE Technological Park of Bizkaia, Derio, Vizcaya, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
67
|
Gullett JM, Cuypers MG, Frank MW, White SW, Rock CO. A fatty acid-binding protein of Streptococcus pneumoniae facilitates the acquisition of host polyunsaturated fatty acids. J Biol Chem 2019; 294:16416-16428. [PMID: 31530637 PMCID: PMC6827280 DOI: 10.1074/jbc.ra119.010659] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/16/2019] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae is responsible for the majority of pneumonia, motivating ongoing searches for insights into its physiology that could enable new treatments. S. pneumoniae responds to exogenous fatty acids by suppressing its de novo biosynthetic pathway and exclusively utilizing extracellular fatty acids for membrane phospholipid synthesis. The first step in exogenous fatty acid assimilation is phosphorylation by fatty acid kinase (FakA), whereas bound by a fatty acid-binding protein (FakB). Staphylococcus aureus has two binding proteins, whereas S. pneumoniae expresses three. The functions of these binding proteins were not clear. We determined the SpFakB1- and SpFakB2-binding proteins were bioinformatically related to the two binding proteins of Staphylococcus aureus, and biochemical and X-ray crystallographic analysis showed that SpFakB1 selectively bound saturates, whereas SpFakB2 allows the activation of monounsaturates akin to their S. aureus counterparts. The distinct SpFakB3 enables the utilization of polyunsaturates. The SpFakB3 crystal structure in complex with linoleic acid reveals an expanded fatty acid-binding pocket within the hydrophobic interior of SpFakB3 that explains its ability to accommodate multiple cis double bonds. SpFakB3 also utilizes a different hydrogen bond network than other FakBs to anchor the fatty acid carbonyl and stabilize the protein. S. pneumoniae strain JMG1 (ΔfakB3) was deficient in incorporation of linoleate from human serum verifying the role of FakB3 in this process. Thus, the multiple FakBs of S. pneumoniae permit the utilization of the entire spectrum of mammalian fatty acid structures to construct its membrane.
Collapse
Affiliation(s)
- Jessica M Gullett
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Maxime G Cuypers
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
68
|
Continuous expansion of a synthetic minimal cellular membrane. Emerg Top Life Sci 2019; 3:543-549. [DOI: 10.1042/etls20190020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 07/08/2019] [Indexed: 12/26/2022]
Abstract
A critical aspect of a synthetic minimal cell is expansion of the surrounding boundary layer. This layer should consist of phospholipids (mimics) as these molecules assemble into a bilayer, creating a functional barrier with specific phospholipid species that are essential for membrane related processes. As a first step towards synthetic cells, an in vitro phospholipid biosynthesis pathway has been constructed that utilizes fatty acids as precursors to produce a wide variety of phospholipid species, thereby driving membrane growth. This now needs to be developed further into a sustainable expanding system, meanwhile keeping simplicity in mind. The non-enzymatic synthesis of phospholipid-like molecules forms a realistic alternative for natural enzymatic-based pathways, that nowadays can even support functional membrane proteins. Eventually, coupling to in vitro transcription/translation is required, for which efficient mechanisms of insertion and folding of the involved membrane proteins need to be developed. Such an integrated system will form a suitable foundation of a synthetic minimal cell that eventually can be coupled to other cellular processes such as division.
Collapse
|
69
|
Rodman N, Martinez J, Fung S, Nakanouchi J, Myers AL, Harris CM, Dang E, Fernandez JS, Liu C, Mendoza AM, Jimenez V, Nikolaidis N, Brennan CA, Bonomo RA, Sieira R, Ramirez MS. Human Pleural Fluid Elicits Pyruvate and Phenylalanine Metabolism in Acinetobacter baumannii to Enhance Cytotoxicity and Immune Evasion. Front Microbiol 2019; 10:1581. [PMID: 31379769 PMCID: PMC6650585 DOI: 10.3389/fmicb.2019.01581] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/25/2019] [Indexed: 01/13/2023] Open
Abstract
Acinetobacter baumannii (Ab) is one of the most treacherous pathogens among those causing hospital-acquired pneumonia (HAP). A. baumannii possesses an adaptable physiology, seen not only in its antibiotic resistance and virulence phenotypes but also in its metabolic versatility. In this study, we observed that A. baumannii undergoes global transcriptional changes in response to human pleural fluid (PF), a key host-derived environmental signal. Differential gene expression analyses combined with experimental approaches revealed changes in A. baumannii metabolism, affecting cytotoxicity, persistence, bacterial killing, and chemotaxis. Over 1,220 genes representing 55% of the differentially expressed transcriptomic data corresponded to metabolic processes, including the upregulation of glutamate, short chain fatty acid, and styrene metabolism. We observed an upregulation by 1.83- and 2.61-fold of the pyruvate dehydrogenase complex subunits E3 and E2, respectively. We also found that pyruvate (PYR), in conjunction with PF, triggers an A. baumannii pathogenic behavior that adversely impacts human epithelial cell viability. Interestingly, PF also amplified A. baumannii cytotoxicity against murine macrophages, suggesting an immune evasion strategy implemented by A. baumannii. Moreover, we uncovered opposing metabolic strategies dependent on the degree of pathogenicity of the strains, where less pathogenic strains demonstrated greater utilization of PYR to promote persister formation in the presence of PF. Additionally, our transcriptomic analysis and growth studies of A. baumannii suggest the existence of an alternative phenylalanine (PA) catabolic route independent of the phenylacetic acid pathway, which converts PA to phenylpyruvate (PP) and shuttles intermediates into styrene metabolism. This alternative route promoted a neutrophil-evasive state, as PF-induced degradation of PP significantly reduced overall human neutrophil chemotaxis in ex vivo chemotactic assays. Taken together, these data highlight A. baumannii pathoadaptabililty in response to host signals and provide further insight into the role of bacterial metabolism in virulence traits, antibiotic persistence strategies, and host innate immune evasion.
Collapse
Affiliation(s)
- Nyah Rodman
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Jasmine Martinez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Sammie Fung
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Jun Nakanouchi
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Amber L. Myers
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Caitlin M. Harris
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Emily Dang
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Jennifer S. Fernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Christine Liu
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Anthony M. Mendoza
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Veronica Jimenez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Nikolas Nikolaidis
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Catherine A. Brennan
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Robert A. Bonomo
- Medical Service and Geriatrics Research, Education and Clinical Center (GRECC), Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, United States
| | - Rodrigo Sieira
- Fundacioìn Instituto Leloir-IIBBA CONICET, Buenos Aires, Argentina
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| |
Collapse
|
70
|
Evidence to Suggest Bacterial Lipoprotein Diacylglyceryl Transferase (Lgt) is a Weakly Associated Inner Membrane Protein. J Membr Biol 2019; 252:563-575. [DOI: 10.1007/s00232-019-00076-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
|
71
|
Coleman GA, Pancost RD, Williams TA. Investigating the Origins of Membrane Phospholipid Biosynthesis Genes Using Outgroup-Free Rooting. Genome Biol Evol 2019; 11:883-898. [PMID: 30753429 PMCID: PMC6431249 DOI: 10.1093/gbe/evz034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
One of the key differences between Bacteria and Archaea is their canonical membrane phospholipids, which are synthesized by distinct biosynthetic pathways with nonhomologous enzymes. This “lipid divide” has important implications for the early evolution of cells and the type of membrane phospholipids present in the last universal common ancestor. One of the main challenges in studies of membrane evolution is that the key biosynthetic genes are ancient and their evolutionary histories are poorly resolved. This poses major challenges for traditional rooting methods because the only available outgroups are distantly related. Here, we address this issue by using the best available substitution models for single-gene trees, by expanding our analyses to the diversity of uncultivated prokaryotes recently revealed by environmental genomics, and by using two complementary approaches to rooting that do not depend on outgroups. Consistent with some previous analyses, our rooted gene trees support extensive interdomain horizontal transfer of membrane phospholipid biosynthetic genes, primarily from Archaea to Bacteria. They also suggest that the capacity to make archaeal-type membrane phospholipids was already present in last universal common ancestor.
Collapse
Affiliation(s)
- Gareth A Coleman
- School of Biological Sciences, University of Bristol, United Kingdom
| | | | - Tom A Williams
- School of Biological Sciences, University of Bristol, United Kingdom
| |
Collapse
|
72
|
Xu L, Coleman-Derr D. Causes and consequences of a conserved bacterial root microbiome response to drought stress. Curr Opin Microbiol 2019; 49:1-6. [DOI: 10.1016/j.mib.2019.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
|
73
|
Glycerol metabolism and its regulation in lactic acid bacteria. Appl Microbiol Biotechnol 2019; 103:5079-5093. [DOI: 10.1007/s00253-019-09830-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 01/09/2023]
|
74
|
Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Akseer R, Lim SHE, Lai KS. Disruption of KPC-producing Klebsiella pneumoniae membrane via induction of oxidative stress by cinnamon bark (Cinnamomum verum J. Presl) essential oil. PLoS One 2019; 14:e0214326. [PMID: 30939149 PMCID: PMC6445408 DOI: 10.1371/journal.pone.0214326] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/10/2019] [Indexed: 01/09/2023] Open
Abstract
Klebsiella pneumoniae (KP) remains the most prevalent nosocomial pathogen and carries the carbapenemase (KPC) gene which confers resistance towards carbapenem. Thus, it is necessary to discover novel antimicrobials to address the issue of antimicrobial resistance in such pathogens. Natural products such as essential oils are a promising source due to their complex composition. Essential oils have been shown to be effective against pathogens, but the overall mechanisms have yet to be fully explained. Understanding the molecular mechanisms of essential oil towards KPC-KP cells would provide a deeper understanding of their potential use in clinical settings. Therefore, we aimed to investigate the mode of action of essential oil against KPC-KP cells from a proteomic perspective by comparing the overall proteome profile of KPC-KP cells treated with cinnamon bark (Cinnamomum verum J. Presl) essential oil (CBO) at their sub-inhibitory concentration of 0.08% (v/v). A total of 384 proteins were successfully identified from the non-treated cells, whereas only 242 proteins were identified from the CBO-treated cells. Proteins were then categorized based on their biological processes, cellular components and molecular function prior to pathway analysis. Pathway analysis showed that CBO induced oxidative stress in the KPC-KP cells as indicated by the abundance of oxidative stress regulator proteins such as glycyl radical cofactor, catalase peroxidase and DNA mismatch repair protein. Oxidative stress is likely to oxidize and disrupt the bacterial membrane as shown by the loss of major membrane proteins. Several genes selected for qRT-PCR analysis validated the proteomic profile and were congruent with the proteomic abundance profiles. In conclusion, KPC-KP cells exposed to CBO undergo oxidative stress that eventually disrupts the bacterial membrane possibly via interaction with the phospholipid bilayer. Interestingly, several pathways involved in the bacterial membrane repair system were also affected by oxidative stress, contributing to the loss of cells viability.
Collapse
Affiliation(s)
- Shun-Kai Yang
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Warren Thomas
- Perdana University-Royal College of Surgeons in Ireland, School of Medicine, Perdana University, Serdang, Selangor, Malaysia
| | - Aisha Abushelaibi
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - Riaz Akseer
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - Swee-Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland, School of Medicine, Perdana University, Serdang, Selangor, Malaysia
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - Kok-Song Lai
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
75
|
Exterkate M, Driessen AJM. Synthetic Minimal Cell: Self-Reproduction of the Boundary Layer. ACS OMEGA 2019; 4:5293-5303. [PMID: 30949617 PMCID: PMC6443216 DOI: 10.1021/acsomega.8b02955] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/01/2019] [Indexed: 05/09/2023]
Abstract
A critical aspect in the bottom-up construction of a synthetic minimal cell is to develop an entity that is capable of self-reproduction. A key role in this process is the expansion and division of the boundary layer that surrounds the compartment, a process in which content loss has to be avoided and the barrier function maintained. Here, we describe the latest developments regarding self-reproduction of a boundary layer with a focus on the growth and division of phospholipid-based membranes in the context of a synthetic minimal cell.
Collapse
Affiliation(s)
- Marten Exterkate
- Department of Molecular Microbiology,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
76
|
Bhattacharya A, Brea RJ, Niederholtmeyer H, Devaraj NK. A minimal biochemical route towards de novo formation of synthetic phospholipid membranes. Nat Commun 2019; 10:300. [PMID: 30655537 PMCID: PMC6336818 DOI: 10.1038/s41467-018-08174-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/14/2018] [Indexed: 11/30/2022] Open
Abstract
All living cells consist of membrane compartments, which are mainly composed of phospholipids. Phospholipid synthesis is catalyzed by membrane-bound enzymes, which themselves require pre-existing membranes for function. Thus, the principle of membrane continuity creates a paradox when considering how the first biochemical membrane-synthesis machinery arose and has hampered efforts to develop simplified pathways for membrane generation in synthetic cells. Here, we develop a high-yielding strategy for de novo formation and growth of phospholipid membranes by repurposing a soluble enzyme FadD10 to form fatty acyl adenylates that react with amine-functionalized lysolipids to form phospholipids. Continuous supply of fresh precursors needed for lipid synthesis enables the growth of vesicles encapsulating FadD10. Using a minimal transcription/translation system, phospholipid vesicles are generated de novo in the presence of DNA encoding FadD10. Our findings suggest that alternate chemistries can produce and maintain synthetic phospholipid membranes and provides a strategy for generating membrane-based materials. The origin of phospholipids, the primary constituents of cell membranes, is uncertain. Here, the authors develop an in vitro system to synthesize phospholipid molecules from water-soluble single-chain amphiphilic precursors via a reaction catalysed by the mycobacterial ligase FadD10.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, Natural Sciences Building 3328, San Diego, CA, 92093, USA
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, Natural Sciences Building 3328, San Diego, CA, 92093, USA
| | - Henrike Niederholtmeyer
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, Natural Sciences Building 3328, San Diego, CA, 92093, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, Natural Sciences Building 3328, San Diego, CA, 92093, USA.
| |
Collapse
|
77
|
Pang D, Liao S, Wang W, Mu L, Li E, Shen W, Liu F, Zou Y. Destruction of the cell membrane and inhibition of cell phosphatidic acid biosynthesis inStaphylococcus aureus: an explanation for the antibacterial mechanism of morusin. Food Funct 2019; 10:6438-6446. [DOI: 10.1039/c9fo01233h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Morusin from mulberry inhibits the growth ofS. aureusby destroying its cell membrane and further moderating the phosphatidic acid biosynthesis pathway.
Collapse
Affiliation(s)
- Daorui Pang
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Agricultural Products Processing; Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs
- Guangzhou 510610
- China
| | - Sentai Liao
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Agricultural Products Processing; Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs
- Guangzhou 510610
- China
| | - Weifei Wang
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Agricultural Products Processing; Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs
- Guangzhou 510610
- China
| | - Lixia Mu
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Agricultural Products Processing; Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs
- Guangzhou 510610
- China
| | - Erna Li
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Agricultural Products Processing; Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs
- Guangzhou 510610
- China
| | - Weizhi Shen
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Agricultural Products Processing; Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs
- Guangzhou 510610
- China
| | - Fan Liu
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Agricultural Products Processing; Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs
- Guangzhou 510610
- China
| | - Yuxiao Zou
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Agricultural Products Processing; Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs
- Guangzhou 510610
- China
| |
Collapse
|
78
|
Matanza XM, Osorio CR. Transcriptome changes in response to temperature in the fish pathogen Photobacterium damselae subsp. damselae: Clues to understand the emergence of disease outbreaks at increased seawater temperatures. PLoS One 2018; 13:e0210118. [PMID: 30596794 PMCID: PMC6312309 DOI: 10.1371/journal.pone.0210118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
The marine bacterium Photobacterium damselae subsp. damselae (Pdd) is a generalist and facultative pathogen that causes disease in a wide range of marine animals including fish species of importance in aquaculture. Disease outbreaks in fish farms have been correlated with an increased water temperature during summer months. In this study, we have used RNA sequencing to analyze the transcriptome of Pdd RM-71 cultured at two different temperatures, which simulated temperature conditions experienced during free swimming lifestyle at mid latitudes in winter months (15°C) and during outbreaks in aquaculture in warm summer months (25°C). The enhanced bacterial growth of Pdd observed at 25°C in comparison to 15°C suggests that an elevated seawater temperature contributes to the build-up of a sufficient bacterial population to cause disease. In comparison to growth at 15°C, growth at 25°C resulted in the upregulation of genes involved in DNA synthesis, nutrient uptake, chemotaxis, flagellar motility, secretion systems and antimicrobial resistance. Plasmid-encoded virulence factors, which include a putative adhesin/invasin OmpU, a transferrin receptor and a serum resistance protein, were also upregulated. Transcription factor RpoS, genes involved in cold shock response, modulation of cell envelope and amino acid metabolism, as well as genes of yet unknown function were downregulated at 25°C. Notably, the gene encoding damselysin cytotoxin (Dly) was among the most highly transcribed genes at the two assayed temperatures, at levels comparable to the most highly expressed housekeeping genes. This study contributes to our understanding of the regulatory networks and biology of a generalist marine bacterial pathogen, and provides evidence that temperature regulates multiple physiological and virulence-related functions in Pdd.
Collapse
Affiliation(s)
- Xosé M. Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos R. Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
79
|
Guillotte ML, Gillespie JJ, Chandler CE, Rahman MS, Ernst RK, Azad AF. Rickettsia Lipid A Biosynthesis Utilizes the Late Acyltransferase LpxJ for Secondary Fatty Acid Addition. J Bacteriol 2018; 200:e00334-18. [PMID: 30012728 PMCID: PMC6148475 DOI: 10.1128/jb.00334-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022] Open
Abstract
Members of the Rickettsia genus are obligate intracellular, Gram-negative coccobacilli that infect mammalian and arthropod hosts. Several rickettsial species are human pathogens and are transmitted by blood-feeding arthropods. In Gram-negative parasites, the outer membrane (OM) sits at the nexus of the host-pathogen interaction and is rich in lipopolysaccharide (LPS). The lipid A component of LPS anchors the molecule to the bacterial surface and is an endotoxic agonist of Toll-like receptor 4 (TLR4). Despite the apparent importance of lipid A in maintaining OM integrity, as well as its inflammatory potential during infection, this molecule is poorly characterized in Rickettsia pathogens. In this work, we have identified and characterized new members of the recently discovered LpxJ family of lipid A acyltransferases in both Rickettsia typhi and Rickettsia rickettsii, the etiological agents of murine typhus and Rocky Mountain spotted fever, respectively. Our results demonstrate that these enzymes catalyze the addition of a secondary acyl chain (C14/C16) to the 3'-linked primary acyl chain of the lipid A moiety in the final steps of the Raetz pathway of lipid A biosynthesis. Since lipid A architecture is fundamental to bacterial OM integrity, we believe that rickettsial LpxJ may be important in maintaining membrane dynamics to facilitate molecular interactions at the host-pathogen interface that are required for adhesion and invasion of mammalian cells. This work contributes to our understanding of rickettsial outer membrane physiology and sets a foundation for further exploration of the envelope and its role in pathogenesis.IMPORTANCE Lipopolysaccharide (LPS) triggers an inflammatory response through the TLR4-MD2 receptor complex and inflammatory caspases, a process mediated by the lipid A moiety of LPS. Species of Rickettsia directly engage both extracellular and intracellular immunosurveillance, yet little is known about rickettsial lipid A. Here, we demonstrate that the alternative lipid A acyltransferase, LpxJ, from Rickettsia typhi and R. rickettsii catalyzes the addition of C16 fatty acid chains into the lipid A 3'-linked primary acyl chain, accounting for major structural differences relative to the highly inflammatory lipid A of Escherichia coli.
Collapse
Affiliation(s)
- Mark L Guillotte
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Joseph J Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
80
|
Yao J, Rock CO. Therapeutic Targets in Chlamydial Fatty Acid and Phospholipid Synthesis. Front Microbiol 2018; 9:2291. [PMID: 30319589 PMCID: PMC6167442 DOI: 10.3389/fmicb.2018.02291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/07/2018] [Indexed: 01/13/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen with a reduced genome reflecting its host cell dependent life style. However, C. trachomatis has retained all of the genes required for fatty acid and phospholipid synthesis that are present in free-living bacteria. C. trachomatis assembles its cellular membrane using its own biosynthetic machinery utilizing glucose, isoleucine, and serine. This pathway produces disaturated phospholipid molecular species containing a branched-chain 15-carbon fatty acid in the 2-position, which are distinct from the structures of host phospholipids. The enoyl reductase step (FabI) is a target for antimicrobial drug discovery, and the developmental candidate, AFN-1252, blocks the activity of CtFabI. The x-ray crystal structure of the CtFabI•NADH•AFN-1252 ternary complex reveals the interactions between the drug, protein, and cofactor. AFN-1252 treatment of C. trachomatis-infected HeLa cells at any point in the infection cycle reduces infectious titers, and treatment at the time of infection prevents the first cell division. Fatty acid synthesis is essential for C. trachomatis proliferation within its eukaryotic host, and CtFabI is a validated therapeutic target against C. trachomatis.
Collapse
Affiliation(s)
- Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
81
|
Ogawa T, Tanaka A, Kawamoto J, Kurihara T. Purification and characterization of 1-acyl-sn-glycerol-3-phosphate acyltransferase with a substrate preference for polyunsaturated fatty acyl donors from the eicosapentaenoic acid-producing bacterium Shewanella livingstonensis Ac10. J Biochem 2018; 164:33-39. [PMID: 29415144 DOI: 10.1093/jb/mvy025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/21/2018] [Indexed: 11/12/2022] Open
Abstract
1-Acyl-sn-glycerol-3-phosphate acyltransferase (designated as PlsC in bacteria) catalyzes the acylation of lysophosphatidic acid and is responsible for the de novo production of phosphatidic acid, a precursor for the synthesis of various membrane glycerophospholipids. Because PlsC is an integral membrane protein, it is generally difficult to solubilize it without causing its inactivation, which has been hampering its biochemical characterization despite its ubiquitous presence and physiological importance. Most biochemical studies of PlsC have been carried out using crude membrane preparations or intact cells. In this study, we succeeded in solubilization and purification of a recombinant PlsC in its active form from the eicosapentaenoic acid-producing bacterium Shewanella livingstonensis Ac10 using 6-cyclohexyl-1-hexyl-β-d-maltoside as the detergent. We characterized the purified enzyme and found that it has a substrate preference for the acyl donors with a polyunsaturated fatty acyl group, such as eicosapentaenoyl group. These results provide a new method for purification of the PlsC family enzyme and demonstrate the occurrence of a new PlsC with unique substrate specificity.
Collapse
Affiliation(s)
- Takuya Ogawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Asako Tanaka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
82
|
A phosphatidic acid-binding protein is important for lipid homeostasis and adaptation to anaerobic biofilm conditions in Pseudomonas aeruginosa. Biochem J 2018; 475:1885-1907. [DOI: 10.1042/bcj20180257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 01/22/2023]
Abstract
A quantitative Pseudomonas aeruginosa proteomics approach revealed increased abundance of the so-far uncharacterized protein PA3911 in anaerobic biofilms grown under conditions of the cystic fibrosis lung. Physiological relevance of ORF PA3911 was demonstrated, inter alia, using phenotype microarray experiments. The mutant strain showed increased susceptibility in the presence of antimicrobials (minocycline, nafcillin, oxacillin, chloramphenicol and thiamphenicol), enhanced twitching motility and significantly impaired biofilm formation. PA3911 is a soluble, cytoplasmic protein in P. aeruginosa. In protein–lipid overlay experiments, purified PA3911 bound specifically to phosphatidic acid (PA), the central hub of phospholipid metabolism. Structure-guided site-directed mutagenesis was used to explore the proposed ligand-binding cavity of PA3911. Protein variants of Leu56, Leu58, Val69 and Leu114 were shown to impair PA interaction. A comparative shotgun lipidomics approach demonstrated a multifaceted response of P. aeruginosa to anaerobic conditions at the lipid head group and fatty acid level. Lipid homeostasis in the PA3911 mutant strain was imbalanced with respect to lysophosphatidylcholine, phosphatidylcholine and diacylglycerol under anaerobic and/or aerobic conditions. The impact of the newly identified PA-binding protein on lipid homeostasis and the related macroscopic phenotypes of P. aeruginosa are discussed.
Collapse
|
83
|
Pokotylo I, Kravets V, Martinec J, Ruelland E. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Prog Lipid Res 2018; 71:43-53. [PMID: 29842906 DOI: 10.1016/j.plipres.2018.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022]
Abstract
Phosphatidic acid (PA) is a simple phospholipid observed in most organisms. PA acts as a key metabolic intermediate and a second messenger that regulates many cell activities. In plants, PA is involved in numerous cell responses induced by hormones, stress inputs and developmental processes. Interestingly, PA production can be triggered by opposite stressors, such as cold and heat, or by hormones that are considered to be antagonistic, such as abscisic acid and salicylic acid. This property questions the specificity of the responses controlled by PA. Are there generic responses to PA, meaning that cell regulation triggered by PA would be always the same, even in opposite physiological situations? Alternatively, do the responses to PA differ according to the physiological context within the cells? If so, the mechanisms that regulate the divergence of PA-controlled reactions are poorly defined. This review summarizes the latest opinions on how PA signalling is directed in plant cells and examines the intrinsic properties of PA that enable its regulatory diversity. We propose a concept whereby PA regulatory messages are perceived as complex "signatures" that take into account their production site, the availability of target proteins and the relevant cellular environments.
Collapse
Affiliation(s)
- Igor Pokotylo
- Université Paris-Est, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France; Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Volodymyr Kravets
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eric Ruelland
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine; CNRS, UMR7618, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France.
| |
Collapse
|
84
|
Fatma Z, Hartman H, Poolman MG, Fell DA, Srivastava S, Shakeel T, Yazdani SS. Model-assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production. Metab Eng 2018; 46:1-12. [DOI: 10.1016/j.ymben.2018.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/13/2017] [Accepted: 01/29/2018] [Indexed: 12/19/2022]
|
85
|
Exterkate M, Caforio A, Stuart MCA, Driessen AJM. Growing Membranes In Vitro by Continuous Phospholipid Biosynthesis from Free Fatty Acids. ACS Synth Biol 2018; 7:153-165. [PMID: 28922922 PMCID: PMC5778391 DOI: 10.1021/acssynbio.7b00265] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the key aspects that defines a cell as a living entity is its ability to self-reproduce. In this process, membrane biogenesis is an essential element. Here, we developed an in vitro phospholipid biosynthesis pathway based on a cascade of eight enzymes, starting from simple fatty acid building blocks and glycerol 3-phosphate. The reconstituted system yields multiple phospholipid species that vary in acyl-chain and polar headgroup compositions. Due to the high fidelity and versatility, complete conversion of the fatty acid substrates into multiple phospholipid species is achieved simultaneously, leading to membrane expansion as a first step toward a synthetic minimal cell.
Collapse
Affiliation(s)
- Marten Exterkate
- Department of Molecular Microbiology, and ‡Department of Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Antonella Caforio
- Department of Molecular Microbiology, and ‡Department of Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Marc C. A. Stuart
- Department of Molecular Microbiology, and ‡Department of Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, and ‡Department of Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
86
|
Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX. Metab Eng 2017; 45:59-66. [PMID: 29199103 DOI: 10.1016/j.ymben.2017.11.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/15/2017] [Accepted: 11/29/2017] [Indexed: 11/21/2022]
Abstract
Fatty alcohol production in Synechocystis sp. PCC 6803 was achieved through heterologous expression of the fatty acyl-CoA/ACP reductase Maqu2220 from the bacteria Marinobacter aquaeolei VT8 and the fatty acyl-ACP reductase DPW from the rice Oryza sativa. These platform strains became models for testing multiplex CRISPR-interference (CRISPRi) metabolic engineering strategies to both improve fatty alcohol production and to study membrane homeostasis. CRISPRi allowed partial repression of up to six genes simultaneously, each encoding enzymes of acyl-ACP-consuming pathways. We identified the essential phosphate acyltransferase enzyme PlsX (slr1510) as a key node in C18 fatty acyl-ACP consumption, repression of slr1510 increased octadecanol productivity threefold over the base strain and gave the highest specific titers reported for this host, 10.3mgg-1 DCW. PlsX catalyzes the first committed step of phosphatidic acid synthesis, and has not been characterized in Synechocystis previously. We found that accumulation of fatty alcohols impaired growth, altered the membrane composition, and caused a build-up of reactive oxygen species.
Collapse
|
87
|
The mycobacterial Rv1551 glycerol-3-phosphate acyltransferase enhances phospholipid biosynthesis in cell lysates of Escherichia coli. Microb Pathog 2017; 113:269-275. [DOI: 10.1016/j.micpath.2017.10.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/27/2017] [Accepted: 10/26/2017] [Indexed: 01/03/2023]
|
88
|
Li Z, Tang Y, Wu Y, Zhao S, Bao J, Luo Y, Li D. Structural insights into the committed step of bacterial phospholipid biosynthesis. Nat Commun 2017; 8:1691. [PMID: 29167463 PMCID: PMC5700162 DOI: 10.1038/s41467-017-01821-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/18/2017] [Indexed: 11/09/2022] Open
Abstract
The membrane-integral glycerol 3-phosphate (G3P) acyltransferase PlsY catalyses the committed and essential step in bacterial phospholipid biosynthesis by acylation of G3P, forming lysophosphatidic acid. It contains no known acyltransferase motifs, lacks eukaryotic homologs, and uses the unusual acyl-phosphate as acyl donor, as opposed to acyl-CoA or acyl-carrier protein for other acyltransferases. Previous studies have identified several PlsY inhibitors as potential antimicrobials. Here we determine the crystal structure of PlsY at 1.48 Å resolution, revealing a seven-transmembrane helix fold. Four additional substrate- and product-bound structures uncover the atomic details of its relatively inflexible active site. Structure and mutagenesis suggest a different acylation mechanism of ‘substrate-assisted catalysis’ that, unlike other acyltransferases, does not require a proteinaceous catalytic base to complete. The structure data and a high-throughput enzymatic assay developed in this work should prove useful for virtual and experimental screening of inhibitors against this vital bacterial enzyme. The first step in bacterial phospholipid biosynthesis is the acylation of glycerol 3-phosphate to form lysophosphatidic acid. Here, the authors present the high resolution crystal structure of the glycerol 3-phosphate acyltransferase PlsY, a membrane protein and give insights into its catalytical mechanism.
Collapse
Affiliation(s)
- Zhenjian Li
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210, China
| | - Yannan Tang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, 333 Middle Huaxia Road, Shanghai, 201210, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 333 Middle Huaxia Road, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, 333 Middle Huaxia Road, Shanghai, 201210, China
| | - Juan Bao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210, China
| | - Yitian Luo
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, 333 Middle Huaxia Road, Shanghai, 201210, China
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210, China.
| |
Collapse
|
89
|
Soupene E, Kuypers FA. Phosphatidylserine decarboxylase CT699, lysophospholipid acyltransferase CT775, and acyl-ACP synthase CT776 provide membrane lipid diversity to Chlamydia trachomatis. Sci Rep 2017; 7:15767. [PMID: 29150677 PMCID: PMC5693948 DOI: 10.1038/s41598-017-16116-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/07/2017] [Indexed: 02/08/2023] Open
Abstract
De novo lipid synthesis and scavenging of fatty acids (FA) are processes essential for the formation of the membrane of the human pathogen Chlamydia trachomatis (C.t.). Host FA are assimilated via esterification by the bacterial acyl-acyl carrier protein (ACP) synthase AasC but inhibitors of the host acyl-CoA synthetase enymes ACSL also impaired growth of C.t. in human cells. In E. coli, activity of AasC was sensitive to triacsin C and rosiglitazone G. The absence of a triacsin C-insensitive pathway and the increased inhibition by rosiglitazone G confirmed the sensitivity of the bacterial acyl-ACP synthase to these drugs in infected human cells. We found no evidence that the human ACSL enzymes are required for lipid formation by C.t. The broad substrate specificity of acyltransferase CT775 provides C.t. with the capacity to incorporate straight-chain and bacterial specific branched-chain fatty acids. CT775 accepts both acyl-ACP and acyl-CoA as acyl donors and, 1- or 2-acyl isomers of lysophosphoplipids as acyl acceptors. The enzyme responsible for remodeling of human phosphatidylserine to bacterial phosphatidylethanolamine was identified as CT699. These findings provide evidence that the pathogen has the ability to extend the lipid diversity of its membrane.
Collapse
Affiliation(s)
- Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, CA, USA.
| | - Frans A Kuypers
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| |
Collapse
|
90
|
López-Lara IM, Geiger O. Bacterial lipid diversity. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1287-1299. [DOI: 10.1016/j.bbalip.2016.10.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 11/25/2022]
|
91
|
Bhattacharya A, Brea RJ, Devaraj NK. De novo vesicle formation and growth: an integrative approach to artificial cells. Chem Sci 2017; 8:7912-7922. [PMID: 29619165 PMCID: PMC5858084 DOI: 10.1039/c7sc02339a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
The assembly of synthetic membranes provides a powerful tool to reconstruct the structure and function of living cells.
The assembly of artificial cells provides a novel strategy to reconstruct life's functions and shed light on how life emerged on Earth and possibly elsewhere. A major challenge to the development of artificial cells is the establishment of simple methodologies to mimic native membrane generation. An ambitious strategy is the bottom-up approach, which aims to systematically control the assembly of highly ordered membrane architectures with defined functionality. This perspective will cover recent advances and the current state-of-the-art of minimal lipid architectures that can faithfully reconstruct the structure and function of living cells. Specifically, we will overview work related to the de novo formation and growth of biomimetic membranes. These studies give us a deeper understanding of the nature of living systems and bring new insights into the origin of cellular life.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , CA 92093 , USA .
| | - Roberto J Brea
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , CA 92093 , USA .
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , CA 92093 , USA .
| |
Collapse
|
92
|
Driscoll TP, Verhoeve VI, Guillotte ML, Lehman SS, Rennoll SA, Beier-Sexton M, Rahman MS, Azad AF, Gillespie JJ. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells. mBio 2017; 8:e00859-17. [PMID: 28951473 PMCID: PMC5615194 DOI: 10.1128/mbio.00859-17] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/15/2017] [Indexed: 02/02/2023] Open
Abstract
Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia (Alphaproteobacteria; Rickettsiaceae). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell.IMPORTANCE A hallmark of obligate intracellular bacteria is the tradeoff of metabolic genes for the ability to acquire host metabolites. For species of Rickettsia, arthropod-borne parasites with the potential to cause serious human disease, the range of pilfered host metabolites is unknown. This information is critical for dissociating rickettsiae from eukaryotic cells to facilitate rickettsial genetic manipulation. In this study, we reconstructed the Rickettsia metabolic network and identified 51 host metabolites required to compensate patchwork Rickettsia biosynthesis pathways. Remarkably, some metabolites are not known to be transported by any bacteria, and overall, few cognate transporters were identified. Several pathways contain missing enzymes, yet similar pathways in unrelated bacteria indicate convergence and possible novel enzymes awaiting characterization. Our work illuminates the parasitic nature by which rickettsiae hijack host metabolism to counterbalance numerous disintegrated biosynthesis pathways that have arisen through evolution within the eukaryotic cell. This metabolic blueprint reveals what a Rickettsia axenic medium might entail.
Collapse
Affiliation(s)
- Timothy P Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Victoria I Verhoeve
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Mark L Guillotte
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie S Lehman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sherri A Rennoll
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
93
|
Robertson RM, Yao J, Gajewski S, Kumar G, Martin EW, Rock CO, White SW. A two-helix motif positions the lysophosphatidic acid acyltransferase active site for catalysis within the membrane bilayer. Nat Struct Mol Biol 2017; 24:666-671. [PMID: 28714993 DOI: 10.1038/nsmb.3436] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 06/15/2017] [Indexed: 11/09/2022]
Abstract
Phosphatidic acid (PA), the central intermediate in membrane phospholipid synthesis, is generated by two acyltransferases in a pathway conserved in all life forms. The second step in this pathway is catalyzed by 1-acyl-sn-glycerol-3-phosphate acyltransferase, called PlsC in bacteria. Here we present the crystal structure of PlsC from Thermotoga maritima, revealing an unusual hydrophobic/aromatic N-terminal two-helix motif linked to an acyltransferase αβ-domain that contains the catalytic HX4D motif. PlsC dictates the acyl chain composition of the 2-position of phospholipids, and the acyl chain selectivity 'ruler' is an appropriately placed and closed hydrophobic tunnel. We confirmed this by site-directed mutagenesis and membrane composition analysis of Escherichia coli cells that expressed mutant PlsC. Molecular dynamics (MD) simulations showed that the two-helix motif represents a novel substructure that firmly anchors the protein to one leaflet of the membrane. This binding mode allows the PlsC active site to acylate lysophospholipids within the membrane bilayer by using soluble acyl donors.
Collapse
Affiliation(s)
- Rosanna M Robertson
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stefan Gajewski
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gyanendra Kumar
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Erik W Martin
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
94
|
Smith LC, Lun CM. The SpTransformer Gene Family (Formerly Sp185/333) in the Purple Sea Urchin and the Functional Diversity of the Anti-Pathogen rSpTransformer-E1 Protein. Front Immunol 2017; 8:725. [PMID: 28713368 PMCID: PMC5491942 DOI: 10.3389/fimmu.2017.00725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/08/2017] [Indexed: 12/12/2022] Open
Abstract
The complex innate immune system of sea urchins is underpinned by several multigene families including the SpTransformer family (SpTrf; formerly Sp185/333) with estimates of ~50 members, although the family size is likely variable among individuals of Strongylocentrotus purpuratus. The genes are small with similar structure, are tightly clustered, and have several types of repeats in the second of two exons and that surround each gene. The density of repeats suggests that the genes are positioned within regions of genomic instability, which may be required to drive sequence diversification. The second exon encodes the mature protein and is composed of blocks of sequence called elements that are present in mosaics of defined element patterns and are the major source of sequence diversity. The SpTrf genes respond swiftly to immune challenge, but only a single gene is expressed per phagocyte. Many of the mRNAs appear to be edited and encode proteins with altered and/or missense sequence that are often truncated, of which some may be functional. The standard SpTrf protein structure is an N-terminal glycine-rich region, a central RGD motif, a histidine-rich region, and a C-terminal region. Function is predicted from a recombinant protein, rSpTransformer-E1 (rSpTrf-E1), which binds to Vibrio and Saccharomyces, but not to Bacillus, and binds tightly to lipopolysaccharide, β-1,3-glucan, and flagellin, but not to peptidoglycan. rSpTrf-E1 is intrinsically disordered but transforms to α helical structure in the presence of binding targets including lipopolysaccharide, which may underpin the characteristics of binding to multiple targets. SpTrf proteins associate with coelomocyte membranes, and rSpTrf-E1 binds specifically to phosphatidic acid (PA). When rSpTrf-E1 is bound to PA in liposome membranes, it induces morphological changes in liposomes that correlate with PA clustering and leakage of luminal contents, and it extracts or removes PA from the bilayer. The multitasking activities of rSpTrf-E1 infer multiple and perhaps overlapping activities for the hundreds of native SpTrf proteins that are produced by individual sea urchins. This likely generates a flexible and highly protective immune system for the sea urchin in its marine habitat that it shares with broad arrays of microbes that may be pathogens and opportunists.
Collapse
Affiliation(s)
- L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Cheng Man Lun
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
95
|
Yao J, Rock CO. Exogenous fatty acid metabolism in bacteria. Biochimie 2017; 141:30-39. [PMID: 28668270 DOI: 10.1016/j.biochi.2017.06.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
Abstract
Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate.
Collapse
Affiliation(s)
- Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
96
|
Lun CM, Samuel RL, Gillmor SD, Boyd A, Smith LC. The Recombinant Sea Urchin Immune Effector Protein, rSpTransformer-E1, Binds to Phosphatidic Acid and Deforms Membranes. Front Immunol 2017; 8:481. [PMID: 28553283 PMCID: PMC5427130 DOI: 10.3389/fimmu.2017.00481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/06/2017] [Indexed: 01/11/2023] Open
Abstract
The purple sea urchin, Strongylocentrotus purpuratus, possesses a sophisticated innate immune system that functions without adaptive capabilities and responds to pathogens effectively by expressing the highly diverse SpTransformer gene family (formerly the Sp185/333 gene family). The swift gene expression response and the sequence diversity of SpTransformer cDNAs suggest that the encoded proteins have immune functions. Individual sea urchins can express up to 260 distinct SpTransformer proteins, and their diversity suggests that different versions may have different functions. Although the deduced proteins are diverse, they share an overall structure of a hydrophobic leader, a glycine-rich N-terminal region, a histidine-rich region, and a C-terminal region. Circular dichroism analysis of a recombinant SpTransformer protein, rSpTransformer-E1 (rSpTrf-E1) demonstrates that it is intrinsically disordered and transforms to α helical in the presence of buffer additives and binding targets. Although native SpTrf proteins are associated with the membranes of perinuclear vesicles in the phagocyte class of coelomocytes and are present on the surface of small phagocytes, they have no predicted transmembrane region or conserved site for glycophosphatidylinositol linkage. To determine whether native SpTrf proteins associate with phagocyte membranes through interactions with lipids, when rSpTrf-E1 is incubated with lipid-embedded nylon strips, it binds to phosphatidic acid (PA) through both the glycine-rich region and the histidine-rich region. Synthetic liposomes composed of PA and phosphatidylcholine show binding between rSpTrf-E1 and PA by fluorescence resonance energy transfer, which is associated with leakage of luminal contents suggesting changes in lipid organization and perhaps liposome lysis. Interactions with liposomes also change membrane curvature leading to liposome budding, fusion, and invagination, which is associated with PA clustering induced by rSpTrf-E1 binding. Longer incubations result in the extraction of PA from the liposomes, which form disorganized clusters. CD shows that when rSpTrf-E1 binds to PA, it changes its secondary structure from disordered to α helical. These results provide evidence for how SpTransformer proteins may associate with molecules that have exposed phosphates including PA on cell membranes and how the characteristic of protein multimerization may drive changes in the organization of membrane lipids.
Collapse
Affiliation(s)
- Cheng Man Lun
- Department of Biological Sciences, George Washington University, Science and Engineering Hall, Washington, DC, USA
| | - Robin L. Samuel
- Department of Chemistry, George Washington University, Science and Engineering Hall, Washington, DC, USA
| | - Susan D. Gillmor
- Department of Chemistry, George Washington University, Science and Engineering Hall, Washington, DC, USA
| | - Anthony Boyd
- Department of Biological Sciences, George Washington University, Science and Engineering Hall, Washington, DC, USA
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Science and Engineering Hall, Washington, DC, USA
| |
Collapse
|
97
|
Identification of the Lyso-Form N-Acyl Intramolecular Transferase in Low-GC Firmicutes. J Bacteriol 2017; 199:JB.00099-17. [PMID: 28320885 DOI: 10.1128/jb.00099-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Bacterial lipoproteins are embedded in the cell membrane of both Gram-positive and Gram-negative bacteria, where they serve numerous functions central to cell envelope physiology. Lipoproteins are tethered to the membrane by an N-acyl-S-(mono/di)-acyl-glyceryl-cysteine anchor that is variously acylated depending on the genus. In several low-GC, Gram-positive firmicutes, a monoacyl-glyceryl-cysteine with an N-terminal fatty acid (known as the lyso form) has been reported, though how it is formed is unknown. Here, through an intergenic complementation rescue assay in Escherichia coli, we report the identification of a common orthologous transmembrane protein in both Enterococcus faecalis and Bacillus cereus that is capable of forming lyso-form lipoproteins. When deleted from the native host, lipoproteins remain diacylated with a free N terminus, as maturation to the N-acylated lyso form is abolished. Evidence is presented suggesting that the previously unknown gene product functions through a novel intramolecular transacylation mechanism, transferring a fatty acid from the diacylglycerol moiety to the α-amino group of the lipidated cysteine. As such, the discovered gene has been named lipoprotein intramolecular transacylase (lit), to differentiate it from the gene for the intermolecular N-acyltransferase (lnt) involved in triacyl lipoprotein biosynthesis in Gram-negative organisms.IMPORTANCE This study identifies a new enzyme, conserved among low-GC, Gram-positive bacteria, that is involved in bacterial lipoprotein biosynthesis and synthesizes lyso-form lipoproteins. Its discovery is an essential first step in determining the physiological role of N-terminal lipoprotein acylation in Gram-positive bacteria and how these modifications impact bacterial cell envelope function.
Collapse
|
98
|
The Symbiotic Bacterium Fuels the Energy Metabolism of the Host Trypanosomatid Strigomonas culicis. Protist 2017; 168:253-269. [DOI: 10.1016/j.protis.2017.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/02/2017] [Accepted: 02/14/2017] [Indexed: 12/18/2022]
|
99
|
Uehling J, Gryganskyi A, Hameed K, Tschaplinski T, Misztal PK, Wu S, Desirò A, Vande Pol N, Du Z, Zienkiewicz A, Zienkiewicz K, Morin E, Tisserant E, Splivallo R, Hainaut M, Henrissat B, Ohm R, Kuo A, Yan J, Lipzen A, Nolan M, LaButti K, Barry K, Goldstein AH, Labbé J, Schadt C, Tuskan G, Grigoriev I, Martin F, Vilgalys R, Bonito G. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens. Environ Microbiol 2017; 19:2964-2983. [PMID: 28076891 DOI: 10.1111/1462-2920.13669] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/05/2017] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Endosymbiosis of bacteria by eukaryotes is a defining feature of cellular evolution. In addition to well-known bacterial origins for mitochondria and chloroplasts, multiple origins of bacterial endosymbiosis are known within the cells of diverse animals, plants and fungi. Early-diverging lineages of terrestrial fungi harbor endosymbiotic bacteria belonging to the Burkholderiaceae. We sequenced the metagenome of the soil-inhabiting fungus Mortierella elongata and assembled the complete circular chromosome of its endosymbiont, Mycoavidus cysteinexigens, which we place within a lineage of endofungal symbionts that are sister clade to Burkholderia. The genome of M. elongata strain AG77 features a core set of primary metabolic pathways for degradation of simple carbohydrates and lipid biosynthesis, while the M. cysteinexigens (AG77) genome is reduced in size and function. Experiments using antibiotics to cure the endobacterium from the host demonstrate that the fungal host metabolism is highly modulated by presence/absence of M. cysteinexigens. Independent comparative phylogenomic analyses of fungal and bacterial genomes are consistent with an ancient origin for M. elongata - M. cysteinexigens symbiosis, most likely over 350 million years ago and concomitant with the terrestrialization of Earth and diversification of land fungi and plants.
Collapse
Affiliation(s)
- J Uehling
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - A Gryganskyi
- LF Lambert Spawn Company Coatesville, PA, 19320, USA
| | - K Hameed
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - T Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - P K Misztal
- University of California Berkeley, Berkeley, CA, 94720, USA
| | - S Wu
- Arizona State University Tempe, AZ, 85281, USA
| | - A Desirò
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - N Vande Pol
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Z Du
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - A Zienkiewicz
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - K Zienkiewicz
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.,Department of Plant Biochemistry, Georg-August University, Göttingen, 37073, Germany
| | - E Morin
- Institut National de la Recherche Agronomique, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'excellence ARBRE, INRA-Nancy, Champenoux, 54280, France
| | - E Tisserant
- Institut National de la Recherche Agronomique, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'excellence ARBRE, INRA-Nancy, Champenoux, 54280, France
| | - R Splivallo
- Goethe University Frankfurt, Institute for Molecular Biosciences, 60438 Frankfurt, Germany Integrative Fungal Research Cluster (IPF), Frankfurt, 60325, Germany
| | - M Hainaut
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
| | - B Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
| | - R Ohm
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - A Kuo
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - J Yan
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - A Lipzen
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - M Nolan
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - K LaButti
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - K Barry
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - A H Goldstein
- University of California Berkeley, Berkeley, CA, 94720, USA
| | - J Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - C Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - G Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - I Grigoriev
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - F Martin
- Institut National de la Recherche Agronomique, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'excellence ARBRE, INRA-Nancy, Champenoux, 54280, France
| | - R Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - G Bonito
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
100
|
Demidenko A, Akberdin IR, Allemann M, Allen EE, Kalyuzhnaya MG. Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1). Front Microbiol 2017; 7:2167. [PMID: 28119683 PMCID: PMC5222806 DOI: 10.3389/fmicb.2016.02167] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/23/2016] [Indexed: 01/02/2023] Open
Abstract
Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.
Collapse
Affiliation(s)
- Aleksandr Demidenko
- Department of Biology, San Diego State University, Campanile DriveSan Diego, CA, USA; Scripps Institution of Oceanography, University of California San Diego, Gilman DriveLa Jolla, CA, USA
| | - Ilya R Akberdin
- Department of Biology, San Diego State University, Campanile Drive San Diego, CA, USA
| | - Marco Allemann
- Scripps Institution of Oceanography, University of California San Diego, Gilman Drive La Jolla, CA, USA
| | - Eric E Allen
- Scripps Institution of Oceanography, University of California San Diego, Gilman Drive La Jolla, CA, USA
| | - Marina G Kalyuzhnaya
- Department of Biology, San Diego State University, Campanile Drive San Diego, CA, USA
| |
Collapse
|