51
|
Tossidou I, Teng B, Worthmann K, Müller-Deile J, Jobst-Schwan T, Kardinal C, Schroder P, Bolanos-Palmieri P, Haller H, Willerding J, Drost DM, de Jonge L, Reubold T, Eschenburg S, Johnson RI, Schiffer M. Tyrosine Phosphorylation of CD2AP Affects Stability of the Slit Diaphragm Complex. J Am Soc Nephrol 2019; 30:1220-1237. [PMID: 31235616 DOI: 10.1681/asn.2018080860] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/18/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND CD2-associated protein (CD2AP), a slit diaphragm-associated scaffolding protein involved in survival and regulation of the cytoskeleton in podocytes, is considered a "stabilizer" of the slit diaphragm complex that connects the slit diaphragm protein nephrin to the cytoskeleton of the cell. Tyrosine phosphorylation of slit diaphragm molecules can influence their surface expression, but it is unknown whether tyrosine phosphorylation events of CD2AP are also physiologically relevant to slit diaphragm stability. METHODS We used isoelectric focusing, western blot analysis, and immunofluorescence to investigate phosphorylation of CD2AP, and phospho-CD2AP antibodies and site-directed mutagenesis to define the specific phosphorylated tyrosine residues. We used cross-species rescue experiments in Cd2apKD zebrafish and in Drosophila cindrRNAi mutants to define the physiologic relevance of CD2AP phosphorylation of the tyrosine residues. RESULTS We found that VEGF-A stimulation can induce a tyrosine phosphorylation response in CD2AP in podocytes, and that these phosphorylation events have an important effect on slit diaphragm protein localization and functionality in vivo. We demonstrated that tyrosine in position Y10 of the SH3-1 domain of CD2AP is indispensable for CD2AP function in vivo. We found that the binding affinity of nephrin to CD2AP is significantly enhanced in the absence of Y10; however, unexpectedly, this increased affinity leads not to stabilization but to functional impairment of the glomerular filtration barrier. CONCLUSIONS Our findings provide insight into CD2AP and its phosphorylation in the context of slit diaphragm functionality, and indicate a fine-tuned affinity balance of CD2AP and nephrin that is influenced by receptor tyrosine kinase stimulation.
Collapse
Affiliation(s)
- Irini Tossidou
- Division of Nephrology and Hypertension, Department of Medicine
| | - Beina Teng
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Janina Müller-Deile
- Division of Nephrology and Hypertension, Department of Medicine.,Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tilman Jobst-Schwan
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Patricia Schroder
- Division of Nephrology and Hypertension, Department of Medicine.,Mount Desert Island Biological Laboratory, Salisbury Cove, Maine; and
| | - Patricia Bolanos-Palmieri
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hermann Haller
- Division of Nephrology and Hypertension, Department of Medicine.,Mount Desert Island Biological Laboratory, Salisbury Cove, Maine; and
| | - Jonas Willerding
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Dana M Drost
- Department of Biology, Wesleyan University, Middletown, Connecticut
| | - Laura de Jonge
- Department of Biology, Wesleyan University, Middletown, Connecticut
| | - Thomas Reubold
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Susanne Eschenburg
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Ruth I Johnson
- Department of Biology, Wesleyan University, Middletown, Connecticut
| | - Mario Schiffer
- Division of Nephrology and Hypertension, Department of Medicine, .,Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Mount Desert Island Biological Laboratory, Salisbury Cove, Maine; and
| |
Collapse
|
52
|
Chakraborty S, Inukai T, Fang L, Golkowski M, Maly DJ. Targeting Dynamic ATP-Binding Site Features Allows Discrimination between Highly Homologous Protein Kinases. ACS Chem Biol 2019; 14:1249-1259. [PMID: 31038916 DOI: 10.1021/acschembio.9b00214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
ATP-competitive inhibitors that demonstrate exquisite selectivity for specific members of the human kinome have been developed. Despite this success, the identification of highly selective inhibitors is still very challenging, and it is often not possible to rationally engineer selectivity between the ATP-binding sites of kinases, especially among closely related family members. Src-family kinases (SFKs) are a highly homologous family of eight multidomain, nonreceptor tyrosine kinases that play general and specialized roles in numerous cellular processes. The high sequence and functional similarities between SFK members make it hard to rationalize how selectivity can be gained with inhibitors that target the ATP-binding site. Here, we describe the development of a series of inhibitors that are highly selective for the ATP-binding sites of the SFKs Lyn and Hck over other SFKs. By biochemically characterizing how these selective ATP-competitive inhibitors allosterically influence the global conformation of SFKs, we demonstrate that they most likely interact with a binding pocket created by the movement of the conformationally flexible helix αC in the ATP-binding site. With a series of sequence swap experiments, we show that sensitivity to this class of selective inhibitors is due to the identity of residues that control the conformational flexibility of helix αC rather than any specific ATP-binding site interactions. Thus, the ATP-binding sites of highly homologous kinases can be discriminated by targeting heterogeneity within conformationally flexible regions.
Collapse
Affiliation(s)
| | - Takayuki Inukai
- Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Company, Ltd., 3-1-1 Sakurai, Shimamoto, Mishima, Osaka 618-8585, Japan
| | | | | | | |
Collapse
|
53
|
The AKT kinase signaling network is rewired by PTEN to control proximal BCR signaling in germinal center B cells. Nat Immunol 2019; 20:736-746. [PMID: 31011187 PMCID: PMC6724213 DOI: 10.1038/s41590-019-0376-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/12/2019] [Indexed: 01/04/2023]
Abstract
Compared to naïve B cells (NBCs), both B cell antigen receptor (BCR) and CD40 signaling are rewired in germinal center (GC) B cells (GCBCs) to optimize selection for high-affinity B cells. The mechanism for BCR reprogramming in GCBCs remains unknown. We describe a GC-specific, AKT kinase-driven negative feedback loop that attenuates BCR signaling. A mass spectrometry proteomic approach revealed that AKT activity was retargeted in GCBCs compared to NBCs. Retargeting was linked to differential AKT T308 and S473 phosphorylation, in turn due to GC-specific upregulation of phosphoinositide-dependent protein kinase PDK1 and the phosphatase PTEN, which retuned phosphatidylinositol-3-OH kinase (PI3K) signals. In GCBCs, AKT preferentially targeted CSK, SHP-1 and HPK1, which are negative regulators of BCR signaling. Phosphorylation results in markedly increased enzymatic activity of these proteins, creating a negative-feedback loop that dampens upstream BCR signaling. Inhibiting AKT substantially enhanced activation of BCR proximal kinase LYN as well as downstream BCR signaling molecules in GCBCs, establishing the relevance of this pathway.
Collapse
|
54
|
Src Family Kinase Inhibitors Block Translation of Alphavirus Subgenomic mRNAs. Antimicrob Agents Chemother 2019; 63:AAC.02325-18. [PMID: 30917980 PMCID: PMC6496153 DOI: 10.1128/aac.02325-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Alphaviruses are arthropod-transmitted RNA viruses that can cause arthralgia, myalgia, and encephalitis in humans. Since the role of cellular kinases in alphavirus replication is unknown, we profiled kinetic changes in host kinase abundance and phosphorylation following chikungunya virus (CHIKV) infection of fibroblasts. Alphaviruses are arthropod-transmitted RNA viruses that can cause arthralgia, myalgia, and encephalitis in humans. Since the role of cellular kinases in alphavirus replication is unknown, we profiled kinetic changes in host kinase abundance and phosphorylation following chikungunya virus (CHIKV) infection of fibroblasts. Based upon the results of this study, we treated CHIKV-infected cells with kinase inhibitors targeting the Src family kinase (SFK)–phosphatidylinositol 3-kinase (PI3K)–AKT–mTORC signaling pathways. Treatment of cells with SFK inhibitors blocked the replication of CHIKV as well as multiple other alphaviruses, including Mayaro virus, O’nyong-nyong virus, Ross River virus, and Venezuelan equine encephalitis virus. Dissecting the effect of SFK inhibition on alphavirus replication, we found that viral structural protein levels were significantly reduced, but synthesis of viral genomic and subgenomic RNAs was unaffected. By measuring the association of viral RNA with polyribosomes, we found that the SFK inhibitor dasatinib blocks alphavirus subgenomic RNA translation. Our results demonstrate a role for SFK signaling in alphavirus subgenomic RNA translation and replication. Targeting host factors involved in alphavirus replication represents an innovative, perhaps paradigm-shifting, strategy for exploring the replication of CHIKV and other alphaviruses while promoting antiviral therapeutic development.
Collapse
|
55
|
Economopoulou P, Kotoula V, Koliou GA, Papadopoulou K, Christodoulou C, Pentheroudakis G, Lazaridis G, Arapantoni-Dadioti P, Koutras A, Bafaloukos D, Papakostas P, Patsea H, Pavlakis K, Pectasides D, Kotsakis A, Razis E, Aravantinos G, Samantas E, Kalogeras KT, Economopoulos T, Psyrri A, Fountzilas G. Prognostic Impact of Src, CDKN1B, and JAK2 Expression in Metastatic Breast Cancer Patients Treated with Trastuzumab. Transl Oncol 2019; 12:739-748. [PMID: 30877976 PMCID: PMC6423363 DOI: 10.1016/j.tranon.2019.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND: Src, CDKN1B, and JAK2 play a crucial role in the coordination of cell signaling pathways. In the present study, we aim to investigate the prognostic significance of these biomarkers in HER2-positive metastatic breast cancer (MBC) patients treated with trastuzumab (T). METHODS: Formalin-fixed paraffin-embedded tumor tissue samples from 197 patients with HER2-positive MBC treated with T were retrospectively collected. All tissue samples were centrally assessed for ER, PgR, Ki67, HER2, and PTEN protein expression; EGFR gene amplification; PI3KCA mutational status; and tumor-infiltrating lympocytes density. Src, CDKN1B, and JAK2 mRNA expression was evaluated using quantitative reverse transcription-polymerase chain reaction. RESULTS: Only 133 of the 197 patients (67.5%) were found to be HER2-positive by central assessment. CDKN1B mRNA expression was strongly correlated with Src (rho = 0.71) and JAK2 (rho = 0.54). In HER2-positive patients, low CDKN1B conferred higher risk for progression [hazard ratio (HR) = 1.58, 95% confidence interval (CI) 1.08-2.32, P = .018]. In HER2-negative patients, low Src was associated with longer survival (HR = 0.56, 95% CI 0.32-0.99, P = .045). Upon multivariate analyses, only low CDKN1B and JAK2 mRNA expression remained unfavorable factors for PFS in de novo and relapsed (R)-MBC patients, respectively (HR = 2.36, 95% CI 1.01-5.48, P = .046 and HR = 1.76, 95% CI 1.01-3.06, P = .047, respectively). CONCLUSIONS: Low CDKN1B and JAK2 mRNA expressions were unfavorable prognosticators in a cohort of T-treated MBC patients. Our results suggest that CDKN1B and JAK2, if validated, may serve as prognostic factors potentially implicated in T resistance, which seems to be associated with distinct pathways in de novo and R-MBC.
Collapse
Affiliation(s)
- Panagiota Economopoulou
- Second Department of Internal Medicine, Attikon University Hospital, 1 Rimini St 12462, Haidari, Athens, Greece.
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, University Campus, Building 17B, 54006, Thessaloniki, Greece; Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, University Campus, Building 17B, 54006, Thessaloniki, Greece.
| | - Georgia-Angeliki Koliou
- Section of Biostatistics, Hellenic Cooperative Oncology Group, 18 Hatzikonstanti St, 11524, Athens, Greece.
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, University Campus, Building 17B, 54006, Thessaloniki, Greece.
| | - Christos Christodoulou
- Second Department of Medical Oncology, Metropolitan Hospital, 9 Ethnarchou Makariou St, 185 47, Piraeus, Greece.
| | - George Pentheroudakis
- Department of Medical Oncology, Ioannina University Hospital, Leof. Stavrou Niarchou, 45500, Ioannina, Greece.
| | - Georgios Lazaridis
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Ring Road, Nea Efkarpia, 56450, Thessaloniki, Greece
| | | | - Angelos Koutras
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Panepistimioupoli Patron, 26504, Patras, Greece.
| | - Dimitris Bafaloukos
- First department of Medical Oncology, Metropolitan Hospital, 9 Ethnarchou Makariou St, 185 47, Piraeus, Greece.
| | - Pavlos Papakostas
- Oncology Unit, Hippokration Hospital, 114 Vasilissis Sofias Av, 11527, Athens, Greece.
| | - Helen Patsea
- Department of Pathology, IASSO General Hospital, 264 Mesogion Av, 15562, Athens, Greece
| | - Kitty Pavlakis
- Pathology Department, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, 114 Vasilissis Sofias Av, 11527, Athens, Greece.
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Heraklion, Voutes, 71110, Crete, Greece.
| | - Evangelia Razis
- Third Department of Medical Oncology, Hygeia Hospital, 4 Erithrou Stavrou St, Marousi, 15123, Athens, Greece.
| | - Gerasimos Aravantinos
- Second Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | - Epaminondas Samantas
- Third Department of Medical Oncology, Agii Anargiri Cancer Hospital, Timiou Stavrou, 14564, Kifisia, Athens, Greece.
| | - Konstantine T Kalogeras
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, University Campus, Building 17B, 54006, Thessaloniki, Greece; Translational Research Section, Hellenic Cooperative Oncology Group, 18 Hatzikonstanti St, 11524, Athens, Greece.
| | - Theofanis Economopoulos
- Second Department of Internal Medicine, Attikon University Hospital, 1 Rimini St 12462, Haidari, Athens, Greece.
| | - Amanta Psyrri
- Second Department of Internal Medicine, Attikon University Hospital, 1 Rimini St 12462, Haidari, Athens, Greece.
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, University Campus, Building 17B, 54006, Thessaloniki, Greece; Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
56
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
57
|
Gavali S, Gupta MK, Daswani B, Wani MR, Sirdeshmukh R, Khatkhatay MI. LYN, a key mediator in estrogen-dependent suppression of osteoclast differentiation, survival, and function. Biochim Biophys Acta Mol Basis Dis 2018; 1865:547-557. [PMID: 30579930 DOI: 10.1016/j.bbadis.2018.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022]
Abstract
Estrogen insufficiency at menopause cause accelerated bone loss due to unwarranted differentiation and function of osteoclasts. Unraveling the underlying mechanism/s may identify mediators of estrogen action which can be targeted for improved management of osteoporosis. Towards this, we analyzed the effect of 17β-estradiol on the proteomes of differentiating human osteoclasts. The major proteomic changes observed included upregulation of LYN by estrogen. We, therefore, investigated the effect of estrogen on osteoclast differentiation, survival, and function in control and LYN knockdown conditions. In control condition, estrogen treatment increased the apoptosis rate and suppressed the calcium signaling by reducing the intracellular Ca2+ levels as well as expression and activation of NFATc1 and c-Src during differentiation, resulting in reduced osteoclastogenesis. These osteoclasts were smaller in size with reduced extent of multinuclearity and produced significantly low levels of bone resorbing enzymes. They also exhibited disrupted sealing zone formation with low podosome density, impaired cell polarization and reduced resorption of dentine slices. Interestingly, in LYN knockdown condition, estrogen failed to induce apoptosis and inhibit activation of NFATc1 and c-Src. Compared to effect of estrogen on osteoclast in control condition, LYN knockdown osteoclasts did not show reduction in production of bone resorbing enzymes and had defined sealing zone formation with high podosome density with no impairment in cell polarization. They resorbed significant area on dentine slices. Thus, the inhibitory action of estrogen on osteoclast was severely restrained in LYN knockdown condition, demonstrating the importance of LYN as a key mediator of the effect of estrogen on osteoclastogenesis.
Collapse
Affiliation(s)
- Shubhangi Gavali
- National Institute for Research in Reproductive Health, (ICMR), Mumbai 400012, India
| | - Manoj Kumar Gupta
- Institute of Bioinformatics, Bengaluru 560066, India; Syngene International Ltd, Bengaluru 560099, India
| | - Bhavna Daswani
- National Institute for Research in Reproductive Health, (ICMR), Mumbai 400012, India
| | - Mohan R Wani
- National Centre for Cell Science, Pune 411007, India
| | - Ravi Sirdeshmukh
- Institute of Bioinformatics, Bengaluru 560066, India; Manipal Academy of Higher Education, Manipal 576104, India
| | - M Ikram Khatkhatay
- National Institute for Research in Reproductive Health, (ICMR), Mumbai 400012, India.
| |
Collapse
|
58
|
Kazi JU, Rönnstrand L. The role of SRC family kinases in FLT3 signaling. Int J Biochem Cell Biol 2018; 107:32-37. [PMID: 30552988 DOI: 10.1016/j.biocel.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022]
Abstract
The receptor tyrosine kinase FLT3 is expressed almost exclusively in the hematopoietic compartment. Binding of its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. This leads to autophosphorylation of FLT3 on several tyrosine residues which constitute high affinity binding sites for signal transduction molecules. Recruitment of these signal transduction molecules to FLT3 leads to the activation of several signal transduction pathways that regulate cell survival, cell proliferation and differentiation. Oncogenic, constitutively active mutants of FLT3 are known to be expressed in acute myeloid leukemia and to correlate with poor prognosis. Activation of the receptor mediates cell survival, cell proliferation and differentiation of cells. Several of the signal transduction pathways downstream of FLT3 have been shown to include various members of the SRC family of kinases (SFKs). They are involved in regulating the activity of RAS/ERK pathways through the scaffolding protein GAB2 and the adaptor protein SHC. They are also involved in negative regulation of signaling through phosphorylation of the ubiquitin E3 ligase CBL. Initially studied as the SFKs, as if they were a homogenous group of kinases, recent data suggest that each SFK has its own specific signaling capabilities where some are involved in positive signaling, while others are involved in negative signaling. This review discusses some recent insights into how SFKs are involved in FLT3 signaling.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden; Division of Oncology, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
59
|
Yamaga Y, Fukuda A, Nakanishi Y, Goto N, Matsumoto Y, Yoshioka T, Maruno T, Chiba T, Seno H. Gene expression profile of Dclk1 + cells in intestinal tumors. Dig Liver Dis 2018; 50:1353-1361. [PMID: 30001952 DOI: 10.1016/j.dld.2018.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Accumulating evidence has shown the existence of tumor stem cells with therapeutic potential. Previously, we reported that doublecortin like kinase 1 (Dclk1) marks tumor stem cells but not normal stem cells in the intestine of ApcMin/+ mice, and that Dclk1- and Lgr5-double positive tumor cells are the tumor stem cells of intestinal tumors. AIM To investigate molecules highly expressed in the Dclk1+ normal intestinal and Dclk1+ tumor cells in ApcMin/+ mice. METHODS We used microarray analyses to examine the gene expression profile of Dclk1+ cells in both mouse normal intestinal epithelium and ApcMin/+ mouse intestinal tumors. We also performed immunofluorescence analyses. RESULTS Genes related to microtubules and the actin cytoskeleton (e.g., Rac2), and members of the Src family kinases (i.e., Hck, Lyn, Csk, and Ptpn6) were highly expressed in both Dclk1+ normal intestinal and Dclk1+ tumor cells. Phosphorylated Hck and phosphorylated Lyn were expressed in Lgr5+ cells in the intestinal tumors of Lgr5EGFP-IRES-CreERT2/+; ApcMin/+ mice. CONCLUSION We revealed factors that are highly expressed in Dclk1+ intestinal tumor cells, which may help to develop cancer stem cell-targeted therapy in future.
Collapse
Affiliation(s)
- Yuichi Yamaga
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norihiro Goto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihide Matsumoto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takuto Yoshioka
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
60
|
Beauséjour M, Boutin A, Vachon PH. Anoikis Regulation: Complexities, Distinctions, and Cell Differentiation. APOPTOSIS AND BEYOND 2018:145-182. [DOI: 10.1002/9781119432463.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
61
|
Dülk M, Szeder B, Glatz G, Merő BL, Koprivanacz K, Kudlik G, Vas V, Sipeki S, Cserkaszky A, Radnai L, Buday L. EGF Regulates the Interaction of Tks4 with Src through Its SH2 and SH3 Domains. Biochemistry 2018; 57:4186-4196. [PMID: 29928795 DOI: 10.1021/acs.biochem.8b00084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nonreceptor tyrosine kinase Src is a central component of the epidermal growth factor (EGF) signaling pathway. Our group recently showed that the Frank-ter Haar syndrome protein Tks4 (tyrosine kinase substrate with four Src homology 3 domains) is also involved in EGF signaling. Here we demonstrate that Tks4 and Src bind directly to each other and elucidate the details of the molecular mechanism of this complex formation. Results of GST pull-down and fluorescence polarization assays show that both a proline-rich SH3 binding motif (PSRPLPDAP, residues 466-474) and an adjacent phosphotyrosine-containing SH2 binding motif (pYEEI, residues 508-511) in Tks4 are responsible for Src binding. These motifs interact with the SH3 and SH2 domains of Src, respectively, leading to a synergistic enhancement of binding strength and a highly stable, "bidentate"-type of interaction. In agreement with these results, we found that the association of Src with Tks4 is permanent and the complex lasts at least 3 h in living cells. We conclude that the interaction of Tks4 with Src may result in the long term stabilization of the kinase in its active conformation, leading to prolonged Src activity following EGF stimulation.
Collapse
Affiliation(s)
- Metta Dülk
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Gábor Glatz
- Department of Anatomy, Cell and Developmental Biology , Eötvös Loránd University , 1117 Budapest , Hungary
| | - Balázs L Merő
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Kitti Koprivanacz
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Gyöngyi Kudlik
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Virág Vas
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Szabolcs Sipeki
- Department of Medical Chemistry , Semmelweis University Medical School , 1094 Budapest , Hungary
| | - Anna Cserkaszky
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - László Radnai
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - László Buday
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary.,Department of Medical Chemistry , Semmelweis University Medical School , 1094 Budapest , Hungary
| |
Collapse
|
62
|
Kokuda R, Watanabe R, Okuzaki D, Akamatsu H, Oneyama C. MicroRNA-137-mediated Src oncogenic signaling promotes cancer progression. Genes Cells 2018; 23:688-701. [PMID: 29962093 DOI: 10.1111/gtc.12610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/06/2018] [Accepted: 06/06/2018] [Indexed: 01/31/2023]
Abstract
The tyrosine kinase c-Src is frequently overexpressed and activated in a wide variety of human cancers. However, the molecular mechanisms responsible for the upregulation of c-Src remain elusive. To examine whether microRNA-mediated c-Src upregulation promotes cancer progression, we screened miRNAs with complementarity to the 3'-UTR of c-Src mRNA. Among these miRNAs, down-regulation of miR-137 was tightly associated with c-Src-mediated tumor progression of human colon cancer cells/tissues. Re-expression of miR-137 in human colon cancer cells suppressed tumor growth and caused the disruption of focal contacts, suppression of cell adhesion, and invasion, although restoration of c-Src in miR-137-treated cells could not fully rescue the tumor-suppressive effect of miR-137. We found that miR-137 targets AKT2 and paxillin also and miR-137-mediated regulation of c-Src /AKT2 is crucial for controlling tumor growth, whereas that of c-Src/paxillin contributes to malignancy. miR-137 suppressed Src-related oncogenic signaling and changed the expression of miRNAs that are regulated by Src activation. miR-137 controls the expression of c-Src/AKT2/paxillin and synergistically suppresses Src oncogenic signaling evoked from focal adhesions. In various human cancers that harbor c-Src upregulation, the dysfunction of this novel mechanism would serve as a critical trigger for tumor progression.
Collapse
Affiliation(s)
- Rie Kokuda
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Risayo Watanabe
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Daisuke Okuzaki
- DNA-chip Developmental Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | - Chitose Oneyama
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
63
|
Gonçalves-de-Albuquerque CF, Rohwedder I, Silva AR, Ferreira AS, Kurz ARM, Cougoule C, Klapproth S, Eggersmann T, Silva JD, de Oliveira GP, Capelozzi VL, Schlesinger GG, Costa ER, Estrela Marins RDCE, Mócsai A, Maridonneau-Parini I, Walzog B, Macedo Rocco PR, Sperandio M, de Castro-Faria-Neto HC. The Yin and Yang of Tyrosine Kinase Inhibition During Experimental Polymicrobial Sepsis. Front Immunol 2018; 9:901. [PMID: 29760707 PMCID: PMC5936983 DOI: 10.3389/fimmu.2018.00901] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/11/2018] [Indexed: 12/29/2022] Open
Abstract
Neutrophils are the first cells of our immune system to arrive at the site of inflammation. They release cytokines, e.g., chemokines, to attract further immune cells, but also actively start to phagocytose and kill pathogens. In the case of sepsis, this tightly regulated host defense mechanism can become uncontrolled and hyperactive resulting in severe organ damage. Currently, no effective therapy is available to fight sepsis; therefore, novel treatment targets that could prevent excessive inflammatory responses are warranted. Src Family tyrosine Kinases (SFK), a group of tyrosine kinases, have been shown to play a major role in regulating immune cell recruitment and host defense. Leukocytes with SFK depletion display severe spreading and migration defects along with reduced cytokine production. Thus, we investigated the effects of dasatinib, a tyrosine kinase inhibitor, with a strong inhibitory capacity on SFKs during sterile inflammation and polymicrobial sepsis in mice. We found that dasatinib-treated mice displayed diminished leukocyte adhesion and extravasation in tumor necrosis factor-α-stimulated cremaster muscle venules in vivo. In polymicrobial sepsis, sepsis severity, organ damage, and clinical outcome improved in a dose-dependent fashion pointing toward an optimal therapeutic window for dasatinib dosage during polymicrobial sepsis. Dasatinib treatment may, therefore, provide a balanced immune response by preventing an overshooting inflammatory reaction on the one side and bacterial overgrowth on the other side.
Collapse
Affiliation(s)
- Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany.,Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ina Rohwedder
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Angela R M Kurz
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sarah Klapproth
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Tanja Eggersmann
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Johnatas D Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Pena de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Laboratório de Genômica Pulmonar, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Edlaine Rijo Costa
- Laboratorio de Farmacologia, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita de Cassia Elias Estrela Marins
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Attila Mócsai
- MTA-SE "Lendület" Inflammation Physiology Research Group, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Barbara Walzog
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Markus Sperandio
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | | |
Collapse
|
64
|
Wang C, Wang L, Yu X, Zhang Y, Meng Y, Wang H, Yang Y, Gao J, Wei H, Zhao J, Lu C, Chen H, Sun Y, Li B. Combating acquired resistance to trastuzumab by an anti-ErbB2 fully human antibody. Oncotarget 2018; 8:42742-42751. [PMID: 28514745 PMCID: PMC5522102 DOI: 10.18632/oncotarget.17451] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/12/2017] [Indexed: 12/02/2022] Open
Abstract
Trastuzumab resistance is a common problem that impedes the effectiveness of trastuzumab in ErbB2-amplified cancers. About 70% of ErbB2-amplified breast cancers do not respond to trastuzumab (de novo resistance), and the majority of the trastuzumab-responsive cancers progress within 1 year (acquired resistance). Different mechanisms exist between de novo and acquired resistance. Innate resistance mechanisms are mainly independent of ErbB2 receptor activity, and acquired resistance involves with alterations depending on ErbB2 activity. We previously reported H2-18, an ErbB2 domain I-specific antibody, which could circumvent de novo resistance to trastuzumab. Here, we modeled the development of acquired resistance by treating human gastric cancer cell line NCI-N87 with trastuzumab to obtain the trastuzumab-resistant subline, NCI-N87-TraRT. Next, we investigated the antitumor efficacy of H2-18 in NCI-N87-TraRT cell line. H2-18 exhibited a significantly greater antitumor activity in NCI-N87-TraRT tumor-bearing nude mice than pertuzumab and trastuzumab, either alone or in combination. The unique ability of H2-18 to overcome acquired resistance may be attributable to its potent programmed cell death-inducing activity, which was probably mediated by RIP1-ROS-JNK-c-Jun pathway. In conclusion, H2-18 may have the potential as an effective agent to circumvent acquired resistance to trastuzumab in ErbB2-overexpressing cancers.
Collapse
Affiliation(s)
- Chao Wang
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China
| | - Lingfei Wang
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China
| | - Xiaojie Yu
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China
| | - Yajun Zhang
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China
| | - Yanchun Meng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Huajing Wang
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China
| | - Yang Yang
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China
| | - Jie Gao
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China
| | - Huafeng Wei
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jian Zhao
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Cuihua Lu
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Han Chen
- Department of General Surgery, 411 Hospital of Chinese People's Liberation Army, Shanghai, China
| | - Yanping Sun
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bohua Li
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
65
|
Bureau JF, Cassonnet P, Grange L, Dessapt J, Jones L, Demeret C, Sakuntabhai A, Jacob Y. The SRC-family tyrosine kinase HCK shapes the landscape of SKAP2 interactome. Oncotarget 2018; 9:13102-13115. [PMID: 29568343 PMCID: PMC5862564 DOI: 10.18632/oncotarget.24424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/30/2018] [Indexed: 11/25/2022] Open
Abstract
The SRC Kinase Adaptor Phosphoprotein 2 (SKAP2) is a broadly expressed adaptor associated with the control of actin-polymerization, cell migration, and oncogenesis. After activation of different receptors at the cell surface, this dimeric protein serves as a platform for assembling other adaptors such as FYB and some SRC family kinase members, although these mechanisms are still poorly understood. The goal of this study is to map the SKAP2 interactome and characterize which domains or binding motifs are involved in these interactions. This is a prerequisite to finely analyze how these pathways are integrated in the cell machinery and to study their role in cancer and other human diseases when this network of interactions is perturbed. In this work, the domain and the binding motif of fourteen proteins interacting with SKAP2 were precisely defined and a new interactor, FAM102A was discovered. Herein, a fine-tuning between the binding of SRC kinases and their activation was identified. This last process, which depends on SKAP2 dimerization, indirectly affects the binding of FYB protein. Analysis of conformational changes associated with activation/inhibition of SRC family members, presently limited to their effect on kinase activity, is extended to their interactive network, which paves the way for therapeutic development.
Collapse
Affiliation(s)
- Jean-François Bureau
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Département Génome et Génétique, Institut Pasteur, Paris, France.,CNRS URA3012, Paris, France
| | - Patricia Cassonnet
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France.,UMR3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Diderot, Paris, France
| | - Laura Grange
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Département Génome et Génétique, Institut Pasteur, Paris, France.,CNRS URA3012, Paris, France
| | - Julien Dessapt
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Département Génome et Génétique, Institut Pasteur, Paris, France.,CNRS URA3012, Paris, France
| | - Louis Jones
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France.,UMR3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Diderot, Paris, France
| | - Caroline Demeret
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France.,UMR3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Diderot, Paris, France
| | - Anavaj Sakuntabhai
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Département Génome et Génétique, Institut Pasteur, Paris, France.,CNRS URA3012, Paris, France
| | - Yves Jacob
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France.,UMR3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Diderot, Paris, France
| |
Collapse
|
66
|
Aira LE, Villa E, Colosetti P, Gamas P, Signetti L, Obba S, Proics E, Gautier F, Bailly-Maitre B, Jacquel A, Robert G, Luciano F, Juin PP, Ricci JE, Auberger P, Marchetti S. The oncogenic tyrosine kinase Lyn impairs the pro-apoptotic function of Bim. Oncogene 2018; 37:2122-2136. [PMID: 29391601 DOI: 10.1038/s41388-017-0112-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/23/2017] [Accepted: 12/14/2017] [Indexed: 01/17/2023]
Abstract
Phosphorylation of Ser/Thr residues is a well-established modulating mechanism of the pro-apoptotic function of the BH3-only protein Bim. However, nothing is known about the putative tyrosine phosphorylation of this Bcl-2 family member and its potential impact on Bim function and subsequent Bax/Bak-mediated cytochrome c release and apoptosis. As we have previously shown that the tyrosine kinase Lyn could behave as an anti-apoptotic molecule, we investigated whether this Src family member could directly regulate the pro-apoptotic function of Bim. In the present study, we show that Bim is phosphorylated onto tyrosine residues 92 and 161 by Lyn, which results in an inhibition of its pro-apoptotic function. Mechanistically, we show that Lyn-dependent tyrosine phosphorylation of Bim increases its interaction with anti-apoptotic members such as Bcl-xL, therefore limiting mitochondrial outer membrane permeabilization and subsequent apoptosis. Collectively, our data uncover one molecular mechanism through which the oncogenic tyrosine kinase Lyn negatively regulates the mitochondrial apoptotic pathway, which may contribute to the transformation and/or the chemotherapeutic resistance of cancer cells.
Collapse
Affiliation(s)
| | - Elodie Villa
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | | | | | | | | | - Emma Proics
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | - Fabien Gautier
- CRCINA, UMR 1232 INSERM, Université de Nantes, Université d'Angers, Institut de Recherche en Santé-Université de Nantes, 8 Quai Moncousu - BP 70721, 44007, Nantes Cedex 1, France.,Institut de Cancérologie de l'Ouest, Bvd J Monod, Site René Gauducheau, 44805, Saint-Herblain, France
| | | | | | | | | | - Philippe P Juin
- CRCINA, UMR 1232 INSERM, Université de Nantes, Université d'Angers, Institut de Recherche en Santé-Université de Nantes, 8 Quai Moncousu - BP 70721, 44007, Nantes Cedex 1, France.,Institut de Cancérologie de l'Ouest, Bvd J Monod, Site René Gauducheau, 44805, Saint-Herblain, France
| | | | | | | |
Collapse
|
67
|
Wang Z, Zhao K, Hackert T, Zöller M. CD44/CD44v6 a Reliable Companion in Cancer-Initiating Cell Maintenance and Tumor Progression. Front Cell Dev Biol 2018; 6:97. [PMID: 30211160 PMCID: PMC6122270 DOI: 10.3389/fcell.2018.00097] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Metastasis is the leading cause of cancer death, tumor progression proceeding through emigration from the primary tumor, gaining access to the circulation, leaving the circulation, settling in distant organs and growing in the foreign environment. The capacity of a tumor to metastasize relies on a small subpopulation of cells in the primary tumor, so called cancer-initiating cells (CIC). CIC are characterized by sets of markers, mostly membrane anchored adhesion molecules, CD44v6 being the most frequently recovered marker. Knockdown and knockout models accompanied by loss of tumor progression despite unaltered primary tumor growth unraveled that these markers are indispensable for CIC. The unexpected contribution of marker molecules to CIC-related activities prompted research on underlying molecular mechanisms. This review outlines the contribution of CD44, particularly CD44v6 to CIC activities. A first focus is given to the impact of CD44/CD44v6 to inherent CIC features, including the crosstalk with the niche, apoptosis-resistance, and epithelial mesenchymal transition. Following the steps of the metastatic cascade, we report on supporting activities of CD44/CD44v6 in migration and invasion. These CD44/CD44v6 activities rely on the association with membrane-integrated and cytosolic signaling molecules and proteases and transcriptional regulation. They are not restricted to, but most pronounced in CIC and are tightly regulated by feedback loops. Finally, we discuss on the engagement of CD44/CD44v6 in exosome biogenesis, loading and delivery. exosomes being the main acteurs in the long-distance crosstalk of CIC with the host. In brief, by supporting the communication with the niche and promoting apoptosis resistance CD44/CD44v6 plays an important role in CIC maintenance. The multifaceted interplay between CD44/CD44v6, signal transducing molecules and proteases facilitates the metastasizing tumor cell journey through the body. By its engagement in exosome biogenesis CD44/CD44v6 contributes to disseminated tumor cell settlement and growth in distant organs. Thus, CD44/CD44v6 likely is the most central CIC biomarker.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
| | - Kun Zhao
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
| | - Thilo Hackert
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
| | - Margot Zöller
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
- *Correspondence: Margot Zöller
| |
Collapse
|
68
|
Potentiation of Synaptic GluN2B NMDAR Currents by Fyn Kinase Is Gated through BDNF-Mediated Disinhibition in Spinal Pain Processing. Cell Rep 2017; 17:2753-2765. [PMID: 27926876 DOI: 10.1016/j.celrep.2016.11.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 10/14/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
In chronic pain states, the neurotrophin brain-derived neurotrophic factor (BDNF) transforms the output of lamina I spinal neurons by decreasing synaptic inhibition. Pain hypersensitivity also depends on N-methyl-D-aspartate receptors (NMDARs) and Src-family kinases, but the locus of NMDAR dysregulation remains unknown. Here, we show that NMDAR-mediated currents at lamina I synapses are potentiated in a peripheral nerve injury model of neuropathic pain. We find that BDNF mediates NMDAR potentiation through activation of TrkB and phosphorylation of the GluN2B subunit by the Src-family kinase Fyn. Surprisingly, we find that Cl--dependent disinhibition is necessary and sufficient to prime potentiation of synaptic NMDARs by BDNF. Thus, we propose that spinal pain amplification is mediated by a feedforward mechanism whereby loss of inhibition gates the increase in synaptic excitation within individual lamina I neurons. Given that neither disinhibition alone nor BDNF-TrkB signaling is sufficient to potentiate NMDARs, we have discovered a form of molecular coincidence detection in lamina I neurons.
Collapse
|
69
|
Kim DK, Beaven MA, Metcalfe DD, Olivera A. Interaction of DJ-1 with Lyn is essential for IgE-mediated stimulation of human mast cells. J Allergy Clin Immunol 2017; 142:195-206.e8. [PMID: 29031599 DOI: 10.1016/j.jaci.2017.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/28/2017] [Accepted: 08/11/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND DJ-1 is a redox-sensitive protein with multiple roles in cell homeostasis, levels of which are altered in patients with mast cell (MC)-related disorders. However, whether DJ-1 can regulate human MC function is unknown. OBJECTIVE We sought to investigate the potential role of DJ-1 in the responses of human MCs to antigen stimulation. METHODS DJ-1 was silenced in human CD34+-derived MCs and in the LAD2 MC line by using lentiviral short hairpin RNA constructs. Release of β-hexosaminidase, prostaglandin D2, and GM-CSF and changes in reactive oxygen species levels were measured after FcεRI engagement. Enzymatic assays, sucrose density gradient centrifugation, immunoprecipitation, dot and Western blotting, and confocal imaging were performed for signaling, cellular localization, and coassociation studies. RESULTS DJ-1 knockdown substantially reduced mediator release, as well as Lyn kinase and spleen tyrosine kinase activation and signaling through mechanisms that appeared largely unrelated to DJ-1 antioxidant activity. Following FcεRI activation, nonoxidized rather than oxidized DJ-1 translocated to lipid rafts, where it associated with Lyn, an interaction that appeared critical for maximal Lyn activation and initiation of signaling. Using purified recombinant proteins, we demonstrated that DJ-1 directly bound to Lyn but not to other Src kinases, and this interaction was specific for human but not mouse proteins. In addition, DJ-1 reduced Src homology 2 domain-containing phosphatase 2 phosphatase activity by scavenging reactive oxygen species, thus preventing spleen tyrosine kinase dephosphorylation and perpetuating MC signaling. CONCLUSION We demonstrate a novel role for DJ-1 in the early activation of Lyn by FcεRI, which is essential for human MC responses and provides the basis for an alternative target in allergic disease therapy.
Collapse
Affiliation(s)
- Do-Kyun Kim
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Michael A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md.
| |
Collapse
|
70
|
Li S, Cai J, Feng ZB, Jin ZR, Liu BH, Zhao HY, Jing HB, Wei TJ, Yang GN, Liu LY, Cui YJ, Xing GG. BDNF Contributes to Spinal Long-Term Potentiation and Mechanical Hypersensitivity Via Fyn-Mediated Phosphorylation of NMDA Receptor GluN2B Subunit at Tyrosine 1472 in Rats Following Spinal Nerve Ligation. Neurochem Res 2017; 42:2712-2729. [PMID: 28497343 DOI: 10.1007/s11064-017-2274-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/01/2017] [Accepted: 04/18/2017] [Indexed: 11/26/2022]
|
71
|
Martin C, Leyton L, Hott M, Arancibia Y, Spichiger C, McNiven MA, Court FA, Concha MI, Burgos PV, Otth C. Herpes Simplex Virus Type 1 Neuronal Infection Perturbs Golgi Apparatus Integrity through Activation of Src Tyrosine Kinase and Dyn-2 GTPase. Front Cell Infect Microbiol 2017; 7:371. [PMID: 28879169 PMCID: PMC5572415 DOI: 10.3389/fcimb.2017.00371] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen that establishes a latent persistent neuronal infection in humans. The pathogenic effects of repeated viral reactivation in infected neurons are still unknown. Several studies have reported that during HSV-1 epithelial infection, the virus could modulate diverse cell signaling pathways remodeling the Golgi apparatus (GA) membranes, but the molecular mechanisms implicated, and the functional consequences to neurons is currently unknown. Here we report that infection of primary neuronal cultures with HSV-1 triggers Src tyrosine kinase activation and subsequent phosphorylation of Dynamin 2 GTPase, two players with a role in GA integrity maintenance. Immunofluorescence analyses showed that HSV-1 productive neuronal infection caused a scattered and fragmented distribution of the GA through the cytoplasm, contrasting with the uniform perinuclear distribution pattern observed in control cells. In addition, transmission electron microscopy revealed swollen cisternae and disorganized stacks in HSV-1 infected neurons compared to control cells. Interestingly, PP2, a selective inhibitor for Src-family kinases markedly reduced these morphological alterations of the GA induced by HSV-1 infection strongly supporting the possible involvement of Src tyrosine kinase. Finally, we showed that HSV-1 tegument protein VP11/12 is necessary but not sufficient to induce Dyn2 phosphorylation. Altogether, these results show that HSV-1 neuronal infection triggers activation of Src tyrosine kinase, phosphorylation of Dynamin 2 GTPase, and perturbation of GA integrity. These findings suggest a possible neuropathogenic mechanism triggered by HSV-1 infection, which could involve dysfunction of the secretory system in neurons and central nervous system.
Collapse
Affiliation(s)
- Carolina Martin
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Luis Leyton
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Melissa Hott
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Yennyfer Arancibia
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Carlos Spichiger
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology and the Center for Basic Research in Digestive Diseases, Mayo ClinicRochester, MN, United States
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile
| | - Margarita I Concha
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Patricia V Burgos
- Faculty of Medicine, Institute of Physiology, Universidad Austral de ChileValdivia, Chile.,Facultad de Ciencia y Facultad de Medicina, Centro de Biología Celular y Biomedicina, Universidad San SebastiánSantiago, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de ChileValdivia, Chile
| | - Carola Otth
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de ChileValdivia, Chile
| |
Collapse
|
72
|
Petersen DL, Berthelsen J, Willerslev-Olsen A, Fredholm S, Dabelsteen S, Bonefeld CM, Geisler C, Woetmann A. A novel BLK-induced tumor model. Tumour Biol 2017; 39:1010428317714196. [PMID: 28670978 DOI: 10.1177/1010428317714196] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
B-lymphoid tyrosine kinase (BLK) is a non-receptor tyrosine kinase belonging to the SRC family kinases. BLK is known to be functionally involved in B-cell receptor signaling and B-cell development. New evidence suggests that B-lymphoid tyrosine kinase is ectopically expressed and is a putative oncogene in cutaneous T-cell lymphoma and other T-cell malignancies. However, little is known about the role of BLK in lymphomagenesis, and the oncogenic function seems to depend on the cellular context. Importantly, BLK is also ectopically expressed in other hematological and multiple non-hematological malignancies including breast, kidney, and lung cancers, suggesting that BLK could be a new potential target for therapy. Here, we studied the oncogenic potential of human BLK. We found that engrafted Ba/F3 cells stably expressing constitutive active human BLK formed tumors in mice, whereas neither Ba/F3 cells expressing wild type BLK nor non-transfected Ba/F3 cells did. Inhibition of BLK with the clinical grade and broadly reacting SRC family kinase inhibitor dasatinib inhibited growth of BLK-induced tumors. In conclusion, our study provides evidence that human BLK is a true proto-oncogene capable of inducing tumors, and we demonstrate a novel BLK activity-dependent tumor model suitable for studies of BLK-driven lymphomagenesis and screening of novel BLK inhibitors in vivo.
Collapse
Affiliation(s)
- David Leander Petersen
- 1 Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Berthelsen
- 1 Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Simon Fredholm
- 1 Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- 2 Department of Odontology, University of Copenhagen, Copenhagen, Denmark
| | | | - Carsten Geisler
- 1 Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- 1 Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
73
|
Wang L, Yu X, Wang C, Pan S, Liang B, Zhang Y, Chong X, Meng Y, Dong J, Zhao Y, Yang Y, Wang H, Gao J, Wei H, Zhao J, Wang H, Hu C, Xiao W, Li B. The anti-ErbB2 antibody H2-18 and the pan-PI3K inhibitor GDC-0941 effectively inhibit trastuzumab-resistant ErbB2-overexpressing breast cancer. Oncotarget 2017; 8:52877-52888. [PMID: 28881779 PMCID: PMC5581078 DOI: 10.18632/oncotarget.17907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/05/2017] [Indexed: 11/25/2022] Open
Abstract
Trastuzumab, an anti-ErbB2 humanized antibody, brings benefit to patients with ErbB2-amplified metastatic breast cancers. However, the resistance to trastuzumab is common. Our previously reported H2-18, an anti-ErbB2 antibody, potently induced programmed cell death in trastuzumab-resistant breast cancer cells. Here, we aim to investigate the antitumor efficacy of H2-18 in combination with the pan-PI3K inhibitor GDC-0941 in trastuzumab-resistant breast cancer cell lines. The results showed that H2-18 and GDC-0941 synergistically inhibited the in vitro proliferation of BT-474, SKBR-3, HCC-1954 and HCC-1419 breast cancer cells. H2-18 plus GDC-0941 showed significantly enhanced programmed cell death-inducing activity compared with each drug used alone. The combination of H2-18 and GDC-0941 did not increase the effect of single agent on ROS production, cell cycle and ErbB2 signaling. Importantly, the in vivo antitumor efficacy of H2-18 plus GDC-0941 was superior to that of single agent. Thus, the enhanced in vivo antitumor efficacy of H2-18 plus GDC-0941 may mainly be attributable to its increased programmed cell death-inducing activity. Collectively, H2-18 plus GDC-0941 could effectively inhibit tumor growth, suggesting the potential to be translated into clinic as an efficient strategy for ErbB2-overexpressing breast cancers.
Collapse
Affiliation(s)
- Lingfei Wang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Xiaojie Yu
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Chao Wang
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Shujun Pan
- Hangzhou Sanatorium of People's Liberation Army, Hangzhou 310007, China
| | - Beibei Liang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yajun Zhang
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Xiaodan Chong
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Yanchun Meng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jian Dong
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yirong Zhao
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Yang Yang
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Huajing Wang
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Jie Gao
- Department of Pharmaceutical Sciences, Second Military Medical University, Shanghai 200433, China
| | - Huafeng Wei
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Jian Zhao
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Hao Wang
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Chaohua Hu
- Department of General Surgery, Xiaogan Central Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 432000, China
| | - Wenze Xiao
- Department of Rheumatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Bohua Li
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
74
|
Tu TM, Kolls BJ, Soderblom EJ, Cantillana V, Ferrell PD, Moseley MA, Wang H, Dawson HN, Laskowitz DT. Apolipoprotein E mimetic peptide, CN-105, improves outcomes in ischemic stroke. Ann Clin Transl Neurol 2017; 4:246-265. [PMID: 28382306 PMCID: PMC5376751 DOI: 10.1002/acn3.399] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/09/2017] [Accepted: 02/06/2017] [Indexed: 01/05/2023] Open
Abstract
Objective At present, the absence of a pharmacological neuroprotectant represents an important unmet clinical need in the treatment of ischemic and traumatic brain injury. Recent evidence suggests that administration of apolipoprotein E mimetic therapies represent a viable therapeutic strategy in this setting. We investigate the neuroprotective and anti‐inflammatory properties of the apolipoprotein E mimetic pentapeptide, CN‐105, in a microglial cell line and murine model of ischemic stroke. Methods Ten to 13‐week‐old male C57/BL6 mice underwent transient middle cerebral artery occlusion and were randomly selected to receive CN‐105 (0.1 mg/kg) in 100 μL volume or vehicle via tail vein injection at various time points. Survival, motor‐sensory functional outcomes using rotarod test and 4‐limb wire hanging test, infarct volume assessment using 2,3,5‐Triphenyltetrazolium chloride staining method, and microglial activation in the contralateral hippocampus using F4/80 immunostaining were assessed at various time points. In vitro assessment of tumor necrosis factor‐alpha secretion in a microglial cell line was performed, and phosphoproteomic analysis conducted to explore early mechanistic pathways of CN‐105 in ischemic stroke. Results Mice receiving CN‐105 demonstrated improved survival, improved functional outcomes, reduced infarct volume, and reduced microglial activation. CN‐105 also suppressed inflammatory cytokines secretion in microglial cells in vitro. Phosphoproteomic signals suggest that CN‐105 reduces proinflammatory pathways and lower oxidative stress. Interpretation CN‐105 improves functional and histological outcomes in a murine model of ischemic stroke via modulation of neuroinflammatory pathways. Recent clinical trial of this compound has demonstrated favorable pharmacokinetic and safety profile, suggesting that CN‐105 represents an attractive candidate for clinical translation.
Collapse
Affiliation(s)
- Tian Ming Tu
- Department of Neurology Duke University School of Medicine Durham North Carolina; Department of Neurology National Neuroscience Institute Tan Tock Seng Campus Singapore
| | - Brad J Kolls
- Department of Neurology Duke University School of Medicine Durham North Carolina
| | - Erik J Soderblom
- Duke Proteomics Core Facility Center for Genomic and Computational Biology Duke University Durham North Carolina
| | - Viviana Cantillana
- Department of Neurology Duke University School of Medicine Durham North Carolina
| | - Paul Durham Ferrell
- Department of Pathology Duke University School of Medicine Durham North Carolina
| | - M Arthur Moseley
- Duke Proteomics Core Facility Center for Genomic and Computational Biology Duke University Durham North Carolina
| | - Haichen Wang
- Department of Neurology Duke University School of Medicine Durham North Carolina
| | - Hana N Dawson
- Department of Neurology Duke University School of Medicine Durham North Carolina
| | - Daniel T Laskowitz
- Department of Neurology Duke University School of Medicine Durham North Carolina
| |
Collapse
|
75
|
Borzęcka-Solarz K, Dembińska J, Hromada-Judycka A, Traczyk G, Ciesielska A, Ziemlińska E, Świątkowska A, Kwiatkowska K. Association of Lyn kinase with membrane rafts determines its negative influence on LPS-induced signaling. Mol Biol Cell 2017; 28:1147-1159. [PMID: 28228554 PMCID: PMC5391190 DOI: 10.1091/mbc.e16-09-0632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/24/2017] [Accepted: 02/17/2017] [Indexed: 12/26/2022] Open
Abstract
Bacterial lipopolysaccharide activates Toll-like receptor 4 (TLR4) and triggers proinflammatory reactions of macrophages. TLR4 signaling is negatively regulated by Lyn tyrosine kinase, provided the kinase accumulates in membrane rafts as a result of palmitoylation, the catalytic activity, and SH2- and SH3-mediated intermolecular interactions. Lipopolysaccharide (LPS) is the component of Gram-negative bacteria that activates Toll-like receptor 4 (TLR4) to trigger proinflammatory responses. We examined the involvement of Lyn tyrosine kinase in TLR4 signaling of macrophages, distinguishing its catalytic activity and intermolecular interactions. For this, a series of Lyn-GFP constructs bearing point mutations in particular domains of Lyn were overexpressed in RAW264 macrophage-like cells or murine peritoneal macrophages, and their influence on LPS-induced responses was analyzed. Overproduction of wild-type or constitutively active Lyn inhibited production of TNF-α and CCL5/RANTES cytokines and down-regulated the activity of NFκB and IRF3 transcription factors in RAW264 cells. The negative influence of Lyn was nullified by point mutations of Lyn catalytic domain or Src homology 2 (SH2) or SH3 domains or of the cysteine residue that undergoes LPS-induced palmitoylation. Depending on the cell type, overproduction of those mutant forms of Lyn could even up-regulate LPS-induced responses, and this effect was reproduced by silencing of endogenous Lyn expression. Simultaneously, the Lyn mutations blocked its LPS-induced accumulation in the raft fraction of RAW264 cells. These data indicate that palmitoylation, SH2- and SH3-mediated intermolecular interactions, and the catalytic activity of Lyn are required for its accumulation in rafts, thereby determining the negative regulation of TLR4 signaling.
Collapse
Affiliation(s)
- Kinga Borzęcka-Solarz
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Justyna Dembińska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Aneta Hromada-Judycka
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Gabriela Traczyk
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Ewelina Ziemlińska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Anna Świątkowska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw 02-093, Poland
| |
Collapse
|
76
|
Dopamine promotes NMDA receptor hypofunction in the retina through D 1 receptor-mediated Csk activation, Src inhibition and decrease of GluN2B phosphorylation. Sci Rep 2017; 7:40912. [PMID: 28098256 PMCID: PMC5241882 DOI: 10.1038/srep40912] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022] Open
Abstract
Dopamine and glutamate are critical neurotransmitters involved in light-induced synaptic activity in the retina. In brain neurons, dopamine D1 receptors (D1Rs) and the cytosolic protein tyrosine kinase Src can, independently, modulate the behavior of NMDA-type glutamate receptors (NMDARs). Here we studied the interplay between D1Rs, Src and NMDARs in retinal neurons. We reveal that dopamine-mediated D1R stimulation provoked NMDAR hypofunction in retinal neurons by attenuating NMDA-gated currents, by preventing NMDA-elicited calcium mobilization and by decreasing the phosphorylation of NMDAR subunit GluN2B. This dopamine effect was dependent on upregulation of the canonical D1R/adenylyl cyclase/cAMP/PKA pathway, of PKA-induced activation of C-terminal Src kinase (Csk) and of Src inhibition. Accordingly, knocking down Csk or overexpressing a Csk phosphoresistant Src mutant abrogated the dopamine-induced NMDAR hypofunction. Overall, the interplay between dopamine and NMDAR hypofunction, through the D1R/Csk/Src/GluN2B pathway, might impact on light-regulated synaptic activity in retinal neurons.
Collapse
|
77
|
Lombroso PJ, Ogren M, Kurup P, Nairn AC. Molecular underpinnings of neurodegenerative disorders: striatal-enriched protein tyrosine phosphatase signaling and synaptic plasticity. F1000Res 2016; 5. [PMID: 29098072 PMCID: PMC5642311 DOI: 10.12688/f1000research.8571.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 12/22/2022] Open
Abstract
This commentary focuses on potential molecular mechanisms related to the dysfunctional synaptic plasticity that is associated with neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Specifically, we focus on the role of striatal-enriched protein tyrosine phosphatase (STEP) in modulating synaptic function in these illnesses. STEP affects neuronal communication by opposing synaptic strengthening and does so by dephosphorylating several key substrates known to control synaptic signaling and plasticity. STEP levels are elevated in brains from patients with Alzheimer's and Parkinson's disease. Studies in model systems have found that high levels of STEP result in internalization of glutamate receptors as well as inactivation of ERK1/2, Fyn, Pyk2, and other STEP substrates necessary for the development of synaptic strengthening. We discuss the search for inhibitors of STEP activity that may offer potential treatments for neurocognitive disorders that are characterized by increased STEP activity. Future studies are needed to examine the mechanisms of differential and region-specific changes in STEP expression pattern, as such knowledge could lead to targeted therapies for disorders involving disrupted STEP activity.
Collapse
Affiliation(s)
- Paul J Lombroso
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, 06520, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06520, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Marilee Ogren
- Department of Psychology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Pradeep Kurup
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| |
Collapse
|
78
|
Fiorotto R, Villani A, Kourtidis A, Scirpo R, Amenduni M, Geibel PJ, Cadamuro M, Spirli C, Anastasiadis PZ, Strazzabosco M. The cystic fibrosis transmembrane conductance regulator controls biliary epithelial inflammation and permeability by regulating Src tyrosine kinase activity. Hepatology 2016; 64:2118-2134. [PMID: 27629435 PMCID: PMC5115965 DOI: 10.1002/hep.28817] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/22/2016] [Accepted: 08/06/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED In the liver, the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) regulates bile secretion and other functions at the apical membrane of biliary epithelial cells (i.e., cholangiocytes). CF-related liver disease is a major cause of death in patients with CF. CFTR dysfunction affects innate immune pathways, generating a para-inflammatory status in the liver and other epithelia. This study investigates the mechanisms linking CFTR to toll-like receptor 4 activity. We found that CFTR is associated with a multiprotein complex at the apical membrane of normal mouse cholangiocytes, with proteins that negatively control Rous sarcoma oncogene cellular homolog (Src) activity. In CFTR-defective cholangiocytes, Src tyrosine kinase self-activates and phosphorylates toll-like receptor 4, resulting in activation of nuclear factor kappa-light-chain-enhancer of activated B cells and increased proinflammatory cytokine production in response to endotoxins. This Src/nuclear factor kappa-light-chain-enhancer of activated B cells-dependent inflammatory process attracts inflammatory cells but also generates changes in the apical junctional complex and loss of epithelial barrier function. Inhibition of Src decreased the inflammatory response of CF cholangiocytes to lipopolysaccharide, rescued the junctional defect in vitro, and significantly attenuated endotoxin-induced biliary damage and inflammation in vivo (Cftr knockout mice). CONCLUSION These findings reveal a novel function of CFTR as a regulator of toll-like receptor 4 responses and cell polarity in biliary epithelial cells; this mechanism is pathogenetic, as shown by the protective effects of Src inhibition in vivo, and may be a novel therapeutic target in CF-related liver disease and other inflammatory cholangiopathies. (Hepatology 2016;64:2118-2134).
Collapse
Affiliation(s)
- Romina Fiorotto
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, Connecticut, USA,International Center for Digestive Health, University of Milan-Bicocca, Milan Italy
| | - Ambra Villani
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, Connecticut, USA
| | - Antonis Kourtidis
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Roberto Scirpo
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, Connecticut, USA
| | - Mariangela Amenduni
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, Connecticut, USA
| | - Peter J. Geibel
- Department of Surgery, Yale University, New Haven, Connecticut, USA
| | - Massimilano Cadamuro
- International Center for Digestive Health, University of Milan-Bicocca, Milan Italy,Section of Digestive Diseases, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Carlo Spirli
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, Connecticut, USA,International Center for Digestive Health, University of Milan-Bicocca, Milan Italy
| | - Panos Z. Anastasiadis
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Mario Strazzabosco
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, Connecticut, USA,International Center for Digestive Health, University of Milan-Bicocca, Milan Italy,Section of Digestive Diseases, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| |
Collapse
|
79
|
The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets. Oncotarget 2016; 6:35522-41. [PMID: 26431493 PMCID: PMC4742122 DOI: 10.18632/oncotarget.5849] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/15/2015] [Indexed: 02/07/2023] Open
Abstract
A major problem for cancer patients is the metastasis of cancer cells from the primary tumor. This involves: (1) migration through the basement membrane; (2) dissemination via the circulatory system; and (3) invasion into a secondary site. Metastasis suppressors, by definition, inhibit metastasis at any step of the metastatic cascade. Notably, Src is a non-receptor, cytoplasmic, tyrosine kinase, which becomes aberrantly activated in many cancer-types following stimulation of plasma membrane receptors (e.g., receptor tyrosine kinases and integrins). There is evidence of a prominent role of Src in tumor progression-related events such as the epithelial–mesenchymal transition (EMT) and the development of metastasis. However, the precise molecular interactions of Src with metastasis suppressors remain unclear. Herein, we review known metastasis suppressors and summarize recent advances in understanding the mechanisms of how these proteins inhibit metastasis through modulation of Src. Particular emphasis is bestowed on the potent metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1) and its interactions with the Src signaling cascade. Recent studies demonstrated a novel mechanism through which NDRG1 plays a significant role in regulating cancer cell migration by inhibiting Src activity. Moreover, we discuss the rationale for targeting metastasis suppressor genes as a sound therapeutic modality, and we review several examples from the literature where such strategies show promise. Collectively, this review summarizes the essential interactions of metastasis suppressors with Src and their effects on progression of cancer metastasis. Moreover, interesting unresolved issues regarding these proteins as well as their potential as therapeutic targets are also discussed.
Collapse
|
80
|
Plani-Lam JHC, Slavova-Azmanova NS, Kucera N, Louw A, Satiaputra J, Singer P, Lam KP, Hibbs ML, Ingley E. Csk-binding protein controls red blood cell development via regulation of Lyn tyrosine kinase activity. Exp Hematol 2016; 46:70-82.e10. [PMID: 27751872 DOI: 10.1016/j.exphem.2016.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 11/29/2022]
Abstract
Erythropoiesis is controlled principally through erythropoietin (Epo) receptor signaling, which involves Janus kinase 2 (JAK2) and Lyn tyrosine kinase, both of which are important for regulating red blood cell (RBC) development. Negative regulation of Lyn involves C-Src kinase (Csk)-mediated phosphorylation of its C-terminal tyrosine, which is facilitated by the transmembrane adaptor Csk-binding protein (Cbp). Although Cbp has significant functions in controlling Lyn levels and activity in erythroid cells in vitro, its importance to primary erythroid cell development and signaling has remained unclear. To address this, we assessed the consequence of loss of Cbp on the erythroid compartment in vivo and whether Epo-responsive cells isolated from Cbp-knockout mice exhibited altered signaling. Our data show that male Cbp-/- mice display a modest but significant alteration to late erythroid development in bone marrow with evidence of increased erythrocytes in the spleen, whereas female Cbp-/- mice exhibit a moderate elevation in early erythroid progenitors (not seen in male mice) that does not influence the later steps in RBC development. In isolated primary erythroid cells and cell lines generated from Cbp-/- mice, survival signaling through Lyn/Akt/FoxO3 was elevated, resulting in sustained viability during differentiation. The high Akt activity disrupted GAB2/SHP-2 feedback inhibition of Lyn; however, the elevated Lyn activity also increased inhibitory signaling via SHP-1 to restrict the Erk1/2 pathway. Interestingly, whereas loss of Cbp led to mild changes to late RBC development in male mice, this was not apparent in female Cbp-/- mice, possibly due to their elevated estrogen, which is known to facilitate early progenitor self-renewal.
Collapse
Affiliation(s)
- Janice H C Plani-Lam
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Neli S Slavova-Azmanova
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Nicole Kucera
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Alison Louw
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Jiulia Satiaputra
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Peter Singer
- Laboratory of Immunology, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kong-Peng Lam
- Laboratory of Immunology, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Margaret L Hibbs
- Leukocyte Signalling Laboratory, Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Evan Ingley
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
81
|
Gottlieb-Abraham E, Gutman O, Pai GM, Rubio I, Henis YI. The residue at position 5 of the N-terminal region of Src and Fyn modulates their myristoylation, palmitoylation, and membrane interactions. Mol Biol Cell 2016; 27:3926-3936. [PMID: 27733622 PMCID: PMC5170614 DOI: 10.1091/mbc.e16-08-0622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 01/19/2023] Open
Abstract
Using biophysical methods in live cells and palmitoylation mutants of Src and Fyn, we show that palmitoylation stabilizes the interactions of SFKs with the plasma membrane. Moreover, we show that the amino acid at position 5 regulates the myristoylation and palmitoylation of these proteins, and thereby their targeting to raft domains. The interactions of Src family kinases (SFKs) with the plasma membrane are crucial for their activity. They depend on their fatty-acylated N-termini, containing N-myristate and either a polybasic cluster (in Src) or palmitoylation sites (e.g., Fyn). To investigate the roles of these moieties in SFK membrane association, we used fluorescence recovery after photobleaching beam-size analysis to study the membrane interactions of c-Src-GFP (green fluorescent protein) or Fyn-GFP fatty-acylation mutants. Our studies showed for the first time that the membrane association of Fyn is more stable than that of Src, an effect lost in a Fyn mutant lacking the palmitoylation sites. Unexpectedly, Src-S3C/S6C (containing cysteines at positions 3/6, which are palmitoylated in Fyn) exhibited fast cytoplasmic diffusion insensitive to palmitoylation inhibitors, suggesting defective fatty acylation. Further replacement of the charged Lys-5 by neutral Gln to resemble Fyn (Src-S3C/S6C/K5Q) restored Fyn-like membrane interactions, indicating that Lys-5 in the context of Src-S3C/S6C interferes with its myristoylation/palmitoylation. This was validated by direct myristoylation and palmitoylation studies, which indicated that the residue at position 5 regulates the membrane interactions of Src versus Fyn. Moreover, the palmitoylation levels correlated with targeting to detergent-resistant membranes (rafts) and to caveolin-1. Palmitoylation-dependent preferential containment of Fyn in rafts may contribute to its lower transformation potential.
Collapse
Affiliation(s)
- Efrat Gottlieb-Abraham
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Orit Gutman
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Govind M Pai
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Jena 07745, Germany
| | - Ignacio Rubio
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Jena 07745, Germany
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
82
|
Chattopadhyay S, Mukherjee A, Patra U, Bhowmick R, Basak T, Sengupta S, Chawla-Sarkar M. Tyrosine phosphorylation modulates mitochondrial chaperonin Hsp60 and delays rotavirus NSP4-mediated apoptotic signaling in host cells. Cell Microbiol 2016; 19. [PMID: 27665089 DOI: 10.1111/cmi.12670] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/29/2022]
Abstract
Phosphoproteomics-based platforms have been widely used to identify post translational dynamics of cellular proteins in response to viral infection. The present study was undertaken to assess differential tyrosine phosphorylation during early hours of rotavirus (RV) SA11 infection. Heat shock proteins (Hsp60) were found to be enriched in the data set of RV-SA11 induced differentially tyrosine-phosphorylated proteins at 2 hr post infection (hpi). Hsp60 was further found to be phosphorylated by an activated form of Src kinase on 227th tyrosine residue, and tyrosine phosphorylation of mitochondrial chaperonin Hsp60 correlated with its proteasomal degradation at 2-2.5hpi. Interestingly, mitochondrial Hsp60 positively influenced translocation of the rotaviral nonstructural protein 4 to mitochondria during RV infections. Phosphorylation and subsequent transient degradation of mitochondrial Hsp60 during early hours of RV-SA11 infection resulted in inhibition of premature import of nonstructural protein 4 into mitochondria, thereby delaying early apoptosis. Overall, the study highlighted one of the many strategies rotavirus undertakes to prevent early apoptosis and subsequent reduced viral progeny yield.
Collapse
Affiliation(s)
- Shiladitya Chattopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road SchemeP- XM, Beliaghata, Kolkata, 700010, India
| | - Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road SchemeP- XM, Beliaghata, Kolkata, 700010, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road SchemeP- XM, Beliaghata, Kolkata, 700010, India
| | - Rahul Bhowmick
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road SchemeP- XM, Beliaghata, Kolkata, 700010, India
| | - Trayambak Basak
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB campus, New Delhi, India
| | - Shantanu Sengupta
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB campus, New Delhi, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road SchemeP- XM, Beliaghata, Kolkata, 700010, India
| |
Collapse
|
83
|
Wang L, Yu X, Dong J, Meng Y, Yang Y, Wang H, Wang C, Zhang Y, Zhao Y, Zhao J, Wang H, Lu C, Li B. Combined SRC inhibitor saracatinib and anti-ErbB2 antibody H2-18 produces a synergistic antitumor effect on trastuzumab-resistant breast cancer. Biochem Biophys Res Commun 2016; 479:563-570. [PMID: 27666484 DOI: 10.1016/j.bbrc.2016.09.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 09/21/2016] [Indexed: 10/21/2022]
Abstract
Despite of the effectiveness of the anti-ErbB2 humanized antibody trastuzumab, trastuzumab resistance emerges as a major and common clinical problem. Thus, circumventing trastuzumab resistance has become an urgent need. Recently, Src inhibitor saracatinib has drawn great attention for its key role in trastuzumab response. As shown in our previous study, H2-18, an anti-ErbB2 antibody, could potently induce programmed cell death (PCD) in trastuzumab-resistant breast cancer cells. Here we combined H2-18 and a Src inhibitor, saracatinib, and studied the antitumor activity of this drug combination in trastuzumab-resistant breast cancer cell lines. The results showed that H2-18 and saracatinib could synergistically inhibit cell proliferation of BT-474, SKBR-3, HCC-1954 and HCC-1419 breast cancer cell lines in vitro. H2-18 plus saracatinib could also inhibit the HCC-1954 tumor growth more effectively in vivo than each drug alone. H2-18 plus saracatinib showed a significantly more potent PCD-inducing activity compared with either H2-18 or saracatinib alone. We conclude that enhanced PCD may contribute to the superior antitumor efficacy of this combination therapy. The combination of H2-18 and SRC inhibitor has the potential to be translated into clinic.
Collapse
Affiliation(s)
- Lingfei Wang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Xiaojie Yu
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jian Dong
- Department of Vascular Surgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Yanchun Meng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Yang Yang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Huajing Wang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Chao Wang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Yajun Zhang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Yirong Zhao
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jian Zhao
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Hao Wang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, People's Republic of China.
| | - Cuihua Lu
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China.
| | - Bohua Li
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
84
|
Hao L, Wei X, Guo P, Zhang G, Qi S. Neuroprotective Effects of Inhibiting Fyn S-Nitrosylation on Cerebral Ischemia/Reperfusion-Induced Damage to CA1 Hippocampal Neurons. Int J Mol Sci 2016; 17:ijms17071100. [PMID: 27420046 PMCID: PMC4964476 DOI: 10.3390/ijms17071100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/10/2016] [Accepted: 07/04/2016] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) can regulate signaling pathways via S-nitrosylation. Fyn can be post-translationally modified in many biological processes. In the present study, using a rat four-vessel-occlusion ischemic model, we aimed to assess whether Fyn could be S-nitrosylated and to evaluate the effects of Fyn S-nitrosylation on brain damage. In vitro, Fyn could be S-nitrosylated by S-nitrosoglutathione (GSNO, an exogenous NO donor), and in vivo, endogenous NO synthesized by NO synthases (NOS) could enhance Fyn S-nitrosylation. Application of GSNO, 7-nitroindazole (7-NI, an inhibitor of neuronal NOS) and hydrogen maleate (MK-801, the N-methyl-d-aspartate receptor (NMDAR) antagonist) could decrease the S-nitrosylation and phosphorylation of Fyn induced by cerebral ischemia/reperfusion (I/R). Cresyl violet staining validated that these compounds exerted neuroprotective effects against the cerebral I/R-induced damage to hippocampal CA1 neurons. Taken together, in this study, we demonstrated that Fyn can be S-nitrosylated both in vitro and in vivo and that inhibiting S-nitrosylation can exert neuroprotective effects against cerebral I/R injury, potentially via NMDAR-mediated mechanisms. These findings may lead to a new field of inquiry to investigate the underlying pathogenesis of stroke and the development of novel treatment strategies.
Collapse
Affiliation(s)
- Lingyun Hao
- Research Center for Biochemistry and Molecular Biology, and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221002, China.
- Jiangsu Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221002, China.
| | - Xuewen Wei
- Research Center for Biochemistry and Molecular Biology, and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221002, China.
- Department of Laboratory Medicine, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| | - Peng Guo
- Research Center for Biochemistry and Molecular Biology, and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221002, China.
| | - Guangyi Zhang
- Research Center for Biochemistry and Molecular Biology, and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221002, China.
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology, and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
85
|
Zamzow DR, Elias V, Acosta VA, Escobedo E, Magnusson KR. Higher levels of phosphorylated Y1472 on GluN2B subunits in the frontal cortex of aged mice are associated with good spatial reference memory, but not cognitive flexibility. AGE (DORDRECHT, NETHERLANDS) 2016; 38:50. [PMID: 27094400 PMCID: PMC5005925 DOI: 10.1007/s11357-016-9913-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
The N-methyl-D-aspartate receptor (NMDAr) is particularly vulnerable to aging. The GluN2B subunit of the NMDAr, compared to other NMDAr subunits, suffers the greatest losses of expression in the aging brain, especially in the frontal cortex. While expression levels of GluN2B mRNA and protein in the aged brain are well documented, there has been little investigation into age-related posttranslational modifications of the subunit. In this study, we explored some of the mechanisms that may promote differences in the NMDAr complex in the frontal cortex of aged animals. Two ages of mice, 3 and 24 months, were behaviorally tested in the Morris water maze. The frontal cortex and hippocampus from each mouse were subjected to differential centrifugation followed by solubilization in Triton X-100. Proteins from Triton-insoluble membranes, Triton-soluble membranes, and intracellular membranes/cytosol were examined by Western blot. Higher levels of GluN2B tyrosine 1472 phosphorylation in frontal cortex synaptic fractions of old mice were associated with better reference learning but poorer cognitive flexibility. Levels of GluN2B phosphotyrosine 1336 remained steady, but there were greater levels of the calpain-induced 115 kDa GluN2B cleavage product on extrasynaptic membranes in these old good learners. There was an age-related increase in calpain activity, but it was not associated with better learning. These data highlight a unique aging change for aged mice with good spatial learning that might be detrimental to cognitive flexibility. This study also suggests that higher levels of truncated GluN2B on extrasynaptic membranes are not deleterious to spatial memory in aged mice.
Collapse
Affiliation(s)
| | - Val Elias
- Oregon State University, Corvallis, OR, USA
| | | | | | | |
Collapse
|
86
|
Allen JC, Talab F, Slupsky JR. Targeting B-cell receptor signaling in leukemia and lymphoma: how and why? Int J Hematol Oncol 2016; 5:37-53. [PMID: 30302202 DOI: 10.2217/ijh-2016-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/13/2016] [Indexed: 01/04/2023] Open
Abstract
B-lymphocytes are dependent on B-cell receptor (BCR) signaling for the constant maintenance of their physiological function, and in many B-cell malignancies this signaling pathway is prone to aberrant activation. This understanding has led to an ever-increasing interest in the signaling networks activated following ligation of the BCR in both normal and malignant cells, and has been critical in establishing an array of small molecule inhibitors targeting BCR-induced signaling. By dissecting how different malignancies signal through BCR, researchers are contributing to the design of more customized therapeutics which have greater efficacy and lower toxicity than previous therapies. This allows clinicians access to an array of approaches to best treat patients whose malignancies have BCR signaling as a driver of pathogenesis.
Collapse
Affiliation(s)
- John C Allen
- Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK.,Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - Fatima Talab
- Redx Oncology Plc, Duncan Building, Royal Liverpool University Hospital, Daulby Street, Liverpool, L69 3GA, UK.,Redx Oncology Plc, Duncan Building, Royal Liverpool University Hospital, Daulby Street, Liverpool, L69 3GA, UK
| | - Joseph R Slupsky
- Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK.,Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| |
Collapse
|
87
|
Maza PK, Suzuki E. Histoplasma capsulatum-Induced Cytokine Secretion in Lung Epithelial Cells Is Dependent on Host Integrins, Src-Family Kinase Activation, and Membrane Raft Recruitment. Front Microbiol 2016; 7:580. [PMID: 27148251 PMCID: PMC4840283 DOI: 10.3389/fmicb.2016.00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/08/2016] [Indexed: 01/30/2023] Open
Abstract
Histoplasma capsulatum var. capsulatum is a dimorphic fungus that causes histoplasmosis, a human systemic mycosis with worldwide distribution. In the present work, we demonstrate that H. capsulatum yeasts are able to induce cytokine secretion by the human lung epithelial cell line A549 in integrin- and Src-family kinase (SFK)-dependent manners. This conclusion is supported by small interfering RNA (siRNA) directed to α3 and α5 integrins, and PP2, an inhibitor of SFK activation. siRNA and PP2 reduced IL-6 and IL-8 secretion in H. capsulatum-infected A549 cell cultures. In addition, α3 and α5 integrins from A549 cells were capable of associating with H. capsulatum yeasts, and this fungus promotes recruitment of these integrins and SFKs to A549 cell membrane rafts. Corroborating this finding, membrane raft disruption with the cholesterol-chelator methyl-β-cyclodextrin reduced the levels of integrins and SFKs in these cell membrane domains. Finally, pretreatment of A549 cells with the cholesterol-binding compound, and also a membrane raft disruptor, filipin, significantly reduced IL-6 and IL-8 levels in A549-H.capsulatum cultures. Taken together, these results indicate that H. capsulatum yeasts induce secretion of IL-6 and IL-8 in human lung epithelial cells by interacting with α3 and α5 integrins, recruiting these integrins to membrane rafts, and promoting SFK activation.
Collapse
Affiliation(s)
- Paloma K Maza
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Erika Suzuki
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
88
|
Le Roux AL, Castro B, Garbacik ET, Garcia Parajo MF, Pons M. Single molecule fluorescence reveals dimerization of myristoylated Src N-terminal region on supported lipid bilayers. ChemistrySelect 2016. [DOI: 10.1002/slct.201600117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anabel-Lise Le Roux
- Biomolecular NMR Laboratory; Organic Chemistry Department; University of Barcelona; Baldiri Reixac 10-12 08028 Barcelona Spain
- Institute for Research in Biomedicine (IRB-Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
| | - Bruno Castro
- ICFO- Institut de Ciencies Fotoniques; The Barcelona Institute of Science and Technology; 08860 Castelldefels (Barcelona) Spain
| | - Erik T. Garbacik
- ICFO- Institut de Ciencies Fotoniques; The Barcelona Institute of Science and Technology; 08860 Castelldefels (Barcelona) Spain
| | - Maria F. Garcia Parajo
- ICFO- Institut de Ciencies Fotoniques; The Barcelona Institute of Science and Technology; 08860 Castelldefels (Barcelona) Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats; 08010 Barcelona Spain
| | - Miquel Pons
- Biomolecular NMR Laboratory; Organic Chemistry Department; University of Barcelona; Baldiri Reixac 10-12 08028 Barcelona Spain
| |
Collapse
|
89
|
Liu W, Yue F, Zheng M, Merlot A, Bae DH, Huang M, Lane D, Jansson P, Lui GYL, Richardson V, Sahni S, Kalinowski D, Kovacevic Z, Richardson DR. The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Oncotarget 2016; 6:8851-74. [PMID: 25860930 PMCID: PMC4496188 DOI: 10.18632/oncotarget.3316] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/08/2015] [Indexed: 11/25/2022] Open
Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that plays a key role in regulating signaling pathways involved in mediating cancer cell invasion and migration, including those derived from prostate, colon, etc. However, the mechanisms and molecular targets through which NDRG1 reduces cancer cell invasion and migration, leading to inhibition of cancer metastasis, are not fully elucidated. In this investigation, using NDRG1 over-expression models in three tumor cell-types (namely, DU145, PC3MM and HT29) and also NDRG1 silencing in DU145 and HT29 cells, we reveal that NDRG1 decreases phosphorylation of a key proto-oncogene, cellular Src (c-Src), at a well-characterized activating site (Tyr416). NDRG1-mediated down-regulation of EGFR expression and activation were responsible for the decreased phosphorylation of c-Src (Tyr416). Indeed, NDRG1 prevented recruitment of c-Src to EGFR and c-Src activation. Moreover, NDRG1 suppressed Rac1 activity by modulating phosphorylation of a c-Src downstream effector, p130Cas, and its association with CrkII, which acts as a "molecular switch" to activate Rac1. NDRG1 also affected another signaling molecule involved in modulating Rac1 signaling, c-Abl, which then inhibited CrkII phosphorylation. Silencing NDRG1 increased cell migration relative to the control and inhibition of c-Src signaling using siRNA, or a pharmacological inhibitor (SU6656), prevented this increase. Hence, the role of NDRG1 in decreasing cell migration is, in part, due to its inhibition of c-Src activation. In addition, novel pharmacological agents, which induce NDRG1 expression and are currently under development as anti-metastatic agents, markedly increase NDRG1 and decrease c-Src activation. This study leads to important insights into the mechanism involved in inhibiting metastasis by NDRG1 and how to target these pathways with novel therapeutics.
Collapse
Affiliation(s)
- Wensheng Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R.China.,Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fei Yue
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R.China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R.China
| | - Angelica Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Goldie Yuan Lam Lui
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vera Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
90
|
Dwyer AR, Mouchemore KA, Steer JH, Sunderland AJ, Sampaio NG, Greenland EL, Joyce DA, Pixley FJ. Src family kinase expression and subcellular localization in macrophages: implications for their role in CSF-1-induced macrophage migration. J Leukoc Biol 2016; 100:163-75. [PMID: 26747837 DOI: 10.1189/jlb.2a0815-344rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/27/2015] [Indexed: 12/30/2022] Open
Abstract
A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1.
Collapse
Affiliation(s)
- Amy R Dwyer
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kellie A Mouchemore
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - James H Steer
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Andrew J Sunderland
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Natalia G Sampaio
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Eloise L Greenland
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - David A Joyce
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Fiona J Pixley
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
91
|
Theoretical studies of the role of C-terminal cysteines in the process of S-nitrosylation of human Src kinases. J Mol Model 2016; 22:23. [PMID: 26733486 DOI: 10.1007/s00894-015-2892-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
Abstract
Src tyrosine kinases are a family of non-receptor proteins that are responsible for the growth process, cellular proliferation, differentiation and survival. Lack of Src kinase control has been associated with the development of certain human cancers. This family of proteins is constituted of four domains, with SH1 being the kinase or catalytic domain. SH1 also presents three important regulatory sites. Two residues, Tyr416 and Tyr527, are responsible for important phosphorylation processes that lead to, respectively, activation and deactivation of these kinases. More recently, however, a set of four cysteine residues located near the C-terminus-Cys483, Cys487, Cys496 and Cys498-has been associated with the activation of the Src kinases through S-nitrosylation reactions. Particularly, the Cys498 has been specified as a fundamental residue when considering this regulatory mechanism. Aiming to understand the role of these four cysteines in S-nitrosylation, theoretical studies of electrostatic, steric and hydrophobic properties were performed with a sequence of 20 amino acids, enclosing the four cysteine residues under study, extracted from the PDB coordinates of the crystal obtained from the inactive state of Src kinase. Results indicate that Cys498 is buried deeply in the protein, in hydrophobic surroundings in which NO is more likely to suffer decomposition into the electrophilic intermediates known to be responsible for S-nitrosylation reactions. Electronic calculated properties, such as punctual atomic charges, electrostatic potentials and molecular orbital energy, also demonstrated the good nucleophilic potential of Cys498. Graphical Abstract Structure of Src kinase with zoomed area representing the 20 amino acids comprising the CC motif extracted from the whole protein structure. Right upper panel Electrostatic potential map, right lower panel hydrophilic map in anterior view.
Collapse
|
92
|
Lu X, Hu X, Song L, An L, Duan M, Chen S, Zhao S. The SH2 domain is crucial for function of Fyn in neuronal migration and cortical lamination. BMB Rep 2015; 48:97-102. [PMID: 24912779 PMCID: PMC4352619 DOI: 10.5483/bmbrep.2015.48.2.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Indexed: 11/20/2022] Open
Abstract
Neurons in the developing brain form the cortical plate (CP) in an inside-out manner, in which the late-born neurons are located more superficially than the early-born neurons. Fyn, a member of the Src family kinases, plays an important role in neuronal migration by binding to many substrates. However, the role of the Src-homology 2 (SH2) domain in function of Fyn in neuronal migration remains poorly understood. Here, we demonstrate that the SH2 domain is essential for the action of Fyn in neuronal migration and cortical lamination. A point mutation in the Fyn SH2 domain (FynR176A) impaired neuronal migration and their final location in the cerebral cortex, by inducing neuronal aggregation and branching. Thus, we provide the first evidence of the Fyn SH2 domain contributing to neuronal migration and neuronal morphogenesis. [BMB Reports 2015; 48(2): 97-102]
Collapse
Affiliation(s)
- Xi Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Xinde Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Lingzhen Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Lei An
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Minghui Duan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
93
|
Chojnacka K, Mruk DD. The Src non-receptor tyrosine kinase paradigm: New insights into mammalian Sertoli cell biology. Mol Cell Endocrinol 2015; 415:133-42. [PMID: 26296907 DOI: 10.1016/j.mce.2015.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/27/2015] [Accepted: 08/09/2015] [Indexed: 11/23/2022]
Abstract
Src kinases are non-receptor tyrosine kinases that phosphorylate diverse substrates, which control processes such as cell proliferation, differentiation and survival; cell adhesion; and cell motility. c-Src, the prototypical member of this protein family, is widely expressed by several organs that include the testis. In the seminiferous epithelium of the adult rat testis, c-Src is highest at the tubule lumen during the release of mature spermatids. Other studies show that testosterone regulates spermatid adhesion to Sertoli cells via c-Src, indicating Src phosphorylates key substrates that prompt the disassembly of Sertoli cell-spermatid junctions. A more recent in vitro study reveals that c-Src participates in the internalization of proteins that constitute the blood-testis barrier, which is present between Sertoli cells, suggesting a similar mechanism of junction disassembly is at play during spermiation. In this review, we discuss recent findings on c-Src, with an emphasis on its role in spermatogenesis in the mammalian testis.
Collapse
Affiliation(s)
| | - Dolores D Mruk
- Center for Biomedical Research, Population Council, New York, USA.
| |
Collapse
|
94
|
Genome-Wide Gene Expression Analysis Identifies the Proto-oncogene Tyrosine-Protein Kinase Src as a Crucial Virulence Determinant of Infectious Laryngotracheitis Virus in Chicken Cells. J Virol 2015; 90:9-21. [PMID: 26446601 PMCID: PMC4702564 DOI: 10.1128/jvi.01817-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Given the side effects of vaccination against infectious laryngotracheitis (ILT), novel strategies for ILT control and therapy are urgently needed. The modulation of host-virus interactions is a promising strategy to combat the virus; however, the interactions between the host and avian ILT herpesvirus (ILTV) are unclear. Using genome-wide transcriptome studies in combination with a bioinformatic analysis, we identified proto-oncogene tyrosine-protein kinase Src (Src) to be an important modulator of ILTV infection. Src controls the virulence of ILTV and is phosphorylated upon ILTV infection. Functional studies revealed that Src prolongs the survival of host cells by increasing the threshold of virus-induced cell death. Therefore, Src is essential for viral replication in vitro and in ovo but is not required for ILTV-induced cell death. Furthermore, our results identify a positive-feedback loop between Src and the tyrosine kinase focal adhesion kinase (FAK), which is necessary for the phosphorylation of either Src or FAK and is required for Src to modulate ILTV infection. To the best of our knowledge, we are the first to identify a key host regulator controlling host-ILTV interactions. We believe that our findings have revealed a new potential therapeutic target for ILT control and therapy. IMPORTANCE Despite the extensive administration of live attenuated vaccines starting from the mid-20th century and the administration of recombinant vaccines in recent years, infectious laryngotracheitis (ILT) outbreaks due to avian ILT herpesvirus (ILTV) occur worldwide annually. Presently, there are no drugs or control strategies that effectively treat ILT. Targeting of host-virus interactions is considered to be a promising strategy for controlling ILTV infections. However, little is known about the mechanisms governing host-ILTV interactions. The results from our study advance our understanding of host-ILTV interactions on a molecular level and provide experimental evidence that it is possible to control ILT via the manipulation of host-virus interactions.
Collapse
|
95
|
Mruk DD, Cheng CY. The Mammalian Blood-Testis Barrier: Its Biology and Regulation. Endocr Rev 2015; 36:564-91. [PMID: 26357922 PMCID: PMC4591527 DOI: 10.1210/er.2014-1101] [Citation(s) in RCA: 442] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/03/2015] [Indexed: 12/31/2022]
Abstract
Spermatogenesis is the cellular process by which spermatogonia develop into mature spermatids within seminiferous tubules, the functional unit of the mammalian testis, under the structural and nutritional support of Sertoli cells and the precise regulation of endocrine factors. As germ cells develop, they traverse the seminiferous epithelium, a process that involves restructuring of Sertoli-germ cell junctions, as well as Sertoli-Sertoli cell junctions at the blood-testis barrier. The blood-testis barrier, one of the tightest tissue barriers in the mammalian body, divides the seminiferous epithelium into 2 compartments, basal and adluminal. The blood-testis barrier is different from most other tissue barriers in that it is not only comprised of tight junctions. Instead, tight junctions coexist and cofunction with ectoplasmic specializations, desmosomes, and gap junctions to create a unique microenvironment for the completion of meiosis and the subsequent development of spermatids into spermatozoa via spermiogenesis. Studies from the past decade or so have identified the key structural, scaffolding, and signaling proteins of the blood-testis barrier. More recent studies have defined the regulatory mechanisms that underlie blood-testis barrier function. We review here the biology and regulation of the mammalian blood-testis barrier and highlight research areas that should be expanded in future studies.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research, Population Council, New York, New York 10065
| | - C Yan Cheng
- Center for Biomedical Research, Population Council, New York, New York 10065
| |
Collapse
|
96
|
Zhao R, Wu Y, Wang T, Zhang Y, Kong D, Zhang L, Li X, Wang G, Jin Y, Jin X, Zhang F. Elevated Src expression associated with hepatocellular carcinoma metastasis in northern Chinese patients. Oncol Lett 2015; 10:3026-3034. [PMID: 26722284 DOI: 10.3892/ol.2015.3706] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
Src, a non-receptor type of tyrosine, was recently reported to modulate multiple signaling pathways in human tumors. Therefore, the present study aimed to determine the expression and distribution of Src on hepatocellular carcinoma (HCC). The expressions of total Src (t-Src) and an active form of Src [phosphorylated (p-) Y416Src] were analyzed in 52 northern Chinese patients with HCC using immunohistochemistry. The positive expression rates of t-Src and p-Y416Src in HCC tissue were 65.38 and 42.30%, respectively, which is significantly higher than that in adjacent non-tumor tissue (30.76 and 13.46%; P<0.001 and P=0.010, respectively). The staining intensity of t-Src and p-Y416Src were also significantly higher in HCC tissues compared with adjacent normal tissues (P<0.001 and P=0.023, respectively). t-Src expression was positively and significantly correlated with tumor stage (P=0.002), cellular differentiation (P=0.007), metastasis (P=0.030) and the expression level of CA19-9 (P=0.016), while p-Y416Src expression was only significantly correlated with tumor stage (P=0.010). The expression of t-Src and p-Y416Src were also investigated using immunocytochemistry in two HCC cell lines with different metastatic potentials (MHCC97-L and HCCLM3) that are derived from a single HCC patient. Consistently, the expression of t-Src and p-Y416Src were stronger in the cells with higher metastatic potential compared with those exhibiting lower metastatic potential. Taken together, the current data indicate that Src expression is elevated and active in Chinese patients with HCC and that t-Src may have a key role in promoting HCC metastasis.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China ; Department of Microbiology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yiqi Wu
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China ; Department of Microbiology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Tianzhen Wang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yuhua Zhang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Dan Kong
- Department of Gynecology, Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lei Zhang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaobo Li
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Guangyu Wang
- Department of Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yinji Jin
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoming Jin
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China ; Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China, Harbin, Heilongjiang 150081, P.R. China
| | - Fengmin Zhang
- Department of Microbiology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China ; Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
97
|
Shahidullah M, Mandal A, Delamere NA. Damage to lens fiber cells causes TRPV4-dependent Src family kinase activation in the epithelium. Exp Eye Res 2015; 140:85-93. [PMID: 26318609 DOI: 10.1016/j.exer.2015.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/08/2015] [Accepted: 08/17/2015] [Indexed: 11/25/2022]
Abstract
The bulk of the lens consists of tightly packed fiber cells. Because mature lens fibers lack mitochondria and other organelles, lens homeostasis relies on a monolayer of epithelial cells at the anterior surface. The detection of various signaling pathways in lens epithelial cells suggests they respond to stimuli that influence lens function. Focusing on Src Family Kinases (SFKs) and Transient Receptor Potential Vanilloid 4 (TRPV4), we tested whether the epithelium can sense and respond to an event that occurs in fiber mass. The pig lens was subjected to localized freeze-thaw (FT) damage to fibers at posterior pole then the lens was incubated for 1-10 min in Krebs solution at 37 °C. Transient SFK activation in the epithelium was detectable at 1 min. Using a western blot approach, the ion channel TRPV4 was detected in the epithelium but was sparse or absent in fiber cells. Even though TRPV4 expression appears low at the actual site of FT damage to the fibers, SFK activation in the epithelium was suppressed in lenses subjected to FT damage then incubated with the TRPV4 antagonist HC067047 (10 μM). Na,K-ATPase activity was examined because previous studies report changes of Na,K-ATPase activity associated with SFK activation. Na,K-ATPase activity doubled in the epithelium removed from FT-damaged lenses and the response was prevented by HC067047 or the SFK inhibitor PP2 (10 μM). Similar changes were observed in response to fiber damage caused by injection of 5 μl hyperosmotic NaCl or mannitol solution beneath the surface of the posterior pole. The findings point to a TRPV4-dependent mechanism that enables the epithelial cells to detect remote damage in the fiber mass and respond within minutes by activating SFK and increasing Na,K-ATPase activity. Because TRPV4 channels are mechanosensitive, we speculate they may be stimulated by swelling of the lens structure caused by damage to the fibers. Increased Na,K-ATPase activity gives the lens greater capacity to control ion concentrations in the fiber mass and the Na,K-ATPase response may reflect the critical contribution of the epithelium to lens ion homeostasis.
Collapse
Affiliation(s)
- M Shahidullah
- Dept. of Physiology, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ, 85724, USA.
| | - A Mandal
- Dept. of Physiology, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ, 85724, USA
| | - N A Delamere
- Dept. of Physiology, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ, 85724, USA
| |
Collapse
|
98
|
Siloni S, Singer-Lahat D, Esa M, Tsemakhovich V, Chikvashvili D, Lotan I. Regulation of the neuronal KCNQ2 channel by Src--a dual rearrangement of the cytosolic termini underlies bidirectional regulation of gating. J Cell Sci 2015; 128:3489-501. [PMID: 26275828 DOI: 10.1242/jcs.173922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/26/2015] [Indexed: 12/11/2022] Open
Abstract
Neuronal M-type K(+) channels are heteromers of KCNQ2 and KCNQ3 subunits, and are found in cell bodies, dendrites and the axon initial segment, regulating the firing properties of neurons. By contrast, presynaptic KCNQ2 homomeric channels directly regulate neurotransmitter release. Previously, we have described a mechanism for gating downregulation of KCNQ2 homomeric channels by calmodulin and syntaxin1A. Here, we describe a new mechanism for regulation of KCNQ2 channel gating that is modulated by Src, a non-receptor tyrosine kinase. In this mechanism, two concurrent distinct structural rearrangements of the cytosolic termini induce two opposing effects: upregulation of the single-channel open probability, mediated by an N-terminal tyrosine, and reduction in functional channels, mediated by a C-terminal tyrosine. In contrast, Src-mediated regulation of KCNQ3 homomeric channels, shown previously to be achieved through the corresponding tyrosine residues, involves the N-terminal-tyrosine-mediated downregulation of the open probability, rather than an upregulation. We argue that the dual bidirectional regulation of KCNQ2 functionality by Src, mediated through two separate sites, means that KCNQ2 can be modified by cellular factors that might specifically interact with either one of the sites, with potential significance in the fine-tuning of neurotransmitters release at nerve terminals.
Collapse
Affiliation(s)
- Sivan Siloni
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Dafna Singer-Lahat
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Moad Esa
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Vlad Tsemakhovich
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Dodo Chikvashvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Ilana Lotan
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
99
|
Erlotinib protects against LPS-induced endotoxicity because TLR4 needs EGFR to signal. Proc Natl Acad Sci U S A 2015. [PMID: 26195767 DOI: 10.1073/pnas.1511794112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Several components of the canonical pathway of response to lipopolysaccharide (LPS) are required for the EGF-dependent activation of NFκB. Conversely, the ability of Toll-like Receptor 4 (TLR4) to activate NFκB in response to LPS is impaired by down regulating EGF receptor (EGFR) expression or by using the EGFR inhibitor erlotinib. The LYN proto-oncogene (LYN) is required for signaling in both directions. LYN binds to the EGFR upon LPS stimulation, and erlotinib impairs this association. In mice, erlotinib blocks the LPS-induced expression of tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) and ameliorates LPS-induced endotoxity, revealing that EGFR is essential for LPS-induced signaling in vivo.
Collapse
|
100
|
Bojarczuk K, Bobrowicz M, Dwojak M, Miazek N, Zapala P, Bunes A, Siernicka M, Rozanska M, Winiarska M. B-cell receptor signaling in the pathogenesis of lymphoid malignancies. Blood Cells Mol Dis 2015; 55:255-65. [PMID: 26227856 DOI: 10.1016/j.bcmd.2015.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/21/2015] [Indexed: 11/17/2022]
Abstract
B-cell receptor (BCR) signaling pathway plays a central role in B-lymphocyte development and initiation of humoral immunity. Recently, BCR signaling pathway has been shown as a major driver in the pathogenesis of B-cell malignancies. As a result, a vast array of BCR-associated kinases has emerged as rational therapeutic targets changing treatment paradigms in B cell malignancies. Based on high efficacy in early-stage clinical trials, there is rapid clinical development of inhibitors targeting BCR signaling pathway. Here, we describe the essential components of BCR signaling, their function in normal and pathogenic signaling and molecular effects of their inhibition in vitro and in vivo.
Collapse
Affiliation(s)
- Kamil Bojarczuk
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Malgorzata Bobrowicz
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Michal Dwojak
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Nina Miazek
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Piotr Zapala
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Anders Bunes
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Marta Siernicka
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Maria Rozanska
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland.
| |
Collapse
|