51
|
Subbalakshmi AR, Sahoo S, Biswas K, Jolly MK. A Computational Systems Biology Approach Identifies SLUG as a Mediator of Partial Epithelial-Mesenchymal Transition (EMT). Cells Tissues Organs 2021; 211:689-702. [PMID: 33567424 DOI: 10.1159/000512520] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/19/2020] [Indexed: 01/25/2023] Open
Abstract
Epithelial-mesenchymal plasticity comprises reversible transitions among epithelial, hybrid epithelial/mesenchymal (E/M) and mesenchymal phenotypes, and underlies various aspects of aggressive tumor progression such as metastasis, therapy resistance, and immune evasion. The process of cells attaining one or more hybrid E/M phenotypes is termed as partial epithelial mesenchymal transition (EMT). Cells in hybrid E/M phenotype(s) can be more aggressive than those in either fully epithelial or mesenchymal state. Thus, identifying regulators of hybrid E/M phenotypes is essential to decipher the rheostats of phenotypic plasticity and consequent accelerators of metastasis. Here, using a computational systems biology approach, we demonstrate that SLUG (SNAIL2) - an EMT-inducing transcription factor - can inhibit cells from undergoing a complete EMT and thus stabilize them in hybrid E/M phenotype(s). It expands the parametric range enabling the existence of a hybrid E/M phenotype, thereby behaving as a phenotypic stability factor. Our simulations suggest that this specific property of SLUG emerges from the topology of the regulatory network it forms with other key regulators of epithelial-mesenchymal plasticity. Clinical data suggest that SLUG associates with worse patient prognosis across multiple carcinomas. Together, our results indicate that SLUG can stabilize hybrid E/M phenotype(s).
Collapse
Affiliation(s)
- Ayalur R Subbalakshmi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Kuheli Biswas
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India,
| |
Collapse
|
52
|
Alvarado-Estrada K, Marenco-Hillembrand L, Maharjan S, Mainardi VL, Zhang YS, Zarco N, Schiapparelli P, Guerrero-Cazares H, Sarabia-Estrada R, Quinones-Hinojosa A, Chaichana KL. Circulatory shear stress induces molecular changes and side population enrichment in primary tumor-derived lung cancer cells with higher metastatic potential. Sci Rep 2021; 11:2800. [PMID: 33531664 PMCID: PMC7854722 DOI: 10.1038/s41598-021-82634-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death and disease worldwide. However, while the survival for patients with primary cancers is improving, the ability to prevent metastatic cancer has not. Once patients develop metastases, their prognosis is dismal. A critical step in metastasis is the transit of cancer cells in the circulatory system. In this hostile microenvironment, variations in pressure and flow can change cellular behavior. However, the effects that circulation has on cancer cells and the metastatic process remain unclear. To further understand this process, we engineered a closed-loop fluidic system to analyze molecular changes induced by variations in flow rate and pressure on primary tumor-derived lung adenocarcinoma cells. We found that cancer cells overexpress epithelial-to-mesenchymal transition markers TWIST1 and SNAI2, as well as stem-like marker CD44 (but not CD133, SOX2 and/or NANOG). Moreover, these cells display a fourfold increased percentage of side population cells and have an increased propensity for migration. In vivo, surviving circulatory cells lead to decreased survival in rodents. These results suggest that cancer cells that express a specific circulatory transition phenotype and are enriched in side population cells are able to survive prolonged circulatory stress and lead to increased metastatic disease and shorter survival.
Collapse
Affiliation(s)
- Keila Alvarado-Estrada
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Lina Marenco-Hillembrand
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Valerio Luca Mainardi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Laboratory of Biological Structures Mechanics (LaBS), Department of Chemistry, Material and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Milan, Italy
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Natanael Zarco
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Paula Schiapparelli
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Hugo Guerrero-Cazares
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Rachel Sarabia-Estrada
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Kaisorn L Chaichana
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
53
|
Chakraborty P, George JT, Woodward WA, Levine H, Jolly MK. Gene expression profiles of inflammatory breast cancer reveal high heterogeneity across the epithelial-hybrid-mesenchymal spectrum. Transl Oncol 2021; 14:101026. [PMID: 33535154 PMCID: PMC7851345 DOI: 10.1016/j.tranon.2021.101026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/09/2021] [Accepted: 01/18/2021] [Indexed: 01/10/2023] Open
Abstract
No unique genome signature or molecular therapy exists for inflammatory breast cancer (IBC), a highly aggressive breast cancer with a 5-year survival rate of less than 30%. We show that various gene lists proposed as molecular footprints of IBC have no overlap and thus very limited predictive accuracy in identifying IBC samples. We observed that single-sample gene set enrichment analysis (ssGSEA) of IBC samples along the epithelial-hybrid-mesenchymal spectrum can help IBC identification. IBC samples robustly displayed a higher coefficient of variation in terms of EMT scores, as compared to non-IBC samples. Higher heterogeneity along the epithelial-hybrid-mesenchymal spectrum can be regarded to be a hallmark of IBC and a possibly useful biomarker.
Inflammatory breast cancer (IBC) is a highly aggressive breast cancer that metastasizes largely via tumor emboli, and has a 5-year survival rate of less than 30%. No unique genomic signature has yet been identified for IBC nor has any specific molecular therapeutic been developed to manage the disease. Thus, identifying gene expression signatures specific to IBC remains crucial. Here, we compare various gene lists that have been proposed as molecular footprints of IBC using different clinical samples as training and validation sets and using independent training algorithms, and determine their accuracy in identifying IBC samples in three independent datasets. We show that these gene lists have little to no mutual overlap, and have limited predictive accuracy in identifying IBC samples. Despite this inconsistency, single-sample gene set enrichment analysis (ssGSEA) of IBC samples correlate with their position on the epithelial-hybrid-mesenchymal spectrum. This positioning, together with ssGSEA scores, improves the accuracy of IBC identification across the three independent datasets. Finally, we observed that IBC samples robustly displayed a higher coefficient of variation in terms of EMT scores, as compared to non-IBC samples. Pending verification that this patient-to-patient variability extends to intratumor heterogeneity within a single patient, these results suggest that higher heterogeneity along the epithelial-hybrid-mesenchymal spectrum can be regarded to be a hallmark of IBC and a possibly useful biomarker.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77005, USA
| | - Wendy A Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA; Departments of Physics and Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
54
|
Shams A, Binothman N, Boudreault J, Wang N, Shams F, Hamam D, Tian J, Moamer A, Dai M, Lebrun JJ, Ali S. Prolactin receptor-driven combined luminal and epithelial differentiation in breast cancer restricts plasticity, stemness, tumorigenesis and metastasis. Oncogenesis 2021; 10:10. [PMID: 33446633 PMCID: PMC7809050 DOI: 10.1038/s41389-020-00297-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Dedifferentiation increased cellular plasticity and stemness are established derivers of tumor heterogeneity, metastasis and therapeutic failure resulting in incurable cancers. Therefore, it is essential to decipher pro/forward-differentiation mechanisms in cancer that may serve as therapeutic targets. We found that interfering with expression of the receptor for the lactogenic hormone prolactin (PRLR) in breast cancer cells representative of the luminal and epithelial breast cancer subtypes (hormone receptor positive (HR+) and HER2-enriched (HER2-E) resulted in loss of their differentiation state, enriched for stem-like cell subpopulations, and increased their tumorigenic capacity in a subtype-specific manner. Loss of PRLR expression in HR+ breast cancer cells caused their dedifferentiation generating a mesenchymal-basal-like phenotype enriched in CD44+ breast cancer stem-like cells (BCSCs) showing high tumorigenic and metastatic capacities and resistance to anti-hormonal therapy. Whereas loss of PRLR expression in HER2-E breast cancer cells resulted in loss of their luminal differentiation yet enriched for epithelial ALDH+ BCSC population showing elevated HER2-driven tumorigenic, multi-organ metastatic spread, and resistance to anti-HER2 therapy. Collectively, this study defines PRLR as a driver of precise luminal and epithelial differentiation limiting cellular plasticity, stemness, and tumorigenesis and emphasizing the function of pro/forward-differentiation pathways as a foundation for the discovery of anti-cancer therapeutic targets.
Collapse
Affiliation(s)
- Anwar Shams
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada ,grid.412895.30000 0004 0419 5255Present Address: Department of Pharmacology, Faculty of Medicine, Taif University, Taif, Saudi Arabia
| | - Najat Binothman
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada ,grid.412125.10000 0001 0619 1117Present Address: Department of Chemistry, College of Science and Arts, King Abdulaziz University, P.O. Box 344, Rabigh, 21911 Saudi Arabia
| | - Julien Boudreault
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Ni Wang
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Fuad Shams
- grid.415252.5Department of Pathology and Laboratory Medicine, King Abdulaziz Hospital, Mecca, Saudi Arabia
| | - Dana Hamam
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Jun Tian
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Alaa Moamer
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Meiou Dai
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Jean-Jacques Lebrun
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Suhad Ali
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| |
Collapse
|
55
|
Sanders LM, Cheney A, Seninge L, van den Bout A, Chen M, Beale HC, Kephart ET, Pfeil J, Learned K, Lyle AG, Bjork I, Haussler D, Salama SR, Vaske OM. Identification of a differentiation stall in epithelial mesenchymal transition in histone H3-mutant diffuse midline glioma. Gigascience 2020; 9:giaa136. [PMID: 33319914 PMCID: PMC7736793 DOI: 10.1093/gigascience/giaa136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/17/2020] [Accepted: 11/05/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Diffuse midline gliomas with histone H3 K27M (H3K27M) mutations occur in early childhood and are marked by an invasive phenotype and global decrease in H3K27me3, an epigenetic mark that regulates differentiation and development. H3K27M mutation timing and effect on early embryonic brain development are not fully characterized. RESULTS We analyzed multiple publicly available RNA sequencing datasets to identify differentially expressed genes between H3K27M and non-K27M pediatric gliomas. We found that genes involved in the epithelial-mesenchymal transition (EMT) were significantly overrepresented among differentially expressed genes. Overall, the expression of pre-EMT genes was increased in the H3K27M tumors as compared to non-K27M tumors, while the expression of post-EMT genes was decreased. We hypothesized that H3K27M may contribute to gliomagenesis by stalling an EMT required for early brain development, and evaluated this hypothesis by using another publicly available dataset of single-cell and bulk RNA sequencing data from developing cerebral organoids. This analysis revealed similarities between H3K27M tumors and pre-EMT normal brain cells. Finally, a previously published single-cell RNA sequencing dataset of H3K27M and non-K27M gliomas revealed subgroups of cells at different stages of EMT. In particular, H3.1K27M tumors resemble a later EMT stage compared to H3.3K27M tumors. CONCLUSIONS Our data analyses indicate that this mutation may be associated with a differentiation stall evident from the failure to proceed through the EMT-like developmental processes, and that H3K27M cells preferentially exist in a pre-EMT cell phenotype. This study demonstrates how novel biological insights could be derived from combined analysis of several previously published datasets, highlighting the importance of making genomic data available to the community in a timely manner.
Collapse
Affiliation(s)
- Lauren M Sanders
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Allison Cheney
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Lucas Seninge
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Anouk van den Bout
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Marissa Chen
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Holly C Beale
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Ellen Towle Kephart
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Jacob Pfeil
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Katrina Learned
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - A Geoffrey Lyle
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Isabel Bjork
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - David Haussler
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Sofie R Salama
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Olena M Vaske
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
56
|
Hass R, von der Ohe J, Ungefroren H. The Intimate Relationship Among EMT, MET and TME: A T(ransdifferentiation) E(nhancing) M(ix) to Be Exploited for Therapeutic Purposes. Cancers (Basel) 2020; 12:3674. [PMID: 33297508 PMCID: PMC7762343 DOI: 10.3390/cancers12123674] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Intratumoral heterogeneity is considered the major cause of drug unresponsiveness in cancer and accumulating evidence implicates non-mutational resistance mechanisms rather than genetic mutations in its development. These non-mutational processes are largely driven by phenotypic plasticity, which is defined as the ability of a cell to reprogram and change its identity (phenotype switching). Tumor cell plasticity is characterized by the reactivation of developmental programs that are closely correlated with the acquisition of cancer stem cell properties and an enhanced potential for retrodifferentiation or transdifferentiation. A well-studied mechanism of phenotypic plasticity is the epithelial-mesenchymal transition (EMT). Current evidence suggests a complex interplay between EMT, genetic and epigenetic alterations, and clues from the tumor microenvironment in cell reprogramming. A deeper understanding of the connections between stem cell, epithelial-mesenchymal, and tumor-associated reprogramming events is crucial to develop novel therapies that mitigate cell plasticity and minimize the evolution of tumor heterogeneity, and hence drug resistance. Alternatively, vulnerabilities exposed by tumor cells when residing in a plastic or stem-like state may be exploited therapeutically, i.e., by converting them into less aggressive or even postmitotic cells. Tumor cell plasticity thus presents a new paradigm for understanding a cancer's resistance to therapy and deciphering its underlying mechanisms.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Hendrik Ungefroren
- First Department of Medicine, UKSH, Campus Lübeck, 23538 Lübeck, Germany;
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, UKSH, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
57
|
Saxena K, Jolly MK, Balamurugan K. Hypoxia, partial EMT and collective migration: Emerging culprits in metastasis. Transl Oncol 2020; 13:100845. [PMID: 32781367 PMCID: PMC7419667 DOI: 10.1016/j.tranon.2020.100845] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular biological process involved in migration of primary cancer cells to secondary sites facilitating metastasis. Besides, EMT also confers properties such as stemness, drug resistance and immune evasion which can aid a successful colonization at the distant site. EMT is not a binary process; recent evidence suggests that cells in partial EMT or hybrid E/M phenotype(s) can have enhanced stemness and drug resistance as compared to those undergoing a complete EMT. Moreover, partial EMT enables collective migration of cells as clusters of circulating tumor cells or emboli, further endorsing that cells in hybrid E/M phenotypes may be the 'fittest' for metastasis. Here, we review mechanisms and implications of hybrid E/M phenotypes, including their reported association with hypoxia. Hypoxia-driven activation of HIF-1α can drive EMT. In addition, cyclic hypoxia, as compared to acute or chronic hypoxia, shows the highest levels of active HIF-1α and can augment cancer aggressiveness to a greater extent, including enriching for a partial EMT phenotype. We also discuss how metastasis is influenced by hypoxia, partial EMT and collective cell migration, and call for a better understanding of interconnections among these mechanisms. We discuss the known regulators of hypoxia, hybrid EMT and collective cell migration and highlight the gaps which needs to be filled for connecting these three axes which will increase our understanding of dynamics of metastasis and help control it more effectively.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
58
|
Guinn MT, Wan Y, Levovitz S, Yang D, Rosner MR, Balázsi G. Observation and Control of Gene Expression Noise: Barrier Crossing Analogies Between Drug Resistance and Metastasis. Front Genet 2020; 11:586726. [PMID: 33193723 PMCID: PMC7662081 DOI: 10.3389/fgene.2020.586726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Michael Tyler Guinn
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States.,Stony Brook Medical Scientist Training Program, Stony Brook, NY, United States
| | - Yiming Wan
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States
| | - Sarah Levovitz
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States
| | - Dongbo Yang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Marsha R Rosner
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Gábor Balázsi
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
59
|
Establishment of Acquired Cisplatin Resistance in Ovarian Cancer Cell Lines Characterized by Enriched Metastatic Properties with Increased Twist Expression. Int J Mol Sci 2020; 21:ijms21207613. [PMID: 33076245 PMCID: PMC7589258 DOI: 10.3390/ijms21207613] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal of the gynecologic cancers, and platinum-based treatment is a part of the standard first-line chemotherapy regimen. However, rapid development of acquired cisplatin resistance remains the main cause of treatment failure, and the underlying mechanism of resistance in OC treatment remains poorly understood. Faced with this problem, our aim in this study was to generate cisplatin-resistant (CisR) OC cell models in vitro and investigate the role of epithelial–mesenchymal transition (EMT) transcription factor Twist on acquired cisplatin resistance in OC cell models. To achieve this aim, OC cell lines OV-90 and SKOV-3 were exposed to cisplatin using pulse dosing and stepwise dose escalation methods for a duration of eight months, and a total of four CisR sublines were generated, two for each cell line. The acquired cisplatin resistance was confirmed by determination of 50% inhibitory concentration (IC50) and clonogenic survival assay. Furthermore, the CisR cells were studied to assess their respective characteristics of metastasis, EMT phenotype, DNA repair and endoplasmic reticulum stress-mediated cell death. We found the IC50 of CisR cells to cisplatin was 3–5 times higher than parental cells. The expression of Twist and metastatic ability of CisR cells were significantly greater than those of sensitive cells. The CisR cells displayed an EMT phenotype with decreased epithelial cell marker E-cadherin and increased mesenchymal proteins N-cadherin and vimentin. We observed that CisR cells showed significantly higher expression of DNA repair proteins, X-ray repair cross-complementing protein 1 (XRCC1) and poly (ADP-ribose) polymerases 1 (PARP1), with significantly reduced endoplasmic reticulum (ER) stress-mediated cell death. Moreover, Twist knockdown reduced metastatic ability of CisR cells by suppressing EMT, DNA repair and inducing ER stress-induced cell death. In conclusion, we highlighted the utilization of an acquired cisplatin resistance model to identify the potential role of Twist as a therapeutic target to reverse acquired cisplatin resistance in OC.
Collapse
|
60
|
Duddu AS, Sahoo S, Hati S, Jhunjhunwala S, Jolly MK. Multi-stability in cellular differentiation enabled by a network of three mutually repressing master regulators. J R Soc Interface 2020; 17:20200631. [PMID: 32993428 DOI: 10.1098/rsif.2020.0631] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identifying the design principles of complex regulatory networks driving cellular decision-making remains essential to decode embryonic development as well as enhance cellular reprogramming. A well-studied network motif involved in cellular decision-making is a toggle switch-a set of two opposing transcription factors A and B, each of which is a master regulator of a specific cell fate and can inhibit the activity of the other. A toggle switch can lead to two possible states-(high A, low B) and (low A, high B)-and drives the 'either-or' choice between these two cell fates for a common progenitor cell. However, the principles of coupled toggle switches remain unclear. Here, we investigate the dynamics of three master regulators A, B and C inhibiting each other, thus forming three-coupled toggle switches to form a toggle triad. Our simulations show that this toggle triad can lead to co-existence of cells into three differentiated 'single positive' phenotypes-(high A, low B, low C), (low A, high B, low C) and (low A, low B, high C). Moreover, the hybrid or 'double positive' phenotypes-(high A, high B, low C), (low A, high B, high C) and (high A, low B, high C)-can coexist together with 'single positive' phenotypes. Including self-activation loops on A, B and C can increase the frequency of 'double positive' states. Finally, we apply our results to understand cellular decision-making in terms of differentiation of naive CD4+ T cells into Th1, Th2 and Th17 states, where hybrid Th1/Th2 and hybrid Th1/Th17 cells have been reported in addition to the Th1, Th2 and Th17 ones. Our results offer novel insights into the design principles of a multi-stable network topology and provide a framework for synthetic biology to design tristable systems.
Collapse
Affiliation(s)
- Atchuta Srinivas Duddu
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.,UG Programme, Indian Institute of Science, Bangalore, India
| | - Souvadra Hati
- UG Programme, Indian Institute of Science, Bangalore, India
| | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
61
|
Fagotto F, Aslemarz A. EpCAM cellular functions in adhesion and migration, and potential impact on invasion: A critical review. Biochim Biophys Acta Rev Cancer 2020; 1874:188436. [PMID: 32976980 DOI: 10.1016/j.bbcan.2020.188436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022]
Abstract
EpCAM has long been known as a cell surface protein highly expressed in carcinomas. It has since become one of the key cancer biomarkers. Despite its high fame, its actual role in cancer development is still controversial. Beyond a flurry of correlative studies, which point either to a positive or a negative link with tumour progression, there has been surprisingly few studies on the actual cellular mechanisms of EpCAM and on their functional consequences. Clearly, EpCAM plays multiple important roles, in cell proliferation as well as in cell adhesion and migration. The two latter functions, directly relevant for metastasis, are the focus of this review. We attempt here to bring together the available experimental data to build a global coherent view of EpCAM functions. We also include in this overview EpCAM2/Trop2, the close relative of EpCAM. At the core of EpCAM (and EpCAM2/Trop2) function stands the ability to repress contractility of the actomyosin cell cortex. This activity appears to involve direct inhibition by EpCAM of members of the novel PKC family and of a specific downstream PKD-Erk cascade. We will discuss how this activity can result in a variety of adhesive and migratory phenotypes, thus potentially explaining at least part of the apparent inconsistencies between different studies. The picture remains fragmented, and we will highlight some of the conflicting evidence and the many unsolved issues, starting with the controversy around its original description as a cell-cell adhesion molecule.
Collapse
Affiliation(s)
- François Fagotto
- CRBM, University of Montpellier and CNRS, Montpellier 34293, France.
| | - Azam Aslemarz
- CRBM, University of Montpellier and CNRS, Montpellier 34293, France; Department of Biology, McGill University, Montreal, QC H3A1B1, Canada
| |
Collapse
|
62
|
Subbalakshmi AR, Kundnani D, Biswas K, Ghosh A, Hanash SM, Tripathi SC, Jolly MK. NFATc Acts as a Non-Canonical Phenotypic Stability Factor for a Hybrid Epithelial/Mesenchymal Phenotype. Front Oncol 2020; 10:553342. [PMID: 33014880 PMCID: PMC7506140 DOI: 10.3389/fonc.2020.553342] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022] Open
Abstract
Metastasis remains the cause of over 90% of cancer-related deaths. Cells undergoing metastasis use phenotypic plasticity to adapt to their changing environmental conditions and avoid therapy and immune response. Reversible transitions between epithelial and mesenchymal phenotypes – epithelial–mesenchymal transition (EMT) and its reverse mesenchymal–epithelial transition (MET) – form a key axis of phenotypic plasticity during metastasis and therapy resistance. Recent studies have shown that the cells undergoing EMT/MET can attain one or more hybrid epithelial/mesenchymal (E/M) phenotypes, the process of which is termed as partial EMT/MET. Cells in hybrid E/M phenotype(s) can be more aggressive than those in either epithelial or mesenchymal state. Thus, it is crucial to identify the factors and regulatory networks enabling such hybrid E/M phenotypes. Here, employing an integrated computational-experimental approach, we show that the transcription factor nuclear factor of activated T-cell (NFATc) can inhibit the process of complete EMT, thus stabilizing the hybrid E/M phenotype. It increases the range of parameters enabling the existence of a hybrid E/M phenotype, thus behaving as a phenotypic stability factor (PSF). However, unlike previously identified PSFs, it does not increase the mean residence time of the cells in hybrid E/M phenotypes, as shown by stochastic simulations; rather it enables the co-existence of epithelial, mesenchymal and hybrid E/M phenotypes and transitions among them. Clinical data suggests the effect of NFATc on patient survival in a tissue-specific or context-dependent manner. Together, our results indicate that NFATc behaves as a non-canonical PSF for a hybrid E/M phenotype.
Collapse
Affiliation(s)
| | - Deepali Kundnani
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Kuheli Biswas
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Anandamohan Ghosh
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, United States.,Department of Biochemistry, All India Institute of Medical Sciences, Nagpur, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
63
|
Sundararajan V, Pang QY, Choolani M, Huang RYJ. Spotlight on the Granules (Grainyhead-Like Proteins) - From an Evolutionary Conserved Controller of Epithelial Trait to Pioneering the Chromatin Landscape. Front Mol Biosci 2020; 7:213. [PMID: 32974388 PMCID: PMC7471608 DOI: 10.3389/fmolb.2020.00213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Among the transcription factors that are conserved across phylogeny, the grainyhead family holds vital roles in driving the epithelial cell fate. In Drosophila, the function of grainyhead (grh) gene is essential during developmental processes such as epithelial differentiation, tracheal tube formation, maintenance of wing and hair polarity, and epidermal barrier wound repair. Three main mammalian orthologs of grh: Grainyhead-like 1-3 (GRHL1, GRHL2, and GRHL3) are highly conserved in terms of their gene structures and functions. GRHL proteins are essentially associated with the development and maintenance of the epithelial phenotype across diverse physiological conditions such as epidermal differentiation and craniofacial development as well as pathological functions including hearing impairment and neural tube defects. More importantly, through direct chromatin binding and induction of epigenetic alterations, GRHL factors function as potent suppressors of oncogenic cellular dedifferentiation program - epithelial-mesenchymal transition and its associated tumor-promoting phenotypes such as tumor cell migration and invasion. On the contrary, GRHL factors also induce pro-tumorigenic effects such as increased migration and anchorage-independent growth in certain tumor types. Furthermore, investigations focusing on the epithelial-specific activation of grh and GRHL factors have revealed that these factors potentially act as a pioneer factor in establishing a cell-type/cell-state specific accessible chromatin landscape that is exclusive for epithelial gene transcription. In this review, we highlight the essential roles of grh and GRHL factors during embryogenesis and pathogenesis, with a special focus on its emerging pioneering function.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Center for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Qing You Pang
- Center for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Ruby Yun-Ju Huang
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
64
|
Song XH, Chen XZ, Chen XL, Liu K, Zhang WH, Mo XM, Hu JK. Peritoneal Metastatic Cancer Stem Cells of Gastric Cancer with Partial Mesenchymal-Epithelial Transition and Enhanced Invasiveness in an Intraperitoneal Transplantation Model. Gastroenterol Res Pract 2020; 2020:3256538. [PMID: 32831823 PMCID: PMC7426763 DOI: 10.1155/2020/3256538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES This preliminary study is aimed at enriching and isolating peritoneal metastatic cancer stem cells (pMCSCs) of gastric cancer and assessing their epithelial-mesenchymal transition (EMT) phenotype and invasiveness. METHODS Cancer stem cells of human gastric cancer (CSC-hGC) were previously isolated and transfected with green fluorescent protein and luciferase genes to validate the mouse model of peritoneal metastasis established via transplantation. The first and second generations ([G1] and [G2], respectively) of pMCSCs were isolated from intraperitoneally transplanted CSC-hGC (pMCSC-tGC) by spherical culture. CSC and EMT-related markers and regulators in the two generations of intraperitoneally transplanted tumors were examined by immunohistochemistry, immunofluorescence staining, and quantitative PCR. Cell mobility was examined by a transwell assay. RESULTS The nude mouse model of intraperitoneally transplanted CSC-hGC was successful in establishing sequential formation of peritoneal tumors and enrichment of pMCSCs. CD44 and CD54 were consistently expressed in the two generations of transplanted tumors. In vitro cell (migration) assays and immunocytofluorescence assays showed that in pMCSC-tGC[G2], E-cad, Survivin, and Vimentin expression was stable; α-SMA expression was decreased; and OVOL2, GRHL2, and ZEB1 expression was increased. PCR analysis indicated that in pMCSC-tGC[G2], the mRNA expression of E-cad, α-SMA, MMP9, MMP2, and Vimentin was downregulated, while that of ZEB1, OVOL2, and GRHL2 was upregulated. In vivo tumor (homing) assays and immunohistochemical assays demonstrated that in pMCSC-tGC[G2], E-cad and Snail were upregulated, while α-SMA was downregulated. The numbers of migrated and invaded pMCSC-tGC[G1] and pMCSC-tGC[G2] were significantly higher than those of CSC-hGC in migration and invasion assays. CONCLUSIONS pMCSCs might be a specific subpopulation that can be sequentially enriched by intraperitoneal transplantation. pMCSCs exhibited a tendency towards partial mesenchymal-epithelial transition, enhancing their invasiveness during homing and the formation of peritoneal tumors. However, these preliminary findings require validation in further experiments.
Collapse
Affiliation(s)
- Xiao-Hai Song
- Department of Gastrointestinal Surgery & Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xin-Zu Chen
- Department of Gastrointestinal Surgery & Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of Gastrointestinal Surgery & Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of Gastrointestinal Surgery & Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of Gastrointestinal Surgery & Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xian-Ming Mo
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Kun Hu
- Department of Gastrointestinal Surgery & Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
65
|
Elie-Caille C, Lascombe I, Péchery A, Bittard H, Fauconnet S. Molecular and nanoscale evaluation of N-cadherin expression in invasive bladder cancer cells under control conditions or GW501516 exposure. Mol Cell Biochem 2020; 471:113-127. [PMID: 32519230 PMCID: PMC7370938 DOI: 10.1007/s11010-020-03771-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
N-cadherin is a transmembrane glycoprotein expressed by mesenchymal origin cells and is located at the adherens junctions. It regulates also cell motility and contributes to cell signaling. In previous studies, we identified that its anomalous expression in bladder carcinoma was a tumor progression marker. A pharmacological approach to inhibit N-cadherin expression or to block its function could be relevant to prevent disease progression and metastasis development. The morphological exploration of T24 invasive bladder cancer cells by atomic force microscopy (AFM) revealed a spindle-like shape with fibrous structures. By engaging force spectroscopy with AFM tip functionalized with anti-E or anti-N-cadherin antibodies, results showed that T24 cells expressed only N-cadherin as also demonstrated by Western blotting and confocal microscopy. For the first time, we demonstrated by RTqPCR and Western blotting analyses that the peroxisome proliferator-activated receptor β/δ (PPARβ/δ) agonist GW501516 significantly decreased N-cadherin expression in T24 cells. Moreover, high non-cytotoxic doses of GW501516 inhibited confluent T24 cell wound healing closure. By using AFM, a more sensitive nanoanalytical method, we showed that the treatment modified the cellular morphology and diminished N-cadherin cell surface coverage through the decreasing of these adhesion molecule-mediated interaction forces. We observed a greater decrease of N-cadherin upon GW501516 exposure with AFM than that detected with molecular biology techniques. AFM was a complementary tool to biochemical techniques to perform measurements on living cells at the nanometer resolution level. Taken together, our data suggest that GW501516 could be an interesting therapeutic strategy to avoid bladder cancer cell spreading through N-cadherin decrease.
Collapse
Affiliation(s)
- Céline Elie-Caille
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, ENSMM, UTBM, Besançon, France.
| | - Isabelle Lascombe
- Univ. Bourgogne Franche-Comté, EA3181, LabEx LipSTIC ANR-11-LABX-0021, 25030, Besançon, France
| | - Adeline Péchery
- Univ. Bourgogne Franche-Comté, EA3181, LabEx LipSTIC ANR-11-LABX-0021, 25030, Besançon, France
| | - Hugues Bittard
- Service Urologie et Andrologie, CHU Besançon, 25000, Besançon, France
| | - Sylvie Fauconnet
- Univ. Bourgogne Franche-Comté, EA3181, LabEx LipSTIC ANR-11-LABX-0021, 25030, Besançon, France.
- Service Urologie et Andrologie, CHU Besançon, 25000, Besançon, France.
| |
Collapse
|
66
|
Sterneck E, Poria DK, Balamurugan K. Slug and E-Cadherin: Stealth Accomplices? Front Mol Biosci 2020; 7:138. [PMID: 32760736 PMCID: PMC7371942 DOI: 10.3389/fmolb.2020.00138] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
During physiological epithelial-mesenchymal transition (EMT), which is important for embryogenesis and wound healing, epithelial cells activate a program to remodel their structure and achieve a mesenchymal fate. In cancer cells, EMT confers increased invasiveness and tumor-initiating capacity, which contribute to metastasis and resistance to therapeutics. However, cellular plasticity that navigates between epithelial and mesenchymal states and maintenance of a hybrid or partial E/M phenotype appears to be even more important for cancer progression. Besides other core EMT transcription factors, the well-characterized Snail-family proteins Snail (SNAI1) and Slug (SNAI2) play important roles in both physiological and pathological EMT. Often mentioned in unison, they do, however, differ in their functions in many scenarios. Indeed, Slug expression does not always correlate with complete EMT or loss of E-cadherin (CDH1). For example, Slug plays important roles in mammary epithelial cell progenitor cell lineage commitment and differentiation, DNA damage responses, hematopoietic stem cell self-renewal, and in pathologies such as pulmonary fibrosis and atherosclerosis. In this Perspective, we highlight Slug functions in mammary epithelial cells and breast cancer as a “non-EMT factor” in basal epithelial cells and stem cells with focus reports that demonstrate co-expression of Slug and E-cadherin. We speculate that Slug and E-cadherin may cooperate in normal mammary gland and breast cancer/stem cells and advocate for functional assessment of such Slug+/E-cadherinlow/+ (SNAI2+/CDH1low/+) “basal-like epithelial” cells. Thus, Slug may be regarded as less of an EMT factor than driver of the basal epithelial cell phenotype.
Collapse
Affiliation(s)
- Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Dipak K Poria
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
67
|
Jia W, Tripathi S, Chakraborty P, Chedere A, Rangarajan A, Levine H, Jolly MK. Epigenetic feedback and stochastic partitioning during cell division can drive resistance to EMT. Oncotarget 2020; 11:2611-2624. [PMID: 32676163 PMCID: PMC7343638 DOI: 10.18632/oncotarget.27651] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition (MET) are central to metastatic aggressiveness and therapy resistance in solid tumors. While molecular determinants of both processes have been extensively characterized, the heterogeneity in the response of tumor cells to EMT and MET inducers has come into focus recently, and has been implicated in the failure of anti-cancer therapies. Recent experimental studies have shown that some cells can undergo an irreversible EMT depending on the duration of exposure to EMT-inducing signals. While the irreversibility of MET, or equivalently, resistance to EMT, has not been studied in as much detail, evidence supporting such behavior is slowly emerging. Here, we identify two possible mechanisms that can underlie resistance of cells to undergo EMT: epigenetic feedback in ZEB1/GRHL2 feedback loop and stochastic partitioning of biomolecules during cell division. Identifying the ZEB1/GRHL2 axis as a key determinant of epithelial-mesenchymal plasticity across many cancer types, we use mechanistic mathematical models to show how GRHL2 can be involved in both the abovementioned processes, thus driving an irreversible MET. Our study highlights how an isogenic population may contain subpopulation with varying degrees of susceptibility or resistance to EMT, and proposes a next set of questions for detailed experimental studies characterizing the irreversibility of MET/resistance to EMT.
Collapse
Affiliation(s)
- Wen Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Shubham Tripathi
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Adithya Chedere
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Annapoorni Rangarajan
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
68
|
Identifying inhibitors of epithelial-mesenchymal plasticity using a network topology-based approach. NPJ Syst Biol Appl 2020; 6:15. [PMID: 32424264 PMCID: PMC7235229 DOI: 10.1038/s41540-020-0132-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the cause of over 90% of cancer-related deaths. Cancer cells undergoing metastasis can switch dynamically between different phenotypes, enabling them to adapt to harsh challenges, such as overcoming anoikis and evading immune response. This ability, known as phenotypic plasticity, is crucial for the survival of cancer cells during metastasis, as well as acquiring therapy resistance. Various biochemical networks have been identified to contribute to phenotypic plasticity, but how plasticity emerges from the dynamics of these networks remains elusive. Here, we investigated the dynamics of various regulatory networks implicated in Epithelial–mesenchymal plasticity (EMP)—an important arm of phenotypic plasticity—through two different mathematical modelling frameworks: a discrete, parameter-independent framework (Boolean) and a continuous, parameter-agnostic modelling framework (RACIPE). Results from either framework in terms of phenotypic distributions obtained from a given EMP network are qualitatively similar and suggest that these networks are multi-stable and can give rise to phenotypic plasticity. Neither method requires specific kinetic parameters, thus our results emphasize that EMP can emerge through these networks over a wide range of parameter sets, elucidating the importance of network topology in enabling phenotypic plasticity. Furthermore, we show that the ability to exhibit phenotypic plasticity correlates positively with the number of positive feedback loops in a given network. These results pave a way toward an unorthodox network topology-based approach to identify crucial links in a given EMP network that can reduce phenotypic plasticity and possibly inhibit metastasis—by reducing the number of positive feedback loops.
Collapse
|
69
|
Thankamony AP, Saxena K, Murali R, Jolly MK, Nair R. Cancer Stem Cell Plasticity - A Deadly Deal. Front Mol Biosci 2020; 7:79. [PMID: 32426371 PMCID: PMC7203492 DOI: 10.3389/fmolb.2020.00079] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Intratumoral heterogeneity is a major ongoing challenge in the effective therapeutic targeting of cancer. Accumulating evidence suggests that a fraction of cells within a tumor termed Cancer Stem Cells (CSCs) are primarily responsible for this diversity resulting in therapeutic resistance and metastasis. Adding to this complexity, recent studies have shown that there can be different subpopulations of CSCs with varying biochemical and biophysical traits resulting in varied dissemination and drug-resistance potential. Moreover, cancer cells can exhibit a high level of plasticity or the ability to dynamically switch between CSC and non-CSC states or among different subsets of CSCs. In addition, CSCs also display extensive metabolic plasticity. The molecular mechanisms underlying these different interconnected axes of plasticity has been under extensive investigation and the trans-differentiation process of Epithelial to Mesenchymal transition (EMT) has been identified as a major contributing factor. Besides genetic and epigenetic factors, CSC plasticity is also shaped by non-cell-autonomous effects such as the tumor microenvironment (TME). In this review, we discuss the latest developments in decoding mechanisms and implications of CSC plasticity in tumor progression at biochemical and biophysical levels, and the latest in silico approaches being taken for characterizing cancer cell plasticity. These efforts can help improve existing therapeutic approaches by taking into consideration the contribution of cellular plasticity/heterogeneity in enabling drug resistance.
Collapse
Affiliation(s)
- Archana P. Thankamony
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Reshma Murali
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Radhika Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
70
|
Cognart HA, Viovy JL, Villard C. Fluid shear stress coupled with narrow constrictions induce cell type-dependent morphological and molecular changes in SK-BR-3 and MDA-MB-231 cells. Sci Rep 2020; 10:6386. [PMID: 32286431 PMCID: PMC7156718 DOI: 10.1038/s41598-020-63316-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/26/2020] [Indexed: 12/31/2022] Open
Abstract
Cancer mortality mainly arises from metastases, due to cells that escape from a primary tumor, circulate in the blood as circulating tumor cells (CTCs), permeate across blood vessels and nest in distant organs. It is still unclear how CTCs overcome the harsh conditions of fluid shear stress and mechanical constraints within the microcirculation. Here, a minimal model of the blood microcirculation was established through the fabrication of microfluidic channels comprising constrictions. Metastatic breast cancer cells of epithelial-like and mesenchymal-like phenotypes were flowed into the microfluidic device. These cells were visualized during circulation and analyzed for their dynamical behavior, revealing long-lived plastic deformations and significant differences in biomechanics between cell types. γ-H2AX staining of cells retrieved post-circulation showed significant increase of DNA damage response in epithelial-like SK-BR-3 cells, while gene expression analysis of key regulators of epithelial-to-mesenchymal transition revealed significant changes upon circulation. This work thus documents first results of the changes at the cellular, subcellular and molecular scales induced by the two main mechanical stimuli arising from circulatory conditions, and suggest a significant role of this still elusive step of the metastatic cascade in cancer cells heterogeneity and aggressiveness.
Collapse
Affiliation(s)
- Hamizah Ahmad Cognart
- Institut Curie and Institut Pierre Gilles de Gennes, CNRS, UMR168, Paris, France.,Université PSL, Paris, France
| | - Jean-Louis Viovy
- Institut Curie and Institut Pierre Gilles de Gennes, CNRS, UMR168, Paris, France.,Université PSL, Paris, France
| | - Catherine Villard
- Institut Curie and Institut Pierre Gilles de Gennes, CNRS, UMR168, Paris, France. .,Université PSL, Paris, France.
| |
Collapse
|
71
|
Wang Y, Sun L, Qiu W, Qi W, Qi Y, Liu Z, Liu S, Lv J. Inhibiting Forkhead box K1 induces autophagy to reverse epithelial-mesenchymal transition and metastasis in gastric cancer by regulating Myc-associated zinc finger protein in an acidic microenvironment. Aging (Albany NY) 2020; 12:6129-6150. [PMID: 32268297 PMCID: PMC7185099 DOI: 10.18632/aging.103013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Background: Forkhead box K1 (FOXK1) is a transcription factor belonging to the Forkhead box (FOX) family and is closely related to the development of various cancers, but the functional mechanism through which FOXK1 regulates autophagy and epithelial-mesenchymal transition (EMT) in the acidic microenvironment of gastric cancer (GC) remains unclear. Results: Our results indicated that the inhibition of FOXK1 induced autophagy and thus exerted antimetastatic effects in an acidic microenvironment. The dual inhibition of mammalian target of rapamycin (mTOR) and FOXK1 enhanced autophagy and reversed EMT of acidic GC cells. In addition, FOXK1 activated transcription in conjunction with the MAZ promoter. Conclusion: Together, our results suggest that FOXK1 can be used as an independent prognostic indicator for GC patients. We also revealed a new strategy involving the cotargeting of FOXK1 and autophagy to reverse the effects of EMT. MAZ is involved in the development and progression of GC as a downstream target of FOXK1. Methods: Here, the cellular responses to the inhibition of FOXK1 in GC were studied in vivo and in vitro through wound healing assays, transwell assays, Western blotting, laser confocal microscopy and transmission electron microscopy. The molecular mechanisms of FOXK1 and Myc-associated zinc finger protein (MAZ) were studied via chromatin immunoprecipitation sequencing (ChIP-seq), bioinformatics, Western blotting, and quantitative real-time PCR (q-PCR).
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Libin Sun
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Wensheng Qiu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Weiwei Qi
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Yaoyue Qi
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Zhao Liu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Shihai Liu
- Central Laboratory, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Jing Lv
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| |
Collapse
|
72
|
A Novel Approach for Quantifying Cancer Cells Showing Hybrid Epithelial/Mesenchymal States in Large Series of Tissue Samples: Towards a New Prognostic Marker. Cancers (Basel) 2020; 12:cancers12040906. [PMID: 32276404 PMCID: PMC7226581 DOI: 10.3390/cancers12040906] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 12/19/2022] Open
Abstract
In cancer biology, epithelial-to-mesenchymal transition (EMT) is associated with tumorigenesis, stemness, invasion, metastasis, and resistance to therapy. Evidence of co-expression of epithelial and mesenchymal markers suggests that EMT should be a stepwise process with distinct intermediate states rather than a binary switch. In the present study, we propose a morphological approach that enables the detection and quantification of cancer cells with hybrid E/M states, i.e., which combine partially epithelial (E) and partially mesenchymal (M) states. This approach is based on a sequential immunohistochemistry technique performed on the same tissue section, the digitization of whole slides, and image processing. The aim is to extract quantitative indicators able to quantify the presence of hybrid E/M states in large series of human cancer samples and to analyze their relationship with cancer aggressiveness. As a proof of concept, we applied our methodology to a series of about a hundred urothelial carcinomas and demonstrated that the presence of cancer cells with hybrid E/M phenotypes at the time of diagnosis is strongly associated with a poor prognostic value, independently of standard clinicopathological features. Although validation on a larger case series and other cancer types is required, our data support the hybrid E/M score as a promising prognostic biomarker for carcinoma patients.
Collapse
|
73
|
Castro-Giner F, Aceto N. Tracking cancer progression: from circulating tumor cells to metastasis. Genome Med 2020; 12:31. [PMID: 32192534 PMCID: PMC7082968 DOI: 10.1186/s13073-020-00728-3] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/09/2020] [Indexed: 02/08/2023] Open
Abstract
The analysis of circulating tumor cells (CTCs) is an outstanding tool to provide insights into the biology of metastatic cancers, to monitor disease progression and with potential for use in liquid biopsy-based personalized cancer treatment. These goals are ambitious, yet recent studies are already allowing a sharper understanding of the strengths, challenges, and opportunities provided by liquid biopsy approaches. For instance, through single-cell-resolution genomics and transcriptomics, it is becoming increasingly clear that CTCs are heterogeneous at multiple levels and that only a fraction of them is capable of initiating metastasis. It also appears that CTCs adopt multiple ways to enhance their metastatic potential, including homotypic clustering and heterotypic interactions with immune and stromal cells. On the clinical side, both CTC enumeration and molecular analysis may provide new means to monitor cancer progression and to take individualized treatment decisions, but their use for early cancer detection appears to be challenging compared to that of other tumor derivatives such as circulating tumor DNA. In this review, we summarize current data on CTC biology and CTC-based clinical applications that are likely to impact our understanding of the metastatic process and to influence the clinical management of patients with metastatic cancer, including new prospects that may favor the implementation of precision medicine.
Collapse
Affiliation(s)
- Francesc Castro-Giner
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, 4058, Basel, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, 4058, Basel, Switzerland.
| |
Collapse
|
74
|
Baykal-Köse S, Acikgoz E, Yavuz AS, Gönül Geyik Ö, Ateş H, Sezerman OU, Özsan GH, Yüce Z. Adaptive phenotypic modulations lead to therapy resistance in chronic myeloid leukemia cells. PLoS One 2020; 15:e0229104. [PMID: 32106243 PMCID: PMC7046262 DOI: 10.1371/journal.pone.0229104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/29/2020] [Indexed: 01/05/2023] Open
Abstract
Tyrosine kinase inhibitor (TKI) resistance is a major problem in chronic myeloid leukemia (CML). We generated a TKI-resistant K562 sub-population, K562-IR, under selective imatinib-mesylate pressure. K562-IR cells are CD34-/CD38-, BCR-Abl-independent, proliferate slowly, highly adherent and form intact tumor spheroids. Loss of CD45 and other hematopoietic markers reveal these cells have diverged from their hematopoietic origin. CD34 negativity, high expression of E-cadherin and CD44; decreased levels of CD45 and β-catenin do not fully confer with the leukemic stem cell (LSC) phenotype. Expression analyses reveal that K562-IR cells differentially express tissue/organ development and differentiation genes. Our data suggest that the observed phenotypic shift is an adaptive process rendering cells under TKI stress to become oncogene independent. Cells develop transcriptional instability in search for a gene expression framework suitable for new environmental stresses, resulting in an adaptive phenotypic shift in which some cells partially display LSC-like properties. With leukemic/cancer stem cell targeted therapies underway, the difference between treating an entity and a spectrum of dynamic cellular states will have conclusive effects on the outcome.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Mice
- Mutation/drug effects
- Oligonucleotide Array Sequence Analysis
- Protein Domains/genetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Seda Baykal-Köse
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Ahmet Sinan Yavuz
- Department of Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Öykü Gönül Geyik
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Halil Ateş
- Department of Hematology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Osman Uğur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Güner Hayri Özsan
- Department of Hematology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Zeynep Yüce
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- * E-mail: ,
| |
Collapse
|
75
|
Panchy N, Azeredo-Tseng C, Luo M, Randall N, Hong T. Integrative Transcriptomic Analysis Reveals a Multiphasic Epithelial-Mesenchymal Spectrum in Cancer and Non-tumorigenic Cells. Front Oncol 2020; 9:1479. [PMID: 32038999 PMCID: PMC6987415 DOI: 10.3389/fonc.2019.01479] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), the conversion between rigid epithelial cells and motile mesenchymal cells, is a reversible cellular process involved in tumorigenesis, metastasis, and chemoresistance. Numerous studies have found that several types of tumor cells show a high degree of cell-to-cell heterogeneity in terms of their gene expression signatures and cellular phenotypes related to EMT. Recently, the prevalence and importance of partial or intermediate EMT states have been reported. It is unclear, however, whether there is a general pattern of cancer cell distribution in terms of the overall expression of epithelial-related genes and mesenchymal-related genes, and how this distribution is related to EMT process in normal cells. In this study, we performed integrative transcriptomic analysis that combines cancer cell transcriptomes, time course data of EMT in non-tumorigenic epithelial cells, and epithelial cells with perturbations of key EMT factors. Our statistical analysis shows that cancer cells are widely distributed in the EMT spectrum, and the majority of these cells can be described by an EMT path that connects the epithelial and the mesenchymal states via a hybrid expression region in which both epithelial genes and mesenchymal genes are highly expressed overall. We found that key patterns of this EMT path are observed in EMT progression in non-tumorigenic cells and that transcription factor ZEB1 plays a key role in defining this EMT path via diverse gene regulatory circuits connecting to epithelial genes. We performed Gene Set Variation Analysis to show that the cancer cells at hybrid EMT states also possess hybrid cellular phenotypes with both high migratory and high proliferative potentials. Our results reveal critical patterns of cancer cells in the EMT spectrum and their relationship to the EMT process in normal cells, and provide insights into the mechanistic basis of cancer cell heterogeneity and plasticity.
Collapse
Affiliation(s)
- Nicholas Panchy
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- National Institute for Mathematical and Biological Synthesis, Knoxville, TN, United States
| | - Cassandra Azeredo-Tseng
- Department of Biochemistry, New College of Florida, Sarasota, FL, United States
- Department of Applied Mathematics, New College of Florida, Sarasota, FL, United States
| | - Michael Luo
- Department of Mathematics & Statistics, The College of New Jersey, Ewing Township, NJ, United States
| | - Natalie Randall
- Department of Mathematics and Computer Science, Austin College, Sherman, TX, United States
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- National Institute for Mathematical and Biological Synthesis, Knoxville, TN, United States
| |
Collapse
|
76
|
Epithelial-Mesenchymal Plasticity in Circulating Tumor Cells, the Precursors of Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:11-34. [PMID: 32304077 DOI: 10.1007/978-3-030-35805-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells offer an unprecedented window into the metastatic cascade, and to some extent can be considered as intermediates in the process of metastasis. They exhibit dynamic oscillations in epithelial to mesenchymal plasticity and provide important opportunities for prognosis, therapy response monitoring, and targeting of metastatic disease. In this manuscript, we review the involvement of epithelial-mesenchymal plasticity in the early steps of metastasis and what we have learned about its contribution to genomic instability and genetic diversity, tumor progression and therapeutic responses using cell culture, mouse models and circulating tumor cells enriched from patients.
Collapse
|
77
|
Anticipating critical transitions in epithelial-hybrid-mesenchymal cell-fate determination. Proc Natl Acad Sci U S A 2019; 116:26343-26352. [PMID: 31843939 DOI: 10.1073/pnas.1913773116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the vicinity of a tipping point, critical transitions occur when small changes in an input condition cause sudden, large, and often irreversible changes in the state of a system. Many natural systems ranging from ecosystems to molecular biosystems are known to exhibit critical transitions in their response to stochastic perturbations. In diseases, an early prediction of upcoming critical transitions from a healthy to a disease state by using early-warning signals is of prime interest due to potential application in forecasting disease onset. Here, we analyze cell-fate transitions between different phenotypes (epithelial, hybrid-epithelial/mesenchymal [E/M], and mesenchymal states) that are implicated in cancer metastasis and chemoresistance. These transitions are mediated by a mutually inhibitory feedback loop-microRNA-200/ZEB-driven by the levels of transcription factor SNAIL. We find that the proximity to tipping points enabling these transitions among different phenotypes can be captured by critical slowing down-based early-warning signals, calculated from the trajectory of ZEB messenger RNA level. Further, the basin stability analysis reveals the unexpectedly large basin of attraction for a hybrid-E/M phenotype. Finally, we identified mechanisms that can potentially elude the transition to a hybrid-E/M phenotype. Overall, our results unravel the early-warning signals that can be used to anticipate upcoming epithelial-hybrid-mesenchymal transitions. With the emerging evidence about the hybrid-E/M phenotype being a key driver of metastasis, drug resistance, and tumor relapse, our results suggest ways to potentially evade these transitions, reducing the fitness of cancer cells and restricting tumor aggressiveness.
Collapse
|
78
|
Yousefi M, Ghaffari P, Nosrati R, Dehghani S, Salmaninejad A, Abarghan YJ, Ghaffari SH. Prognostic and therapeutic significance of circulating tumor cells in patients with lung cancer. Cell Oncol (Dordr) 2019; 43:31-49. [PMID: 31828552 DOI: 10.1007/s13402-019-00470-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Lung cancer is the second most common cancer and the main cause of cancer-related mortality worldwide. In spite of various efforts that have been made to facilitate the early diagnosis of lung cancer, most patients are diagnosed when the disease is already in stage IV, which is generally associated with the occurrence of distant metastases and a poor survival. Moreover, a large proportion of these patients will relapse after treatment, heralding the need for the stratification of lung cancer patients in addition to identifying those who are at a higher risk of relapse and, thus, require alternative and/or additional therapies. Recently, circulating tumor cells (CTCs) have been considered as valuable markers for the early diagnosis, prognosis and risk stratification of cancer patients, and they have been found to be able to predict the survival of patients with various types of cancer, including lung cancer. Additionally, the characterization of CTCs has recently provided fascinating insights into the heterogeneity of tumors, which may be instrumental for the development of novel targeted therapies. CONCLUSIONS Here we review our current understanding of the significance of CTCs in lung cancer metastasis. We also discuss prominent studies reporting the utility of enumeration and characterization of CTCs in lung cancer patients as prognostic and pharmacodynamic biomarkers for those who are at a higher risk of metastasis and drug resistance.
Collapse
Affiliation(s)
- Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parisa Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Jafari Abarghan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
79
|
The CTLH Complex in Cancer Cell Plasticity. JOURNAL OF ONCOLOGY 2019; 2019:4216750. [PMID: 31885576 PMCID: PMC6907057 DOI: 10.1155/2019/4216750] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Cancer cell plasticity is the ability of cancer cells to intermittently morph into different fittest phenotypic states. Due to the intrinsic capacity to change their composition and interactions, protein macromolecular complexes are the ideal instruments for transient transformation. This review focuses on a poorly studied mammalian macromolecular complex called the CTLH (carboxy-terminal to LisH) complex. Currently, this macrostructure includes 11 known members (ARMC8, GID4, GID8, MAEA, MKLN1, RMND5A, RMND5B, RANBP9, RANBP10, WDR26, and YPEL5) and it has been shown to have E3-ligase enzymatic activity. CTLH proteins have been linked to all fundamental biological processes including proliferation, survival, programmed cell death, cell adhesion, and migration. At molecular level, the complex seems to interact and intertwine with key signaling pathways such as the PI3-kinase, WNT, TGFβ, and NFκB, which are key to cancer cell plasticity. As a whole, the CTLH complex is overexpressed in the most prevalent types of cancer and may hold the key to unlock many of the biological secrets that allow cancer cells to thrive in harsh conditions and resist antineoplastic therapy.
Collapse
|
80
|
D'Oronzo S, Lovero D, Palmirotta R, Stucci LS, Tucci M, Felici C, Cascardi E, Giardina C, Cafforio P, Silvestris F. Dissection of major cancer gene variants in subsets of circulating tumor cells in advanced breast cancer. Sci Rep 2019; 9:17276. [PMID: 31754145 PMCID: PMC6872745 DOI: 10.1038/s41598-019-53660-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Enumeration of circulating tumor cells (CTCs) may reflect the metastatic potential of breast cancer (BC). By using the DEPArray, we investigated CTCs with respect to their epithelial-to-mesenchymal transition phenotype and compared their genomic heterogeneity with tissue biopsies. Seventeen stage IV BC patients were enrolled. Pre-enriched CTC suspensions were stained with fluorescent-labeled antibodies to epithelial (E) and mesenchymal (M) markers. CTC samples were processed by DEPArray system and clustered in relation to their markers. DNA from CTCs, as well as from primary tumor samples, was sequenced by next generation sequencing to assess the mutational state of 50 major cancer-related genes. We identified four different CTC subsets that harbored different gene variants. The most heterogenous CTC subsets included the M+/E- phenotype, which, however, expressed only 7 repeatedly mutated genes, while in the M-/E+ subset multiple mutations affected only 2 out of 50 genes. When matching all gene variants among CTC subsets, a small number of mutations was shared by only 4 genes, namely ATM, FGFR3, PIK3CA, and TP53 that, however, were absent in primary tumors. Our results postulate that the detected mutations in all CTC subsets may be considered as genomic markers of metastatic dissemination to be investigated during early stages of BC.
Collapse
Affiliation(s)
- Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
- I.R.C.C.S-Giovanni Paolo II Cancer Institute, 70124, Bari, Italy
| | - Domenica Lovero
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Raffaele Palmirotta
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Luigia Stefania Stucci
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
- I.R.C.C.S-Giovanni Paolo II Cancer Institute, 70124, Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Eliano Cascardi
- Department of Emergency and Organs Transplant, Division of Pathology, University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Carmela Giardina
- Department of Emergency and Organs Transplant, Division of Pathology, University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Paola Cafforio
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy.
| |
Collapse
|
81
|
Epithelial-Mesenchymal Transition-Related MicroRNAs and Their Target Genes in Colorectal Cancerogenesis. J Clin Med 2019; 8:jcm8101603. [PMID: 31623346 PMCID: PMC6832722 DOI: 10.3390/jcm8101603] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs of the miR-200 family have been shown experimentally to regulate epithelial-mesenchymal transition (EMT). Although EMT is the postulated mechanism of development and progression of colorectal cancer (CRC), there are still limited and controversial data on expression of miR-200 family and their target genes during CRC cancerogenesis. Our study included formalin-fixed paraffin-embedded biopsy samples of 40 patients (10 adenomas and 30 cases of CRC with corresponding normal mucosa). Expression of miR-141, miR-200a/b/c and miR-429 and their target genes (CDKN1B, ONECUT2, PTPN13, RND3, SOX2, TGFB2 and ZEB2) was analysed using quantitative real-time PCR. Expression of E-cadherin was analysed using immunohistochemistry. All miRNAs were down-regulated and their target genes showed the opposite expression in CRC compared to adenoma. Down-regulation of the miR-200 family at the invasive front in comparison to the central part of tumour was observed as well as a correlation of expression of miR-200b, CDKN1B, ONECUT2 and ZEB2 expression to nodal metastases. Expression of the miR-200 family and SOX2 also correlated with E-cadherin staining. These results suggest that the miR-200 family and their target genes contribute to progression of adenoma to CRC, invasive properties and development of metastases. Our results strongly support the postulated hypotheses of partial EMT and intra-tumour heterogeneity during CRC cancerogenesis.
Collapse
|
82
|
Jolly MK, Celià-Terrassa T. Dynamics of Phenotypic Heterogeneity Associated with EMT and Stemness during Cancer Progression. J Clin Med 2019; 8:E1542. [PMID: 31557977 PMCID: PMC6832750 DOI: 10.3390/jcm8101542] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and phenotypic heterogeneity contribute to the generation of diverse tumor cell populations, thus enhancing cancer aggressiveness and therapy resistance. Compared to genetic heterogeneity, a consequence of mutational events, phenotypic heterogeneity arises from dynamic, reversible cell state transitions in response to varying intracellular/extracellular signals. Such phenotypic plasticity enables rapid adaptive responses to various stressful conditions and can have a strong impact on cancer progression. Herein, we have reviewed relevant literature on mechanisms associated with dynamic phenotypic changes and cellular plasticity, such as epithelial-mesenchymal transition (EMT) and cancer stemness, which have been reported to facilitate cancer metastasis. We also discuss how non-cell-autonomous mechanisms such as cell-cell communication can lead to an emergent population-level response in tumors. The molecular mechanisms underlying the complexity of tumor systems are crucial for comprehending cancer progression, and may provide new avenues for designing therapeutic strategies.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.
| |
Collapse
|
83
|
EpCAM low Circulating Tumor Cells: Gold in the Waste. DISEASE MARKERS 2019; 2019:1718920. [PMID: 31636732 PMCID: PMC6766153 DOI: 10.1155/2019/1718920] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
The CellSearch® system which is still considered the gold standard for the enumeration of circulating tumor cells (CTC) utilizes antibodies against the epithelial cell adhesion molecule (EpCAM) for CTC enrichment. Recently, CTC discarded by the CellSearch® system due to their low EpCAM expression have been isolated and analyzed. We here sought to discuss technical and biological issues concerning the isolation and characterization of EpCAMlow CTC, highlighting the enormous potential of this subpopulation discarded by CellSearch®, which might instead reveal an unexpected clinical significance in tumor types where CTC enumeration has never been validated for prognostic and predictive purpose.
Collapse
|
84
|
Bocci F, Kumar Jolly M, Onuchic JN. A Biophysical Model Uncovers the Size Distribution of Migrating Cell Clusters across Cancer Types. Cancer Res 2019; 79:5527-5535. [DOI: 10.1158/0008-5472.can-19-1726] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/02/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
|
85
|
Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res 2019; 21:98. [PMID: 31462307 PMCID: PMC6714238 DOI: 10.1186/s13058-019-1182-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) represent a temporal "snapshot" of a patient's cancer and changes that occur during disease evolution. There is an extensive literature studying CTCs in breast cancer patients, and particularly in those with metastatic disease. In parallel, there is an increasing use of patient-derived models in preclinical investigations of human cancers. Yet studies are still limited demonstrating CTC shedding and metastasis formation in patient-derived models of breast cancer. METHODS We used seven patient-derived orthotopic xenograft (PDOX) models generated from triple-negative breast cancer (TNBC) patients to study CTCs and distant metastases. Tumor fragments from PDOX tissue from each of the seven models were implanted into 57 NOD scid gamma (NSG) mice, and tumor growth and volume were monitored. Human CTC capture from mouse blood was first optimized on the marker-agnostic Vortex CTC isolation platform, and whole blood was processed from 37 PDOX tumor-bearing mice. RESULTS Staining and imaging revealed the presence of CTCs in 32/37 (86%). The total number of CTCs varied between different PDOX tumor models and between individual mice bearing the same PDOX tumors. CTCs were heterogeneous and showed cytokeratin (CK) positive, vimentin (VIM) positive, and mixed CK/VIM phenotypes. Metastases were detected in the lung (20/57, 35%), liver (7/57, 12%), and brain (1/57, less than 2%). The seven different PDOX tumor models displayed varying degrees of metastatic potential, including one TNBC PDOX tumor model that failed to generate any detectable metastases (0/8 mice) despite having CTCs present in the blood of 5/5 tested, suggesting that CTCs from this particular PDOX tumor model may typify metastatic inefficiency. CONCLUSION PDOX tumor models that shed CTCs and develop distant metastases represent an important tool for investigating TNBC.
Collapse
|
86
|
CTCs 2020: Great Expectations or Unreasonable Dreams. Cells 2019; 8:cells8090989. [PMID: 31461978 PMCID: PMC6769853 DOI: 10.3390/cells8090989] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Circulating tumor cells (CTCs) are cellular elements that can be scattered into the bloodstream from primary cancer, metastasis, and even from a disseminated tumor cell (DTC) reservoir. CTCs are “seeds”, able to give rise to new metastatic lesions. Since metastases are the cause of about 90% of cancer-related deaths, the significance of CTCs is unquestionable. However, two major issues have stalled their full clinical exploitation: rarity and heterogeneity. Therefore, their full clinical potential has only been predicted. Finding new ways of studying and using such tremendously rare and important events can open new areas of research in the field of cancer research, and could drastically improve tumor companion diagnostics, personalized treatment strategies, overall patients management, and reduce healthcare costs.
Collapse
|
87
|
Saxena K, Subbalakshmi AR, Jolly MK. Phenotypic heterogeneity in circulating tumor cells and its prognostic value in metastasis and overall survival. EBioMedicine 2019; 46:4-5. [PMID: 31399383 PMCID: PMC6712058 DOI: 10.1016/j.ebiom.2019.07.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | | | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
88
|
Uncoupling Traditional Functionalities of Metastasis: The Parting of Ways with Real-Time Assays. J Clin Med 2019; 8:jcm8070941. [PMID: 31261795 PMCID: PMC6678138 DOI: 10.3390/jcm8070941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
The experimental evaluation of metastasis overly focuses on the gain of migratory and invasive properties, while disregarding the contributions of cellular plasticity, extra-cellular matrix heterogeneity, niche interactions, and tissue architecture. Traditional cell-based assays often restrict the inclusion of these processes and warrant the implementation of approaches that provide an enhanced spatiotemporal resolution of the metastatic cascade. Time lapse imaging represents such an underutilized approach in cancer biology, especially in the context of disease progression. The inclusion of time lapse microscopy and microfluidic devices in routine assays has recently discerned several nuances of the metastatic cascade. Our review emphasizes that a complete comprehension of metastasis in view of evolving ideologies necessitates (i) the use of appropriate, context-specific assays and understanding their inherent limitations; (ii) cautious derivation of inferences to avoid erroneous/overestimated clinical extrapolations; (iii) corroboration between multiple assay outputs to gauge metastatic potential; and (iv) the development of protocols with improved in situ implications. We further believe that the adoption of improved quantitative approaches in these assays can generate predictive algorithms that may expedite therapeutic strategies targeting metastasis via the development of disease relevant model systems. Such approaches could potentiate the restructuring of the cancer metastasis paradigm through an emphasis on the development of next-generation real-time assays.
Collapse
|
89
|
Control of Invasion by Epithelial-to-Mesenchymal Transition Programs during Metastasis. J Clin Med 2019; 8:jcm8050646. [PMID: 31083398 PMCID: PMC6572027 DOI: 10.3390/jcm8050646] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/01/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) programs contribute to the acquisition of invasive properties that are essential for metastasis. It is well established that EMT programs alter cell state and promote invasive behavior. This review discusses how rather than following one specific program, EMT states are diverse in their regulation and invasive properties. Analysis across a spectrum of models using a combination of approaches has revealed how unique features of distinct EMT programs dictate whether tumor cells invade as single cells or collectively as cohesive groups of cells. It has also been shown that the mode of collective invasion is determined by the nature of the EMT, with cells in a trailblazer-type EMT state being capable of initiating collective invasion, whereas cells that have undergone an opportunist-type EMT are dependent on extrinsic factors to invade. In addition to altering cell intrinsic properties, EMT programs can influence invasion through non-cell autonomous mechanisms. Analysis of tumor subpopulations has demonstrated how EMT-induced cells can drive the invasion of sibling epithelial populations through paracrine signaling and remodeling of the microenvironment. Importantly, the variation in invasive properties controlled by EMT programs influences the kinetics and location of metastasis.
Collapse
|
90
|
Lozar T, Gersak K, Cemazar M, Kuhar CG, Jesenko T. The biology and clinical potential of circulating tumor cells. Radiol Oncol 2019; 53:131-147. [PMID: 31104002 PMCID: PMC6572494 DOI: 10.2478/raon-2019-0024] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background Tumor cells can shed from the tumor, enter the circulation and travel to distant organs, where they can seed metastases. These cells are called circulating tumor cells (CTCs). The ability of CTCs to populate distant tissues and organs has led us to believe they are the primary cause of cancer metastasis. The biological properties and interaction of CTCs with other cell types during intravasation, circulation in the bloodstream, extravasation and colonization are multifaceted and include changes of CTC phenotypes that are regulated by many signaling molecules, including cytokines and chemokines. Considering a sample is readily accessible by a simple blood draw, monitoring CTC levels in the blood has exceptional implications in oncology field. A method called the liquid biopsy allows the extraction of not only CTC, but also CTC products, such as cell free DNA (cfDNA), cell free RNA (cfRNA), microRNA (miRNA) and exosomes. Conclusions The clinical utility of CTCs and their products is increasing with advances in liquid biopsy technology. Clinical applications of liquid biopsy to detect CTCs and their products are numerous and could be used for screening of the presence of the cancer in the general population, as well as for prognostic and predictive biomarkers in cancer patients. With the development of better CTC isolation technologies and clinical testing in large prospective trials, increasing clinical utility of CTCs can be expected. The understanding of their biology and interactions with other cell types, particularly with those of the immune system and the rise of immunotherapy also hold great promise for novel therapeutic possibilities.
Collapse
Affiliation(s)
- Taja Lozar
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Klara Gersak
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- General Hospital Izola, Izola, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | | | - Tanja Jesenko
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
91
|
Biswas K, Jolly MK, Ghosh A. Stability and mean residence times for hybrid epithelial/mesenchymal phenotype. Phys Biol 2019; 16:025003. [PMID: 30537698 DOI: 10.1088/1478-3975/aaf7b7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cancer metastasis and drug resistance remain unsolved clinical challenges. A phenotypic transition that is often implicated in both these processes is epithelial-mesenchymal transition (EMT) during which epithelial cells weaken their cell-cell adhesion and gain traits of migration and invasion, typical of mesenchymal cells. However, recent studies indicate that apart from these two states, cells can also exist in one or more hybrid E/M state(s), which plays an aggressive role in progression of the disease. Furthermore, computational and experimental studies have identified a variety of phenotypic stability factors (PSFs) that stabilize the hybrid E/M state(s) and can increase disease aggressiveness. In this work, we study EMT regulatory networks, in the presence of different PSFs, as dynamical systems subjected to random fluctuations. The cells thus explore different stable E, M, E/M states in the potential landscape and our aim is to quantify the residence time in each of these states. Our stochastic simulations indicate an universal feature that the mean residence time (MRT) in the hybrid E/M state is enhanced in the presence of PSFs. We demonstrate that the feature is consistent for a variety of PSFs, namely, GRHL2, OVOL, ΔNp63α, miR-145/OCT4, participating in the core EMT regulatory network. Our results reveal potential targets for pushing cells out of a hybrid E/M state and thus halting metastatic progression.
Collapse
Affiliation(s)
- Kuheli Biswas
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | | | | |
Collapse
|
92
|
Deciphering the Dynamics of Epithelial-Mesenchymal Transition and Cancer Stem Cells in Tumor Progression. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-0150-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
93
|
Jia D, George JT, Tripathi SC, Kundnani DL, Lu M, Hanash SM, Onuchic JN, Jolly MK, Levine H. Testing the gene expression classification of the EMT spectrum. Phys Biol 2019; 16:025002. [PMID: 30557866 PMCID: PMC7179477 DOI: 10.1088/1478-3975/aaf8d4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The epithelial-mesenchymal transition (EMT) plays a central role in cancer metastasis and drug resistance-two persistent clinical challenges. Epithelial cells can undergo a partial or full EMT, attaining either a hybrid epithelial/mesenchymal (E/M) or mesenchymal phenotype, respectively. Recent studies have emphasized that hybrid E/M cells may be more aggressive than their mesenchymal counterparts. However, mechanisms driving hybrid E/M phenotypes remain largely elusive. Here, to better characterize the hybrid E/M phenotype (s) and tumor aggressiveness, we integrate two computational methods-(a) RACIPE-to identify the robust gene expression patterns emerging from the dynamics of a given gene regulatory network, and (b) EMT scoring metric-to calculate the probability that a given gene expression profile displays a hybrid E/M phenotype. We apply the EMT scoring metric to RACIPE-generated gene expression data generated from a core EMT regulatory network and classify the gene expression profiles into relevant categories (epithelial, hybrid E/M, mesenchymal). This categorization is broadly consistent with hierarchical clustering readouts of RACIPE-generated gene expression data. We also show how the EMT scoring metric can be used to distinguish between samples composed of exclusively hybrid E/M cells and those containing mixtures of epithelial and mesenchymal subpopulations using the RACIPE-generated gene expression data.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005, United States of America
- These authors contributed equally
| | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Department of Bioengineering, Rice University, Houston, TX 77005, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, United States of America
- These authors contributed equally
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Deepali L Kundnani
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Mingyang Lu
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Current address: Department of Biochemistry, All India Institute of Medical Sciences, Nagpur 440003, India
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Department of Chemistry, Rice University, Houston, TX 77005, United States of America
- Department of Biosciences, Rice University, Houston, TX 77005, United States of America
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Current address: Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Department of Bioengineering, Rice University, Houston, TX 77005, United States of America
- Department of Biosciences, Rice University, Houston, TX 77005, United States of America
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
| |
Collapse
|
94
|
Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci U S A 2019; 116:148-157. [PMID: 30587589 PMCID: PMC6320545 DOI: 10.1073/pnas.1815345116] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) formation are two paramount processes driving tumor progression, therapy resistance, and cancer metastasis. Recent experiments show that cells with varying EMT and CSC phenotypes are spatially segregated in the primary tumor. The underlying mechanisms generating such spatiotemporal dynamics in the tumor microenvironment, however, remain largely unexplored. Here, we show through a mechanism-based dynamical model that the diffusion of EMT-inducing signals such as TGF-β, together with noncell autonomous control of EMT and CSC decision making via the Notch signaling pathway, can explain experimentally observed disparate localization of subsets of CSCs with varying EMT phenotypes in the tumor. Our simulations show that the more mesenchymal CSCs lie at the invasive edge, while the hybrid epithelial/mesenchymal (E/M) CSCs reside in the tumor interior. Further, motivated by the role of Notch-Jagged signaling in mediating EMT and stemness, we investigated the microenvironmental factors that promote Notch-Jagged signaling. We show that many inflammatory cytokines such as IL-6 that can promote Notch-Jagged signaling can (i) stabilize a hybrid E/M phenotype, (ii) increase the likelihood of spatial proximity of hybrid E/M cells, and (iii) expand the fraction of CSCs. To validate the predicted connection between Notch-Jagged signaling and stemness, we knocked down JAG1 in hybrid E/M SUM149 human breast cancer cells in vitro. JAG1 knockdown significantly restricted tumor organoid formation, confirming the key role that Notch-Jagged signaling can play in tumor progression. Together, our integrated computational-experimental framework reveals the underlying principles of spatiotemporal dynamics of EMT and CSCs.
Collapse
|
95
|
Sousa B, Ribeiro AS, Paredes J. Heterogeneity and Plasticity of Breast Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:83-103. [PMID: 31134496 DOI: 10.1007/978-3-030-14366-4_5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last 20 years, the conventional view of breast cancer as a homogeneous collection of highly proliferating malignant cells was totally replaced by a model of increased complexity, which points out that breast carcinomas are tissues composed of multiple populations of transformed cells. A large diversity of host cells and structural components of the extracellular matrix constitute the mammary tumour microenvironment, which supports its growth and progression, where individual cancer cells evolve with cumulative phenotypic and genetic heterogeneity. Moreover, contributing to this heterogeneity, it has been demonstrated that breast cancers can exhibit a hierarchical organization composed of tumour cells displaying divergent lineage biomarkers and where, at the apex of this hierarchy, some neoplastic cells are able to self-renew and to aberrantly differentiate. Breast cancer stem cells (BCSCs), as they were entitled, not only drive tumourigenesis, but also mediate metastasis and contribute to therapy resistance.Recently, adding more complexity to the system, it has been demonstrated that BCSCs maintain high levels of plasticity, being able to change between mesenchymal-like and epithelial-like states in a process regulated by the tumour microenvironment. These stem cell state transitions play a fundamental role in the process of tumour metastasis, as well as in the resistance to putative therapeutic strategies to target these cells. In this chapter, it will be mainly discussed the emerging knowledge regarding the contribution of BCSCs to tumour heterogeneity, their plasticity, and the role that this plasticity can play in the establishment of distant metastasis. A major focus will also be given to potential clinical implications of these discoveries in breast cancer recurrence and to possible BCSC targeted therapeutics by the use of specific biomarkers.
Collapse
Affiliation(s)
- Bárbara Sousa
- Institute of Pathology and Molecular Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Institute of Investigation and Innovation in Health (i3S), Porto, Portugal
| | - Ana Sofia Ribeiro
- Institute of Pathology and Molecular Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Institute of Investigation and Innovation in Health (i3S), Porto, Portugal
| | - Joana Paredes
- Institute of Pathology and Molecular Immunology of the University of Porto (Ipatimup), Porto, Portugal. .,Institute of Investigation and Innovation in Health (i3S), Porto, Portugal. .,Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.
| |
Collapse
|
96
|
Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2018; 194:161-184. [PMID: 30268772 DOI: 10.1016/j.pharmthera.2018.09.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer metastasis and therapy resistance are the major unsolved clinical challenges, and account for nearly all cancer-related deaths. Both metastasis and therapy resistance are fueled by epithelial plasticity, the reversible phenotypic transitions between epithelial and mesenchymal phenotypes, including epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). EMT and MET have been largely considered as binary processes, where cells detach from the primary tumor as individual units with many, if not all, traits of a mesenchymal cell (EMT) and then convert back to being epithelial (MET). However, recent studies have demonstrated that cells can metastasize in ways alternative to traditional EMT paradigm; for example, they can detach as clusters, and/or occupy one or more stable hybrid epithelial/mesenchymal (E/M) phenotypes that can be the end point of a transition. Such hybrid E/M cells can integrate various epithelial and mesenchymal traits and markers, facilitating collective cell migration. Furthermore, these hybrid E/M cells may possess higher tumor-initiation and metastatic potential as compared to cells on either end of the EMT spectrum. Here, we review in silico, in vitro, in vivo and clinical evidence for the existence of one or more hybrid E/M phenotype(s) in multiple carcinomas, and discuss their implications in tumor-initiation, tumor relapse, therapy resistance, and metastasis. Together, these studies drive the emerging notion that cells in a hybrid E/M phenotype may occupy 'metastatic sweet spot' in multiple subtypes of carcinomas, and pathways linked to this (these) hybrid E/M state(s) may be relevant as prognostic biomarkers as well as a promising therapeutic targets.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Jason A Somarelli
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Maya Sheth
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Adrian Biddle
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Andrew J Armstrong
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Sharmila A Bapat
- National Center for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| |
Collapse
|
97
|
Basu S, Cheriyamundath S, Ben-Ze'ev A. Cell-cell adhesion: linking Wnt/β-catenin signaling with partial EMT and stemness traits in tumorigenesis. F1000Res 2018; 7. [PMID: 30271576 PMCID: PMC6144947 DOI: 10.12688/f1000research.15782.1] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2018] [Indexed: 12/18/2022] Open
Abstract
Changes in cell adhesion and motility are considered key elements in determining the development of invasive and metastatic tumors. Co-opting the epithelial-to-mesenchymal transition (EMT) process, which is known to occur during embryonic development, and the associated changes in cell adhesion properties in cancer cells are considered major routes for tumor progression. More recent
in vivo studies in tumor tissues and circulating tumor cell clusters suggest a stepwise EMT process rather than an “all-or-none” transition during tumor progression. In this commentary, we addressed the molecular mechanisms underlying the changes in cell adhesion and motility and adhesion-mediated signaling and their relationships to the partial EMT states and the acquisition of stemness traits by cancer cells.
Collapse
Affiliation(s)
- Sayon Basu
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sanith Cheriyamundath
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avri Ben-Ze'ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|