51
|
Huang YC, Yang ZM, Chen XH, Tan MY, Wang J, Li XQ, Xie HQ, Deng L. Isolation of mesenchymal stem cells from human placental decidua basalis and resistance to hypoxia and serum deprivation. Stem Cell Rev Rep 2009; 5:247-255. [PMID: 19590988 DOI: 10.1007/s12015-009-9069-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 04/16/2009] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) are the most promising seed cells for cell therapy and tissue engineering, which can be isolated from various sources of human adult tissues such as bone marrow and adipose tissue. However, cells from these tissues must be obtained through invasive procedures and sometimes the individual difference is hard to control. Hence, the search continues for an ethically conducive, easily accessible and controllable source of stem cells. We herein report the isolation of a population of stem cells from the human placental decidua basalis (termed as PDB-MSCs), a maternal portion of placenta. PDB-MSCs were further shown to express markers common to MSCs and positive for SSEA-1, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81 and Oct-4. In order to facilitate the further utility in ischemic diseases, we tested the apoptosis of PDB-MSCs in hypoxia and serum deprivation, two components of ischemia in vivo. Taken together, our findings indicate that PDB-MSCs are resistant to hypoxia and serum deprivation, which may relate to Bcl-2.
Collapse
Affiliation(s)
- Yong-Can Huang
- Division of Stem cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 2009; 4:423-33. [PMID: 19438317 DOI: 10.2217/rme.09.12] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The recent isolation of fetal stem cells from several sources either at the early stages of development or during the later trimesters of gestation, sharing similar growth kinetics and expressing pluripotency markers, provides strong support to the notion that these cells may be biologically closer to embryonic stem cells, actually representing intermediates between embryonic stem cells and adult mesenchymal stem cells, regarding proliferation rates and plasticity features, and thus able to confer an advantage over postnatal mesenchymal stem cells derived from conventional adult sources such as bone marrow. This conclusion has been strengthened by the different pattern of growth potential between the two stage-specific types of sources, as assessed by transcriptomic and proteomic analysis. A series of recent studies regarding the numerous novel features of fetal stem cells has reignited our interest in the field of stem-cell biology and in the possibilities for the eventual repair of damaged organs and the generation of in vitro tissues on biomimetic scaffolds for transplantation. These studies, employing elegant approaches and novel technologies, have provided new insights regarding the nature and the potential of fetal stem cells derived from placenta, amniotic fluid, amnion or umbilical cord. In this update, we highlight the major progression that has occurred in fetal stem-cell biology and discuss the most important areas for future investigation in the field of regenerative medicine.
Collapse
Affiliation(s)
- Kalliopi I Pappa
- First Department of Obstetrics & Gynecology, University of Athens School of Medicine, Greece.
| | | |
Collapse
|
53
|
Tamagawa T, Ishiwata I, Sato K, Nakamura Y. Induced in vitro differentiation of pancreatic-like cells from human amnion-derived fibroblast-like cells. Hum Cell 2009; 22:55-63. [PMID: 19624306 DOI: 10.1111/j.1749-0774.2009.00069.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is growing evidence that the human amnion contains various types of stem cells. As amniotic tissue is readily available, it has the potential to be an important source of material for regenerative medicine. In the present study, we evaluated the potential of human amnion-derived fibroblast-like (HADFIL) cells to differentiate into pancreatic islet cells. Two HADFIL cell populations, derived from two different neonates, were analyzed. The expression of pancreatic cell-specific genes was examined before and after in vitro induction of cellular differentiation. We found that Pdx-1, Isl-1, Pax-4, and Pax-6 showed significantly increased expression following the induction of differentiation. In addition, immunostaining demonstrated that insulin, glucagon, and somatostatin were present in HADFIL cells following the induction of differentiation. These results indicate that HADFIL cell populations have the potential to differentiate into pancreatic islet cells. Although further studies are necessary to determine whether such in vitro-differentiated cells can function in vivo as pancreatic islet cells, these amniotic cell populations might be of value in therapeutic applications that require human pancreatic islet cells.
Collapse
|
54
|
Bárcena A, Kapidzic M, Muench MO, Gormley M, Scott MA, Weier JF, Ferlatte C, Fisher SJ. The human placenta is a hematopoietic organ during the embryonic and fetal periods of development. Dev Biol 2009; 327:24-33. [PMID: 19073167 PMCID: PMC2668662 DOI: 10.1016/j.ydbio.2008.11.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 01/23/2023]
Abstract
We studied the potential role of the human placenta as a hematopoietic organ during embryonic and fetal development. Placental samples contained two cell populations-CD34(++)CD45(low) and CD34(+)CD45(low)-that were found in chorionic villi and in the chorioamniotic membrane. CD34(++)CD45(low) cells express many cell surface antigens found on multipotent primitive hematopoietic progenitors and hematopoietic stem cells. CD34(++)CD45(low) cells contained colony-forming units culture (CFU-C) with myeloid and erythroid potential in clonogenic in vitro assays, and they generated CD56(+) natural killer cells and CD19(+)CD20(+)sIgM(+) B cells in polyclonal liquid cultures. CD34(+)CD45(low) cells mostly comprised erythroid- and myeloid-committed progenitors, while CD34(-) cells lacked CFU-C. The placenta-derived precursors were fetal in origin, as demonstrated by FISH using repeat-sequence chromosome-specific probes for X and Y. The number of CD34(++)CD45(low) cells increased with gestational age, but their density (cells per gram of tissue) peaked at 5-8 wk, decreasing more than sevenfold at the onset of the fetal phase (9 wk of gestation). In addition to multipotent progenitors, the placenta contained myeloid- and erythroid-committed progenitors indicative of active in situ hematopoiesis. These data suggest that the human placenta is an important hematopoietic organ, raising the possibility of banking placental hematopoietic stem cells along with cord blood for transplantation.
Collapse
Affiliation(s)
- Alicia Bárcena
- Institute for Regeneration Medicine, Human Embryonic Stem Cell Program, Department of Cell and Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, HSE-1619, San Francisco, California 94143-0512, USA.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Chen CP, Liu SH, Huang JP, Aplin JD, Wu YH, Chen PC, Hu CS, Ko CC, Lee MY, Chen CY. Engraftment potential of human placenta-derived mesenchymal stem cells after in utero transplantation in rats. Hum Reprod 2009; 24:154-165. [DOI: 10.1093/humrep/den356] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
56
|
Lee J, Han DJ, Kim SC. In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract. Biochem Biophys Res Commun 2008; 375:547-51. [PMID: 18725201 DOI: 10.1016/j.bbrc.2008.08.064] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
Pancreas extract from regenerating pancreas after partial pancreatectomy is known to contain factors that induce islet neogenesis in animals with streptozotocin (STZ)-induced diabetes [A.A. Hardikar, R.R. Bhonde, Modulating experimental diabetes by treatment with cytosolic extract from the regenerating pancreas, Diabetes Res. Clin. Pract. 46 (1999) 203-211]. In this study, we evaluate the effects of regenerating pancreas extract (RPE) from 90% partially pancreatectomized rats on induction of pancreatic differentiation of human adipose tissue-derived stem cells (hASCs). We found that undifferentiated hASCs expressed OCT-3/4, Nanog, and REX-1, markers of embryonic stem cells (ESCs). Genes involved in early pancreas development showed increased expression in RPE-treated culture. Sox17 and IPF-1 were expressed only in RPE-treated culture. Immunocytochemical analysis showed C-peptide-positive cells in RPE-treated culture but not in undifferentiated hASCs. In conclusion, hASCs have the characteristics of ESCs and the potential to differentiate into pancreas cell lineages phenotypically in response to RPE.
Collapse
Affiliation(s)
- Jiyeon Lee
- Laboratory of Cell Therapy, Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea
| | | | | |
Collapse
|
57
|
Singh P, Williams DJ. Cell therapies: realizing the potential of this new dimension to medical therapeutics. J Tissue Eng Regen Med 2008; 2:307-19. [DOI: 10.1002/term.108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
58
|
Abstract
In both Type 1 and 2 diabetes, insufficient numbers of insulin-producing beta-cells are a major cause of defective control of blood glucose and its complications. Restoration of damaged beta-cells by endocrine pancreas regeneration would be an ideal therapeutic option. The possibility of generating insulin-secreting cells with adult pancreatic stem or progenitor cells has been investigated extensively. The conversion of differentiated cells such as hepatocytes into beta-cells is being attempted using molecular insights into the transcriptional make-up of beta-cells. Additionally, the enhanced proliferation of beta-cells in vivo or in vitro is being pursued as a strategy for regenerative medicine for diabetes. Advances have also been made in directing the differentiation of embryonic stem cells into beta-cells. Although progress is encouraging, major gaps in our understanding of developmental biology of the pancreas and adult beta-cell dynamics remain to be bridged before a therapeutic application is made possible.
Collapse
Affiliation(s)
- Valeria Sordi
- Laboratory of Experimental Surgery, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | | | | |
Collapse
|
59
|
Sinner D, Kordich JJ, Spence JR, Opoka R, Rankin S, Lin SCJ, Jonatan D, Zorn AM, Wells JM. Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol Cell Biol 2007; 27:7802-15. [PMID: 17875931 PMCID: PMC2169141 DOI: 10.1128/mcb.02179-06] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 12/22/2006] [Accepted: 09/06/2007] [Indexed: 01/20/2023] Open
Abstract
The canonical Wnt pathway is necessary for gut epithelial cell proliferation, and aberrant activation of this pathway causes intestinal neoplasia. We report a novel mechanism by which the Sox family of transcription factors regulate the canonical Wnt signaling pathway. We found that some Sox proteins antagonize while others enhance beta-catenin/T-cell factor (TCF) activity. Sox17, which is expressed in the normal gut epithelium but exhibits reduced expression in intestinal neoplasia, is antagonistic to Wnt signaling. When overexpressed in SW480 colon carcinoma cells, Sox17 represses beta-catenin/TCF activity in a dose-dependent manner and inhibits proliferation. Sox17 and Sox4 are expressed in mutually exclusive domains in normal and neoplastic gut tissues, and gain- and loss-of-function studies demonstrate that Sox4 enhances beta-catenin/TCF activity and the proliferation of SW480 cells. In addition to binding beta-catenin, both Sox17 and Sox4 physically interact with TCF/lymphoid enhancer factor (LEF) family members via their respective high-mobility-group box domains. Results from gain- and loss-of-function experiments suggest that the interaction of Sox proteins with beta-catenin and TCF/LEF proteins regulates the stability of beta-catenin and TCF/LEF. In particular, Sox17 promotes the degradation of both beta-catenin and TCF proteins via a noncanonical, glycogen synthase kinase 3beta-independent mechanism that can be blocked by proteasome inhibitors. In contrast, Sox4 may function to stabilize beta-catenin protein. These findings indicate that Sox proteins can act as both antagonists and agonists of beta-catenin/TCF activity, and this mechanism may regulate Wnt signaling responses in many developmental and disease contexts.
Collapse
Affiliation(s)
- Débora Sinner
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Mimeault M, Hauke R, Batra SK. Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 2007; 82:252-64. [PMID: 17671448 DOI: 10.1038/sj.clpt.6100301] [Citation(s) in RCA: 292] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Basic and clinical research accomplished during the last few years on embryonic, fetal, amniotic, umbilical cord blood, and adult stem cells has constituted a revolution in regenerative medicine and cancer therapies by providing the possibility of generating multiple therapeutically useful cell types. These new cells could be used for treating numerous genetic and degenerative disorders. Among them, age-related functional defects, hematopoietic and immune system disorders, heart failures, chronic liver injuries, diabetes, Parkinson's and Alzheimer's diseases, arthritis, and muscular, skin, lung, eye, and digestive disorders as well as aggressive and recurrent cancers could be successfully treated by stem cell-based therapies. This review focuses on the recent advancements in adult stem cell biology in normal and pathological conditions. We describe how these results have improved our understanding on critical and unique functions of these rare sub-populations of multipotent and undifferentiated cells with an unlimited self-renewal capacity and high plasticity. Finally, we discuss some major advances to translate the experimental models on ex vivo and in vivo expanded and/or differentiated stem cells into clinical applications for the development of novel cellular therapies aimed at repairing genetically altered or damaged tissues/organs in humans. A particular emphasis is made on the therapeutic potential of different tissue-resident adult stem cell types and their in vivo modulation for treating and curing specific pathological disorders.
Collapse
Affiliation(s)
- M Mimeault
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | | | | |
Collapse
|