51
|
The detrimental effects of glucocorticoids exposure during pregnancy on offspring's cardiac functions mediated by hypermethylation of bone morphogenetic protein-4. Cell Death Dis 2018; 9:834. [PMID: 30082698 PMCID: PMC6079031 DOI: 10.1038/s41419-018-0841-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/15/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
The intra-uterine and external environmental factors not only affect the early development of fetuses, their interaction with genesis will also substantially program the physiological functions of offspring throughout life. Synthetic glucocorticoid (GC) is widely used for the management of women at risk of preterm birth or undergone autoimmune diseases. However, excess GC might cause a number of chronic diseases in later life. In the present study, we set up a programming rat model by daily injection of dexamethasone (DEX) since 14.5 dpc until labor, and found that the cardiac functions were significantly compromised in the male offspring compared with that exposed to NS, especially after ischemia/reperfusion (I/R), due to the increased infarction and apoptosis of myocardium. Using MeDIP sequencing, we identified four genes involved in the cardiac muscle cell differentiation and development pathway exhibited increased methylation in their promoter regions, among which, bone morphogenetic protein-4 (BMP4) expression is coordinately decreased in myocardium from male mice prenatally exposed to DEX. The programming effect of DEX on cardiomyocytes apoptosis was found to be dependent on mitochondria dysfunction, whereas the breakdown of mitochondrial membrane potential (ΔΨm) and the decrease of ATP production from mitochondria caused by prenatal DEX exposure both can be restored by BMP4 predisposing on neonatal cardiomyocytes 24 h prior to I/R. Inversely consistent with ΔΨm and ATP production, the release of reactive oxygen species was dramatically elevated in cardiomyocytes, which was significantly inhibited in the presence of BMP4 prior to I/R. These findings suggested that the excess GC exposure during pregnancy increases the susceptibility of male offspring’s heart to “second strike”, due to the decrease of BMP4 expression caused by the hypermethylation on Bmp4 promoter and the absence of BMP4 protective effect in cardiomyocytes, making the addition of BMP4 a promising treatment for the congenital heart disease under such circumstances.
Collapse
|
52
|
Xu YR, Wang GY, Zhou YC, Yang WX. The characterization and potential roles of bone morphogenetic protein 7 during spermatogenesis in Chinese mitten crab Eriocheir sinensis. Gene 2018; 673:119-129. [PMID: 29890312 DOI: 10.1016/j.gene.2018.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 01/12/2023]
Abstract
Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-β superfamily, have been implicated in various biological and physiological processes, especially in the gonad development. However, scarce studies were focused on the roles of BMPs in the reproductive system of crustaceans. In this study, the whole gene encoding BMP7 protein was cloned and characterized firstly in Chinese mitten crab Eriocheir sinensis. The bioinformatics analysis of the deduced amino acid sequence showed that Es-BMP7 was composed of prodomain/latency-associated peptide and the TGF-β characteristic domain. The sequence conservation and phylogenetic analysis were also conducted. Quantitative real-time PCR was conducted indifferent tissues. The highest expression in testis indicated the potential role of BMP7 to male gonad development. Western blot results showed the different translational levels of BMP7 in different tissues. In-situ hybridization revealed that the expression of es-bmp7 signals presented in a bimodal manner: highest in spermatogonia, decreased in spermatocytes and stage I spermatids, disappeared in stage II spermatids, and showed up again in stage III spermatids and mature sperm. To further verify the potential roles during spermatogenesis, immunofluorescence was conducted and results showed the similar expression tendency with in situ hybridization. The protein signal was highest in the cytoplasm of spermatogonia, continued to decline in the cytoplasm of spermatocytes and the following stages, and weak signal was found in the mature sperm. Taken together, our results revealed that Es-BMP7 might play a part in testis development in Eriocheir sinensis, presumably by maintaining the self-renewal of spermatogonia and promoting the germ cell differentiation/meiotic mitosis, or facilitating the successful fertilization.
Collapse
Affiliation(s)
- Ya-Ru Xu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gao-Yuan Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi-Chao Zhou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
53
|
Rajesh G, Mishra SR, Paul A, Punetha M, Vidyalakshmi GM, Narayanan K, Bag S, Bhure SK, Singh Chouhan V, Maurya VP, Singh G, Sarkar M. Transcriptional and translational abundance of Bone morphogenetic protein (BMP) 2, 4, 6, 7 and their receptors BMPR1A, 1B and BMPR2 in buffalo ovarian follicle and the role of BMP4 and BMP7 on estrogen production and survival of cultured granulosa cells. Res Vet Sci 2018; 118:371-388. [PMID: 29684814 DOI: 10.1016/j.rvsc.2018.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/13/2018] [Accepted: 04/13/2018] [Indexed: 01/19/2023]
Abstract
BMPs and their receptors modulate the granulosa cell (GC) function in the follicle of domestic animals. Since little is known on BMPs in the buffalo, the present study was aimed to investigate the expression of BMP2, 4, 6, 7 and their receptors BMPR1A, BMPR1B, BMPR2 in the GC and theca cells (TC) of ovarian follicles and the role of BMP4 and BMP7 on buffalo GC. Follicles were classified into four groups based on size and E2 level in the follicular fluid as follows: (i) Group1(4-6 mm; <0.5 ng/mL) (ii) Group 2 (7-9 mm; 0.5-5 ng/mL) (iii) Group 3 (10-13 mm; 5-40 ng/mL) and (iv) Group 4 (dominant follicle) (>13 mm; >180 ng/mL). The results revealed that except BMP6, BMP2, 4 7 and receptors BMPR1A, BMPR1B and BMPR2 showed a minimum of 1.5-2 fold increase in mRNA expression in the GC of dominant follicle as compared to other follicle classes. In the dominant follicle, a two-fold increase in BMP4 and BMP7 expression was observed in the TC. At 100 ng/mL, the BMP4 and BMP7 either alone or in combination maximally down-regulated CASPASE3 and stimulated the transcripts of PCNA, FSHR and CYP19A1 that was supported by E2 secretion in the granulosa cell culture suggesting their role in cell survival and E2 production. In conclusion, GC and TC of dominant follicles express BMP 2, 4, 6, 7 and their receptors BMPR1A, BMPR1B and BMPR2. BMP4 and BMP7 stimulate E2 production and promote GC survival.
Collapse
Affiliation(s)
- G Rajesh
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India; Department of Veterinary Physiology and Biochemistry, Veterinary College and Research Institute, TANUVAS, Tirunelveli, India
| | - S R Mishra
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - A Paul
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - M Punetha
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - G M Vidyalakshmi
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - K Narayanan
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - S Bag
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - S K Bhure
- Animal Biochemistry division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - V Singh Chouhan
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - V P Maurya
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - G Singh
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - Mihir Sarkar
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India.
| |
Collapse
|
54
|
Huang B, Wu Z, Ding S, Yuan Y, Liu C. Localization and promotion of recombinant human bone morphogenetic protein-2 bioactivity on extracellular matrix mimetic chondroitin sulfate-functionalized calcium phosphate cement scaffolds. Acta Biomater 2018; 71:184-199. [PMID: 29355717 DOI: 10.1016/j.actbio.2018.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/28/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
Localization of recombinant human bone morphogenetic protein-2 (rhBMP-2) with continuous and effective osteogenic stimulation is still a great challenge in the field of bone regeneration. To achieve this aim, rhBMP-2 was tethered on chondroitin sulfate (CS)-functionalized calcium phosphate cement (CPC) scaffolds through specific noncovalent interactions. CS, one of the core glycosaminoglycans, was covalently conjugated onto CPC scaffolds with the assistance of polydopamine (PDA) and further immobilized rhBMP-2 in a biomimetic form. The CPC-PDA-CS scaffolds not only controlled the release kinetics and presentation state of rhBMP-2 but also effectively increased the expression levels of bone morphogenetic protein receptors (BMPRs) and enhanced the recognitions of the remaining rhBMP-2 to BMPRs. Strikingly, the rhBMP-2-loaded CPC-PDA-CS significantly promoted the cellular surface translocation of BMPRs (especially BMPR-IA). In vivo studies demonstrated that, compared with the rhBMP-2 upon CPC and CPC-PDA, the rhBMP-2 upon CPC-PDA-CS exhibited sustained release and induced high quality and more ectopic bone formation. Collectively, these results suggest that rhBMP-2 can be localized within CS-functionalized CPC scaffolds and exert continuous, long-term, and effective osteogenic stimulation. Thus, this work could provide new avenues in mimicking bone extracellular matrix microenvironment and localizing growth factor activity for enhanced bone regeneration. STATEMENT OF SIGNIFICANCE A bioinspired chondroitin sulfate (CS)-functionalized calcium phosphate cement (CPC) platform was developed to tether recombinant human bone morphogenetic protein-2 (rhBMP-2), which could exhibit continuous, long-term, and effective osteogenic stimulation in bone tissue engineering. Compared with rhBMP-2-loaded CPC, the rhBMP-2-loaded CPC-polydopamine-CS scaffolds induced higher expression of bone morphogenetic protein receptors (BMPRs), greater cellular surface translocation of bone morphogenetic protein receptor-IA, higher binding affinity of BMPRs/rhBMP-2, and thus higher activation of the drosophila gene mothers against decapentaplegic protein-1/5/8 (Smad1/5/8) and extracellular-regulated protein kinases-1/2 (ERK1/2) signaling. This work can provide new guidelines for the design of BMP-2-based bioactive materials for bone regeneration.
Collapse
|
55
|
Increased Nuclear Localization of β - catenin by rhBMP - 2 in the Induced Oral Squamous Cell Carcinoma in the Syrian Hamster Cheek Pouch. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2018. [DOI: 10.5812/ijcm.9850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
56
|
Eixarch H, Calvo-Barreiro L, Montalban X, Espejo C. Bone morphogenetic proteins in multiple sclerosis: Role in neuroinflammation. Brain Behav Immun 2018; 68:1-10. [PMID: 28249802 DOI: 10.1016/j.bbi.2017.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are growth factors that represent the largest subgroup of signalling ligands of the transforming growth factor beta (TGF-β) superfamily. Their participation in the proliferation, survival and cell fate of several cell types and their involvement in many pathological conditions are now well known. BMP expression is altered in multiple sclerosis (MS) patients, suggesting that BMPs have a role in the pathogenesis of this disease. MS is a demyelinating and neurodegenerative autoimmune disorder of the central nervous system (CNS). MS is a complex pathological condition in which genetic, epigenetic and environmental factors converge, although its aetiology remains elusive. Multifunctional molecules, such as BMPs, are extremely interesting in the field of MS because they are involved in the regulation of several adult tissues, including the CNS and the immune system. In this review, we discuss the extensive data available regarding the role of BMP signalling in neuronal progenitor/stem cell fate and focus on the participation and expression of BMPs in CNS demyelination. Additionally, we provide an overview of the involvement of BMPs as modulators of the immune system, as this subject has not been thoroughly explored even though it is of great interest in autoimmune disorders. Moreover, we describe the data on BMP signalling in autoimmunity and inflammatory diseases, including MS and its experimental models. Thus, we aim to provide an integrated view of the putative role of BMPs in MS pathogenesis and to open the field for the further development of alternative therapeutic strategies for MS patients.
Collapse
Affiliation(s)
- Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Laura Calvo-Barreiro
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain.
| |
Collapse
|
57
|
Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:91-112. [PMID: 30105601 DOI: 10.1007/5584_2018_249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In orthopedic medicine, a feasible reconstruction of bone structures remains one of the main challenges both for healthcare and for improvement of patients' quality of life. There is a growing interest in mesenchymal stem cells (MSCs) medical application, due to their multilineage differentiation potential, and tissue engineering integration to improve bone repair and regeneration. In this review we will describe the main characteristics of MSCs, such as osteogenesis, immunomodulation and antibacterial properties, key parameters to consider during bone repair strategies. Moreover, we describe the properties of calcium phosphate (CaP) bioceramics, which demonstrate to be useful tools in combination with MSCs, due to their biocompatibility, osseointegration and osteoconduction for bone repair and regeneration. Also, we overview the main characteristics of dental cavity MSCs, which are promising candidates, in combination with CaP bioceramics, for bone regeneration and tissue engineering. The understanding of MSCs biology and their interaction with CaP bioceramics and other biomaterials is critical for orthopedic surgical bone replacement, reconstruction and regeneration, which is an integrative and dynamic medical, scientific and bioengineering field of research and biotechnology.
Collapse
|
58
|
Yoshimura H, Ohba S, Imamura Y, Sano K. Osseous choristoma of the tongue: A case report with dermoscopic study. Mol Clin Oncol 2017; 8:242-245. [PMID: 29399353 PMCID: PMC5774523 DOI: 10.3892/mco.2017.1523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/27/2017] [Indexed: 11/05/2022] Open
Abstract
Osseous choristomas are rare benign lesions characterized by ectopic bone formation in the soft tissue of the head and neck region. Dermoscopy visualizes the morphological characteristics that are not observable by the naked eye, and may be used for the evaluation of calcification under the skin. The present study reports a case of an osseous choristoma arising in the tongue, and reveals the dermoscopic features of osseous choristoma from a surgical specimen. A 7-year-old boy was referred to the Department of Dentistry and Oral Surgery, with an asymptomatic pedunculated mass in the tongue. The lesion was removed completely with the adjacent normal tissue under general anesthesia. Dermoscopy of the surgical specimen revealed the hypovascular and homogeneous pattern of the lesion with round extruded whitish material. Based on dermoscopic findings, the presence of calcified hard tissue in the submucosa was verified by the dermatologist. Radiographic examination of the surgical specimen revealed the lesion contained a radiopaque trabeculated mass. Histologically, the lesion contained an osseous tissue, and the pathological diagnosis of osseous choristoma was made following consideration of the ectopic bony tissues that were localized away from the maxillo-mandibular bone. The postoperative course was uneventful with no signs of recurrence during the 36 months following surgery. To the best of the author's knowledge, this is the first report of evaluation of osseous choristoma using dermoscopy. The observation indicates the usefulness of dermoscopy for the diagnosis of oral ossified lesion in oral soft tissue.
Collapse
Affiliation(s)
- Hitoshi Yoshimura
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Seigo Ohba
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan.,Department of Regenerative Oral Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Yoshiaki Imamura
- Division of Surgical Pathology, University of Fukui Hospital, Fukui 910-1193, Japan
| | - Kazuo Sano
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
59
|
Kim M, Choi O, Pyo S, Choi SU, Park CH. Identification of novel ALK2 inhibitors and their effect on cancer cells. Biochem Biophys Res Commun 2017; 492:121-127. [DOI: 10.1016/j.bbrc.2017.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 11/26/2022]
|
60
|
Silva HCLE, Cheim AP, Moreno R, Miranda SLD. Off-label use of rhBMP-2 as bone regeneration strategies in mandibular ameloblastoma unicystic. EINSTEIN-SAO PAULO 2017; 15:92-95. [PMID: 28444096 PMCID: PMC5433314 DOI: 10.1590/s1679-45082017rc3777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022] Open
Abstract
Jawbone reconstruction after tumor resection is one of the most challenging clinical tasks for maxillofacial surgeons. Osteogenic, osteoinductive, osteoconductive and non-antigenic properties of autogenous bone place this bone as the gold standard for solving problems of bone availability. However, the need for a second surgical site to harvest the bone graft increases significantly both the cost and the morbidity associated with the reconstructive procedures. Bone grafting gained an important tool with the discovery of bone morphogenetic proteins in 1960. Benefit of obtaining functional and real bone matrix without need of second surgical site seems to be the great advantage of use bone morphogenetic proteins. This study analyzed the use of rhBMP-2 in unicystic ameloblastoma of the mandible, detailing its structure, mechanisms of cell signaling and biological efficacy, in addition to present possible advantages and disadvantages of clinical use of rhBMP-2 as bone regeneration strategy.
Collapse
Affiliation(s)
| | | | - Roberto Moreno
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | |
Collapse
|
61
|
Yang J, Zhang YS, Yue K, Khademhosseini A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 2017; 57:1-25. [PMID: 28088667 PMCID: PMC5545789 DOI: 10.1016/j.actbio.2017.01.036] [Citation(s) in RCA: 432] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
Abstract
Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. STATEMENT OF SIGNIFICANCE Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue-engineering platform to address this issue. In this article, we describe the fundamental problems encountered in this field and review recent progress in designing cell-hydrogel constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel composition, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation hydrogel/inorganic particle/stem cell hybrid composites with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing and bioengineering technologies (e.g. 3D bioprinting) for fabrication of hydrogel-based osteochondral and cartilage constructs.
Collapse
Affiliation(s)
- Jingzhou Yang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Guangzhou Women and Children's Medical Center, Sun Yat-sen University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kan Yue
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
62
|
Emerging roles of the bone morphogenetic protein pathway in cancer: potential therapeutic target for kinase inhibition. Biochem Soc Trans 2017; 44:1117-34. [PMID: 27528760 DOI: 10.1042/bst20160069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-β (TGF-β) family signalling pathway. Similar to TGF-β, the complex roles of BMPs in development and disease are demonstrated by their dichotomous roles in various cancers and cancer stages. Although early studies implicated BMP signalling in tumour suppressive phenotypes, the results of more recent experiments recognize BMPs as potent tumour promoters. Many of these complexities are becoming illuminated by understanding the role of BMPs in their contextual role in unique cell types of cancer and the impact of their surrounding tumour microenvironment. Here we review the emerging roles of BMP signalling in cancer, with a focus on the molecular underpinnings of BMP signalling in individual cancers as a valid therapeutic target for cancer prevention and treatment.
Collapse
|
63
|
Endocultivation: continuous application of rhBMP-2 via mini-osmotic pumps to induce bone formation at extraskeletal sites. Int J Oral Maxillofac Surg 2017; 46:655-661. [DOI: 10.1016/j.ijom.2017.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/10/2016] [Accepted: 01/18/2017] [Indexed: 11/23/2022]
|
64
|
Caron MMJ, Emans PJ, Cremers A, Surtel DAM, van Rhijn LW, Welting TJM. Indomethacin induces differential effects on in vitro endochondral ossification depending on the chondrocyte's differentiation stage. J Orthop Res 2017; 35:847-857. [PMID: 27273119 DOI: 10.1002/jor.23324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/05/2016] [Indexed: 02/04/2023]
Abstract
Heterotopic ossification (HO) is the abnormal formation of bone in soft tissues and is a frequent complication of hip replacement surgery. Heterotopic ossifications are described to develop via endochondral ossification and standard treatment is administration of indomethacin. It is currently unknown how indomethacin influences heterotopic ossification on a molecular level; therefore, we aimed to determine whether indomethacin might influence heterotopic ossification via impairing the chondrogenic phase of endochondral ossification. Progenitor cell models differentiating in the chondrogenic lineage (ATDC5, primary human bone marrow stem cells and ex vivo periosteal agarose cultures) were treated with increasing concentrations of indomethacin and a decrease in gene- and protein expression of chondrogenic and hypertrophic markers (measured by RT-qPCR and immunoblotting) as well as decreased glycosamino-glycan content (by alcian blue histochemistry) was observed. Even when hypertrophic differentiation was provoked, the addition of indomethacin resulted in decreased hypertrophic marker expression. Interestingly, when mature chondrocytes were treated with indomethacin, a clear increase in collagen type 2 expression was observed. Similarly, when ATDC5 cells and bone marrow stem cells were pre-differentiated to obtain a chondrocyte phenotype and indomethacin was added from this time point onward, low concentrations of indomethacin also resulted in increased chondrogenic differentiation. Indomethacin induces differential effects on in vitro endochondral ossification, depending on the chondrocyte's differentiation stage, with complete inhibition of chondrogenic differentiation as the most pronounced action. This observation may provide a rational behind the elusive mode of action of indomethacin in the treatment of heterotopic ossifications. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:847-857, 2017.
Collapse
Affiliation(s)
- Marjolein M J Caron
- Department of Orthopaedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Pieter J Emans
- Department of Orthopaedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Andy Cremers
- Department of Orthopaedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Don A M Surtel
- Department of Orthopaedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Lodewijk W van Rhijn
- Department of Orthopaedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Tim J M Welting
- Department of Orthopaedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| |
Collapse
|
65
|
Bai X, Lü S, Cao Z, Ni B, Wang X, Ning P, Ma D, Wei H, Liu M. Dual crosslinked chondroitin sulfate injectable hydrogel formed via continuous Diels-Alder (DA) click chemistry for bone repair. Carbohydr Polym 2017; 166:123-130. [PMID: 28385214 DOI: 10.1016/j.carbpol.2017.02.062] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/10/2017] [Accepted: 02/16/2017] [Indexed: 11/15/2022]
Abstract
In the present work, a thermosensetive copolymer with a low gelation concentration under 37°C, F127@ChS (F127 crosslinked chondroitin sulfate) was synthesized via DA click chemistry between F127-AMI (maleimido terminated F127) and ChS-furan (furfurylamine grafted chondroitin sulfate). Then, dual crosslinked hydrogels were prepared based on F127@ChS and PEG-AMI (maleimido terminated polyethylene glycol). The physical crosslinking of F127@ChS affords the hydrogel fast gelation behavior, while in situ DA click reaction occurred between F127@ChS and PEG-AMI affords the hydrogel system covalent crosslinking. The dual crosslinked injectable hydrogel was applied as scaffold to load BMP-4 for rat cranial defect repair. As indicated by X-ray imaging, cranial digital images and histological (HE and Masson) staining analysis, new bone tissues were formed in the defected area after 12 weeks repair. The results demonstrate that the novel dual crosslinked injectable hydrogel offer an interesting option for cranial bone tissue engineering.
Collapse
Affiliation(s)
- Xiao Bai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Zhen Cao
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Boli Ni
- Gansu Tobacco Industrial Co., Ltd., Lanzhou 730050, People's Republic of China
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Piao Ning
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Dongyang Ma
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
66
|
Canine Adipose Derived Mesenchymal Stem Cells Transcriptome Composition Alterations: A Step towards Standardizing Therapeutic. Stem Cells Int 2017; 2017:4176292. [PMID: 28246532 PMCID: PMC5299202 DOI: 10.1155/2017/4176292] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 01/09/2023] Open
Abstract
Although canine adipose derived stem cells (cASCs) morphology characteristics and differentiation ability are well documented, transcriptome alterations of undifferentiated cASCs during ex vivo cultivation remain unknown. Here we demonstrate, for the first time, the transcriptome composition of isolated cASCs in undifferentiated state originating from six donors. Transcriptome changes were monitored during ex vivo cultivation between passage 3 (P3) and P5, which are mostly used in therapy. Influence of donors' age in given passage number on transcriptome composition was also investigated. Cultivation from P3 to P5 resulted in 16 differentially expressed genes with cooverexpression of pluripotency and self-renewal transcription factors genes SOX2 and POU5F1 dominant in old donors' cells. Furthermore, cASCs demonstrated upregulation of IL-6 in young and old donors' cells. In addition, ex vivo cultivation of cASCs revealed well-known morphological alterations accompanied with decrease in expression of CD90 and CD44 markers in P4 and higher monitored by flow cytometry and successful osteo- and chondrodifferentiation but inefficient adipodifferentiation in P3. Our results revealed the impact of ex vivo cultivation on nature of cells. Correlation of transcriptome changes with secretome composition is needed and its further impact on therapeutic potential of cASCs remains to be evaluated in clinical trials.
Collapse
|
67
|
Deries M, Thorsteinsdóttir S. Axial and limb muscle development: dialogue with the neighbourhood. Cell Mol Life Sci 2016; 73:4415-4431. [PMID: 27344602 PMCID: PMC11108464 DOI: 10.1007/s00018-016-2298-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/03/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022]
Abstract
Skeletal muscles are part of the musculoskeletal system which also includes nerves, tendons, connective tissue, bones and blood vessels. Here we review the development of axial and limb muscles in amniotes within the context of their surrounding tissues in vivo. We highlight the reciprocal dialogue mediated by signalling factors between cells of these adjacent tissues and developing muscles and also demonstrate its importance from the onset of muscle cell differentiation well into foetal development. Early embryonic tissues secrete factors which are important regulators of myogenesis. However, later muscle development relies on other tissue collaborators, such as developing nerves and connective tissue, which are in turn influenced by the developing muscles themselves. We conclude that skeletal muscle development in vivo is a compelling example of the importance of reciprocal interactions between developing tissues for the complete and coordinated development of a functional system.
Collapse
Affiliation(s)
- Marianne Deries
- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Sólveig Thorsteinsdóttir
- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
68
|
Lu X, Li K, Xie Y, Huang L, Zheng X. Chemical stability and osteogenic activity of plasma-sprayed boron-modified calcium silicate-based coatings. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:166. [PMID: 27663224 DOI: 10.1007/s10856-016-5781-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
In recent years, CaSiO3 bio-ceramic coatings have attracted great attention because of their good bioactivity. However, their high degradation rates in physiological environment restrict their practical applications. In this work, boron-modified CaSiO3 ceramic (Ca11Si4B2O22, B-CS) coating was developed on Ti substrates by plasma-spraying technique attempting to obtain enhanced chemical stability and osteogenic activity. The B-CS coating possessed significantly increased chemical stability due to the introduction of boron and consequently the modified crystal structure, while maintaining good bioactivity. Scanning electron microscope and immunofluorescence studies showed that better cellular adhesion and extinctive filopodia-like processes were observed on the B-CS coating. Compared with the pure CaSiO3 (CS) coating, the B-CS coating promoted MC3T3-E1 cells attachment and proliferation. In addition, enhanced collagen I (COL-I) secretion, alkaline phosphatase activity, and extracellular matrix mineralization levels were detected from the B-CS coating. According to RT-PCR results, notable up-regulation expressions of mineralized tissue-related genes, such as runt-related transcription factor 2 (Runx2), bone sialoprotein and osteocalcin, and bone morphogenetic protein 7 (BMP-7) were observed on the B-CS coating compared with the CS coating. The above results suggested that Ca11Si4B2O22 coatings possess excellent osteogenic activity and might be a promising candidate for orthopedic applications.
Collapse
Affiliation(s)
- Xiang Lu
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, PR China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China.
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
| | - Liping Huang
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China.
| |
Collapse
|
69
|
Shu L, Yang Y, Huang H, Ye H. A bone morphogenetic protein ligand and receptors in mud crab: A potential role in the ovarian development. Mol Cell Endocrinol 2016; 434:99-107. [PMID: 27345242 DOI: 10.1016/j.mce.2016.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 11/21/2022]
Abstract
In vertebrates, bone morphogenetic proteins (BMPs) play an important role in various biological processes. However, the function of BMPs in crustaceans is still unknown. In our study, a ligand (BMP7) and two receptors (Sp-BMPRIB and Sp-BMPRII) are cloned firstly in the mud crab, Scylla paramamosain. The qRT-PCR demonstrated that both ligand and receptors were expressed in various tissues, especially in ovary. The expression of BMPRs mRNA increased along the ovarian development, while BMP7 had an opposite tendency. In-situ hybridization revealed that Sp-BMPRIB and Sp-BMPRII were expressed in both oocytes and follicle cells, whereas Sp-BMP7 was exclusively localized in follicle cells. RNAi experiments showed that the expression levels of Smad1 and vitellogenin receptor declined rapidly after BMPRs were silenced. Based on these data, we hypothesized that in S. paramamosain, BMP7 and BMPRs had impact on the ovarian development, presumably via the autocrine/paracrine way.
Collapse
Affiliation(s)
- Ling Shu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yanan Yang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361102, China.
| |
Collapse
|
70
|
Deeb GR, Soliman O, Alsaad F, Jones P, Deluke D, Laskin DM. Simultaneous Virtual Planning Implant Surgical Guides and Immediate Laboratory-Fabricated Provisionals: An Impressionless Technique. J ORAL IMPLANTOL 2016; 42:363-9. [DOI: 10.1563/aaid-joi-d-15-00158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- George R Deeb
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia
| | - Osama Soliman
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia
| | - Fahad Alsaad
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia
| | - Perry Jones
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia
| | - Dean Deluke
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia
| | - Daniel M Laskin
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
71
|
Lotz EM, Olivares-Navarrete R, Hyzy SL, Berner S, Schwartz Z, Boyan BD. Comparable responses of osteoblast lineage cells to microstructured hydrophilic titanium-zirconium and microstructured hydrophilic titanium. Clin Oral Implants Res 2016; 28:e51-e59. [DOI: 10.1111/clr.12855] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Ethan M. Lotz
- Department of Biomedical Engineering; School of Engineering; Virginia Commonwealth University; Richmond VA USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering; School of Engineering; Virginia Commonwealth University; Richmond VA USA
| | - Sharon L. Hyzy
- Department of Biomedical Engineering; School of Engineering; Virginia Commonwealth University; Richmond VA USA
| | | | - Zvi Schwartz
- Department of Biomedical Engineering; School of Engineering; Virginia Commonwealth University; Richmond VA USA
- Department of Periodontics; University of Texas Health Science Center at San Antonio; San Antonio TX USA
| | - Barbara D. Boyan
- Department of Biomedical Engineering; School of Engineering; Virginia Commonwealth University; Richmond VA USA
- Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology; Atlanta GA USA
| |
Collapse
|
72
|
Abstract
Bone morphogenetic proteins (BMPs), originally identified as osteoinductive components in extracts derived from bone, are now known to play important roles in a wide array of processes during formation and maintenance of various organs including bone, cartilage, muscle, kidney, and blood vessels. BMPs and the related "growth and differentiation factors" (GDFs) are members of the transforming growth factor β (TGF-β) family, and transduce their signals through type I and type II serine-threonine kinase receptors and their intracellular downstream effectors, including Smad proteins. Furthermore, BMP signals are finely tuned by various agonists and antagonists. Because deregulation of the BMP activity at multiple steps in signal transduction is linked to a wide variety of human diseases, therapeutic use of activators and inhibitors of BMP signaling will provide potential avenues for the treatment of the human disorders that are caused by hypo- and hyperactivation of BMP signals, respectively.
Collapse
Affiliation(s)
- Takenobu Katagiri
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama 350-1241, Japan
| | - Tetsuro Watabe
- Section of Biochemistry, Department of Bio-Matrix, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
73
|
Jaumotte JD, Wyrostek SL, Zigmond MJ. Protection of cultured dopamine neurons from MPP(+) requires a combination of neurotrophic factors. Eur J Neurosci 2016; 44:1691-9. [PMID: 27098376 DOI: 10.1111/ejn.13252] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/15/2016] [Accepted: 04/01/2016] [Indexed: 11/30/2022]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder, caused in part by the loss of dopamine (DA) neurons in the substantia nigra (SN). Neurotrophic factors have been shown to increase the basal survival of DA neurons in vitro, as well as to protect the neurons from some toxins under certain in vitro conditions and in animal models. Although these factors have often been tested individually, they have rarely been studied in combinations. We therefore examined the effect of such combinations after acute exposure to the toxin 1-methyl-4-phenylpyridinium (MPP(+) ) using dissociated postnatal rat midbrain cultures isolated from SN and ventral tegmental area (VTA). We found that significant loss of DA neurons in the SN occurred with an LC50 of between 1 and 10 μm, whereas the LC50 of DA neurons from the VTA was approximately 1000-fold higher. We did not observe neuroprotection against MPP(+) by individual exposure to glial cell-line derived neurotrophic factor (GDNF), brain derived neurotrophic factor (BDNF), transforming growth factor beta (TGFβ), basic fibroblast growth factor (FGF-2) or growth/differentiation factor 5 (GDF5) at concentrations of 100 or 500 ng/mL. Combinations of two, three or four neurotrophic factors were also ineffective. However, when the SN cultures were exposed to a combination of all five neurotrophic factors, each at a concentration of 100 ng/mL, we observed a 30% increase in DA neuron survival in the presence of 10 and 500 μm MPP(+) . These results may be relevant to the use of neurotrophic factors as therapeutic treatments for Parkinson's disease.
Collapse
Affiliation(s)
- Juliann D Jaumotte
- Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephanie L Wyrostek
- Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael J Zigmond
- Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
74
|
Cole AE, Murray SS, Xiao J. Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury. Stem Cells Int 2016; 2016:9260592. [PMID: 27293450 PMCID: PMC4884839 DOI: 10.1155/2016/9260592] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 01/17/2023] Open
Abstract
Substantial progress has been made in identifying the extracellular signalling pathways that regulate neural stem and precursor cell biology in the central nervous system (CNS). The bone morphogenetic proteins (BMPs), in particular BMP4, are key players regulating neuronal and glial cell development from neural precursor cells in the embryonic, postnatal, and injured CNS. Here we review recent studies on BMP4 signalling in the generation of neurons, astrocytes, and oligodendroglial cells in the CNS. We also discuss putative mechanisms that BMP4 may utilise to influence glial cell development following CNS injury and highlight some questions for further research.
Collapse
Affiliation(s)
- Alistair E. Cole
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Simon S. Murray
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Junhua Xiao
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
75
|
Ali IHA, Brazil DP. Bone morphogenetic proteins and their antagonists: current and emerging clinical uses. Br J Pharmacol 2016; 171:3620-32. [PMID: 24758361 DOI: 10.1111/bph.12724] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily of secreted cysteine knot proteins that includes TGFβ1, nodal, activins and inhibins. BMPs were first discovered by Urist in the 1960s when he showed that implantation of demineralized bone into intramuscular tissue of rabbits induced bone and cartilage formation. Since this seminal discovery, BMPs have also been shown to play key roles in several other biological processes, including limb, kidney, skin, hair and neuronal development, as well as maintaining vascular homeostasis. The multifunctional effects of BMPs make them attractive targets for the treatment of several pathologies, including bone disorders, kidney and lung fibrosis, and cancer. This review will summarize current knowledge on the BMP signalling pathway and critically evaluate the potential of recombinant BMPs as pharmacological agents for the treatment of bone repair and tissue fibrosis in patients.
Collapse
Affiliation(s)
- Imran H A Ali
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | |
Collapse
|
76
|
Lai Y, Xie C, Zhang S, Gan G, Wu D, Chen W. Bone morphogenetic protein type I receptor inhibition induces cleft palate associated with micrognathia and cleft lower lip in mice. ACTA ACUST UNITED AC 2016; 106:612-23. [PMID: 27150428 DOI: 10.1002/bdra.23504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gain-of- and loss-of-function studies have demonstrated that changes in bone morphogenetic protein (BMP) signaling during embryo development cause craniofacial malformations, including cleft palate. It remains uncertain whether BMP signaling could be targeted pharmacologically to affect craniofacial morphogenesis. METHODS Pregnant C57Bl/6J mice were treated with the BMP type I receptor inhibitor LDN-193189 at the dose of 3, 6, or 9 mg/kg twice a day by intraperitoneal injection from embryonic day 10.5 (E10.5) to E15.5. At E16.5, embryos were investigated by facial measurement analysis and histology to determine the optimal concentration for malformation. Subsequent embryonic phenotypes were analyzed in detail by histology, whole-mount skeletal staining, micro-computed tomography, and palatal organic culture. We further used immunohistochemistry to analyze protein expression of the BMP-mediated canonical and noncanonical signaling components. RESULTS The optimal concentration of LDN-193189 was determined to be 6 mg/kg. In utero, LDN-193189 exposures induced partial clefting of the anterior palate or complete cleft palate, which was attributed to a reduced cell proliferation rate in the secondary palate, and delayed palatal elevation caused by micrognathia. Analysis of signal transduction in palatal shelves at E12.5 and E13.5 identified a significant reduction of BMP/Smad signaling (p-Smad1/5/8) and unchanged BMP noncanonical signaling (p-p38, p-Erk1/2) after treatment with LDN-193189. CONCLUSION The results of this study indicate that LDN-193189 can be used to manipulate BMP signaling by selectively targeting the BMP/Smad signaling pathway to affect palatal morphogenesis and produce phenotypes mimicking those caused by genetic mutations. This work established a novel mouse model for teratogen-induced cleft palate. Birth Defects Research (Part A) 106:612-623, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yongzhen Lai
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, P. R. China
| | - Changfu Xie
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, P. R. China
| | - Shixian Zhang
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, P. R. China
| | - Guowu Gan
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, P. R. China
| | - Di Wu
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, P. R. China
| | - Weihui Chen
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, P. R. China.,Stomatological Research Institute, Fujian Medical University, Fuzhou, Fujian Province, P. R. China
| |
Collapse
|
77
|
Zhao M, Shi Y, He M, Huang X, Wang Q. PfSMAD4 plays a role in biomineralization and can transduce bone morphogenetic protein-2 signals in the pearl oyster Pinctada fucata. BMC DEVELOPMENTAL BIOLOGY 2016; 16:9. [PMID: 27113217 PMCID: PMC4845351 DOI: 10.1186/s12861-016-0110-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/20/2016] [Indexed: 01/24/2023]
Abstract
Background Mollusca is the second largest phylum in nature. The shell of molluscs is a remarkable example of a natural composite biomaterial. Biomineralization and how it affects mollusks is a popular research topic. The BMP-2 signaling pathway plays a canonical role in biomineralization. SMAD4 is an intracellular transmitter in the BMP signaling pathway in mammals, and some genomic data show SMAD4’s involvment in BMP signaling in invertbrates, but whether SMAD4 plays a conservative role in pearl oyster, Pinctada fucata, still need to be tested. Results In this study, we identified a SMAD4 gene (hereafter designated PfSMAD4) in pearl oyster Pinctada fucata. Bioinformatics analysis of PfSMAD4 showed high identity with its orthologs. PfSMAD4 was located in the cytoplasm in immunofluorescence assays and analyses of PfSMAD4 mRNA in tissues and developmental stages showed high expression in ovaries and D-shaped larvae. An RNA interference experiment, performed by PfSMAD4 double-stranded RNA (dsRNA) injection, demonstrated inhibition not only of nacre growth but also organic sheet formation with a decrease in PfSMAD4 expression. A knockdown experiment using PfBMP2 dsRNA showed decreased PfBMP2 and PfSMAD4 mRNA and irregular crystallization of the nacreous layer using scanning electron microscopy. In co-transfection experiments, PfBMP2-transactivated reporter constructs contained PfSMAD4 promoter sequences. Conclusions Our results suggest that PfSMAD4 plays a role in biomineralization and can transduce BMP signals in P. fucata. Our data provides important clues about the molecular mechanisms that regulate biomineralization in pearl oyster.
Collapse
Affiliation(s)
- Mi Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Xiande Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Qi Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
78
|
Structure of Gremlin-1 and analysis of its interaction with BMP-2. Biochem J 2016; 473:1593-604. [PMID: 27036124 PMCID: PMC4888461 DOI: 10.1042/bcj20160254] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/01/2016] [Indexed: 11/17/2022]
Abstract
We have determined the crystal structure of Gremlin-1 and analysed its interaction with BMP-2. Our results suggest that Gremlin-1 does not inhibit BMP-2 by direct 1:1 binding, but possibly has a novel mechanism of sequestering BMP-2 into a larger oligomeric complex. Bone morphogenetic protein 2 (BMP-2) is a member of the transforming growth factor-β (TGF-β) signalling family and has a very broad biological role in development. Its signalling is regulated by many effectors: transmembrane proteins, membrane-attached proteins and soluble secreted antagonists such as Gremlin-1. Very little is known about the molecular mechanism by which Gremlin-1 and other DAN (differential screening-selected gene aberrative in neuroblastoma) family proteins inhibit BMP signalling. We analysed the interaction of Gremlin-1 with BMP-2 using a range of biophysical techniques, and used mutagenesis to map the binding site on BMP-2. We have also determined the crystal structure of Gremlin-1, revealing a similar conserved dimeric structure to that seen in other DAN family inhibitors. Measurements using biolayer interferometry (BLI) indicate that Gremlin-1 and BMP-2 can form larger complexes, beyond the expected 1:1 stoichiometry of dimers, forming oligomers that assemble in alternating fashion. These results suggest that inhibition of BMP-2 by Gremlin-1 occurs by a mechanism that is distinct from other known inhibitors such as Noggin and Chordin and we propose a novel model of BMP-2–Gremlin-1 interaction yet not seen among any BMP antagonists, and cannot rule out that several different oligomeric states could be found, depending on the concentration of the two proteins.
Collapse
|
79
|
Scarfì S. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair. World J Stem Cells 2016; 8:1-12. [PMID: 26839636 PMCID: PMC4723717 DOI: 10.4252/wjsc.v8.i1.1] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/04/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix-associated bone morphogenetic proteins (BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed in many preclinical and clinical studies exploring their chondrogenic or osteoinductive potential in several animal model defects and in human diseases. During years of research in particular two BMPs, BMP2 and BMP7 have gained the podium for their use in the treatment of various cartilage and bone defects. In particular they have been recently approved for employment in non-union fractures as adjunct therapies. On the other hand, thanks to their potentialities in biomedical applications, there is a growing interest in studying the biology of mesenchymal stem cell (MSC), the rules underneath their differentiation abilities, and to test their true abilities in tissue engineering. In fact, the specific differentiation of MSCs into targeted cell-type lineages for transplantation is a primary goal of the regenerative medicine. This review provides an overview on the current knowledge of BMP roles and signaling in MSC biology and differentiation capacities. In particular the article focuses on the potential clinical use of BMPs and MSCs concomitantly, in cartilage and bone tissue repair.
Collapse
Affiliation(s)
- Sonia Scarfì
- Sonia Scarfì, Department of Earth, Environment and Life Sciences, University of Genova, 16132 Genova, Italy
| |
Collapse
|
80
|
Agrawal V, Sinha M. A review on carrier systems for bone morphogenetic protein-2. J Biomed Mater Res B Appl Biomater 2016; 105:904-925. [PMID: 26728994 DOI: 10.1002/jbm.b.33599] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 01/26/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2) has unique bone regeneration property. The powerful osteoinductive nature makes it considered as second line of therapy in nonunion bone defect. A large number of carriers and delivery systems made up of different materials have been investigated for controlled and sustained release of BMP-2. The delivery systems are in the form of hydrogel, microsphere, nanoparticles, and fibers. The carriers used for the delivery are made up of metals, ceramics, polymers, and composites. Implantation of these protein-loaded carrier leads to cell adhesion, degradation which eventually releases the drug/protein at site specific. But, problems like ectopic growth, lesser protein delivery, inactivation of the protein are reported in the available carrier systems. Therefore, it is need of an hour to modify the available carrier systems as well as explore other biomaterials with desired properties. In this review, all the reported carrier systems made of metals, ceramics, polymers, composites are evaluated in terms of their processing conditions, loading capacity and release pattern of BMP-2. Along with these biomaterials, the attempts of protein modification by adding some functional group to BMP-2 or extracting functional peptides from the protein to achieve the desired effect, is also evaluated. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 904-925, 2017.
Collapse
Affiliation(s)
- Vishal Agrawal
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Ahmedabad-, 380054, India
| | - Mukty Sinha
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Ahmedabad-, 380054, India
| |
Collapse
|
81
|
Huang B, Yuan Y, Ding S, Li J, Ren J, Feng B, Li T, Gu Y, Liu C. Nanostructured hydroxyapatite surfaces-mediated adsorption alters recognition of BMP receptor IA and bioactivity of bone morphogenetic protein-2. Acta Biomater 2015; 27:275-285. [PMID: 26360594 DOI: 10.1016/j.actbio.2015.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/27/2015] [Accepted: 09/06/2015] [Indexed: 11/25/2022]
Abstract
Highly efficient loading of bone morphogenetic protein-2 (BMP-2) onto carriers with desirable performance is still a major challenge in the field of bone regeneration. Till now, the nanoscaled surface-induced changes of the structure and bioactivity of BMP-2 remains poorly understood. Here, the effect of nanoscaled surface on the adsorption and bioactivity of BMP-2 was investigated with a series of hydroxyapatite surfaces (HAPs): HAP crystal-coated surface (HAP), HAP crystal-coated polished surface (HAP-Pol), and sintered HAP crystal-coated surface (HAP-Sin). The adsorption dynamics of recombinant human BMP-2 (rhBMP-2) and the accessibility of the binding epitopes of adsorbed rhBMP-2 for BMP receptors (BMPRs) were examined by a quartz crystal microbalance with dissipation. Moreover, the bioactivity of adsorbed rhBMP-2 and the BMP-induced Smad signaling were investigated with C2C12 model cells. A noticeably high mass-uptake of rhBMP-2 and enhanced recognition of BMPR-IA to adsorbed rhBMP-2 were found on the HAP-Pol surface. For the rhBMP-2-adsorbed HAPs, both ALP activity and Smad signaling increased in the order of HAP-Sin<HAP<HAP-Pol. Furthermore, hybrid molecular dynamics and steered molecular dynamics simulations validated that BMP-2 tightly anchored on the HAP-Pol surface with a relative loosened conformation, but the HAP-Sin surface induced a compact conformation of BMP-2. In conclusion, the nanostructured HAPs can modulate the way of adsorption of rhBMP-2, and thus the recognition of BMPR-IA and the bioactivity of rhBMP-2. These findings can provide insightful suggestions for the future design and fabrication of rhBMP-2-based scaffolds/implants. STATEMENT OF SIGNIFICANCE This study provides strong evidences that nanoscaled HAPs yield extraordinary influence on the adsorption behaviors and bioactivity of rhBMP-2. It has been found that the surface roughness and crystallinity played a crucial role in governing the way of rhBMP-2 binding to HAPs, and thus the conformation, recognition of BMPR-IA and bioactivity of adsorbed rhBMP-2. It is also for the first time to correlate numerical modeling and experimental results of the bioactivity of rhBMP-2 on nanostructured HAPs. This work can pave an avenue for the wider uses of rhBMP-2 in clinical applications and arouse broad interests among researchers in the fields of nano-biotechnology, biomaterials and bone tissue engineering.
Collapse
|
82
|
Li Y, Fang X, Jiang T. Minimally traumatic alveolar ridge augmentation with a tunnel injectable thermo-sensitive alginate scaffold. J Appl Oral Sci 2015; 23:215-23. [PMID: 26018314 PMCID: PMC4428467 DOI: 10.1590/1678-775720140348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/02/2015] [Indexed: 12/18/2022] Open
Abstract
Injectable bone substitutes and techniques have been developed for use in minimally invasive procedures for bone augmentation.
Collapse
Affiliation(s)
- Yifen Li
- Department of Prosthodontics, Hospital of Stomatology, Peking University School, Beijing, China
| | - Xiaoqian Fang
- Department of Prosthodontics, Hospital of Stomatology, Peking University School, Beijing, China
| | - Ting Jiang
- Department of Prosthodontics, Hospital of Stomatology, Peking University School, Beijing, China
| |
Collapse
|
83
|
Mitchell A, Kim B, Snyder S, Subramanian S, Uhrich K, O’Connor JP. Use of salicylic acid polymers and bone morphogenetic protein-2 to promote bone regeneration in rabbit parietal bone defects. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515603991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ability of bone defects to heal spontaneously is inversely related to the size of the defect, such that defects larger than a critical size will not heal without additional therapeutic intervention. Typically, large bone defects are filled with autologous bone harvested from another skeletal site, an osteoconductive bone graft material, treated with an osteoinductive factor such as bone morphogenetic protein-2, or by a combination of these approaches. Despite these interventions, unsatisfactory success and complication rates show that alternative treatment methods are needed. Here, we test whether salicylic acid polymers can be used as guided bone regeneration barriers in conjunction with bone morphogenetic protein-2 to treat 1-cm-diameter defects in rabbit parietal bones. Porous, 1-cm round polycaprolactone scaffolds were infused with calcium sulfate–containing bone morphogenetic protein-2 and then capped on one side with salicylic acid polymers. The polymers slowed resorption of calcium sulfate that was used as a carrier for bone morphogenetic protein-2, indicating that bone morphogenetic protein-2 release into the parietal bone defect was extended by the use of the salicylic acid polymer. Microcomputerized tomography and histomorphometric analysis of the parietal bones 8 weeks after implantation showed that the salicylic acid polymer did not impair bone formation in the defect. These observations indicate that salicylic polymers paired with bone morphogenetic protein-2 can be optimized for use in guided bone regeneration to help repair large bone defects.
Collapse
Affiliation(s)
- Ashley Mitchell
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Brian Kim
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Sabrina Snyder
- Department of Chemistry and Chemical Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Sangeeta Subramanian
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Kathryn Uhrich
- Department of Chemistry and Chemical Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - J Patrick O’Connor
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
84
|
Beck-Broichsitter BE, Becker ST, Seitz H, Wiltfang J, Warnke PH. Endocultivation: Histomorphological effects of repetitive rhBMP-2 application into prefabricated hydroxyapatite scaffolds at extraskeletal sites. J Craniomaxillofac Surg 2015; 43:981-8. [DOI: 10.1016/j.jcms.2015.03.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 11/30/2022] Open
|
85
|
Cell Death and Proliferation after Treatment and Reinfection of Clonorchis sinensis in the Sprague-Dawley Rat Bile Duct. Appl Microsc 2015. [DOI: 10.9729/am.2015.45.2.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
86
|
Kuczma M, Kraj P. Bone Morphogenetic Protein Signaling Regulates Development and Activation of CD4(+) T Cells. VITAMINS AND HORMONES 2015; 99:171-93. [PMID: 26279376 DOI: 10.1016/bs.vh.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bone morphogenetic proteins (BMPs) are growth factors belonging to the TGF-β (transforming growth factor β) superfamily. BMPs were found to regulate multiple cell processes such as proliferation, survival, differentiation, and apoptosis. They were originally described to play a pivotal role in inducing bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites but were found to play a significant role in embryogenesis and development of multiple tissues and organs. Activities of BMPs are regulated by a number of secreted proteins, which modulate their availability to bind cellular receptors. The functions of individual BMPs are highly redundant due to binding the same receptors and inducing overlapping signal transduction pathways. Recently, BMPs were found to regulate cells of the innate and adaptive immune system. BMPs are involved in thymic development of T cells at the early, double negative, as well as later, double positive, stages of thymopoesis. They specifically modulate thymic development of regulatory T cells (T(reg)). In the periphery, BMPs affect T cell activation, promoting generation of T(reg) cells. We found that mice deficient for one of the receptors activated by BMPs demonstrated slower growth of transplantable melanoma tumors.
Collapse
Affiliation(s)
- Michal Kuczma
- Cancer Center, Georgia Regents University, Augusta, Georgia, USA
| | - Piotr Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA.
| |
Collapse
|
87
|
Yang J, Ye L, Hui TQ, Yang DM, Huang DM, Zhou XD, Mao JJ, Wang CL. Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway. Int J Oral Sci 2015; 7:95-102. [PMID: 26047580 PMCID: PMC4817555 DOI: 10.1038/ijos.2015.7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2015] [Indexed: 02/08/2023] Open
Abstract
Both bone morphogenetic protein 2 (BMP2) and the wingless-type MMTV integration site (WNT)/β-catenin signalling pathway play important roles in odontoblast differentiation and dentinogenesis. Cross-talk between BMP2 and WNT/β-catenin in osteoblast differentiation and bone formation has been identified. However, the roles and mechanisms of the canonical WNT pathway in the regulation of BMP2 in dental pulp injury and repair remain largely unknown. Here, we demonstrate that BMP2 promotes the differentiation of human dental pulp cells (HDPCs) by activating WNT/β-catenin signalling, which is further mediated by p38 mitogen-activated protein kinase (MAPK) in vitro. BMP2 stimulation upregulated the expression of β-catenin in HDPCs, which was abolished by SB203580 but not by Noggin or LDN193189. Furthermore, BMP2 enhanced cell differentiation, which was not fully inhibited by Noggin or LDN193189. Instead, SB203580 partially blocked BMP2-induced β-catenin expression and cell differentiation. Taken together, these data suggest a possible mechanism by which the elevation of β-catenin resulting from BMP2 stimulation is mediated by the p38 MAPK pathway, which sheds light on the molecular mechanisms of BMP2-mediated pulp reparative dentin formation.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tian-Qian Hui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dong-Mei Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ding-Ming Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jeremy J Mao
- Center for Craniofacial Regeneration (CCR), Columbia University Medical Center, New York, USA
| | - Cheng-Lin Wang
- 1] State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China [2] Center for Craniofacial Regeneration (CCR), Columbia University Medical Center, New York, USA
| |
Collapse
|
88
|
Wei Q, Pohl TLM, Seckinger A, Spatz JP, Cavalcanti-Adam EA. Regulation of integrin and growth factor signaling in biomaterials for osteodifferentiation. Beilstein J Org Chem 2015; 11:773-83. [PMID: 26124879 PMCID: PMC4464188 DOI: 10.3762/bjoc.11.87] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/07/2015] [Indexed: 12/21/2022] Open
Abstract
Stem cells respond to the microenvironment (niche) they are located in. Under natural conditions, the extracellular matrix (ECM) is the essential component the in stem cell niche, in which both integrin ligands and growth factors are important regulators to directly or indirectly modulate the cell behavior. In this review, we summarize the current knowledge about the potential of integrin ligands and growth factors to induce osteogenic differentiation of stem cells, and discuss the signaling pathways that are initiated by both individual and cooperative parameters. The joint effect of integrin ligands and growth factors is highlighted as the multivalent interactions for bone therapy.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Biophysical Chemistry, Institute for Physical Chemistry, University of Heidelberg, INF 253, 69120 Heidelberg, Germany ; Department of New Materials and Biosystems, Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Theresa L M Pohl
- Department of Biophysical Chemistry, Institute for Physical Chemistry, University of Heidelberg, INF 253, 69120 Heidelberg, Germany ; Department of New Materials and Biosystems, Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Anja Seckinger
- Department of Internal Medicine V, Oncology, Hematology, and Rheumatology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Joachim P Spatz
- Department of Biophysical Chemistry, Institute for Physical Chemistry, University of Heidelberg, INF 253, 69120 Heidelberg, Germany ; Department of New Materials and Biosystems, Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Elisabetta A Cavalcanti-Adam
- Department of Biophysical Chemistry, Institute for Physical Chemistry, University of Heidelberg, INF 253, 69120 Heidelberg, Germany ; Department of New Materials and Biosystems, Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
89
|
Schwab EH, Pohl TLM, Haraszti T, Schwaerzer GK, Hiepen C, Spatz JP, Knaus P, Cavalcanti-Adam EA. Nanoscale control of surface immobilized BMP-2: toward a quantitative assessment of BMP-mediated signaling events. NANO LETTERS 2015; 15:1526-1534. [PMID: 25668064 DOI: 10.1021/acs.nanolett.5b00315] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work we determine the impact of surface density of immobilized BMP-2 on intracellular signal transduction. We use block copolymer micellar nanolithography to fabricate substrates with precisely spaced and tunable gold nanoparticle arrays carrying single BMP-2 molecules. We found that the immobilized growth factor triggers prolonged and elevated Smad signaling pathway activation compared to the same amount of soluble protein. This approach is suitable for achieving controlled and sustained local delivery of BMP-2 and other growth factors.
Collapse
Affiliation(s)
- Elisabeth H Schwab
- Department of Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg , INF 253, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Molecular characterization of the BMP7 gene and its potential role in shell formation in Pinctada martensii. Int J Mol Sci 2014; 15:21215-28. [PMID: 25407527 PMCID: PMC4264221 DOI: 10.3390/ijms151121215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/10/2014] [Accepted: 11/11/2014] [Indexed: 11/17/2022] Open
Abstract
Bone morphogenetic protein 7 (BMP7), also called osteogenetic protein-1, can induce bone formation. In this study, the obtained full-length cDNA of BMP7 from Pinctada martensii (Pm-BMP7) was 2972 bp, including a 5'-untranslated region (UTR) of 294 bp, an open reading fragment of 1290 bp encoding a 429 amino acid polypeptide and a 3'-UTR of 1388 bp. The deduced protein sequence of Pm-BMP7 contained a signal peptide, a pro-domain and a mature peptide. The mature peptide consisted of 135 amino acids and included a transforming growth factor β family domain with six shared cysteine residues. The protein sequence of Pm-BMP7 showed 66% identity with that from Crassostrea gigas. Two unigenes encoding Pm-BMPRI (Pm-BMP receptor I) and Pm-BMPRII were obtained from the transcriptome database of P. martensii. Tissue expression analysis demonstrated Pm-BMP7 and Pm-BMPRI were highly expressed in the mantle (shell formation related-tissue), while Pm-BMPRII was highly expressed in the foot. After inhibiting Pm-BMP7 expression using RNA interference (RNAi) technology, Pm-BMP7 mRNA was significantly down-regulated (p < 0.05) in the mantle pallium (nacre formation related-tissue) and the mantle edge (prismatic layer formation related-tissue). The microstructure, observed using a scanning electron microscope, indicated a disordered growth status in the nacre and obvious holes in the prismatic layer in the dsRNA-Pm-BMP7 injected-group. These results suggest that Pm-BMP7 plays a crucial role in the nacre and prismatic layer formation process of the shell.
Collapse
|
91
|
Engineering TGF-β superfamily ligands for clinical applications. Trends Pharmacol Sci 2014; 35:648-57. [PMID: 25458539 DOI: 10.1016/j.tips.2014.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022]
Abstract
TGF-β superfamily ligands govern normal tissue development and homeostasis, and their dysfunction is a hallmark of many diseases. These ligands are also well defined both structurally and functionally. This review focuses on TGF-β superfamily ligand engineering for therapeutic purposes, in particular for regenerative medicine and musculoskeletal disorders. We describe the key discovery that structure-guided mutation of receptor-binding epitopes, especially swapping of these epitopes between ligands, results in new ligands with unique functional properties that can be harnessed clinically. Given the promising results with prototypical engineered TGF-β superfamily ligands, and the vast number of such molecules that remain to be produced and tested, this strategy is likely to hold great promise for the development of new biologics.
Collapse
|
92
|
Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:326-35. [DOI: 10.1016/j.msec.2014.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/23/2014] [Accepted: 08/02/2014] [Indexed: 02/07/2023]
|
93
|
Martelli A, Santos AR. Cellular and morphological aspects of fibrodysplasia ossificans progressiva. Lessons of formation, repair, and bone bioengineering. Organogenesis 2014; 10:303-11. [PMID: 25482313 DOI: 10.4161/org.29206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare congenital disease that causes bone formation within the muscles, tendons, ligaments and connective tissues. There is no cure for this disorder and only treatment of the symptoms is available. The purpose of this study was to review the literature and describe the clinical, cellular and molecular aspects of FOP. The material used for the study was obtained by reviewing scientific articles published in various literature-indexed databases. In view of its rarity and of the lack of insightful information and the unpredictability of its course, FOP is a challenging disorder for professionals who are confronted by it. However, this rare disease raises a great deal of interest because understanding the mechanism of mature bone formation can encourage research lines related to bone regeneration and the prevention of heterotopic ossification.
Collapse
Affiliation(s)
- Anderson Martelli
- a Faculdade Mogiana do Estado de São Paulo (FMG) ; Mogi Guaçu , Brazil
| | | |
Collapse
|
94
|
Huh JE, Koh PS, Seo BK, Park YC, Baek YH, Lee JD, Park DS. Mangiferin reduces the inhibition of chondrogenic differentiation by IL-1β in mesenchymal stem cells from subchondral bone and targets multiple aspects of the Smad and SOX9 pathways. Int J Mol Sci 2014; 15:16025-42. [PMID: 25216336 PMCID: PMC4200868 DOI: 10.3390/ijms150916025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/30/2014] [Accepted: 08/21/2014] [Indexed: 02/06/2023] Open
Abstract
Mangiferin is a natural immunomodulator found in plants including mango trees. The effects of mangiferin on chondrogenesis and cartilage repair have not yet been reported. This study was designed to determine the effect of mangiferin on chondrogenic differentiation in IL-1β-stimulated mesenchymal stem cells (MSCs) from subchondral bone and to explore the mechanisms underlying these effects. MSCs were isolated from the subchondral bone of rabbit and treated with mangiferin alone and/or interleukin-1β (IL-1β). Mangiferin induced chondrogenic differentiation in MSCs by upregulating transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, and BMP-4 and several key markers of chondrogenesis, including sex-determining region Y-box (SRY-box) containing gene 9 (SOX9), type 2α1 collagen (Col2α1), cartilage link protein, and aggrecan. In IL-1β-stimulated MSCs, mangiferin significantly reversed the production of TGF-β, BMP-2, BMP-4, SOX9, Col2α1, cartilage link protein, and aggrecan, as well as matrix metalloproteinase (MMP)-1, MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS5). Mangiferin upregulated the phosphorylation of Smad 2, Smad 3, Smad 1/5/8, and SOX9 in IL-1β-stimulated MSCs. In the presence of mangiferin, SOX9 siRNA suppressed the activation of Smad 2, Smad 3, Smad 1/5/8, aggrecan, and Col2α1 expression. In conclusion, mangiferin exhibits both chondrogenic and chondroprotective effects on damaged MSCs and mediates these effects by targeting multiple aspects of the Smad and SOX9 signaling pathways.
Collapse
Affiliation(s)
- Jeong-Eun Huh
- East-West Bone & Joint Research Institute, Kyung Hee University, 149, Sangil-dong, Gangdong-gu, Seoul 134-727, Korea.
| | - Pil-Seong Koh
- Department of Acupuncture and Moxibustion, College of Oriental Medicine, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Byung-Kwan Seo
- Department of Acupuncture and Moxibustion, Kyung Hee University Hospital at Kangdong, 149, Sangil-dong, Gangdong-gu, Seoul 134-727, Korea.
| | - Yeon-Chul Park
- Department of Acupuncture and Moxibustion, Kyung Hee University Hospital at Kangdong, 149, Sangil-dong, Gangdong-gu, Seoul 134-727, Korea.
| | - Yong-Hyun Baek
- Department of Acupuncture and Moxibustion, Kyung Hee University Hospital at Kangdong, 149, Sangil-dong, Gangdong-gu, Seoul 134-727, Korea.
| | - Jae-Dong Lee
- Department of Acupuncture and Moxibustion, College of Oriental Medicine, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Dong-Suk Park
- Department of Acupuncture and Moxibustion, Kyung Hee University Hospital at Kangdong, 149, Sangil-dong, Gangdong-gu, Seoul 134-727, Korea.
| |
Collapse
|
95
|
Bone morphogenetic proteins: Relationship between molecular structure and their osteogenic activity. FOOD SCIENCE AND HUMAN WELLNESS 2014. [DOI: 10.1016/j.fshw.2014.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
96
|
Yoshimura H, Ohba S, Matsuda S, Kobayashi J, Ishimaru K, Imamura Y, Sano K. Osseous choristoma of the buccal mucosa: A case report with immunohistochemical study of bone morphogenetic protein-2 and -4, and a review of the literature. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, MEDICINE, AND PATHOLOGY 2014. [DOI: 10.1016/j.ajoms.2013.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
97
|
Zhang Y, Yuan C, Qin F, Hu G, Wang Z. Molecular characterization of gdf9 and bmp15 genes in rare minnow Gobiocypris rarus and their expression upon bisphenol A exposure in adult females. Gene 2014; 546:214-21. [PMID: 24914497 DOI: 10.1016/j.gene.2014.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/23/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
Growth differentiation factor 9 (Gdf9) and bone morphogenetic protein 15 (Bmp15) are members of transforming growth factor β (TGFβ) superfamily that plays important roles in regulating ovarian functions. We cloned the cDNAs of gdf9 and bmp15 in rare minnow Gobiocypris rarus. The full length cDNAs of gdf9 and bmp15 were 1999 and 1721 bp, encoding 431 and 384 amino acids respectively. They both contained conserved TGFβ superfamily domain, with six conserved cysteine residues. Tissue distribution showed that both gdf9 and bmp15 are highly expressed in the G. rarus ovary. Following bisphenol A (BPA) treatment, ovarian transcripts of gdf9 and bmp15 together with the gonadosomatic index and the ovarian histology were altered. It suggests that the altered gdf9 and bmp15 expression may play roles in the weight gain and abnormal development of the ovary following BPA exposure.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Cong Yuan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Fang Qin
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Guojun Hu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
98
|
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-β) superfamily of signaling molecules. In addition to protean roles in embryonic development, germ-line specification, and cellular differentiation, a central role in iron homeostasis has recently been demonstrated for certain BMPs. Specifically, BMP6 serves to relate hepatic iron stores to the hepatocellular expression of the iron-regulatory hormone hepcidin. This regulation occurs via cellular SMAD-signaling molecules and is strongly modulated by the BMP coreceptor hemojuvelin (HJV). Mutations in certain genes influencing signaling to hepcidin via the BMP/SMAD pathway are associated with human disorders of iron metabolism, such as hereditary hemochromatosis and iron-refractory iron-deficiency anemia. Evidence suggests that signals in addition to iron stores influence hepcidin expression via the BMP/SMAD pathway. This review summarizes the details of BMP/SMAD signaling, with a particular focus on its role in iron homeostasis and iron-related diseases.
Collapse
Affiliation(s)
- Nermi L Parrow
- Division of Molecular and Clinical Nutrition, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
99
|
Abstract
Osteoarthritis (OA) is a common joint degenerative disease affecting the whole joint structure, including articular cartilage, subchondral bone and synovial tissue. Although extensive work has been done in recent years to explore the molecular mechanism underlying this disease, the pathogenesis of OA is still poorly understood and currently, there is no effective disease-modifying treatment for OA. Recently, both in vitro and in vivo studies suggest that confirmed (TGF-β)/SMAD pathway plays a critical role during OA development. This short review will focus on the function and signaling mechanisms of TGF-β/SMAD pathway in articular chondrocytes, mesenchymal progenitor cells of subchondral bone and synovial lining cells during OA development.
Collapse
Affiliation(s)
- Jie Shen
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Shan Li
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
100
|
Wordinger RJ, Sharma T, Clark AF. The role of TGF-β2 and bone morphogenetic proteins in the trabecular meshwork and glaucoma. J Ocul Pharmacol Ther 2014; 30:154-62. [PMID: 24517218 DOI: 10.1089/jop.2013.0220] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Primary open-angle glaucoma (POAG) is the second leading cause of blindness worldwide. Elevated intraocular pressure (IOP) is a primary risk factor associated with POAG. Increased aqueous humor (AH) outflow resistance through the trabecular meshwork (TM) results in elevated IOP in POAG patients. Resistance to AH outflow is associated with increased accumulation of extracellular matrix (ECM) proteins in the TM. In addition, levels of transforming growth factor-beta2 (TGF-β2) are elevated in the AH and TM tissue of POAG patients. Elevated levels of TGF-β2 in other tissues have been associated with fibrosis and increased tissue stiffness. However, locally produced effectors that maintain homeostatic relationships must also be present. Bone morphogenetic proteins (BMPs) serve this purpose in the TM as they inhibit TGF-β2-induced ECM changes in TM cells. This review article first describes the TGF-β superfamily of growth factors including BMPs and their canonical and noncanonical signaling pathways. The article then addresses the role of TGF-β2 in the pathophysiology of POAG as related to the ECM and ECM crosslinking enzymes. This is followed by a discussion of potential homeostatic control mechanisms of TGF-β2 signaling in the TM including the inhibitory role of BMP-4 and BMP-7. We then describe the relationship of TGF-β2 and BMPs in TM fibrosis including the role of antagonists. Lastly, in future directions, we identify potential future studies that explore new and unique cellular interactions within the TM for potential therapeutic interventions.
Collapse
Affiliation(s)
- Robert J Wordinger
- 1 North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | | | | |
Collapse
|