51
|
Dien LQ, Phuong NTM, Hoa DT, Huy Hoang P. Efficient Pretreatment of Vietnamese Rice Straw by Soda and Sulfate Cooking Methods for Enzymatic Saccharification. Appl Biochem Biotechnol 2014; 175:1536-47. [DOI: 10.1007/s12010-014-1359-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
|
52
|
He YC, Liu F, Gong L, Lu T, Ding Y, Zhang DP, Qing Q, Zhang Y. Improving Enzymatic Hydrolysis of Corn Stover Pretreated by Ethylene Glycol-Perchloric Acid-Water Mixture. Appl Biochem Biotechnol 2014; 175:1306-17. [DOI: 10.1007/s12010-014-1353-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
|
53
|
Jain I, Kumar V, Satyanarayana T. Applicability of recombinant β-xylosidase from the extremely thermophilic bacterium Geobacillus thermodenitrificans in synthesizing alkylxylosides. BIORESOURCE TECHNOLOGY 2014; 170:462-469. [PMID: 25164338 DOI: 10.1016/j.biortech.2014.07.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
The β-xylosidase encoding gene (XsidB) of the extremely thermophilic bacterium Geobacillus thermodenitrificans has been cloned and expressed in Escherichia coli. The homotrimeric recombinant XsidB is of 204.0kDa, which is optimally active at 60°C and pH 7.0 with T1/2 of 58min at 70°C. The β-xylosidase remains unaffected in the presence of most metal ions and organic solvents. The Km [p-nitrophenyl β-xyloside (pNPX)], Vmax and kcat values of the enzyme are 2×10(-3)M, 1250μmolesmg(-1)min(-1) and 13.20×10(5)min(-1), respectively. The enzyme catalyzes transxylosylation reactions in the presence of alcohols as acceptors. The pharmaceutically important β-methyl-d-xylosides could be produced using pNPX as the donor and methanol as acceptor. The products of transxylosylation were identified by TLC and HPLC, and the structure was confirmed by (1)H NMR analysis. The enzyme is also useful in synthesizing transxylosylation products from the wheat bran hydrolysate.
Collapse
Affiliation(s)
- Ira Jain
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| | - Vikash Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| | - T Satyanarayana
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
54
|
Chatel G, De Oliveira Vigier K, Jérôme F. Sonochemistry: what potential for conversion of lignocellulosic biomass into platform chemicals? CHEMSUSCHEM 2014; 7:2774-87. [PMID: 25146583 DOI: 10.1002/cssc.201402289] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 05/04/2023]
Abstract
This Review focuses on the use of ultrasound to produce chemicals from lignocellulosic biomass. However, the question about the potential of sonochemistry for valorization/conversion of lignocellulosic biomass into added-value chemicals is rather conceptual. Until now, this technology has been mainly used for the production of low-value chemicals such as biodiesel or as simple method for pretreatment or extraction. According to preliminary studies reported in literature, access to added-value chemicals can be easily and sometimes solely obtained by the use of ultrasound. The design of sonochemical parameters offers many opportunities to develop new eco-friendly and efficient processes. The goal of this Review is to understand why the use of ultrasound is focused rather on pretreatment or extraction of lignocellulosic biomass rather than on the production of chemicals and to understand, through the reported examples, which directions need to be followed to favor strategies based on ultrasound-assisted production of chemicals from lignocellulosic biomass. We believe that ultrasound-assisted processes represent an innovative approach and will create a growing interest in academia but also in the industry in the near future. Based on the examples reported in the literature, we critically discuss how sonochemistry could offer new strategies and give rise to new results in lignocellulosic biomass valorization.
Collapse
Affiliation(s)
- Gregory Chatel
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP, UMR7285), Université de Poitiers, ENSIP, Bât. 1, 1 Rue Marcel Doré, TSA 41105, 86073-Poitiers Cedex 9, France.
| | | | | |
Collapse
|
55
|
Microwave pretreatment of lignocellulosic material in cholinium ionic liquid for efficient enzymatic saccharification. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
56
|
|
57
|
Ogura K, Ninomiya K, Takahashi K, Ogino C, Kondo A. Pretreatment of Japanese cedar by ionic liquid solutions in combination with acid and metal ion and its application to high solid loading. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:120. [PMID: 25426161 PMCID: PMC4243821 DOI: 10.1186/s13068-014-0120-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/29/2014] [Indexed: 06/01/2023]
Abstract
BACKGROUND Lignocellulosic biomass from plant biomass, especially softwoods, are well-known to present difficulties during attempts at hydrolysis due to their rigid structure. Pretreatment of lignocellulosic biomass with ionic liquids (ILs) is attractive as this requires to a low input of energy. However, IL pretreatment has the disadvantage of the presence of large amounts of water. Recently, it was reported that a small amount of acid has a positive effect on the degradation of biomass in IL with water. In this study the pretreatment of Japanese cedar, the most abundant softwood in Japan, was investigated using a combination of IL, acid and metal ions. RESULTS First, the novel ionic liquid pretreatment was investigated by changing the pretreatment solvent and the anti-solvent. A mixture of IL, acid and ferric oxide (Fe(3+)) ion was most effective for pretreatment, and an acetone-water mixture was also most effective on the precipitation of biomass. These optimized pretreatment combinations attained a higher degree of glucose release from the pretreated biomass. The amount of cellulose was concentrated from to a level of 36 to 84% of the insoluble fraction by the optimized pretreatment. Based on this result, it was assumed that the extraction of the lignin fraction from the biomass into an anti-solvent solution was attained. Finally, this optimized pretreatment was applied to the enzymatic hydrolysis of Japanese cedar at high-solid biomass loading, and 110 g/L of glucose production was attained. In addition, the ethanol fermentation with this hydrolyzed solution by Saccharomyces cerevisiae achieved 50 g/L ethanol production, and this yield reached 90% of the theoretical yield. CONCLUSIONS We developed an effective pretreatment protocol by changing to a pretreatment solvent containing IL, acid, metal ion and anti-solvent. The optimized pretreatment has an effect on softwood and separately retrieved lignin as a by-product. The saccharified solution at high-solid biomass loading was converted to ethanol in a high yield. This proposed methodology would boost the performance of the bioconversion of low-cost materials to other chemicals, and would not be limited to only ethanol but also would include other target chemicals.
Collapse
Affiliation(s)
- Kazuma Ogura
- />Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501 Japan
| | - Kazuaki Ninomiya
- />Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| | - Kenji Takahashi
- />Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| | - Chiaki Ogino
- />Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501 Japan
| | - Akihiko Kondo
- />Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501 Japan
| |
Collapse
|
58
|
Souza FHM, Meleiro LP, Machado CB, Zimbardi ALRL, Maldonado RF, Souza TACB, Masui DC, Murakami MT, Jorge JA, Ward RJ, Furriel RPM. Gene cloning, expression and biochemical characterization of a glucose- and xylose-stimulated β-glucosidase from Humicola insolens RP86. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
59
|
Abstract
Abstract
Recent studies have shown that butanol is a potential gasoline replacement that can also be blended in significant quantities with conventional diesel fuel. However, biotechnological production of butanol has some challenges such as low butanol titer, high cost feedstocks and product inhibition. The present work reviewed the technical and economic feasibility of the main technologies available to produce biobutanol. The latest studies integrating continuous fermentation processes with efficient product recovery and the use of mathematical models as tools for process scale-up, optimization and control are presented.
Collapse
|
60
|
Leo IM, Granados ML, Fierro JLG, Mariscal R. Sorbitol hydrogenolysis to glycols by supported ruthenium catalysts. CHINESE JOURNAL OF CATALYSIS 2014. [DOI: 10.1016/s1872-2067(14)60086-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
61
|
Investigation of a novel acid-catalyzed ionic liquid pretreatment method to improve biomass enzymatic hydrolysis conversion. Appl Microbiol Biotechnol 2014; 98:5275-86. [DOI: 10.1007/s00253-014-5664-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
|
62
|
Collias DI, Harris AM, Nagpal V, Cottrell IW, Schultheis MW. Biobased Terephthalic Acid Technologies: A Literature Review. Ind Biotechnol (New Rochelle N Y) 2014. [DOI: 10.1089/ind.2014.0002] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
63
|
A Novel β-Glucosidase from Humicola insolens with High Potential for Untreated Waste Paper Conversion to Sugars. Appl Biochem Biotechnol 2014; 173:391-408. [DOI: 10.1007/s12010-014-0847-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/03/2014] [Indexed: 11/26/2022]
|
64
|
Tsuge Y, Kawaguchi H, Sasaki K, Tanaka T, Kondo A. Two-step production of d-lactate from mixed sugars by growing and resting cells of metabolically engineered Lactobacillus plantarum. Appl Microbiol Biotechnol 2014; 98:4911-8. [DOI: 10.1007/s00253-014-5594-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 12/20/2022]
|
65
|
Jiang M, Dai W, Xi Y, Wu M, Kong X, Ma J, Zhang M, Chen K, Wei P. Succinic acid production from sucrose by Actinobacillus succinogenes NJ113. BIORESOURCE TECHNOLOGY 2014; 153:327-332. [PMID: 24393713 DOI: 10.1016/j.biortech.2013.11.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/20/2013] [Accepted: 11/23/2013] [Indexed: 06/03/2023]
Abstract
In this study, sucrose, a reproducible disaccharide extracted from plants, was used as the carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. During serum bottle fermentation, the succinic acid concentration reached 57.1g/L with a yield of 71.5%. Further analysis of the sucrose utilization pathways revealed that sucrose was transported and utilized via a sucrose phosphotransferase system, sucrose-6-phosphate hydrolase, and a fructose PTS. Compared to glucose utilization in single pathway, more pathways of A. succinogenes NJ113 are dependent on sucrose utilization. By changing the control strategy in a fed-batch culture to alleviate sucrose inhibition, 60.5g/L of succinic acid was accumulated with a yield of 82.9%, and the productivity increased by 35.2%, reaching 2.16g/L/h. Thus utilization of sucrose has considerable potential economics and environmental meaning.
Collapse
Affiliation(s)
- Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China
| | - Wenyu Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China
| | - Yonglan Xi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China
| | - Mingke Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China
| | - Xiangping Kong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China.
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China
| | - Ping Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China
| |
Collapse
|
66
|
Adsul M, Sharma B, Singhania RR, Saini JK, Sharma A, Mathur A, Gupta R, Tuli DK. Blending of cellulolytic enzyme preparations from different fungal sources for improved cellulose hydrolysis by increasing synergism. RSC Adv 2014. [DOI: 10.1039/c4ra08129c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A prepared enzyme cocktail from different fungal enzyme preparations increases the hydrolysis of avicel/wheat straw by increasing synergism between the same or different types of cellulases.
Collapse
Affiliation(s)
- Mukund Adsul
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil R and D Centre
- Faridabad-121007, India
| | - Bhawna Sharma
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil R and D Centre
- Faridabad-121007, India
| | - Reeta Rani Singhania
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil R and D Centre
- Faridabad-121007, India
| | - Jitendra Kumar Saini
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil R and D Centre
- Faridabad-121007, India
| | - Ankita Sharma
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil R and D Centre
- Faridabad-121007, India
| | - Anshu Mathur
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil R and D Centre
- Faridabad-121007, India
| | - Ravi Gupta
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil R and D Centre
- Faridabad-121007, India
| | - Deepak Kumar Tuli
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil R and D Centre
- Faridabad-121007, India
| |
Collapse
|
67
|
Singh V, Mani I, Chaudhary DK, Dhar PK. Metabolic engineering of biosynthetic pathway for production of renewable biofuels. Appl Biochem Biotechnol 2013; 172:1158-71. [PMID: 24197521 DOI: 10.1007/s12010-013-0606-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 10/23/2013] [Indexed: 12/12/2022]
Abstract
Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.
Collapse
Affiliation(s)
- Vijai Singh
- Department of Biotechnology, Invertis University, Bareilly-Lucknow National Highway 24, Bareilly, 243123, India,
| | | | | | | |
Collapse
|
68
|
Souza FHM, Inocentes RF, Ward RJ, Jorge JA, Furriel RPM. Glucose and xylose stimulation of a β-glucosidase from the thermophilic fungus Humicola insolens: A kinetic and biophysical study. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
69
|
Chaturvedi V, Verma P. An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 2013; 3:415-431. [PMID: 28324338 PMCID: PMC3781263 DOI: 10.1007/s13205-013-0167-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022] Open
Abstract
The hunt for alternative sources of energy generation that are inexpensive, ecofriendly, renewable and can replace fossil fuels is on, owing to the increasing demands of energy. One approach in this direction is the conversion of plant residues into biofuels wherein lignocellulose, which forms the structural framework of plants consisting of cellulose, hemicellulose and lignin, is first broken down and hydrolyzed into simple fermentable sugars, which upon fermentation form biofuels such as ethanol. A major bottleneck is to disarray lignin which is present as a protective covering and makes cellulose and hemicellulose recalcitrant to enzymatic hydrolysis. A number of biomass deconstruction or pretreatment processes (physical, chemical and biological) have been used to break the structural framework of plants and depolymerize lignin. This review surveys and discusses some major pretreatment processes pertaining to the pretreatment of plant biomass, which are used for the production of biofuels and other value added products. The emphasis is given on processes that provide maximum amount of sugars, which are subsequently used for the production of biofuels.
Collapse
Affiliation(s)
- Venkatesh Chaturvedi
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh India
| | - Pradeep Verma
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh India
- Present Address: Department of Microbiology, Central University of Rajasthan, N.H. 8 Bandarsindri, Kishangarh, Ajmer, Rajasthan India
| |
Collapse
|
70
|
Subhedar PB, Gogate PR. Intensification of Enzymatic Hydrolysis of Lignocellulose Using Ultrasound for Efficient Bioethanol Production: A Review. Ind Eng Chem Res 2013. [DOI: 10.1021/ie401286z] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Preeti B. Subhedar
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai−400
019, India
| | - Parag R. Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai−400
019, India
| |
Collapse
|
71
|
Yamada R, Nakatani Y, Ogino C, Kondo A. Efficient direct ethanol production from cellulose by cellulase- and cellodextrin transporter-co-expressing Saccharomyces cerevisiae. AMB Express 2013; 3:34. [PMID: 23800294 PMCID: PMC3699431 DOI: 10.1186/2191-0855-3-34] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/18/2013] [Indexed: 11/10/2022] Open
Abstract
Efficient degradation of cellulosic biomass requires the synergistic action of the cellulolytic enzymes endoglucanase, cellobiohydrolase, and β-glucosidase. Although there are many reports describing consolidation of hydrolysis and fermentation steps using recombinant Saccharomyces cerevisiae that express cellulolytic enzymes, the efficiency of cellulose degradation has not been sufficiently improved. Although the yeast S. cerevisiae cannot take up cellooligosaccharide, some fungi can take up and assimilate cellooligosaccharide through a cellodextrin transporter. In this study, a S. cerevisiae strain co-expressing genes for several cell surface display cellulases and the cellodextrin transporter was constructed for the purpose of improving the efficiency of direct ethanol fermentation from phosphoric acid swollen cellulose (PASC). The cellulase/cellodextrin transporter-coexpressing strain produced 1.7-fold more ethanol (4.3 g/L) from PASC during a 72-h fermentation than did a strain expressing cellulase only (2.5 g/L). Direct ethanol production from PASC by the recombinant S. cerevisiae strain was improved by co-expression of cellulase display and cellodextrin transporter genes. These results suggest that cellulase- and cellodextrin transporter-co-expressing S. cerevisiae could be a promising technology for efficient direct ethanol production from cellulose.
Collapse
|
72
|
Vanholme B, Desmet T, Ronsse F, Rabaey K, Breusegem FV, Mey MD, Soetaert W, Boerjan W. Towards a carbon-negative sustainable bio-based economy. FRONTIERS IN PLANT SCIENCE 2013; 4:174. [PMID: 23761802 PMCID: PMC3669761 DOI: 10.3389/fpls.2013.00174] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/16/2013] [Indexed: 05/17/2023]
Abstract
The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy.
Collapse
Affiliation(s)
- Bartel Vanholme
- Department of Plant Systems Biology, Flanders Institute for BiotechnologyGent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Tom Desmet
- Department of Biochemical and Microbial Technology, Centre of Expertise – Industrial Biotechnology and Biocatalysis, Ghent UniversityGent, Belgium
| | - Frederik Ronsse
- Department of Biosystems Engineering, Ghent UniversityGent, Belgium
| | - Korneel Rabaey
- Laboratory of Microbial Ecology and Technology, Ghent UniversityGent, Belgium
- Centre for Microbial Electrosynthesis, The University of QueenslandBrisbane, Australia
- Advanced Water Management Centre, The University of QueenslandBrisbane, Australia
| | - Frank Van Breusegem
- Department of Plant Systems Biology, Flanders Institute for BiotechnologyGent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Marjan De Mey
- Department of Biochemical and Microbial Technology, Centre of Expertise – Industrial Biotechnology and Biocatalysis, Ghent UniversityGent, Belgium
| | - Wim Soetaert
- Department of Biochemical and Microbial Technology, Centre of Expertise – Industrial Biotechnology and Biocatalysis, Ghent UniversityGent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, Flanders Institute for BiotechnologyGent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| |
Collapse
|
73
|
Lan EI, Liao JC. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. BIORESOURCE TECHNOLOGY 2013. [PMID: 23186690 DOI: 10.1016/j.biortech.2012.09.104] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Microbial production of fuel and chemical feedstock is a promising approach to solving energy and environmental problems. n-Butanol, isobutanol and other higher alcohols are of particular interest because they can serve as both fuel and chemical feedstock. Alternative resources such as CO2, syngas, waste protein, and lignocellulose are currently being investigated for their potential to produce these compounds. Except for lignocellulose, utilization of such alternative resource has not been examined extensively. This review aims to summarize the development of metabolic pathways for efficient synthesis of these higher alcohols and the current status of microbial strain development for the conversion of diverse resources into higher alcohols.
Collapse
Affiliation(s)
- Ethan I Lan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
74
|
Cheng KK, Wu J, Wang GY, Li WY, Feng J, Zhang JA. Effects of pH and dissolved CO2 level on simultaneous production of 2,3-butanediol and succinic acid using Klebsiella pneumoniae. BIORESOURCE TECHNOLOGY 2013; 135:500-503. [PMID: 23010216 DOI: 10.1016/j.biortech.2012.08.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/23/2012] [Accepted: 08/25/2012] [Indexed: 06/01/2023]
Abstract
The influences of pH and dissolved CO2 level on the regulation of growth and formation of catabolic end products have been investigated in Klebsiella pneumoniae. With increasing CO2 levels, there were no apparent changes in 2,3-butanediol production but succinic acid productions were enhanced significantly. A novel strategy for co-production of 2,3-butanediol and succinic acid using K. pneumoniae was developed by controlling pH and dissolved CO2 concentration in fermentation medium. Under the optimum condition, maximal 77.1 g l(-1) 2,3-butanediol and 28.7 g l(-1) succinic acid were obtained after 60 h of fed-batch fermentation, giving a 2,3-butanediol+succinic acid yield of 1.03 mol mol(-1) glucose. This type of fermentation producing two commercial interests at the same fermentation process might be considered for a promising biological production process which will decrease the production cost by sharing the operation and recovery cost.
Collapse
Affiliation(s)
- Ke-Ke Cheng
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
75
|
Chua TK, Liang DW, Qi C, Yang KL, He J. Characterization of a butanol-acetone-producing Clostridium strain and identification of its solventogenic genes. BIORESOURCE TECHNOLOGY 2013; 135:372-378. [PMID: 23069614 DOI: 10.1016/j.biortech.2012.08.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
A unique Clostridium species strain G117 was obtained in this study to be capable of producing dominant butanol from glucose. Butanol of 13.50 g/L was produced when culture G117 was fed with 60 g/L glucose, which is ~20% higher than previously reported butanol production by wild-type Clostridium acetobutylicum ATCC 824 under similar conditions. Strain G117 also distinguishes itself by generating negligible amount of ethanol, but producing butanol and acetone as biosolvent end-products. A butanol dehydrogenase gene (bdh gene) was identified in strain G117, which demonstrated a ~200-fold increase in transcription level measured by quantitative real-time PCR after 10h of culture growth. The high transcription suggests that this bdh gene could be a putative gene involved in butanol production. In all, Clostridium sp. strain G117 serves as a potential candidate for industrial biobutanol production while the absence of ethanol ensures an economic-efficient separation and purification of butanol.
Collapse
Affiliation(s)
- Teck Khiang Chua
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
76
|
Guo T, He AY, Du TF, Zhu DW, Liang DF, Jiang M, Wei P, Ouyang PK. Butanol production from hemicellulosic hydrolysate of corn fiber by a Clostridium beijerinckii mutant with high inhibitor-tolerance. BIORESOURCE TECHNOLOGY 2013; 135:379-385. [PMID: 22985825 DOI: 10.1016/j.biortech.2012.08.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/06/2012] [Accepted: 08/09/2012] [Indexed: 06/01/2023]
Abstract
A Clostridium beijerinckii mutant RT66 with considerable inhibitor-tolerance obtained by continuous culture was used for butanol production from non-detoxified hemicellulosic hydrolysate of corn fiber treated with dilute sulfuric acid (SAHHC). In fed-batch fermentation, 1.8L of diluted SAHHC containing 10 g/L of reducing sugar was provided during the acidogenic phase and 0.2L of concentrated SAHHC containing 300 g/L of reducing sugar was provided during the solventogenic phase. The mutant produced a total amount of solvents of 12.9 g/L, which consisted of 3.1 g/L of acetone, 9.3 g/L of butanol and 0.5 g/L of ethanol. A solvent yield of 0.35 g/g sugar and a productivity of 0.18 g/L h in 72 h were achieved. The remarkable inhibitor-tolerance of C. beijerinckii RT66 demonstrates that this may be an excellent strain for butanol production from ligocellulosic materials.
Collapse
Affiliation(s)
- Ting Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 211816, PR China
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Improved succinate production by metabolic engineering. BIOMED RESEARCH INTERNATIONAL 2013; 2013:538790. [PMID: 23691505 PMCID: PMC3652112 DOI: 10.1155/2013/538790] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/12/2013] [Accepted: 03/17/2013] [Indexed: 11/18/2022]
Abstract
Succinate is a promising chemical which has wide applications and can be produced by biological route. The history of the biosuccinate production shows that the joint effort of different metabolic engineering approaches brings successful results. In order to enhance the succinate production, multiple metabolical strategies have been sought. In this review, different overproducers for succinate production, including natural succinate overproducers and metabolic engineered overproducers, are examined and the metabolic engineering strategies and performances are discussed. Modification of the mechanism of substrate transportation, knocking-out genes responsible for by-products accumulation, overexpression of the genes directly involved in the pathway, and improvement of internal NADH and ATP formation are some of the strategies applied. Combination of the appropriate genes from homologous and heterologous hosts, extension of substrate, integrated production of succinate, and other high-value-added products are expected to bring a desired objective of producing succinate from renewable resources economically and efficiently.
Collapse
|
78
|
|
79
|
Optimization of β-glucosidase, β-xylosidase and xylanase production by Colletotrichum graminicola under solid-state fermentation and application in raw sugarcane trash saccharification. Int J Mol Sci 2013; 14:2875-902. [PMID: 23364611 PMCID: PMC3588020 DOI: 10.3390/ijms14022875] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/12/2012] [Accepted: 01/09/2013] [Indexed: 12/02/2022] Open
Abstract
Efficient, low-cost enzymatic hydrolysis of lignocellulosic residues is essential for cost-effective production of bioethanol. The production of β-glucosidase, β-xylosidase and xylanase by Colletotrichum graminicola was optimized using Response Surface Methodology (RSM). Maximal production occurred in wheat bran. Sugarcane trash, peanut hulls and corncob enhanced β-glucosidase, β-xylosidase and xylanase production, respectively. Maximal levels after optimization reached 159.3 ± 12.7 U g−1, 128.1 ± 6.4 U g−1 and 378.1 ± 23.3 U g−1, respectively, but the enzymes were produced simultaneously at good levels under culture conditions optimized for each one of them. Optima of pH and temperature were 5.0 and 65 °C for the three enzymes, which maintained full activity for 72 h at 50 °C and for 120 min at 60 °C (β-glucosidase) or 65 °C (β-xylosidase and xylanase). Mixed with Trichoderma reesei cellulases, C. graminicola crude extract hydrolyzed raw sugarcane trash with glucose yield of 33.1% after 48 h, demonstrating good potential to compose efficient cocktails for lignocellulosic materials hydrolysis.
Collapse
|
80
|
|
81
|
Nduko JM, Matsumoto K, Ooi T, Taguchi S. Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme. Metab Eng 2013. [DOI: 10.1016/j.ymben.2012.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
82
|
Wang C, Thygesen A, Liu Y, Li Q, Yang M, Dang D, Wang Z, Wan Y, Lin W, Xing J. Bio-oil based biorefinery strategy for the production of succinic acid. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:74. [PMID: 23657107 PMCID: PMC3655842 DOI: 10.1186/1754-6834-6-74] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/03/2013] [Indexed: 05/17/2023]
Abstract
BACKGROUND Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic phase and aqueous phase parts. The organic phase bio-oil can be easily upgraded to transport fuel. The aqueous phase bio-oil (AP-bio-oil) is of low value. There is no report for its usage or upgrading via biological methods. In this paper, the use of AP-bio-oil for the production of succinic acid was investigated. RESULTS The transgenic E. coli strain could grow in modified M9 medium containing 20 v/v% AP-bio-oil with an increase in OD from 0.25 to 1.09. And 0.38 g/L succinic acid was produced. With the presence of 4 g/L glucose in the medium, succinic acid concentration increased from 1.4 to 2.4 g/L by addition of 20 v/v% AP-bio-oil. When enzymatic hydrolysate of corn stover was used as carbon source, 10.3 g/L succinic acid was produced. The obtained succinic acid concentration increased to 11.5 g/L when 12.5 v/v% AP-bio-oil was added. However, it decreased to 8 g/L when 50 v/v% AP-bio-oil was added. GC-MS analysis revealed that some low molecular carbon compounds in the AP-bio-oil were utilized by E. coli. CONCLUSIONS The results indicate that AP-bio-oil can be used by E. coli for cell growth and succinic acid production.
Collapse
Affiliation(s)
- Caixia Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P. O. Box 353, No. 1 Zhongguancun North Second Street, Beijing 100190, P.R. China
- 2University of Chinese Academy of Sciences, Beijing 100049, R.P. China
| | - Anders Thygesen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, DK-2800, Denmark
- Sino-Danish Center for Education and Research, Niels Jensensvej 2, DK-8000, Aarhus C, Denmark
| | - Yilan Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P. O. Box 353, No. 1 Zhongguancun North Second Street, Beijing 100190, P.R. China
- 2University of Chinese Academy of Sciences, Beijing 100049, R.P. China
| | - Qiang Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P. O. Box 353, No. 1 Zhongguancun North Second Street, Beijing 100190, P.R. China
| | - Maohua Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P. O. Box 353, No. 1 Zhongguancun North Second Street, Beijing 100190, P.R. China
| | - Dan Dang
- 2University of Chinese Academy of Sciences, Beijing 100049, R.P. China
- State Key Laboratory of Multiple Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, P. O. Box 353, , Beijing 100190, P.R. China
| | - Ze Wang
- State Key Laboratory of Multiple Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, P. O. Box 353, , Beijing 100190, P.R. China
| | - Yinhua Wan
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P. O. Box 353, No. 1 Zhongguancun North Second Street, Beijing 100190, P.R. China
| | - Weigang Lin
- State Key Laboratory of Multiple Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, P. O. Box 353, , Beijing 100190, P.R. China
| | - Jianmin Xing
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P. O. Box 353, No. 1 Zhongguancun North Second Street, Beijing 100190, P.R. China
| |
Collapse
|
83
|
Ninomiya K, Soda H, Ogino C, Takahashi K, Shimizu N. Effect of ionic liquid weight ratio on pretreatment of bamboo powder prior to enzymatic saccharification. BIORESOURCE TECHNOLOGY 2013. [PMID: 23196237 DOI: 10.1016/j.biortech.2012.10.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The pretreatment efficiency of weight ratios ranging from 0 to 10 of the ionic liquid, cholinum IL, to bamboo powder was investigated. An IL/biomass ratio of 3g/g was critical to obtain a cellulose saccharification ratio of 80%. At this ratio, the treated bamboo powder remained as a solid. The solid-state pretreatment required a minimum amount of cholinium IL, which could reduce the cost of IL-assisted pretreatment and reduce the amount of wastewater generated in the process.
Collapse
Affiliation(s)
- Kazuaki Ninomiya
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | |
Collapse
|
84
|
Cellulose degradation by Sulfolobus solfataricus requires a cell-anchored endo-β-1-4-glucanase. J Bacteriol 2012; 194:5091-100. [PMID: 22821975 DOI: 10.1128/jb.00672-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A sequence encoding a putative extracellular endoglucanase (sso1354) was identified in the complete genome sequence of Sulfolobus solfataricus. The encoded protein shares signature motifs with members of glycoside hydrolases family 12. After an unsuccessful first attempt at cloning the full-length coding sequences in Escherichia coli, an active but unstable recombinant enzyme lacking a 27-residue N-terminal sequence was generated. This 27-amino-acid sequence shows significant similarity with corresponding regions in the sugar binding proteins AraS, GlcS, and TreS of S. solfataricus that are responsible for anchoring them to the plasma membrane. A strategy based on an effective vector/host genetic system for Sulfolobus and on expression control by the promoter of the S. solfataricus gene which encodes the glucose binding protein allowed production of the enzyme in sufficient quantities for study. In fact, the enzyme expressed in S. solfataricus was stable and highly thermoresistant and showed optimal activity at low pH and high temperature. The protein was detected mainly in the plasma membrane fraction, confirming the structural similarity to the sugar binding proteins. The results of the protein expression in the two different hosts showed that the SSO1354 enzyme is endowed with an endo-β-1-4-glucanase activity and specifically hydrolyzes cellulose. Moreover, it also shows significant but distinguishable specificity toward several other sugar polymers, such as lichenan, xylan, debranched arabinan, pachyman, and curdlan.
Collapse
|
85
|
Production of a xylose-stimulated β-glucosidase and a cellulase-free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation. World J Microbiol Biotechnol 2012; 28:2689-701. [PMID: 22806195 DOI: 10.1007/s11274-012-1079-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/05/2012] [Indexed: 10/28/2022]
Abstract
Humicola brevis var. thermoidea cultivated under solid state fermentation in wheat bran and water (1:2 w/v) was a good producer of β-glucosidase and xylanase. After optimization using response surface methodology the level of xylanase reached 5,791.2 ± 411.2 U g(-1), while β-glucosidase production was increased about 2.6-fold, reaching 20.7 ± 1.5 U g(-1). Cellulase levels were negligible. Biochemical characterization of H. brevis β-glucosidase and xylanase activities showed that they were stable in a wide pH range. Optimum pH for β-glucosidase and xylanase activities were 5.0 and 5.5, respectively, but the xylanase showed 80 % of maximal activity when assayed at pH 8.0. Both enzymes presented high thermal stability. The β-glucosidase maintained about 95 % of its activity after 26 h in water at 55 °C, with half-lives of 15.7 h at 60 °C and 5.1 h at 65 °C. The presence of xylose during heat treatment at 65 °C protected β-glucosidase against thermal inactivation. Xylanase maintained about 80 % of its activity after 200 h in water at 60 °C. Xylose stimulated β-glucosidase activity up to 1.7-fold, at 200 mmol L(-1). The notable features of both xylanase and β-glucosidase suggest that H. brevis crude culture extract may be useful to compose efficient enzymatic cocktails for lignocellulosic materials treatment or paper pulp biobleaching.
Collapse
|
86
|
Mazzoli R, Lamberti C, Pessione E. Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies. Trends Biotechnol 2012; 30:111-9. [DOI: 10.1016/j.tibtech.2011.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 01/19/2023]
|
87
|
Ninomiya K, Kamide K, Takahashi K, Shimizu N. Enhanced enzymatic saccharification of kenaf powder after ultrasonic pretreatment in ionic liquids at room temperature. BIORESOURCE TECHNOLOGY 2012; 103:259-265. [PMID: 22047661 DOI: 10.1016/j.biortech.2011.10.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
This study demonstrates for the first time that the enzymatic hydrolysis of cellulose is drastically enhanced following ultrasonic pretreatment of lignocellulosic material in ionic liquids (ILs) when compared to conventional thermal pretreatment. Five types of ILs, 1-buthyl-3-methylimidazolium chloride (BmimCl), 1-allyl-3-methylimidazolium chloride (AmimCl), 1-ethyl-3-methylimidazolium chloride (EmimCl), 1-ethyl-3-methylimidazolium diethyl phosphate (EmimDep), and 1-ethyl-3-methylimidazolium acetate (EmimOAc) were tested. Cellulose saccharification ratio was about 20% for kenaf powders pretreated in BmimCl, AmimCl, EmimCl, and EmimDep by conventional heating at 110 °C for 120 min. Conversely, 60-95% of cellulose was hydrolyzed to glucose, subsequent to ultrasonic pretreatment in the same ILs for 120 min at 25 °C. The cellulose saccharification ratio of kenaf powder in EmimOAc was 86% after only 15 min of the ultrasonic pretreatment at 25 °C, compared to only 47% in that case of thermal pretreatment in the IL.
Collapse
Affiliation(s)
- Kazuaki Ninomiya
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | |
Collapse
|
88
|
Chan S, Kanchanatawee S, Jantama K. Production of succinic acid from sucrose and sugarcane molasses by metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2012; 103:329-336. [PMID: 22023966 DOI: 10.1016/j.biortech.2011.09.096] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 05/31/2023]
Abstract
Sucrose-utilizing genes (cscKB and cscA) from Escherichia coli KO11 were cloned and expressed in a metabolically engineered E. coli KJ122 to enhance succinate production from sucrose. KJ122 harboring a recombinant plasmid, pKJSUC, was screened for the efficient sucrose utilization by growth-based selection and adaptation. KJ122-pKJSUC-24T efficiently utilized sucrose in a low-cost medium to produce high succinate concentration with less accumulation of by-products. Succinate concentrations of 51 g/L (productivity equal to 1.05 g/L/h) were produced from sucrose in anaerobic bottles, and concentrations of 47 g/L were produced in 10L bioreactor within 48 h. Antibiotics had no effect on the succinate production by KJ122-pKJSUC-24T. In addition, succinate concentrations of 62 g/L were produced from sugarcane molasses in anaerobic bottles, and concentrations of 56 g/L in 10 L bioreactor within 72 h. These results demonstrated that KJ122-pKJSUC-24T would be a potential strain for bio-based succinate production from sucrose and sugarcane molasses.
Collapse
Affiliation(s)
- Sitha Chan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Ave., Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | | | | |
Collapse
|
89
|
Survase SA, Sklavounos E, Jurgens G, van Heiningen A, Granström T. Continuous acetone-butanol-ethanol fermentation using SO2-ethanol-water spent liquor from spruce. BIORESOURCE TECHNOLOGY 2011; 102:10996-11002. [PMID: 21974878 DOI: 10.1016/j.biortech.2011.09.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 05/31/2023]
Abstract
SO2-ethanol-water (SEW) spent liquor from spruce chips was successfully used for batch and continuous production of acetone, butanol and ethanol (ABE). Initially, batch experiments were performed using spent liquor to check the suitability for production of ABE. Maximum concentration of total ABE was found to be 8.79 g/l using 4-fold diluted SEW liquor supplemented with 35 g/l of glucose. The effect of dilution rate on solvent production, productivity and yield was studied in column reactor consisting of immobilized Clostridium acetobutylicum DSM 792 on wood pulp. Total solvent concentration of 12 g/l was obtained at a dilution rate of 0.21 h(-1). The maximum solvent productivity (4.86 g/l h) with yield of 0.27 g/g was obtained at dilution rate of 0.64 h(-1). Further, to increase the solvent yield, the unutilized sugars were subjected to batch fermentation.
Collapse
Affiliation(s)
- Shrikant A Survase
- Aalto University School of Chemical Technology, Department of Biotechnology and Chemical Technology, POB 16100, 00076 Aalto, Finland.
| | | | | | | | | |
Collapse
|
90
|
Processive and nonprocessive cellulases for biofuel production—lessons from bacterial genomes and structural analysis. Appl Microbiol Biotechnol 2011; 93:497-502. [DOI: 10.1007/s00253-011-3701-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/18/2011] [Accepted: 11/01/2011] [Indexed: 01/26/2023]
|
91
|
Nduko JM, Suzuki W, Matsumoto K, Kobayashi H, Ooi T, Fukuoka A, Taguchi S. Polyhydroxyalkanoates production from cellulose hydrolysate in Escherichia coli LS5218 with superior resistance to 5-hydroxymethylfurfural. J Biosci Bioeng 2011; 113:70-2. [PMID: 21993429 DOI: 10.1016/j.jbiosc.2011.08.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/10/2011] [Accepted: 08/24/2011] [Indexed: 11/25/2022]
Abstract
Poly[3-hydroxybutyrate-co-3-hydroxyvalerate(3HV)] was produced in recombinant Escherichia coli LS5218 from ruthenium-catalyzed cellulose hydrolysate and propionate. The strain was found to be resistant to 5-hydroxymethylfurfural (5-HMF), which is a major inhibitory byproduct generated in the cellulose hydrolysis reaction. The 3HV fraction was successfully regulated in the range of 5.6-40 mol%.
Collapse
Affiliation(s)
- John Masani Nduko
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | | | | | | | | | | | | |
Collapse
|
92
|
Enhanced enzymatic hydrolysis of cellulose by partial modification of its chemical structure. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.05.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
93
|
Rose M, Palkovits R. Cellulose-Based Sustainable Polymers: State of the Art and Future Trends. Macromol Rapid Commun 2011; 32:1299-311. [DOI: 10.1002/marc.201100230] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Indexed: 11/06/2022]
|