51
|
Tang B, Chen Q, Bin L, Huang S, Zhang W, Fu F, Li P. Insight into the microbial community and its succession of a coupling anaerobic-aerobic biofilm on semi-suspended bio-carriers. BIORESOURCE TECHNOLOGY 2018; 247:591-598. [PMID: 28982089 DOI: 10.1016/j.biortech.2017.09.147] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
This work aims at establishing a coupling anaerobic-aerobic biofilm within a single bioreactor and revealing its microbial community and succession. By using a semi-suspended bio-carrier fabricated with 3D printing technique, an obvious DO gradient was gradually created within the biofilm, which demonstrated that a coupling anaerobic-aerobic biofilm was successfully established on the surface of bio-carriers. The results of metagenomic analysis revealed that the microbial community on the bio-carriers experienced a continuous succession in its structure and dominant species along with the operational time. The formed coupling biofilm created suitable micro multi-habitats for the co-existence of these microorganisms, including nitrifying and denitrifying bacteria, which were beneficial to the removing of organic pollutants and converting nutrients. Along with the succession, the microbial community was gradually dominated by several functional microorganisms. Overall, the results presented an approach to improve the microbial biodiversity by constructing a new structure and floating status of bio-carriers.
Collapse
Affiliation(s)
- Bing Tang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China.
| | - Qianyu Chen
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Liying Bin
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Wenxiang Zhang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Ping Li
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| |
Collapse
|
52
|
Zheng Y, Huang Y, Liao Q, Fu Q, Xia A, Zhu X. Impact of the accumulation and adhesion of released oxygen during Scenedesmus obliquus photosynthesis on biofilm formation and growth. BIORESOURCE TECHNOLOGY 2017; 244:198-205. [PMID: 28779672 DOI: 10.1016/j.biortech.2017.07.145] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Microalgae cells release O2 during photosynthesis. The gas can accumulate and adhere in form of bubbles, which affect the transport of nutrients in the biofilm and the biofilm microstructure. To investigate the reasons for the adhesion of these oxygen bubbles and their impact on biofilm, polytetrafluoroethylene (PTFE) emulsion was sprayed onto glass surface to change the parameters for gas accumulation and adhesion. The results indicated gas could aggregate into bubbles and adhere to hydrophobic and rough surface. The bubble behaviors caused the biofilm to be porous (with a microporosity of 9.43-20.94%). The biomass concentration of the more porous biofilm increased by 9.26% to 22.42gm-2 on 1% PTFE-treated surface compared to that on an untreated surface. However, with an increase in PTFE concentration, the amount of adhered bubbles increased. More microalgae cells in biofilms were carried up by bubbles. The biofilm concentration on 5% PTFE-treated surface decreased by 15.30%.
Collapse
Affiliation(s)
- Yaping Zheng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China.
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| |
Collapse
|
53
|
Tang B, Zhao Y, Bin L, Huang S, Fu F. Variation of the characteristics of biofilm on the semi-suspended bio-carrier produced by a 3D printing technique: Investigation of a whole growing cycle. BIORESOURCE TECHNOLOGY 2017; 244:40-47. [PMID: 28777989 DOI: 10.1016/j.biortech.2017.07.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
The presented investigation focused on exploring the characteristics of the biofilm formed on a novel semi-suspended bio-carrier and revealing their variation during the whole growing cycle. This used semi-suspended bio-carrier was designed to be a spindle shape, and then fabricated by using a 3D printing technique. Results indicated the bio-carrier provided a suitable environment for the attachment of diverse microorganisms. During the experimental period lasted for 45days, the biofilm quickly attached on the surface of the bio-carrier and grew to maturity, but its characteristics, including the chemical compositions, adhesion force, surface roughness, structure of microbial communities, varied continuously along with the operational time, which greatly influenced the performance of the bioreactor. The shape and structure of bio-carrier, and the shearing force caused by the aeration are important factors that influence the microbial community and its structure, and also heavily affect the formation and growth of biofilm.
Collapse
Affiliation(s)
- Bing Tang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China.
| | - Yiliang Zhao
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Liying Bin
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| |
Collapse
|
54
|
Preparation and performance evaluation of high-density polyethylene/silica nanocomposite membranes in membrane bioreactor system. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.08.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
55
|
Tang B, Song H, Bin L, Huang S, Zhang W, Fu F, Zhao Y, Chen Q. Determination of the profile of DO and its mass transferring coefficient in a biofilm reactor packed with semi-suspended bio-carriers. BIORESOURCE TECHNOLOGY 2017; 241:54-62. [PMID: 28549255 DOI: 10.1016/j.biortech.2017.05.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
The work aims at illustrating the profile of DO and its mass transferring process in a biofilm reactor packed with a novel semi-suspended bio-carrier, and further revealing the main factors that influence the mass transferring coefficient of DO within the biofilm. Results showed that the biofilm was very easy to attach and grow on the semi-suspended bio-carrier, which obviously changed the DO profile inside and outside the biofilm. The semi-suspended bio-carrier caused three different mass transfer zones occurring in the bioreactor, including the zones of bulk solution, boundary layer and biofilm, in which, the boundary layer zone had an obvious higher mass transfer resistance. Increasing the aeration rate might improve the hydrodynamic conditions in the bioreactor and accelerate the mass transfer of DO, but it also detached the biofilm from the surface of bio-carrier, which reduced the consumption of DO, and accordingly, decreased the DO gradient in the bioreactor.
Collapse
Affiliation(s)
- Bing Tang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Haoliang Song
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Wenxiang Zhang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yiliang Zhao
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qianyu Chen
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
56
|
Jiang S, Li Y, Ladewig BP. A review of reverse osmosis membrane fouling and control strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:567-583. [PMID: 28399496 DOI: 10.1016/j.scitotenv.2017.03.235] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 05/08/2023]
Abstract
Reverse osmosis (RO) membrane technology is one of the most important technologies for water treatment. However, membrane fouling is an inevitable issue. Membrane fouling leads to higher operating pressure, flux decline, frequent chemical cleaning and shorter membrane life. This paper reviews membrane fouling types and fouling control strategies, with a focus on the latest developments. The fundamentals of fouling are discussed in detail, including biofouling, organic fouling, inorganic scaling and colloidal fouling. Furthermore, fouling mitigation technologies are also discussed comprehensively. Pretreatment is widely used in practice to reduce the burden for the following RO operation while real time monitoring of RO has the advantage and potential of providing support for effective and efficient cleaning. Surface modification could slow down membrane fouling by changing surface properties such as surface smoothness and hydrophilicity, while novel membrane materials and synthesis processes build a promising future for the next generation of RO membranes with big advancements in fouling resistance. Especially in this review paper, statistical analysis is conducted where appropriate to reveal the research interests in RO fouling and control.
Collapse
Affiliation(s)
- Shanxue Jiang
- Barrer Centre, Department of Chemical Engineering, Imperial College London, United Kingdom
| | - Yuening Li
- College of Environmental Science and Engineering, China
| | - Bradley P Ladewig
- Barrer Centre, Department of Chemical Engineering, Imperial College London, United Kingdom.
| |
Collapse
|
57
|
Zhang W, Tang B, Bin L. Research Progress in Biofilm-Membrane Bioreactor: A Critical Review. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Wenxiang Zhang
- School of Environmental Science
and Engineering and Institute of Environmental Health and Pollution
Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bing Tang
- School of Environmental Science
and Engineering and Institute of Environmental Health and Pollution
Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Liying Bin
- School of Environmental Science
and Engineering and Institute of Environmental Health and Pollution
Control, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
58
|
Etemadi H, Yegani R, Seyfollahi M. The effect of amino functionalized and polyethylene glycol grafted nanodiamond on anti-biofouling properties of cellulose acetate membrane in membrane bioreactor systems. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.01.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|