51
|
Liu Q, Zhou SJ, Xiong SJ, Yu S, Yuan TQ. Fractionated lignin as a green compatibilizer to improve the compatibility of poly (butylene adipate-co-terephthalate) /polylactic acid composites. Int J Biol Macromol 2024; 265:130834. [PMID: 38484815 DOI: 10.1016/j.ijbiomac.2024.130834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Blending poly (butylene adipate-co-terephthalate) (PBAT) and polylactic acid (PLA) is a cost-effective strategy to obtain biodegradable plastic with complementary properties. However, the incompatibility between PBAT and PLA is a great challenge for fabricating high-performance composite films. Herein, the ethyl acetate fractionated lignin with the small glass transition temperature and low molecular weight was achieved and incorporated into the PBAT/PLA composite as a compatibilizer. The fractionated lignin can be uniformly dispersed within the PBAT/PLA matrix through a melt blending process and interact with the molecular chain of PBAT and PLA as a bonding bridge, which enhances the intermolecular interactions and reduces the interfacial tension of PBAT/PLA. By adding fractionated lignin, the tensile strength of the PBAT/PLA composite increased by 35.4 % and the yield strength increased by 37.7 %. Owing to lignin, the composite films possessed the ultraviolet shielding function and exhibited better water vapor barrier properties (1.73 ± 0.08 × 10-13 g·cm/cm2·s·Pa). This work conclusively demonstrated that fractionated lignin can be used as a green compatibilizer and a low-cost functional filler for PBAT/PLA materials, and provides guidance for the application of lignin in biodegradable plastics.
Collapse
Affiliation(s)
- Qin Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Si-Jie Zhou
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Shao-Jun Xiong
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Shixin Yu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
52
|
Czerwiec Q, Chabbert B, Crônier D, Kurek B, Rakotoarivonina H. Combined hemicellulolytic and phenoloxidase activities of Thermobacillus xylanilyticus enable growth on lignin-rich substrates and the release of phenolic molecules. BIORESOURCE TECHNOLOGY 2024; 397:130507. [PMID: 38423483 DOI: 10.1016/j.biortech.2024.130507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Major challenge in biorefineries is the use of all lignocellulosic components, particularly lignins. In this study, Thermobacillus xylanilyliticus grew on kraft lignin, steam-exploded and native wheat straws produced different sets of phenoloxidases and xylanases, according to the substrate. After growth, limited lignin structural modifications, mainly accompanied by a decrease in phenolic acids was observed by Nuclear Magnetic Resonance spectroscopy. The depletion of p-coumaric acid, vanillin and p-hydroxybenzaldehyde combined to vanillin production in the culture media indicated that the bacterium can transform some phenolic compounds. Proteomic approaches allowed the identification of 29 to 33 different hemicellulases according to the substrates. Twenty oxidoreductases were differentially expressed between kraft lignin and steam-exploded wheat straw. These oxidoreductases may be involved in lignin and aromatic compound utilization and detoxification. This study highlights the potential value of Thermobacillus xylanilyticus and its enzymes in the simultaneous valorization of hemicellulose and phenolic compounds from lignocelluloses.
Collapse
Affiliation(s)
- Quentin Czerwiec
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, France; Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France.
| | - Brigitte Chabbert
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, France.
| | - David Crônier
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, France.
| | - Bernard Kurek
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, France.
| | - Harivony Rakotoarivonina
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, France; Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France.
| |
Collapse
|
53
|
Zhang Y, Chen H, Sun H, Liu Z, Lei B, Wu B, Feng Y. Separation of lignin derivatives from hemp fiber using supercritical CO 2, ethanol, and water at different temperatures. Int J Biol Macromol 2024; 264:130390. [PMID: 38403228 DOI: 10.1016/j.ijbiomac.2024.130390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The process of lignin extraction often involves intricate chemical transformations, influencing its potential for high-value utilization. By investigating the process of lignin derivatives extraction from hemp fibers using supercritical CO2, ethanol, and water, we identified the relationship between the chemical structure of lignin derivatives and temperature. This discovery contributes to controlling the chemical structure of lignin derivatives through temperature modulation. We observed that lignin derivatives extracted within the temperature range of 100-120 °C exhibited the lowest average molecular weight and polydispersity index, presenting a disordered microstructure with the highest hydroxyl content. Lignin derivatives extracted between 140 and 160 °C showed an increase in average molecular weight and polydispersity index, decreased hydroxyl content, and a gradual transformation of microstructure into spherical particles. At 180 °C, the average molecular weight and polydispersity index of lignin derivatives decreased, the microstructure of lignin derivatives showed fewer spherical particles, while its hydroxyl content exhibited a partial recovery. Chemical analysis revealed a lower degree of condensation in lignin derivatives at 100-120 °C. Between 120 and 160 °C, the degree of condensation increased. At 180 °C, extensive degradation occurred in lignin derivatives. This research advances innovative techniques for lignin derivative separation, contributing to their utilization in higher-value applications.
Collapse
Affiliation(s)
- Yunhao Zhang
- The National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, China; National Industrial Innovation Center of Polymer Materials Co., Ltd., Guangzhou 510640, China
| | - Huan Chen
- The National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, China; National Industrial Innovation Center of Polymer Materials Co., Ltd., Guangzhou 510640, China
| | - Hang Sun
- The National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, China; National Industrial Innovation Center of Polymer Materials Co., Ltd., Guangzhou 510640, China
| | - Zengquan Liu
- The National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, China; National Industrial Innovation Center of Polymer Materials Co., Ltd., Guangzhou 510640, China
| | - Bo Lei
- The National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, China; National Industrial Innovation Center of Polymer Materials Co., Ltd., Guangzhou 510640, China
| | - Bo Wu
- The National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, China; National Industrial Innovation Center of Polymer Materials Co., Ltd., Guangzhou 510640, China
| | - Yanhong Feng
- The National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, China; National Industrial Innovation Center of Polymer Materials Co., Ltd., Guangzhou 510640, China.
| |
Collapse
|
54
|
Jia Z, Liang F, Wang F, Zhou H, Liang P. Selective adsorption of Cr(VI) by nitrogen-doped hydrothermal carbon in binary system. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:121. [PMID: 38483644 DOI: 10.1007/s10653-024-01889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/25/2024] [Indexed: 03/19/2024]
Abstract
Selective adsorption of heavy metal ions from industrial effluent is important for healthy ecosystem development. However, the selective adsorption of heavy metal pollutants by biochar using lignin as raw material is still a challenge. In this paper, the lignin carbon material (N-BLC) was synthesized by a one-step hydrothermal carbonization method using paper black liquor (BL) as raw material and triethylene diamine (TEDA) as nitrogen source. N-BLC (2:1) showed excellent selectivity for Cr(VI) in the binary system, and the adsorption amounts of Cr(VI) in the binary system were all greater than 150 mg/g, but the adsorption amounts of Ca(II), Mg(II), and Zn(II) were only 19.3, 25.5, and 6.3 mg/g, respectively. The separation factor (SF) for Cr(VI) adsorption was as high as 120.0. Meanwhile, FTIR, elemental analysis and XPS proved that the surface of N-BLC (2:1) contained many N- and O- containing groups which were favorable for the removal of Cr(VI). The adsorption of N-BLC (2:1) followed the Langmuir model and its maximum theoretical adsorption amount was 618.4 mg/g. After 5th recycling, the adsorption amount of Cr(VI) by N-BLC (2:1) decreased about 15%, showing a good regeneration ability. Therefore, N-BLC (2:1) is a highly efficient, selective and reusable Cr(VI) adsorbent with wide application prospects.
Collapse
Affiliation(s)
- Zuoyu Jia
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Fengkai Liang
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Haifeng Zhou
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Peng Liang
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
55
|
Liu E, Mercado MIV, Segato F, Wilkins MR. A green pathway for lignin valorization: Enzymatic lignin depolymerization in biocompatible ionic liquids and deep eutectic solvents. Enzyme Microb Technol 2024; 174:110392. [PMID: 38171172 DOI: 10.1016/j.enzmictec.2023.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Lignin depolymerization, which enables the breakdown of a complex and heterogeneous aromatic polymer into relatively uniform derivatives, serves as a critical process in valorization of lignin. Enzymatic lignin depolymerization has become a promising biological strategy to overcome the heterogeneity of lignin, due to its mild reaction conditions and high specificity. However, the low solubility of lignin compounds in aqueous environments prevents efficient lignin depolymerization by lignin-degrading enzymes. The employment of biocompatible ionic liquids (ILs) and deep eutectic solvents (DESs) in lignin fractionation has created a promising pathway to enzymatically depolymerize lignin within these green solvents to increase lignin solubility. In this review, recent research progress on enzymatic lignin depolymerization, particularly in a consolidated process involving ILs/DESs is summarized. In addition, the interactions between lignin-degrading enzymes and solvent systems are explored, and potential protein engineering methodology to improve the performance of lignin-degrading enzymes is discussed. Consolidation of enzymatic lignin depolymerization and biocompatible ILs/DESs paves a sustainable, efficient, and synergistic way to convert lignin into value-added products.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Fernando Segato
- Department of Biotechnology, University of São Paulo, Lorena, SP, Brazil
| | - Mark R Wilkins
- Carl and Melinda Helwig Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
56
|
Tammekivi E, Batteau M, Laurenti D, Lilti H, Faure K. A powerful two-dimensional chromatography method for the non-target analysis of depolymerised lignin. Anal Chim Acta 2024; 1288:342157. [PMID: 38220289 DOI: 10.1016/j.aca.2023.342157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Lignin is an abundant natural polymer obtained as a by-product from the fractionation of lignocellulosic biomass. In the name of a circular economy, lignin should be valorised into valuable chemicals or biomaterials and utilised instead of petrochemicals. For the development of efficient valorisation processes, the structural characterisation of lignin can be highly beneficial. However, this is an arduous task, as the isolated (and sometimes processed) lignin mainly consists of various neutral monomers but also oligomers. In addition, the material contains isomers, which can be especially problematic to separate and identify. RESULTS We present a powerful off-line comprehensive two-dimensional (2D) chromatography method combining liquid chromatography (LC), supercritical fluid chromatography (SFC), and high-resolution mass spectrometry for the non-target analysis of depolymerised lignin. The implementation of a 1-aminoanthracene column in the second dimension enabled a class separation of potential lignin monomers, dimers, trimers, and tetramers with an additional separation based on the number of hydroxyl groups and steric effects. The pentafluorophenyl column in the first dimension additionally improved the separation based on hydrophobicity. The comparison of off-line 2D LC × SFC to 1D SFC showed that besides the overall improved performance, the first method is also superior for the separation of isomers. Advanced data analysis methods (MS-DIAL, SIRIUS, and Feature-Based Molecular Network) were integrated into the non-target workflow to rapidly visualise and study the detected compounds, which proved to be especially beneficial for the characterisation of the separated isomers. SIGNIFICANCE The method yielded the first 2D LC plot demonstrating a classification of lignin compounds, which can be applied to compare various lignin sources and processing methods. In addition, the technique demonstrated improved separation of compounds, including isomers, which was especially beneficial as 77 % of the detected compounds had at least one isomer in the same lignin sample.
Collapse
Affiliation(s)
- Eliise Tammekivi
- Universite Claude Bernard Lyon 1, ISA UMR 5280, CNRS, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Magali Batteau
- Universite Claude Bernard Lyon 1, ISA UMR 5280, CNRS, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Dorothée Laurenti
- Universite Claude Bernard Lyon 1, IRCELYON, UMR 5256, CNRS, 2 Av. Albert Einstein, 69626, Villeurbanne, France
| | - Hugo Lilti
- Universite Claude Bernard Lyon 1, IRCELYON, UMR 5256, CNRS, 2 Av. Albert Einstein, 69626, Villeurbanne, France
| | - Karine Faure
- Universite Claude Bernard Lyon 1, ISA UMR 5280, CNRS, 5 rue de la Doua, 69100, Villeurbanne, France.
| |
Collapse
|
57
|
Yan B, Ding W, Shi G, Lin X, Zhang S. Study on the catalytic hydrodeoxygenation of lignin dimers: Adsorption properties and linkages cleavage. BIORESOURCE TECHNOLOGY 2024; 394:130264. [PMID: 38159816 DOI: 10.1016/j.biortech.2023.130264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Production of mono-phenols through hydrodeoxygenation is one of the most promising routes for value-added lignin valorization. However, the adsorption characteristic of key intermediates and hydrodeoxygenation mechanism of key linkages in lignin have received inadequate attentions. In this paper, experiments combined with density functional theory calculations were done to explore the adsorption and catalytic HDO mechanism of lignin dimers. It was found that NiFe(111)-Mo2C(001) had a better ability on linkages activation, and showed stronger adsorption on CO containing intermediates, which was favor for further hydrodeoxygenation. Moreover, the calculation results certificated the cleavage of β-O-4 was prior to the hydrodeoxygenation of CO, and the hydrodeoxygenation of β-O-4 included a H· addition to O atom before the C-O cleavage. Finally, the elementary reactions energy barriers were efficiently reduced by NiFe(111)-Mo2C(001) catalyst during the hydrodeoxygenation reactions, which elucidated the superior performance of NiFe catalyst. This work provides a theoretical basis on efficient lignin utilization.
Collapse
Affiliation(s)
- Bochao Yan
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Research Center for Biomass Energy, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Wenbin Ding
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Research Center for Biomass Energy, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Gaojie Shi
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Research Center for Biomass Energy, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Xiaoyu Lin
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Research Center for Biomass Energy, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Suping Zhang
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Research Center for Biomass Energy, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
58
|
Song X, Guo W, Zhu Z, Han G, Cheng W. Preparation of uniform lignin/titanium dioxide nanoparticles by confined assembly: A multifunctional nanofiller for a waterborne polyurethane wood coating. Int J Biol Macromol 2024; 258:128827. [PMID: 38134989 DOI: 10.1016/j.ijbiomac.2023.128827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
We report a facile synthesis for lignin/titanium dioxide (TiO2) nanoparticles (LT NPs) at room temperature by confining assembly of lignin macromolecules. The LT NPs had a uniform nanosize distribution (average diameter ∼ 68 nm) and were directly employed as multifunctional nanofillers to reinforce a waterborne polyurethane wood coating (WBC). X-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy revealed the mechanism by which formed TiO2 confined lignin assembly. The LT NPs considerably increased the tensile strength of a WBC film from 16.3 MPa to 28.1 MPa. The WBC-LT NPs exhibited excellent ultraviolet (UV) A and UVB blocking performances of 87 % and 98 %, respectively, while maintaining 94 % transmittance in the visible region. Incorporating LT NPs into the WBC enhanced the coating performance (the hardness, adhesion, and abrasion resistance) on wood substrates. A quantitative color and texture analysis revealed that the LT NPs increased the decorativeness of actual wooden products. After nearly 1800 h of UV irradiation, wood coated with the WBC-LT NPs exhibited good color stability, where the original color remained unchanged or even became brighter. In this study, value-added valorization of lignin is enabled by using organic-inorganic nanofillers and insights are gained into developing multifunctional WBCs.
Collapse
Affiliation(s)
- Xiaoxue Song
- Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, PR China
| | - Wenxiao Guo
- Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, PR China
| | - Zhipeng Zhu
- Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, PR China
| | - Guangping Han
- Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, PR China
| | - Wanli Cheng
- Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, PR China.
| |
Collapse
|
59
|
Sharan AA, Bellemare A, DiFalco M, Tsang A, Vuong TV, Edwards EA, Master ER. Functional screening pipeline to uncover laccase-like multicopper oxidase enzymes that transform industrial lignins. BIORESOURCE TECHNOLOGY 2024; 393:130084. [PMID: 38000639 DOI: 10.1016/j.biortech.2023.130084] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Laccase-like multicopper oxidases are recognized for their potential to alter the reactivity of lignins for application in value-added products. Typically, model compounds are employed to discover such enzymes; however, they do not represent the complexity of industrial lignin substrates. In this work, a screening pipeline was developed to test enzymes simultaneously on model compounds and industrial lignins. A total of 12 lignin-active fungal multicopper oxidases were discovered, including 9 enzymes active under alkaline conditions (pH 11.0). Principal component analysis revealed the poor ability of model compounds to predict enzyme performance on industrial lignins. Additionally, sequence similarity analyses grouped these enzymes with Auxiliary Activity-1 sub-families with few previously characterized members, underscoring their taxonomic novelty. Correlation between the lignin-activity of these enzymes and their taxonomic origin, however, was not observed. These are critical insights to bridge the gap between enzyme discovery and application for industrial lignin valorization.
Collapse
Affiliation(s)
- Anupama A Sharan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Annie Bellemare
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Marcos DiFalco
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Department of Cell and Systems Biology, University of Toronto, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Department of Bioproducts and Biosystems, Aalto University, Finland.
| |
Collapse
|
60
|
Nawaz H, Zhang X, Chen S, Li X, Zhang X, Shabbir I, Xu F. Recent developments in lignin-based fluorescent materials. Int J Biol Macromol 2024; 258:128737. [PMID: 38103672 DOI: 10.1016/j.ijbiomac.2023.128737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Biomass-based fluorescent materials are an alternative to plastic-based materials for their multifunctional applications. Lignin, an inexpensive and easily available raw material, demonstrates outstanding environment-responsive properties such as pH, metal ions, dyes sensing, bioimaging and so on. To date, only a little work has been reported on the synthesis of lignin-based fluorescent materials. In this review report, synthetic approaches and light-responsive applications of lignin-based fluorescent carbon dots and other materials are summarized. The results reveal that lignin-based fluorescent carbon dots are prepared by hydrothermal method, exhibit small size <10 nm, reveal significant quantum yield, biocompatibility, non-toxicity, photostability and display substantial tunable emission and can be efficiently employed for sensing, bioimaging and energy storage applications. Finally, the forthcoming challenges, investigations, and options open for the chemical and/or physical modification of lignin into fluorescent materials for future applications are well-addressed. To our knowledge, this is the first comprehensive review report on lignin-based fluorescent materials and their light-responsive applications. In addition, this review will attract remarkable consideration and thrust for the researchers and biochemical technologists working with the preparation of lignin-based fluorescent materials for broad applications.
Collapse
Affiliation(s)
- Haq Nawaz
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xun Zhang
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Sheng Chen
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xin Li
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xueming Zhang
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China
| | - Irfan Shabbir
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Xu
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
61
|
Niu H, Xiao Z, Zhang P, Guo W, Hu Y, Wang X. Flame retardant, heat insulating and hydrophobic chitosan-derived aerogels for the clean-up of hazardous chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168261. [PMID: 37918752 DOI: 10.1016/j.scitotenv.2023.168261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Leakage of hazardous chemicals often causes significant casualties, enormous economic losses, and negative social benefits. Presently, fire rescue personnel lack efficient and eco-friendly disposal materials for hazardous chemical leakage accidents. In this study, chitosan (CS) aerogels with excellent flame-retardant performance were prepared via cross-linking by two phosphorus-containing vanillin-based compounds (DV and TV). The as-prepared chitosan aerogels were lightweight and porous. The introduction of DV and TV greatly enhanced the residual char yields of CS at 700 °C and the flame-retardant performance of chitosan aerogels. TCS-5.0 possessed the best flame-retardant performance, indicating that TV was more effective than DV in enhancing the flame-retardant performance of chitosan aerogels. The greatly improved flame-retardant properties could be attributed to TV effectively promoting the residual char formation of chitosan aerogels and reducing the formation of combustible gas phase products. To improve the hydrophobicity of chitosan aerogels, TCS-5.0 was treated with solution immersion to load siloxane molecules on its surface. The water contact angle of HTCS-5.0 was 136.1°. HTCS-5.0 had a high oil absorption multiplicity, absorbing up to 31 times its own weight of chloroform. HTCS-5.0 could continuously absorb organic solvents on the water surface with the assistance of a vacuum pump, indicating that HTCS-5.0 could be used for the clean-up of hazardous chemical leakage accidents.
Collapse
Affiliation(s)
- Haoxin Niu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Zetao Xiao
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Ping Zhang
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Wenwen Guo
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Xin Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China.
| |
Collapse
|
62
|
Chacόn M, Percival E, Bugg TDH, Dixon N. Engineered co-culture for consolidated production of phenylpropanoids directly from aromatic-rich biomass. BIORESOURCE TECHNOLOGY 2024; 391:129935. [PMID: 37923228 DOI: 10.1016/j.biortech.2023.129935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Consolidated bioprocesses for the in situ hydrolysis and conversion of biomass feedstocks into value-added products offers great potential for both process and cost reduction. However, to date few consolidated bioprocesses have been developed that target aromatic rich feedstock fractions. Reported here is the development of synthetic co-cultivation for the consolidated hydrolysis and valorisation of corncob hydroxycinnamic acids. Biomass hydrolysis was achieved via a secretion module developed in B. subtilis using a genetically encoded biosensor-actuator to secrete hydrolytic enzymes. Conversion was achieved via a biotransformation module developed in E. coli using a suite of plug-and-play encoded enzymes to convert the released hydroxycinnamic acids into high-value phenylpropanoid target compounds. Finally, employing cellulolytic pre-treatment, extractive fermentation and in situ product recovery multiple aromatic products, coniferol and chavicol, were isolated from the same process in high purity.
Collapse
Affiliation(s)
- Micaela Chacόn
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester M1 7DN, UK
| | - Ellen Percival
- Department of Chemistry, University of Warwick, Coventry CV4 7AK, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AK, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
63
|
Xu L, Liaqat F, Sun J, Khazi MI, Xie R, Zhu D. Advances in the vanillin synthesis and biotransformation: A review. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2024; 189:113905. [DOI: 10.1016/j.rser.2023.113905] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
64
|
Cuebas‐Irizarry MF, Grunden AM. Streptomyces spp. as biocatalyst sources in pulp and paper and textile industries: Biodegradation, bioconversion and valorization of waste. Microb Biotechnol 2024; 17:e14258. [PMID: 37017414 PMCID: PMC10832569 DOI: 10.1111/1751-7915.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Complex polymers represent a challenge for remediating environmental pollution and an opportunity for microbial-catalysed conversion to generate valorized chemicals. Members of the genus Streptomyces are of interest because of their potential use in biotechnological applications. Their versatility makes them excellent sources of biocatalysts for environmentally responsible bioconversion, as they have a broad substrate range and are active over a wide range of pH and temperature. Most Streptomyces studies have focused on the isolation of strains, recombinant work and enzyme characterization for evaluating their potential for biotechnological application. This review discusses reports of Streptomyces-based technologies for use in the textile and pulp-milling industry and describes the challenges and recent advances aimed at achieving better biodegradation methods featuring these microbial catalysts. The principal points to be discussed are (1) Streptomyces' enzymes for use in dye decolorization and lignocellulosic biodegradation, (2) biotechnological processes for textile and pulp and paper waste treatment and (3) challenges and advances for textile and pulp and paper effluent treatment.
Collapse
Affiliation(s)
- Mara F. Cuebas‐Irizarry
- Department of Plant and Microbial BiologyNorth Carolina State UniversityPlant Sciences Building Rm 2323, 840 Oval DrRaleighNorth Carolina27606USA
| | - Amy M. Grunden
- Department of Plant and Microbial BiologyNorth Carolina State UniversityPlant Sciences Building Rm 2323, 840 Oval DrRaleighNorth Carolina27606USA
| |
Collapse
|
65
|
Cong SQ, Wang B, Wang H, Zheng QC, Yang QR, Yang RT, Li QL, Wang WS, Cui XJ, Luo FX. Fe 3O 4-lignin@Pd-NPs: A highly active, stable and broad-spectrum nanocomposite for water treatment. Int J Biol Macromol 2024; 256:128233. [PMID: 38040166 DOI: 10.1016/j.ijbiomac.2023.128233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
In this work, we report an environmentally friendly renewable nanocomposite magnetic lignin-based palladium nanoparticles (Fe3O4-lignin@Pd-NPs) for efficient wastewater treatment by decorating palladium nanoparticles without using any toxic reducing agents on the magnetic lignin abstracted from Poplar. The structure of composite Fe3O4-lignin@Pd-NPs was unambiguously confirmed by XRD, SEM, TEM, EDS, FTIR, and Zeta potential. After systematic evaluation of the use and efficiency of the composite to remove toxic organic dyes in wastewater, some promising results were observed as follows: Fe3O4-lignin@Pd-NPs exhibits highly active and efficient performance in the removal of toxic methylene blue (MB) (up to 99.8 %) wastewater in 2 min at different concentrations of MB and different pH values. Moreover, except for toxic MB, the other organic dyes including Rhodamine B (RhB), Rhodamine 6G (Rh6G), and Methyl Orange (MO) can also be removed efficiently by the composite. Finally, the easily recovered composite Fe3O4-lignin@Pd-NPs exhibits well stability and reusability, and catalytic efficiency is maintained well after ten cycles. In conclusion, the lignin-based magnetism Pd composite exhibits powerful potential practical application in industrial wastewater treatment.
Collapse
Affiliation(s)
- Si-Qi Cong
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Bo Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Han Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qiu-Cui Zheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qian-Ru Yang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ruo-Tong Yang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qian-Li Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Wen-Shu Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiao-Jie Cui
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei-Xian Luo
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
66
|
Guo TS, Yang SD, Cui HM, Yu QF, Li MF. Synthesis of lignin nanoparticle‑manganese dioxide complex and its adsorption of methyl orange. Int J Biol Macromol 2023; 253:127012. [PMID: 37734524 DOI: 10.1016/j.ijbiomac.2023.127012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Lignin nanoparticles (LNPs) were synthesized using an anti-solvent method and subsequently loaded with manganese dioxide (MnO2) via potassium permanganate treatment, resulting in the formation of MnO2@LNPs. An extensive investigation was conducted to elucidate the influence of MnO2@LNPs on the decolorization of methyl orange solution. The LNPs were successfully obtained by adjusting the preparation parameters, yielding particles exhibited average sizes ranging from 300 to 600 nm, and the synthesis process exhibited a high yield of up to 87.3% and excellent dispersion characteristics. Notably, LNPs size was reduced by decreasing initial concentration, increasing stirring rate, and adding water. In the acetone-water two-phase system, LNPs self-assembled into spherical particles driven by π-π interactions and hydrogen bond forces. Oxidation modification using potassium permanganate led to the formation of nanoscale MnO2, which effectively combined with LNPs. Remarkably, the resulting MnO2@LNPs demonstrated a two-fold increase in methyl orange adsorption capacity (227 mg/g) compared to unmodified LNPs. The process followed the Langmuir isotherm model and was exothermic.
Collapse
Affiliation(s)
- Tian-Shui Guo
- Beijing Key Laboratory of Lignocellulosic Chemistry, Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Shao-Dong Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Hua-Min Cui
- Beijing Key Laboratory of Lignocellulosic Chemistry, Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Qiong-Fen Yu
- Yunnan Provincial Rural Energy Engineering Key Laboratory, Kunming 650500, Yunnan, China
| | - Ming-Fei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Yunnan Provincial Rural Energy Engineering Key Laboratory, Kunming 650500, Yunnan, China.
| |
Collapse
|
67
|
Seo K, Shu W, Rückert-Reed C, Gerlinger P, Erb TJ, Kalinowski J, Wittmann C. From waste to health-supporting molecules: biosynthesis of natural products from lignin-, plastic- and seaweed-based monomers using metabolically engineered Streptomyces lividans. Microb Cell Fact 2023; 22:262. [PMID: 38114944 PMCID: PMC10731712 DOI: 10.1186/s12934-023-02266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Transforming waste and nonfood materials into bulk biofuels and chemicals represents a major stride in creating a sustainable bioindustry to optimize the use of resources while reducing environmental footprint. However, despite these advancements, the production of high-value natural products often continues to depend on the use of first-generation substrates, underscoring the intricate processes and specific requirements of their biosyntheses. This is also true for Streptomyces lividans, a renowned host organism celebrated for its capacity to produce a wide array of natural products, which is attributed to its genetic versatility and potent secondary metabolic activity. Given this context, it becomes imperative to assess and optimize this microorganism for the synthesis of natural products specifically from waste and nonfood substrates. RESULTS We metabolically engineered S. lividans to heterologously produce the ribosomally synthesized and posttranslationally modified peptide bottromycin, as well as the polyketide pamamycin. The modified strains successfully produced these compounds using waste and nonfood model substrates such as protocatechuate (derived from lignin), 4-hydroxybenzoate (sourced from plastic waste), and mannitol (from seaweed). Comprehensive transcriptomic and metabolomic analyses offered insights into how these substrates influenced the cellular metabolism of S. lividans. In terms of production efficiency, S. lividans showed remarkable tolerance, especially in a fed-batch process using a mineral medium containing the toxic aromatic 4-hydroxybenzoate, which led to enhanced and highly selective bottromycin production. Additionally, the strain generated a unique spectrum of pamamycins when cultured in mannitol-rich seaweed extract with no additional nutrients. CONCLUSION Our study showcases the successful production of high-value natural products based on the use of varied waste and nonfood raw materials, circumventing the reliance on costly, food-competing resources. S. lividans exhibited remarkable adaptability and resilience when grown on these diverse substrates. When cultured on aromatic compounds, it displayed a distinct array of intracellular CoA esters, presenting promising avenues for polyketide production. Future research could be focused on enhancing S. lividans substrate utilization pathways to process the intricate mixtures commonly found in waste and nonfood sources more efficiently.
Collapse
Affiliation(s)
- Kyoyoung Seo
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Wei Shu
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | | | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
68
|
Tammekivi E, Geantet C, Lorentz C, Faure K. Two-dimensional chromatography for the analysis of valorisable biowaste: A review. Anal Chim Acta 2023; 1283:341855. [PMID: 37977769 DOI: 10.1016/j.aca.2023.341855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/19/2023]
Abstract
Various everyday areas such as agriculture, wood industry, and wastewater treatment yield residual biowastes in large amounts that can be utilised for the purpose of sustainability and circular economy. Depending on the type of biowaste, they can be used to extract valuable chemicals or converted into alternative fuels. However, for efficient valorisation, these processes need to be monitored, for which thorough chemical characterisation can be highly beneficial. For this aim, two-dimensional (2D) chromatography can be favourable, as it has a higher peak capacity and sensitivity than one-dimensional (1D) chromatography. Therefore, here we review the studies published since 2010 involving gas chromatography (GC) or liquid chromatography (LC) as one of the dimensions. For the first time, we present the 2D chromatographic characterisation of various biowastes valorised for different purposes (chemical, fuels), together with future prospects and challenges. The aspects related to the 2D chromatographic analysis of polar, poorly volatile, and thermally unstable compounds are highlighted. In addition, it is demonstrated how different 2D setups can be applied for monitoring the biowaste conversion processes.
Collapse
Affiliation(s)
- Eliise Tammekivi
- Universite Claude Bernard Lyon 1, ISA UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France.
| | - Christophe Geantet
- Universite Claude Bernard Lyon 1, IRCELYON UMR 5256, CNRS, 2 Av. Albert Einstein, 69626, Villeurbanne, France.
| | - Chantal Lorentz
- Universite Claude Bernard Lyon 1, IRCELYON UMR 5256, CNRS, 2 Av. Albert Einstein, 69626, Villeurbanne, France.
| | - Karine Faure
- Universite Claude Bernard Lyon 1, ISA UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France.
| |
Collapse
|
69
|
Scown CD, Baral NR, Tanjore D, Rapp V. Matching diverse feedstocks to conversion processes for the future bioeconomy. Curr Opin Biotechnol 2023; 84:103017. [PMID: 37935087 DOI: 10.1016/j.copbio.2023.103017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/10/2023] [Accepted: 10/07/2023] [Indexed: 11/09/2023]
Abstract
A wide variety of wasted or underutilized organic feedstocks can be leveraged to build a sustainable bioeconomy, ranging from crop residues to food processor residues and municipal wastes. Leveraging these feedstocks is both high-risk and high-reward. Converting mixed, variable, and/or highly contaminated feedstocks can pose engineering and economic challenges. However, converting these materials to fuels and chemicals can divert waste from landfills, reduce fugitive methane emissions, and enable more responsible forest management to reduce the frequency and severity of wildfires. Historically, low-value components, including ash and lignin, are poised to become valuable coproducts capable of supplementing cement and valuable chemicals. Here, we evaluate the challenges and opportunities associated with converting a range of feedstocks to renewable fuels and chemicals.
Collapse
Affiliation(s)
- Corinne D Scown
- Life-cycle, Economics, and Agronomy Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Energy & Biosciences Institute, University of California, Berkeley, CA 94720, United States.
| | - Nawa R Baral
- Life-cycle, Economics, and Agronomy Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, United States
| | - Vi Rapp
- Building Technologies and Urban Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| |
Collapse
|
70
|
Cruz Filho IJ, Reis DP, Nascimento PHB, Marques DSC, Lima MCA. Alkaline lignins from Morinda citrifolia leaves are potential immunomodulatory, antitumor, and antimicrobial agents. AN ACAD BRAS CIENC 2023; 95:e20221026. [PMID: 38055562 DOI: 10.1590/0001-3765202320221026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/04/2023] [Indexed: 12/08/2023] Open
Abstract
Morinda citrifolia, commonly known as noni, is a plant belonging to the Rubiaceae family. This plant has a high biological potential, which has different biological properties, including antioxidant, antibacterial, antiviral, antifungal, antitumor and anti-inflammatory. In this work, the immunomodulatory, antitumor and antimicrobial activities of lignin isolated from Morinda citrifolia leaves were investigated. The results showed that this lignin was not cytotoxic and that it was able to promote activation and differentiation of immune cells in addition to inducing the production of anti-inflammatory cytokines. Furthermore, it was able to inhibit the growth of different tumor and microbial cells in vitro. This pioneering study on these different activities shows that the lignin isolated in this study can be used as a raw material to obtain biomedical and pharmaceutical products.
Collapse
Affiliation(s)
- Iranildo J Cruz Filho
- Universidade Federal de Pernambuco (UFPE), Departamento de Antibióticos, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brasil
| | - Daniel P Reis
- Universidade Federal de Pernambuco (UFPE), Departamento de Antibióticos, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brasil
| | - Pedro Henrique B Nascimento
- Universidade Federal de Pernambuco (UFPE), Departamento de Antibióticos, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brasil
| | - Diego S C Marques
- Universidade Federal de Pernambuco (UFPE), Departamento de Antibióticos, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brasil
| | - Maria C A Lima
- Universidade Federal de Pernambuco (UFPE), Departamento de Antibióticos, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brasil
| |
Collapse
|
71
|
Li Y, Chen M, Liu H, Zhang D, Shi QS, Xie XB, Guo Y. Antimicrobial Peptide-Inspired Design of Amino-Modified Lignin with Improved Antimicrobial Activities. Biomacromolecules 2023; 24:5381-5393. [PMID: 37908117 DOI: 10.1021/acs.biomac.3c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A major challenge to make use of lignin as an antimicrobial material is the weak antimicrobial activity of industrial lignin. Inspired by the antimicrobial mechanism of actions of antimicrobial peptides, alkyldiamines were employed as lysine mimics for lignin modifications. Accordingly, aminoalkyl-modified lignins with different degrees of substitution of amino groups and different hydrophobicity were synthesized. The chemical structure, properties, and antimicrobial activities of the as-prepared aminoalkyl lignins were thoroughly characterized with state-of-the-art technologies. The results indicated that aminobutyl lignin showed enhanced antimicrobial activity against S. aureus and E. coli and performed even better than copper ions. The antimicrobial mechanism of action of the as-prepared aminobutyl lignin was similar to that of polylysine, which damaged the cell membrane, leading to the leakage of intracellular molecules and death of the cell. This study provides a feasible approach to afford modified lignin with enhanced antimicrobial performance, which would facilitate the high-value valorization of lignin as biological materials.
Collapse
Affiliation(s)
- Yan Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Mingjie Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Huiming Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Dandan Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Qing-Shan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Xiao-Bao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
72
|
Lee S, Kang M, Jung CD, Bae JH, Lee JY, Park YK, Joo JC, Kim H, Sohn JH, Sung BH. Development of novel recombinant peroxidase secretion system from Pseudomonas putida for lignin valorisation. BIORESOURCE TECHNOLOGY 2023; 388:129779. [PMID: 37739186 DOI: 10.1016/j.biortech.2023.129779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Pseudomonas putida is a promising strain for lignin valorisation. However, there is a dearth of stable and efficient systems for secreting enzymes to enhance the process. Therefore, a novel secretion system for recombinant lignin-depolymerising peroxidase was developed. By adopting a flagellar type III secretion system, P. putida KT-M2, a secretory host strain, was constructed and an optimal secretion signal fusion partner was identified. Application of the dye-decolourising peroxidase of P. putida to this system resulted in efficient oxidation activity of the cell-free supernatant against various chemicals, including lignin model compounds. This peroxidase-secreting strain was examined to confirm its lignin utilisation capability, resulting in the efficient assimilation of various lignin substrates with 2.6-fold higher growth than that of the wild-type strain after 72 h of cultivation. Finally, this novel system will lead efficient bacterial lignin breakdown and utilization through enzyme secretion, paving the way for sustainable lignin-consolidated bioprocessing.
Collapse
Affiliation(s)
- Siseon Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Minsik Kang
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Biosystems and Bioengineering Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Chan-Duck Jung
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jung-Hoon Bae
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ju Young Lee
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hoyong Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jung-Hoon Sohn
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Biosystems and Bioengineering Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Biosystems and Bioengineering Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
73
|
Nazar M, Xu Q, Zahoor, Ullah MW, Khan NA, Iqbal B, Zhu D. Integrated laccase delignification with improved lignocellulose recalcitrance for enhancing enzymatic saccharification of ensiled rice straw. INDUSTRIAL CROPS AND PRODUCTS 2023; 202:116987. [DOI: 10.1016/j.indcrop.2023.116987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
74
|
Ramzan H, Usman M, Nadeem F, Shahzaib M, Ur Rahman M, Singhania RR, Jabeen F, Patel AK, Qing C, Liu S, Piechota G, Tahir N. Depolymerization of lignin: Recent progress towards value-added chemicals and biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 386:129492. [PMID: 37463615 DOI: 10.1016/j.biortech.2023.129492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
The need for alternative sources of energy became increasingly urgent as demand for energy and the use of fossil fuels both soared. When processed into aromatic compounds, lignin can be utilized as an alternative to fossil fuels, however, lignin's complex structure and recalcitrance make depolymerization impractical. This article presented an overview of the most recent advances in lignin conversion, including process technology, catalyst advancement, and case study-based end products. In addition to the three established methods (thermochemical, biochemical, and catalytic depolymerization), a lignin-first strategy was presented. Depolymerizing different forms of lignin into smaller phenolic molecules has been suggested using homogeneous and heterogeneous catalysts for oxidation or reduction. Limitations and future prospects of lignin depolymerization have been discussed which suggests that solar-driven catalytic depolymerization through photocatalysts including quantum dots offers a unique pathway to obtain the highly catalytic conversion of lignin.
Collapse
Affiliation(s)
- Hina Ramzan
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Muhammad Usman
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Faiqa Nadeem
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Muhammad Shahzaib
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Muneeb Ur Rahman
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Farzana Jabeen
- Department of Computing, SEECS, National University of Sciences and Technology (NUST), Campus, Sector H-12, Islamabad, Pakistan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chunyao Qing
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengyong Liu
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | | | - Nadeem Tahir
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
75
|
Meng T, Ding Y, Liu Y, Xu L, Mao Y, Gelfond J, Li S, Li Z, Salipante PF, Kim H, Zhu JY, Pan X, Hu L. In Situ Lignin Adhesion for High-Performance Bamboo Composites. NANO LETTERS 2023; 23:8411-8418. [PMID: 37677149 DOI: 10.1021/acs.nanolett.3c01497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Bamboo composite is an attractive candidate for structural materials in applications such as construction, the automotive industry, and logistics. However, its development has been hindered due to the use of harmful petroleum-derived synthetic adhesives or low-bonding biobased adhesives. Herein, we report a novel bioadhesion strategy based on in situ lignin bonding that can process natural bamboo into a scalable and high-performance composite. In this process, lignin bonds the cellulose fibrils into a strong network via a superstrong adhesive interface formed by hydrogen bonding and nanoscale entanglement. The resulting in situ glued-bamboo (glubam) composite exhibits a record-high shear strength of ∼4.4 MPa and a tensile strength of ∼300 MPa. This in situ lignin adhesion strategy is facile, highly scalable, and cost-effective, suggesting a promising route for fabricating strong and sustainable structural bamboo composites that sequester carbon and reduce our dependence on petrochemical-based adhesives.
Collapse
Affiliation(s)
- Taotao Meng
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yu Ding
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yu Liu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Lin Xu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Julia Gelfond
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Montgomery Blair High School, Silver Spring, Maryland 20901, United States
| | - Shuke Li
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Zhihan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Paul F Salipante
- Polymers and Complex Fluids Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Hoon Kim
- U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, Wisconsin 53726, United States
| | - J Y Zhu
- U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, Wisconsin 53726, United States
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
76
|
Chelliah R, Wei S, Vijayalakshmi S, Barathikannan K, Sultan G, Liu S, Oh DH. A Comprehensive Mini-Review on Lignin-Based Nanomaterials for Food Applications: Systemic Advancement and Future Trends. Molecules 2023; 28:6470. [DOI: https:/doi.10.3390/molecules28186470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
The shift to an environmentally friendly material economy requires renewable resource exploration. This shift may depend on lignin valorization. Lignin is an aromatic polymer that makes up one-third of total lingo-cellulosic biomass and is separated into large amounts for biofuel and paper manufacture. This renewable polymer is readily available at a very low cost as nearly all the lignin that is produced each year (90–100 million tons) is simply burned as a low-value fuel. Lignin offers potential qualities for many applications, and yet it is underutilized. This Perspective highlights lignin-based material prospects and problems in food packaging, antimicrobial, and agricultural applications. The first half will discuss the present and future studies on exploiting lignin as an addition to improve food packaging’s mechanical, gas, UV, bioactive molecules, polyphenols, and antioxidant qualities. Second, lignin’s antibacterial activity against bacteria, fungi, and viruses will be discussed. In conclusion, lignin agriculture will be discussed in the food industries.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
- Saveetha School of Engineering, SIMATS University, Kanchipuram 600124, India
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ghazala Sultan
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
77
|
Chelliah R, Wei S, Vijayalakshmi S, Barathikannan K, Sultan G, Liu S, Oh DH. A Comprehensive Mini-Review on Lignin-Based Nanomaterials for Food Applications: Systemic Advancement and Future Trends. Molecules 2023; 28:6470. [PMID: 37764246 PMCID: PMC10535768 DOI: 10.3390/molecules28186470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The shift to an environmentally friendly material economy requires renewable resource exploration. This shift may depend on lignin valorization. Lignin is an aromatic polymer that makes up one-third of total lingo-cellulosic biomass and is separated into large amounts for biofuel and paper manufacture. This renewable polymer is readily available at a very low cost as nearly all the lignin that is produced each year (90-100 million tons) is simply burned as a low-value fuel. Lignin offers potential qualities for many applications, and yet it is underutilized. This Perspective highlights lignin-based material prospects and problems in food packaging, antimicrobial, and agricultural applications. The first half will discuss the present and future studies on exploiting lignin as an addition to improve food packaging's mechanical, gas, UV, bioactive molecules, polyphenols, and antioxidant qualities. Second, lignin's antibacterial activity against bacteria, fungi, and viruses will be discussed. In conclusion, lignin agriculture will be discussed in the food industries.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
- Saveetha School of Engineering, SIMATS University, Kanchipuram 600124, India
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
| | - Ghazala Sultan
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India;
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
78
|
Karmanov A, Kocheva L, Borisenkov M, Belyi V. Macromolecular Hydrodynamics and Fractal Structures of the Lignins of Fir Wood and Oat Husks. Polymers (Basel) 2023; 15:3624. [PMID: 37688250 PMCID: PMC10489672 DOI: 10.3390/polym15173624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The topological structure of the macromolecules of lignins isolated from oat husk and fir wood was studied by means of macromolecular hydrodynamic methods. The macromolecular properties were analyzed by evaluating the intrinsic viscosity and coefficients of the translational diffusion and the sedimentation velocity of the lignins in dilute dimethylformamide solutions. The average molecular weights (MDη) and polydispersity parameters were calculated based on the results of the fractionation, as follows: Mw = 14.6 × 103, Mn = 9.0, and Mw/Mn = 1.62 for lignins from fir wood and Mw = 14.9 Mn = 13.5 and Mw/Mn = 1.1 for lignins from oat husks. The fractal analysis of the lignin macromolecules allowed us to identify the distinctive characteristics of the fractal and topological structures of these lignins. The measurements indicated that the fractal dimension (df) values of the guaiacyl-syringyl lignins from oat husks were between 1.71 and 1.85, while the df of a typical guaiacyl lignin from fir wood was ~2.3. Thus, we determined that the lignin macromolecules of oat husks belong to the diffusion-limited aggregation-type cluster-cluster class of fractals of the Meakin-Kolb type, with a predominance of characteristics common to a linear configuration. The lignins of softwood fir trees exhibited a branched topological structure, and they belong to the diffusion-limited aggregation-type particle-cluster class of fractals of the Witten-Sander type. Lignins from oat husks have the linear topology of macromolecules while the macromolecules of the lignins from fir wood can be characterized as highly branched polymers.
Collapse
Affiliation(s)
- Anatoly Karmanov
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar 167000, Russia;
| | - Lyudmila Kocheva
- Institute of Geology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar 167000, Russia
| | - Mikhail Borisenkov
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar 167000, Russia
| | - Vladimir Belyi
- Institute of Chemistry of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar 167000, Russia
| |
Collapse
|
79
|
Wu X, De Bruyn M, Barta K. Deriving high value products from depolymerized lignin oil, aided by (bio)catalytic funneling strategies. Chem Commun (Camb) 2023; 59:9929-9951. [PMID: 37526604 DOI: 10.1039/d3cc01555f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Lignin holds tremendous and versatile possibilities to produce value-added chemicals and high performing polymeric materials. Over the years, different cutting-edge lignin depolymerization methodologies have been developed, mainly focusing on achieving excellent yields of mono-phenolic products, some even approaching the theoretical maximum. However, due to lignin's inherent heterogeneity and recalcitrance, its depolymerization leads to relatively complex product streams, also containing dimers, and higher molecular weight fragments in substantial quantities. The subsequent chemo-catalytic valorization of these higher molecular weight streams, containing difficult-to-break, mainly C-C covalent bonds, is tremendously challenging, and has consequently received much less attention. In this minireview, we present an overview of recent advances on the development of sustainable biorefinery strategies aimed at the production of well-defined chemicals and polymeric materials, the prime focus being on depolymerized lignin oils, containing high molecular weight fractions. The key central unit operation to achieve this is (bio)catalytic funneling, which holds great potential to overcome separation and purification challenges.
Collapse
Affiliation(s)
- Xianyuan Wu
- University of Groningen, Stratingh Institute for Chemistry, Nijenborgh 4, Groningen, The Netherlands
| | - Mario De Bruyn
- University of Graz, Department of Chemistry, Organic and Bioorganic Chemistry, Heinrichstrasse 28/II, 8010 Graz, Austria.
| | - Katalin Barta
- University of Groningen, Stratingh Institute for Chemistry, Nijenborgh 4, Groningen, The Netherlands
- University of Graz, Department of Chemistry, Organic and Bioorganic Chemistry, Heinrichstrasse 28/II, 8010 Graz, Austria.
| |
Collapse
|
80
|
Liu Q, Kawai T, Inukai Y, Aoki D, Feng Z, Xiao Y, Fukushima K, Lin X, Shi W, Busch W, Matsushita Y, Li B. A lignin-derived material improves plant nutrient bioavailability and growth through its metal chelating capacity. Nat Commun 2023; 14:4866. [PMID: 37567879 PMCID: PMC10421960 DOI: 10.1038/s41467-023-40497-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The lignocellulosic biorefinery industry can be an important contributor to achieving global carbon net zero goals. However, low valorization of the waste lignin severely limits the sustainability of biorefineries. Using a hydrothermal reaction, we have converted sulfuric acid lignin (SAL) into a water-soluble hydrothermal SAL (HSAL). Here, we show the improvement of HSAL on plant nutrient bioavailability and growth through its metal chelating capacity. We characterize HSAL's high ratio of phenolic hydroxyl groups to methoxy groups and its capacity to chelate metal ions. Application of HSAL significantly promotes root length and plant growth of both monocot and dicot plant species due to improving nutrient bioavailability. The HSAL-mediated increase in iron bioavailability is comparable to the well-known metal chelator ethylenediaminetetraacetic acid. Therefore, HSAL promises to be a sustainable nutrient chelator to provide an attractive avenue for sustainable utilization of the waste lignin from the biorefinery industry.
Collapse
Affiliation(s)
- Qiang Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tsubasa Kawai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Japan
| | - Dan Aoki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Zhihang Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yihui Xiao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiming Shi
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yasuyuki Matsushita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
81
|
Vasile C, Baican M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers (Basel) 2023; 15:3177. [PMID: 37571069 PMCID: PMC10420922 DOI: 10.3390/polym15153177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
The recycling of biomass into high-value-added materials requires important developments in research and technology to create a sustainable circular economy. Lignin, as a component of biomass, is a multipurpose aromatic polymer with a significant potential to be used as a renewable bioresource in many fields in which it acts both as promising biopolymer and bioactive compound. This comprehensive review gives brief insights into the recent research and technological trends on the potential of lignin development and utilization. It is divided into ten main sections, starting with an outlook on its diversity; main properties and possibilities to be used as a raw material for fuels, aromatic chemicals, plastics, or thermoset substitutes; and new developments in the use of lignin as a bioactive compound and in nanoparticles, hydrogels, 3D-printing-based lignin biomaterials, new sustainable biomaterials, and energy production and storage. In each section are presented recent developments in the preparation of lignin-based biomaterials, especially the green approaches to obtaining nanoparticles, hydrogels, and multifunctional materials as blends and bio(nano)composites; most suitable lignin type for each category of the envisaged products; main properties of the obtained lignin-based materials, etc. Different application categories of lignin within various sectors, which could provide completely sustainable energy conversion, such as in agriculture and environment protection, food packaging, biomedicine, and cosmetics, are also described. The medical and therapeutic potential of lignin-derived materials is evidenced in applications such as antimicrobial, antiviral, and antitumor agents; carriers for drug delivery systems with controlled/targeting drug release; tissue engineering and wound healing; and coatings, natural sunscreen, and surfactants. Lignin is mainly used for fuel, and, recently, studies highlighted more sustainable bioenergy production technologies, such as the supercapacitor electrode, photocatalysts, and photovoltaics.
Collapse
Affiliation(s)
- Cornelia Vasile
- Romanian Academy, “P. Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department 41A Grigore Ghica Voda Alley, RO700487 Iaşi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, Faculty of Pharmacy, Pharmaceutical Sciences I Department, Laboratory of Pharmaceutical Physics, 16 University Street, RO700115 Iaşi, Romania;
| |
Collapse
|
82
|
Cheng X, Palma B, Zhao H, Zhang H, Wang J, Chen Z, Hu J. Photoreforming for Lignin Upgrading: A Critical Review. CHEMSUSCHEM 2023:e202300675. [PMID: 37455297 DOI: 10.1002/cssc.202300675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Photoreforming of lignocellulosic biomass to simultaneously produce gas fuels and value-added chemicals has gradually emerged as a promising strategy to alleviate the fossil fuels crisis. Compared to cellulose and hemicellulose, the exploitation and utilization of lignin via photoreforming are still at the early and more exciting stages. This Review systematically summarizes the latest progress on the photoreforming of lignin-derived model components and "real" lignin, aiming to provide insights for lignin photocatalytic valorization from fundamental to industrial applications. Considering the complexity of lignin physicochemical properties, related analytic methods are also introduced to characterize lignin photocatalytic conversion and product distribution. We finally put forward the challenges and perspective of lignin photoreforming, hoping to provide some guidance to valorize biomass into value-added chemicals and fuels via a mild photoreforming process in the future.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Bruna Palma
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Hongguang Zhang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| |
Collapse
|
83
|
Abraham B, Syamnath VL, Arun KB, Fathima Zahra PM, Anjusha P, Kothakotta A, Chen YH, Ponnusamy VK, Nisha P. Lignin-based nanomaterials for food and pharmaceutical applications: Recent trends and future outlook. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163316. [PMID: 37028661 DOI: 10.1016/j.scitotenv.2023.163316] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 04/02/2023] [Indexed: 06/01/2023]
Abstract
Small particles of size ranging from 1 to 100 nm are referred to as nanoparticles. Nanoparticles have tremendous applications in various sectors, including the areas of food and pharmaceutics. They are being prepared from multiple natural sources widely. Lignin is one such source that deserves special mention due to its ecological compatibility, accessibility, abundance, and low cost. This amorphous heterogeneous phenolic polymer is the second most abundant molecule in nature after cellulose. Apart from being used as a biofuel source, lignin is less explored for its potential at a nano-level. In plants, lignin exhibits cross-linking structures with cellulose and hemicellulose. Numerous advancements have taken place in synthesizing nanolignins for manufacturing lignin-based materials to benefit from the untapped potential of lignin in high-value-added applications. Lignin and lignin-based nanoparticles have numerous applications, but in this review, we are mainly focusing on the applications in the food and pharmaceutical sectors. The exercise we undertake has great relevance as it helps scientists and industries gain valuable insights into lignin's capabilities and exploit its physical and chemical properties to facilitate the development of future lignin-based materials. We have summarized the available lignin resources and their potential in the food and pharmaceutical industries at various levels. This review attempts to understand various methods adopted for the preparation of nanolignin. Furthermore, the unique properties of nano-lignin-based materials and their applications in fields including the packaging industry, emulsions, nutrient delivery, drug delivery hydrogels, tissue engineering, and biomedical applications were well-discussed.
Collapse
Affiliation(s)
- Billu Abraham
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - V L Syamnath
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India
| | - K B Arun
- Department of Life Sciences, Christ (Deemed to be University), Bangalore 29, India
| | - P M Fathima Zahra
- College of Agriculture, Vellayani, Kerala Agricultural University, India
| | - P Anjusha
- College of Agriculture, Vellayani, Kerala Agricultural University, India
| | - Anjhinaeyulu Kothakotta
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Ph.D. Program of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 811, Taiwan.
| | - P Nisha
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
84
|
Tang W, Huang C, Ling Z, He YC. Enhancing cellulosic digestibility of wheat straw by adding sodium lignosulfonate and sodium hydroxide to hydrothermal pretreatment. BIORESOURCE TECHNOLOGY 2023; 379:129058. [PMID: 37068525 DOI: 10.1016/j.biortech.2023.129058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Surfactant-assisted pretreatment has been widely reported to improve the enzymatic hydrolysis of lignocellulose by promoting removal of xylan and lignin. Hence, this work innovatively proposed the use of sodium lignosulfonate (SL) as an additive of alkaline pretreatment (AP), and evaluated its influence on the cellulosic digestibility of wheat straw (WS). The results displayed that the maximum of 72-h cellulosic digestibility could reach 83.5% as 15 g/L SL was introduced to the AP process (SAP), while the cellulosic digestibility of hydrothermal and alkaline pretreated WS was only 63.6% and 70.2%, respectively. These increments were subsequently attributed to the improvement of 6.5% xylan and 26.8% lignin accelerated by SAP, resulting in positive changes in structural characteristics such as accessibility, specific surface area, and cellulosic crystalline structure. The utilization of lignin-based surfactants in pretreatment has realized the economic feasibility of lignocellulosic biorefining and broadened the application prospect of surfactants.
Collapse
Affiliation(s)
- Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou 213164, Jiangsu Province, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, People's Republic of China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou 213164, Jiangsu Province, People's Republic of China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, Hubei Province, People's Republic of China.
| |
Collapse
|
85
|
Shah SWA, Xu Q, Ullah MW, Zahoor, Sethupathy S, Morales GM, Sun J, Zhu D. Lignin-based additive materials: A review of current status, challenges, and future perspectives. ADDITIVE MANUFACTURING 2023; 74:103711. [DOI: 10.1016/j.addma.2023.103711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
86
|
Wang X, Zhang D, Li X, Xu W, Shi J. Fabrication and application of amphiphilic polyoxometalate catalyst (CTA) nH 5-nPMo 10V 2O 40 for transformation of lignin into aromatic chemicals. Int J Biol Macromol 2023; 242:124970. [PMID: 37210062 DOI: 10.1016/j.ijbiomac.2023.124970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Conversion of renewable lignin into bio-aromatic chemicals offers a sustainable pathway to increase biorefinery profitability. However, the catalytic transformation of lignin into monomers remains a highly challenging task due to the complexity and stability of the lignin structure. In this study, a series of micellar molybdovanadophosphoric polyoxometalate (POM) catalysts, (CTA)nH5-nPMo10V2O40 (n = 1-5), were prepared by the ion exchange method and applied as oxidative catalysts for birch lignin depolymerization. These catalysts showed efficient cleavage of C-O/C-C bonds in lignin, and the introduction of an amphiphilic structure facilitated the generation of monomer products. The best catalytic activity was observed at 150 °C within 150 min under a 1.5 MPa oxygen atmosphere over (CTA)1H4PMo10V2O40, which yielded a maximum lignin oil yield of 48.7 % and lignin monomer yield of 13.5 %. We also employed phenolic and nonphenolic lignin dimer model compounds to explore the reaction pathway and demonstrated the selective cleavage of CC and/or CO lignin bonds. Moreover, these micellar catalysts have excellent recyclability and stability as heterogeneous catalysts, which can be used up to five times. The application of amphiphilic polyoxometalate catalysts facilitates the valorization of lignin, and we expect to develop a novel and practical strategy for harvesting aromatic compounds.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Dan Zhang
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Xiangyu Li
- Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Wenbiao Xu
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China.
| | - Junyou Shi
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| |
Collapse
|
87
|
Li L, Cui M, Wang X, Long J. Critical Techniques for Overcoming the Diffusion Limitations in Heterogeneously Catalytic Depolymerization of Lignin. CHEMSUSCHEM 2023; 16:e202202325. [PMID: 36651109 DOI: 10.1002/cssc.202202325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 05/06/2023]
Abstract
Heterogeneously catalyzed depolymerization of lignin to value-added chemicals is increasingly attractive but highly challengeable. Particularly, the diffusion limitation of lignin macromolecule to the solid catalyst surface is a big barrier, which significantly decreases the yield of monomer while increasing char formation. Therefore, for the potential industrial utilization of lignin, new knowledge focused on the size of lignin particles is of great importance to offer guidance for promoting lignin depolymerization and suppressing condensation in the heterogeneously catalytic systems. In this Review, the size of lignin particles and macromolecules are summarized. Previous approaches for improving the mass diffusion including enhancing the solubility of lignin and exploitation of hierarchical and "solubilized" materials are also discussed. Based on these, a constructive perspective is proposed. Thus, this work provides a new insight on the rational design of heterogeneous catalytic techniques for efficient utilization of the aromatic polymer of lignin.
Collapse
Affiliation(s)
- Lixia Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Manman Cui
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Xiaobing Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Jinxing Long
- School of Chemistry and Chemical Engineering, Pulp & Paper Engineering State Key Laboratory of China, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| |
Collapse
|
88
|
Gairola S, Sinha S, Singh I. Thermal stability of extracted lignin from novel millet husk crop residue. Int J Biol Macromol 2023; 242:124725. [PMID: 37148941 DOI: 10.1016/j.ijbiomac.2023.124725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Recent alarming tones regarding the environment and energy crises have resulted in an emergent need for the utilization of bio-based materials. The current study aims to experimentally investigate the thermal kinetics and pyrolysis behavior of lignin extracted from novel barnyard millet husk (L-BMH) and finger millet husk (L-FMH) crop residue. The characterization techniques FTIR, SEM, XRD, and EDX were employed. TGA was performed to assess the thermal, pyrolysis, and kinetic behavior using Friedman kinetic model. The average lignin yield was obtained as 16.25 % (L-FMH) and 21.31 % (L-BMH). The average activation energy (Ea) was recorded as 179.91-227.67 kJ mol-1 for L-FMH while 158.50-274.46 kJ mol-1 for L-BMH in the conversion range of 0.2-0.8. The higher heating value (HHV) was found to be 19.80 ± 0.09 MJ kg-1 (L-FMH) and 19.65 ± 0.03 MJ kg-1 (L-BMH). The results create a possibility for the valorization of extracted lignin in polymer composites as potential bio-based flame retardant in polymer composites.
Collapse
Affiliation(s)
- Sandeep Gairola
- Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, India
| | - Shishir Sinha
- Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, India; Chemical Engineering Department, Indian Institute of Technology Roorkee, India.
| | - Inderdeep Singh
- Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, India; Mechancial and Industrial Engineering Department, Indian Institute of Technology Roorkee, India.
| |
Collapse
|
89
|
Das A, Mohanty K. Optimization of lignin extraction from bamboo by ultrasound-assisted organosolv pretreatment. BIORESOURCE TECHNOLOGY 2023; 376:128884. [PMID: 36925081 DOI: 10.1016/j.biortech.2023.128884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
For a sustainable biorefinery, reduction in the recalcitrance of lignocellulosic biomass is very crucial for the efficient utilization of each fraction. The present work investigated an integrated pretreatment method to recover high-quality lignin along with the cellulose-rich pulp. An optimization study employing response surface methodology investigated the synergistic effects of ultrasound and organosolv pretreatment from Bambusa tulda (bamboo). The optimal condition (180 °C, 55 min, and 30 min sonication) resulted in 65.81 ± 2.40% of lignin yield with 95.37 ± 1.17% purity. A reduction in 7.85% yield and 1.54% purity of lignin with organosolv pretreatment highlighted the efficacy of sonication in lignin extraction. Ultrasound resulted in homolytic cleavage of the lignin-carbohydrate bond that enhanced delignification and increase the cellulose crystallinity. NMR, FTIR, GPC, and TGA of lignin suggested the superiority of sonication in maintaining lignin quality. A significant amount of β-O-4 linkages in extracted lignin is favorable for its subsequent valorization.
Collapse
Affiliation(s)
- Anindita Das
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
90
|
Afewerki S, Edlund U. Combined Catalysis: A Powerful Strategy for Engineering Multifunctional Sustainable Lignin-Based Materials. ACS NANO 2023; 17:7093-7108. [PMID: 37014848 PMCID: PMC10134738 DOI: 10.1021/acsnano.3c00436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The production and engineering of sustainable materials through green chemistry will have a major role in our mission of transitioning to a more sustainable society. Here, combined catalysis, which is the integration of two or more catalytic cycles or activation modes, provides innovative chemical reactions and material properties efficiently, whereas the single catalytic cycle or activation mode alone fails in promoting a successful reaction. Polyphenolic lignin with its distinctive structural functions acts as an important template to create materials with versatile properties, such as being tough, antimicrobial, self-healing, adhesive, and environmentally adaptable. Sustainable lignin-based materials are generated by merging the catalytic cycle of the quinone-catechol redox reaction with free radical polymerization or oxidative decarboxylation reaction, which explores a wide range of metallic nanoparticles and metal ions as the catalysts. In this review, we present the recent work on engineering lignin-based multifunctional materials devised through combined catalysis. Despite the fruitful employment of this concept to material design and the fact that engineering has provided multifaceted materials able to solve a broad spectrum of challenges, we envision further exploration and expansion of this important concept in material science beyond the catalytic processes mentioned above. This could be accomplished by taking inspiration from organic synthesis where this concept has been successfully developed and implemented.
Collapse
Affiliation(s)
- Samson Afewerki
- Fibre
and Polymer Technology, KTH Royal Institute
of Technology, SE 100 44 Stockholm, Sweden
| | - Ulrica Edlund
- Fibre
and Polymer Technology, KTH Royal Institute
of Technology, SE 100 44 Stockholm, Sweden
| |
Collapse
|
91
|
Sun X, Li Q, Wu H, Zhou Z, Feng S, Deng P, Zou H, Tian D, Lu C. Sustainable Starch/Lignin Nanoparticle Composites Biofilms for Food Packaging Applications. Polymers (Basel) 2023; 15:polym15081959. [PMID: 37112108 PMCID: PMC10141166 DOI: 10.3390/polym15081959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Construction of sustainable composite biofilms from natural biopolymers are greatly promising for advanced packaging applications due to their biodegradable, biocompatible, and renewable properties. In this work, sustainable advanced food packaging films are developed by incorporating lignin nanoparticles (LNPs) as green nanofillers to starch films. This seamless combination of bio-nanofiller with biopolymer matrix is enabled by the uniform size of nanofillers and the strong interfacial hydrogen bonding. As a result, the as-prepared biocomposites exhibit enhanced mechanical properties, thermal stability, and antioxidant activity. Moreover, they also present outstanding ultraviolet (UV) irradiation shielding performance. As a proof of concept in the application of food packaging, we evaluate the effect of composite films on delaying oxidative deterioration of soybean oil. The results indicate our composite film could significantly decrease peroxide value (POV), saponification value (SV), and acid value (AV) to delay oxidation of soybean oil during storage. Overall, this work provides a simple and effective method for the preparation of starch-based films with enhanced antioxidant and barrier properties for advanced food packaging applications.
Collapse
Affiliation(s)
- Xunwen Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Qingye Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Hejun Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zehang Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Shiyi Feng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Pengcheng Deng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Huawei Zou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Dong Tian
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Advanced Polymer Materials Research Center, Sichuan University, Shishi 362700, China
| |
Collapse
|
92
|
Dhara S, Samanta NS, Uppaluri R, Purkait MK. High-purity alkaline lignin extraction from Saccharum ravannae and optimization of lignin recovery through response surface methodology. Int J Biol Macromol 2023; 234:123594. [PMID: 36791942 DOI: 10.1016/j.ijbiomac.2023.123594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 02/05/2023] [Indexed: 02/15/2023]
Abstract
Saccharum ravannae, known as "Ekra" in the Northeast region of India, is an elephant grass species that abundantly grows in the natural habitat of Assam. This study aims to utilize this wild grass species and extract alkaline lignin of high purity through KOH-mediated alkaline hydrothermal pretreatment using the Oil bath process. Lignin recovery was optimized using RSM (response surface methodology) combined with a central composite model. Three process parameters, namely KOH concentration (1-3 %), reaction time (50-200 min), and solid loading (5-15 %), varied to optimize the combined effect of these parameters. RSM predicted a maximum lignin recovery of 15.38 g/100 g of raw biomass at optimum conditions (2.4 % KOH, 6.41 % solid loading, 176.57 min). Three experimental runs were performed at optimum conditions, and 15.81 ± 0.32 g/100 g lignin recovery was obtained, thus verifying the predicted result. Maximum 93.7 % purity of extracted lignin was achieved in a different operating condition (3 % KOH, 10 % solid loading, 125 min). The commercial and extracted alkaline lignin with maximum purity was characterized by Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The extracted lignin shows higher phenolic content and more functional groups than commercial lignin and can be used for future applications.
Collapse
Affiliation(s)
- Simons Dhara
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Niladri Shekhar Samanta
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - R Uppaluri
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - M K Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
93
|
Ambika, Kumar V, Chandra D, Thakur V, Sharma U, Singh D. Depolymerization of lignin using laccase from Bacillus sp. PCH94 for production of valuable chemicals: A sustainable approach for lignin valorization. Int J Biol Macromol 2023; 234:123601. [PMID: 36775222 DOI: 10.1016/j.ijbiomac.2023.123601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Lignin is the most abundant aromatic polymer in nature, and its depolymerization offers excellent opportunities to develop renewable aromatic chemicals. In the present study, Bacillus sp. PCH94 was investigated for laccase production and lignin depolymerization. Maximum production of laccase enzyme was achieved within 6.0 h at 50 °C on a natural lignocellulosic substrate. Furthermore, Bacillus sp. PCH94 was used to bioconvert lignin dimeric and polymeric substrates, validated using FT-IR, NMR (1H, 13C), and LCMS. Genome mining of Bacillus sp. PCH94 revealed laccase gene (lacBl) as multicopper oxidase (spore coat CotA). Further, lacBl from Bacillus sp. PCH94 was cloned, expressed, and kinetically characterized. LacBl enzyme showed activity for substrates ABTS (40.64 IU/mg), guaiacol (5.43 IU/mg), and DMP (11.93 IU/mg). The LacBl was active in higher temperatures (10 to 100 °C) and showed a half-life of 36 and 27 h at 50 and 60 °C, respectively. The purified LacBl was able to depolymerize kraft lignin into valuable products (ferulic acid and acetovanillone), which have applications in the pharmaceutical and food industries. Overall, the current study demonstrated the role of bacterial laccase in the depolymerization of lignin and opened a promising prospect for the green production of valuable compounds from recalcitrant lignin.
Collapse
Affiliation(s)
- Ambika
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Vijay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India.
| | - Devesh Chandra
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Vikas Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
94
|
Troiano DT, Hofmann T, Brethauer S, Studer MHP. Toward optimal use of biomass as carbon source for chemical bioproduction. Curr Opin Biotechnol 2023; 81:102942. [PMID: 37062153 DOI: 10.1016/j.copbio.2023.102942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 04/18/2023]
Abstract
Biomass is widely identified as a promising, renewable replacement for fossil feedstocks in the production of energy, fuels, and chemicals. However, the sustainable supply of biomass is limited. Economic and ecological criteria support prioritization of biomass as a carbon source for organic chemicals; however, utilization for energy currently dominates. Therefore, to optimize the use of available biomass feedstock, biorefining development must focus on high carbon efficiencies and enabling the conversion of all biomass fractions, including lignin and fermentation-derived CO2. Additionally, novel technological platforms should allow the incorporation of nontraditional, currently underutilized carbon feedstocks (e.g. manure) into biorefining processes. To this end, funneling of waste feedstocks to a single product (e.g. methane) and subsequent conversion to chemicals is a promising approach.
Collapse
Affiliation(s)
- Derek T Troiano
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland
| | - Tobias Hofmann
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland
| | - Simone Brethauer
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland
| | - Michael H-P Studer
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland.
| |
Collapse
|
95
|
Zhu G, Ye D, Chen X, Wu Y, Yang Z, Mai Y, Liao B, Chen J. Lignin-derived polyphenols with enhanced antioxidant activities by chemical demethylation and their structure-activity relationship. Int J Biol Macromol 2023; 237:124030. [PMID: 36921813 DOI: 10.1016/j.ijbiomac.2023.124030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Lignin valorization to biobased polyphenols antioxidants is increasingly attractive in the modern industry due to their inherent phenolic structures. Herein, lignin-derived polyphenols with enhanced antioxidant activities were prepared from the most available technical lignin including organosolv lignin (OL), alkali lignin (AL), and enzyme lignin (EL) by iodocyclohexane (ICH) chemical demethylation. The structural evolution of lignin indicated that the CAr-OCH3 group and the CAr-O-Calkyl side-chain could be effectively transformed into the CAr-OH group, resulting in a significant increase of the phenolic-OH content and a slight decrease of the molecular weight. The 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·) scavenging activity was in the order of ICHOL-24 > ICHAL-24 > ICHEL-24 ≈ FA > BHT, and the IC50 value of ICHOL-24 was 0.56 times lower than that of BHT. The structure-activity relationship demonstrated the activities were quasi-linearly related to phenolic-OH contents and could be affected by molecular weights. The H/G/S proportions of lignin could be an indicator for accurate screening of efficient lignin-derived polyphenols antioxidants (LPA). It was preliminarily estimated to have economic feasibility for producing LPA from technical lignin by demethylation compared with synthetic or natural antioxidants. This work will help to develop efficient biobased antioxidants for lignin valorization.
Collapse
Affiliation(s)
- Guozhi Zhu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, Guangdong, PR China
| | - Dawei Ye
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, Guangdong, PR China.
| | - Xiaotian Chen
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, Guangdong, PR China
| | - Yuchao Wu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, Guangdong, PR China
| | - Zongmei Yang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, Guangdong, PR China
| | - Yuliang Mai
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, Guangdong, PR China
| | - Bing Liao
- Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, PR China.
| | - Jiazhi Chen
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, Guangdong, PR China.
| |
Collapse
|
96
|
Liu C, Yu H, Voxeur A, Rao X, Dixon RA. FERONIA and wall-associated kinases coordinate defense induced by lignin modification in plant cell walls. SCIENCE ADVANCES 2023; 9:eadf7714. [PMID: 36897948 PMCID: PMC10005186 DOI: 10.1126/sciadv.adf7714] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/03/2023] [Indexed: 06/17/2023]
Abstract
Altering the content or composition of the cell wall polymer lignin is a favored approach to valorize lignin toward biomaterial and chemical production in the biorefinery. However, modifying lignin or cellulose in transgenic plants can induce expression of defense responses and negatively affect growth. Through genetic screening for suppressors of defense gene induction in the low lignin ccr1-3 mutant of Arabidopsis thaliana, we found that loss of function of the receptor-like kinase FERONIA, although not restoring growth, affected cell wall remodeling and blocked release of elicitor-active pectic polysaccharides as a result of the ccr1-3 mutation. Loss of function of multiple wall-associated kinases prevented perception of these elicitors. The elicitors are likely heterogeneous, with tri-galacturonic acid the smallest but not necessarily the most active component. Engineering of plant cell walls will require development of ways to bypass endogenous pectin signaling pathways.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203, USA
| | - Hasi Yu
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203, USA
| | - Aline Voxeur
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Xiaolan Rao
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203, USA
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, No.368, Friendship Avenue, Wuchang District, Wuhan, Hubei Province 430062, China
| | - Richard A. Dixon
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203, USA
| |
Collapse
|
97
|
Centi G, Perathoner S, Genovese C, Arrigo R. Advanced (photo)electrocatalytic approaches to substitute the use of fossil fuels in chemical production. Chem Commun (Camb) 2023; 59:3005-3023. [PMID: 36794323 PMCID: PMC9997108 DOI: 10.1039/d2cc05132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Electrification of the chemical industry for carbon-neutral production requires innovative (photo)electrocatalysis. This study highlights the contribution and discusses recent research projects in this area, which are relevant case examples to explore new directions but characterised by a little background research effort. It is organised into two main sections, where selected examples of innovative directions for electrocatalysis and photoelectrocatalysis are presented. The areas discussed include (i) new approaches to green energy or H2 vectors, (ii) the production of fertilisers directly from the air, (iii) the decoupling of the anodic and cathodic reactions in electrocatalytic or photoelectrocatalytic devices, (iv) the possibilities given by tandem/paired reactions in electrocatalytic devices, including the possibility to form the same product on both cathodic and anodic sides to "double" the efficiency, and (v) exploiting electrocatalytic cells to produce green H2 from biomass. The examples offer hits to expand current areas in electrocatalysis to accelerate the transformation to fossil-free chemical production.
Collapse
Affiliation(s)
- Gabriele Centi
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Siglinda Perathoner
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Chiara Genovese
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Rosa Arrigo
- University of Salford, 336 Peel building, M5 4WT Manchester, UK
| |
Collapse
|
98
|
Teles CA, Gueddida S, Deplazes R, Ciotonea C, Canilho N, Lebègue S, Dhainaut J, Badawi M, Richard F, Royer S. Experimental and
ab initio
Investigation on the Effect of CO and CO
2
during Hydrodeoxygenation of m‐Cresol over Co/SBA‐15. ChemCatChem 2023. [DOI: 10.1002/cctc.202201327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Camila A. Teles
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS UMR 7285 Université de Poitiers Rue Michel Brunet BP633 86022 Poitiers France
| | - Saber Gueddida
- Laboratoire de Physique et Chimie Théoriques, CNRS UMR 7019 Université de Lorraine Vandœuvre-lès-Nancy 54506 Nancy France
| | - Roger Deplazes
- Unité de Catalyse et Chimie du Solide, CNRS UMR 8181 Université de Lille, Centrale Lille, Université d'Artois F- 59000 Lille France
| | - Carmen Ciotonea
- Unité de Chimie Environnementale et Intéractions sur le Vivant, UR4492 SFR Condorcet CNRS 3417 Université du Littoral Côte d'Opale 59140 Dunkerque France
| | - Nadia Canilho
- L2CM, CNRS UMR 7053 Université de Lorraine Vandœuvre-lès-Nancy 54506 Nancy France
| | - Sébastien Lebègue
- Laboratoire de Physique et Chimie Théoriques, CNRS UMR 7019 Université de Lorraine Vandœuvre-lès-Nancy 54506 Nancy France
| | - Jérémy Dhainaut
- Unité de Catalyse et Chimie du Solide, CNRS UMR 8181 Université de Lille, Centrale Lille, Université d'Artois F- 59000 Lille France
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques, CNRS UMR 7019 Université de Lorraine Vandœuvre-lès-Nancy 54506 Nancy France
| | - Frédéric Richard
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS UMR 7285 Université de Poitiers Rue Michel Brunet BP633 86022 Poitiers France
| | - Sébastien Royer
- Unité de Catalyse et Chimie du Solide, CNRS UMR 8181 Université de Lille, Centrale Lille, Université d'Artois F- 59000 Lille France
| |
Collapse
|
99
|
Improvement of UV stability of thermoplastic starch matrix by addition of selected lignin fraction - Photooxidative degradation. Int J Biol Macromol 2023; 230:123142. [PMID: 36610581 DOI: 10.1016/j.ijbiomac.2023.123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
This paper examines the additivation of thermoplastic starch (TPS) matrix by selected fractions of kraft lignin (KL) and correlates its structure-performance when exposed to photooxidative degradation. KL from Eucalyptus urograndis wood was refined by a sequential fractionation process in ethyl acetate (EtOAc). Films were prepared by mixing lignin fractions as additive in TPS matrix by casting and pressing. The lignin employed were KL, fraction of KL insoluble in EtOAc (INS) and fraction of KL soluble in EtOAc (SOL). The samples were exposed to accelerated aging with Ultraviolet-C light (UV-C) for 432 h. Structural changes were measured by FTIR (Fourier-Transform Infrared) spectra. Thermal properties, such as melting enthalpy, glass transition temperature and thermal decomposition, were evaluated by DSC (Differential Scanning Calorimetry) and TG (Thermogravimetry). Morphology of the films was obtained by SEM (Scanning Electron Microscopy). Surface property of wettability was measured by contact angle. Mechanical properties were explored before and after exposure to UV-C light. It was observed that the least photodegraded films were those resulting from the addition of the lignin fraction with higher phenolic hydroxyl group content. According to structural and morphological observations, the soluble fraction (TSOL) presented the highest photoprotection and stabilizing effect as an UV-C light blocker additive on TPS matrix.
Collapse
|
100
|
Lu X, Gu X. A review on lignin-based epoxy resins: Lignin effects on their synthesis and properties. Int J Biol Macromol 2023; 229:778-790. [PMID: 36603715 DOI: 10.1016/j.ijbiomac.2022.12.322] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Lignin can be used as a sustainable alternative to bisphenol A (BPA) to prepared lignin-based epoxy resins. Lignin effects including molecular weight, phenolic content, G/S unit ratio and flexible/rigid linkage ratio on epoxy synthesis and performance were summarized comprehensively. The incorporation of lignin with a higher molecular weight would lead to the higher rigidity of epoxy crosslinking network. Higher contents of ether bonds in lignin would provide higher structural flexibility of lignin incorporated epoxy thermosets. Lignin with higher contents of phenolic hydroxyls was more beneficial for improving the reactivity of its epoxy products after glycidylation. Due to the excellent charring capacity of lignin, higher contents of residue char can be produced at higher additions of lignin at high temperatures, while the loss of crosslinking density caused by the increasing lignin addition (especially for the macromolecular lignin) would deteriorate the thermal stability of their thermosets. Several applications of lignin-based epoxy resins were also mentioned based on their mechanical, thermal and chemical properties, such as coatings (with anticorrosion and UV-blocking), adhesives (with highly crosslinking network, excellent mechanical, and thermal properties) and flame retardants (with high charring capability).
Collapse
Affiliation(s)
- Xinyu Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|