51
|
Mäki-Marttunen V, Andreassen OA, Espeseth T. The role of norepinephrine in the pathophysiology of schizophrenia. Neurosci Biobehav Rev 2020; 118:298-314. [PMID: 32768486 DOI: 10.1016/j.neubiorev.2020.07.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Several lines of evidence have suggested for decades a role for norepinephrine (NE) in the pathophysiology and treatment of schizophrenia. Recent experimental findings reveal anatomical and physiological properties of the locus coeruleus-norepinephrine (LC-NE) system and its involvement in brain function and cognition. Here, we integrate these two lines of evidence. First, we review the functional and structural properties of the LC-NE system and its impact on functional brain networks, cognition, and stress, with special emphasis on recent experimental and theoretical advances. Subsequently, we present an update about the role of LC-associated functions for the pathophysiology of schizophrenia, focusing on the cognitive and motivational deficits. We propose that schizophrenia phenomenology, in particular cognitive symptoms, may be explained by an abnormal interaction between genetic susceptibility and stress-initiated LC-NE dysfunction. This in turn, leads to imbalance between LC activity modes, dysfunctional regulation of brain network integration and neural gain, and deficits in cognitive functions. Finally, we suggest how recent development of experimental approaches can be used to characterize LC function in schizophrenia.
Collapse
Affiliation(s)
| | - Ole A Andreassen
- CoE NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Building 49, P.O. Box 4956 Nydalen, N-0424 Oslo, Norway
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Postboks 1094, Blindern, 0317 Oslo, Norway; Bjørknes College, Lovisenberggata 13, 0456 Oslo, Norway
| |
Collapse
|
52
|
Bonnette S, Diekfuss JA, Grooms DR, Kiefer AW, Riley MA, Riehm C, Moore C, Foss KDB, DiCesare CA, Baumeister J, Myer GD. Electrocortical dynamics differentiate athletes exhibiting low- and high- ACL injury risk biomechanics. Psychophysiology 2020; 57:e13530. [PMID: 31957903 PMCID: PMC9892802 DOI: 10.1111/psyp.13530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/19/2019] [Accepted: 12/18/2019] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) injuries are physically and emotionally debilitating for athletes,while motor and biomechanical deficits that contribute to ACL injury have been identified, limited knowledge about the relationship between the central nervous system (CNS) and biomechanical patterns of motion has impeded approaches to optimize ACL injury risk reduction strategies. In the current study it was hypothesized that high-risk athletes would exhibit altered temporal dynamics in their resting state electrocortical activity when compared to low-risk athletes. Thirty-eight female athletes performed a drop vertical jump (DVJ) to assess their biomechanical risk factors related to an ACL injury. The athletes' electrocortical activity was also recorded during resting state in the same visit as the DVJ assessment. Athletes were divided into low- and high-risk groups based on their performance of the DVJ. Recurrence quantification analysis was used to quantify the temporal dynamics of two frequency bands previously shown to relate to sensorimotor and attentional control. Results revealed that high-risk participants showed more deterministic electrocortical behavior than the low-risk group in the frontal theta and central/parietal alpha-2 frequency bands. The more deterministic resting state electrocortical dynamics for the high-risk group may reflect maladaptive neural behavior-excessively stable deterministic patterning that makes transitioning among functional task-specific networks more difficult-related to attentional control and sensorimotor processing neural regions.
Collapse
Affiliation(s)
- Scott Bonnette
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jed A. Diekfuss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dustin R. Grooms
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, GA, USA,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
| | - Adam W. Kiefer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA,Department of Psychology, Center for Cognition, Action & Perception, University of Cincinnati, Cincinnati, OH, USA,Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael A. Riley
- Department of Psychology, Center for Cognition, Action & Perception, University of Cincinnati, Cincinnati, OH, USA
| | - Christopher Riehm
- Department of Psychology, Center for Cognition, Action & Perception, University of Cincinnati, Cincinnati, OH, USA
| | - Charles Moore
- Department of Psychology, Center for Cognition, Action & Perception, University of Cincinnati, Cincinnati, OH, USA
| | - Kim D. Barber Foss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher A. DiCesare
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jochen Baumeister
- Exercise Science and Neuroscience, Department Exercise & Health, Paderborn University, Paderborn, Germany
| | - Gregory D. Myer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA,The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
| |
Collapse
|
53
|
Video games as rich environments to foster brain plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2020; 168:117-136. [PMID: 32164847 DOI: 10.1016/b978-0-444-63934-9.00010-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This chapter highlights the key role of two main factors, attentional control and reward processing, in unlocking brain plasticity. We first review the evidence for the role that each of these mechanisms plays in neuroplasticity, and then make the case that tools and technologies that combine these two are likely to result in maximal and broad, generalized benefits. In this context, we review the evidence concerning the impact of video game play on brain plasticity, with an eye toward plasticity-driving methods such as the seamless integration of neurofeedback into the video game platforms.
Collapse
|
54
|
Li X, Yang X, Sun Z. Alpha rhythm slowing in a modified thalamo-cortico-thalamic model related with Alzheimer's disease. PLoS One 2020; 15:e0229950. [PMID: 32163454 PMCID: PMC7067465 DOI: 10.1371/journal.pone.0229950] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
A decrease in alpha band power is defined as a hallmark of electroencephalogram (EEG) in Alzheimer’s disease (AD). This study devotes to understanding the neuronal correlates of alpha rhythm slowing associated with AD from the view of neurocomputation. Firstly, a modified computational model of thalamo-cortico-thalamic (TCT) circuitry is constructed by incorporating two important biologically plausible ingredients. One is the disinhibition property between different inhibitory interneurons in the cortical module. The other is the full relay function of thalamic relay nucleus (TCR) to the cortical module. Then, by decreasing synaptic connectivity parameters to mimic the neuropathological condition of synapse loss in AD, the correlation between neuronal synaptic behavior and abnormal alpha rhythm is simulated by means of power spectral analysis. The results indicate that these decreases of synaptic activity, i.e., not only the excitatory synaptic connections from TCR to fast inhibitory interneurons Cfte and from excitatory interneurons to pyramidal neurons Cpxe but also the inhibitory synaptic connections from fast inhibitory interneurons to slow inhibitory interneurons Clfi and from inhibitory interneurons to TCR Ctii, can significantly diminish the peak power density over the alpha band of the thalamic output, which implies that there is a slowing of alpha band. Furthermore, the underlying mechanism behind the alpha rhythmic changes is analyzed using nonlinear dynamical technique. The results reveal that decreases of Cfte, Cpxe, Clfi and Ctii can make the thalamic module transfer from a limit cycle mode to a point attractor mode, which may lead to the alpha rhythm slowing in the modified TCT model. We expect this work can be helpful in identifying early biomarkers of AD’s EEG and understanding potential pathogenesis of AD.
Collapse
Affiliation(s)
- XiaoYuan Li
- College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, PR China
| | - XiaoLi Yang
- College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, PR China
- * E-mail:
| | - ZhongKui Sun
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, PR China
| |
Collapse
|
55
|
Zanin M, Güntekin B, Aktürk T, Hanoğlu L, Papo D. Time Irreversibility of Resting-State Activity in the Healthy Brain and Pathology. Front Physiol 2020; 10:1619. [PMID: 32038297 PMCID: PMC6987076 DOI: 10.3389/fphys.2019.01619] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Characterizing brain activity at rest is of paramount importance to our understanding both of general principles of brain functioning and of the way brain dynamics is affected in the presence of neurological or psychiatric pathologies. We measured the time-reversal symmetry of spontaneous electroencephalographic brain activity recorded from three groups of patients and their respective control group under two experimental conditions (eyes open and closed). We evaluated differences in time irreversibility in terms of possible underlying physical generating mechanisms. The results showed that resting brain activity is generically time-irreversible at sufficiently long time scales, and that brain pathology is generally associated with a reduction in time-asymmetry, albeit with pathology-specific patterns. The significance of these results and their possible dynamical etiology are discussed. Some implications of the differential modulation of time asymmetry by pathology and experimental condition are examined.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Bahar Güntekin
- Department of Biophysics, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
| | - Tuba Aktürk
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lütfü Hanoğlu
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - David Papo
- Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
| |
Collapse
|
56
|
Sahin L, Figueiro MG. Flickering Red-Light Stimulus for Promoting Coherent 40 Hz Neural Oscillation: A Feasibility Study. J Alzheimers Dis 2020; 75:911-921. [PMID: 32390635 PMCID: PMC8083946 DOI: 10.3233/jad-200179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Coherent 40 Hz (gamma) neural oscillation indicates healthy brain activity and is known to be disrupted in Alzheimer's disease (AD) patients. 40 Hz entrainment by flickering light is known to significantly attenuate AD pathology in mice. OBJECTIVE To demonstrate the feasibility of using a lighting intervention to promote coherent 40 Hz neural oscillation, improved working memory performance, and reduced subjective sleepiness among a population of healthy young adults. If successful, the intervention could be extended to address cognitive impairment associated with mild cognitive impairment and AD. METHODS Nine healthy participants (median age 22 years, five females) were exposed to one of two lighting conditions per session in a within-subjects counterbalanced manner. The study's two sessions were separated by 1 week. Custom-built light masks provided either a 40 Hz flickering red light (FRL) intervention or a dark control condition (i.e., total darkness, light mask not energized) at participants' eyes. Data were collected four times per session: pre-exposure, after 25-min exposure, after 50-min exposure, and post-exposure. Each data collection period included a Karolinska Sleepiness Scale report, an electroencephalogram, and working memory (n-back) auditory performance testing. RESULTS The FRL intervention induced a significant increase in 40 Hz power and a modest increase in low gamma power. The intervention had no significant impact on working memory performance and subjective sleepiness compared to the control. However, increases in 40 Hz power were significantly correlated with reduced subjective sleepiness. CONCLUSION The results clearly demonstrate the feasibility of using a flickering light to increase 40 Hz power.
Collapse
Affiliation(s)
- Levent Sahin
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mariana G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
57
|
Furutani N, Nariya Y, Takahashi T, Noto S, Yang AC, Hirosawa T, Kameya M, Minabe Y, Kikuchi M. Decomposed Temporal Complexity Analysis of Neural Oscillations and Machine Learning Applied to Alzheimer's Disease Diagnosis. Front Psychiatry 2020; 11:531801. [PMID: 33101073 PMCID: PMC7495507 DOI: 10.3389/fpsyt.2020.531801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022] Open
Abstract
Despite growing evidence of aberrant neuronal complexity in Alzheimer's disease (AD), it remains unclear how this variation arises. Neural oscillations reportedly comprise different functions depending on their own properties. Therefore, in this study, we investigated details of the complexity of neural oscillations by decomposing the oscillations into frequency, amplitude, and phase for AD patients. We applied resting-state magnetoencephalography (MEG) to 17 AD patients and 21 healthy control subjects. We first decomposed the source time series of the MEG signal into five intrinsic mode functions using ensemble empirical mode decomposition. We then analyzed the temporal complexities of these time series using multiscale entropy. Results demonstrated that AD patients had lower complexity on short time scales and higher complexity on long time scales in the alpha band in temporal regions of the brain. We evaluated the alpha band complexity further by decomposing it into amplitude and phase using Hilbert spectral analysis. Consequently, we found lower amplitude complexity and higher phase complexity in AD patients. Correlation analyses between spectral complexity and decomposed complexities revealed scale-dependency. Specifically, amplitude complexity was positively correlated with spectral complexity on short time scales, whereas phase complexity was positively correlated with spectral complexity on long time scales. Regarding the relevance of cognitive function to the complexity measures, the phase complexity on the long time scale was found to be correlated significantly with the Mini-Mental State Examination score. Additionally, we examined the diagnostic utility of the complexity characteristics using machine learning (ML) methods. We prepared a feature pool using multiple sparse autoencoders (SAEs), chose some discriminating features, and applied them to a support vector machine (SVM). Compared to the simple SVM and the SVM after feature selection (FS + SVM), the SVM with multiple SAEs (SAE + FS + SVM) had improved diagnostic accuracy. Through this study, we 1) advanced the understanding of neuronal complexity in AD patients using decomposed temporal complexity analysis and 2) demonstrated the effectiveness of combining ML methods with information about signal complexity for the diagnosis of AD.
Collapse
Affiliation(s)
- Naoki Furutani
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yuta Nariya
- Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Sarah Noto
- Faculty of Nursing, National College of Nursing, Tokyo, Japan
| | - Albert C Yang
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, United States.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Tetsu Hirosawa
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masafumi Kameya
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yoshio Minabe
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.,Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
58
|
Bochkarev V, Solnceva S, Kirenskaya A, Tkachenko A. A comparative study of the P300 wave and evoked theta-rhythm in schizophrenia and personality disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:41-47. [DOI: 10.17116/jnevro202012003141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
59
|
Baertsch NA, Ramirez JM. Insights into the dynamic control of breathing revealed through cell-type-specific responses to substance P. eLife 2019; 8:51350. [PMID: 31804180 PMCID: PMC6957314 DOI: 10.7554/elife.51350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022] Open
Abstract
The rhythm generating network for breathing must continuously adjust to changing metabolic and behavioral demands. Here, we examined network-based mechanisms in the mouse preBötzinger complex using substance P, a potent excitatory modulator of breathing frequency and stability, as a tool to dissect network properties that underlie dynamic breathing. We find that substance P does not alter the balance of excitation and inhibition during breaths or the duration of the resulting refractory period. Instead, mechanisms of recurrent excitation between breaths are enhanced such that the rate that excitation percolates through the network is increased. We propose a conceptual framework in which three distinct phases of inspiration, the burst phase, refractory phase, and percolation phase, can be differentially modulated to control breathing dynamics and stability. Unraveling mechanisms that support this dynamic control may improve our understanding of nervous system disorders that destabilize breathing, many of which involve changes in brainstem neuromodulatory systems.
Collapse
Affiliation(s)
- Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
60
|
Neural theta oscillations support semantic memory retrieval. Sci Rep 2019; 9:17667. [PMID: 31776375 PMCID: PMC6881370 DOI: 10.1038/s41598-019-53813-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/05/2019] [Indexed: 11/08/2022] Open
Abstract
Lexical-semantic retrieval emerges through the interactions of distributed prefrontal and perisylvian brain networks. Growing evidence suggests that synchronous theta band neural oscillations might play a role in this process, yet, their functional significance remains elusive. Here, we used transcranial alternating current stimulation to induce exogenous theta oscillations at 6 Hz (θ-tACS) over left prefrontal and posterior perisylvian cortex with a 180° (anti-phase) and 0° (in-phase) relative phase difference while participants performed automatic and controlled retrieval tasks. We demonstrate that θ-tACS significantly modulated the retrieval performance and its effects were both task- and phase-specific: the in-phase tACS impaired controlled retrieval, whereas the anti-phase tACS improved controlled but impaired automatic retrieval. These findings indicate that theta band oscillatory brain activity supports binding of semantically related representations via a phase-dependent modulation of semantic activation or maintenance.
Collapse
|
61
|
Billig AJ, Herrmann B, Rhone AE, Gander PE, Nourski KV, Snoad BF, Kovach CK, Kawasaki H, Howard MA, Johnsrude IS. A Sound-Sensitive Source of Alpha Oscillations in Human Non-Primary Auditory Cortex. J Neurosci 2019; 39:8679-8689. [PMID: 31533976 PMCID: PMC6820204 DOI: 10.1523/jneurosci.0696-19.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/09/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
The functional organization of human auditory cortex can be probed by characterizing responses to various classes of sound at different anatomical locations. Along with histological studies this approach has revealed a primary field in posteromedial Heschl's gyrus (HG) with pronounced induced high-frequency (70-150 Hz) activity and short-latency responses that phase-lock to rapid transient sounds. Low-frequency neural oscillations are also relevant to stimulus processing and information flow, however, their distribution within auditory cortex has not been established. Alpha activity (7-14 Hz) in particular has been associated with processes that may differentially engage earlier versus later levels of the cortical hierarchy, including functional inhibition and the communication of sensory predictions. These theories derive largely from the study of occipitoparietal sources readily detectable in scalp electroencephalography. To characterize the anatomical basis and functional significance of less accessible temporal-lobe alpha activity we analyzed responses to sentences in seven human adults (4 female) with epilepsy who had been implanted with electrodes in superior temporal cortex. In contrast to primary cortex in posteromedial HG, a non-primary field in anterolateral HG was characterized by high spontaneous alpha activity that was strongly suppressed during auditory stimulation. Alpha-power suppression decreased with distance from anterolateral HG throughout superior temporal cortex, and was more pronounced for clear compared to degraded speech. This suppression could not be accounted for solely by a change in the slope of the power spectrum. The differential manifestation and stimulus-sensitivity of alpha oscillations across auditory fields should be accounted for in theories of their generation and function.SIGNIFICANCE STATEMENT To understand how auditory cortex is organized in support of perception, we recorded from patients implanted with electrodes for clinical reasons. This allowed measurement of activity in brain regions at different levels of sensory processing. Oscillations in the alpha range (7-14 Hz) have been associated with functions including sensory prediction and inhibition of regions handling irrelevant information, but their distribution within auditory cortex is not known. A key finding was that these oscillations dominated in one particular non-primary field, anterolateral Heschl's gyrus, and were suppressed when subjects listened to sentences. These results build on our knowledge of the functional organization of auditory cortex and provide anatomical constraints on theories of the generation and function of alpha oscillations.
Collapse
Affiliation(s)
- Alexander J Billig
- The Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada,
| | - Björn Herrmann
- The Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | | | | | | | | | | | | | - Matthew A Howard
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute, The University of Iowa, Iowa City, Iowa 52242, and
| | - Ingrid S Johnsrude
- The Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
- School of Communication Sciences and Disorders, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
62
|
Hira S, Saleem U, Anwar F, Sohail MF, Raza Z, Ahmad B. β-Carotene: A Natural Compound Improves Cognitive Impairment and Oxidative Stress in a Mouse Model of Streptozotocin-Induced Alzheimer's Disease. Biomolecules 2019; 9:E441. [PMID: 31480727 PMCID: PMC6769610 DOI: 10.3390/biom9090441] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by a cascade of changes in cognitive, behavioral, and social activities. Several areas of the brain are involved in the regulation of memory. Of most importance are the amygdala and hippocampus. Antioxidant therapy is used for the palliative treatment of different degenerative diseases like diabetes, cirrhosis, and Parkinson's, etc. The objective of this study was to assess the effectiveness of exogenous antioxidants, in particular, β carotene (1.02 and 2.05 mg/kg) against intracerebroventricular injected streptozotocin-induced memory impairment in mice. Streptozotocin (3 mg/kg, i.c.v) was administered in two separate doses (on 1st and 3rd days of treatment) for neurodegeneration. Fifty Albino mice (male) were selected in the protocol, and they were classified into five groups (Group I-control, Group II-disease, Group III-standard, Group IV-V-β-carotene-treated) to investigate the cognitive enhancement effect of selected antioxidants. The cognitive performance was observed following the elevated plus-maze, passive avoidance, and open field paradigms. Acetylcholine esterase, β-amyloid protein, and biochemical markers of oxidative stress such as glutathione peroxidase, superoxide dismutase, and catalase were analyzed in brain homogenates. In silico activity against acetylcholinesterase (AChE) was determined by the molecular modeling of β-carotene. β-carotene at a dose of 2.05 mg/kg was found to attenuate the deleterious effects of streptozotocin-induced behavioral and biochemical impairments, including the inhibition of acetylcholinesterase activity. The in silico studies confirmed the binding capacity of β-carotene with the acetylcholinesterase enzyme. The administration of β-carotene attenuated streptozotocin-induced cognitive deficit via its anti-oxidative effects, inhibition of acetylcholinesterase, and the reduction of amyloid β-protein fragments. These results suggest that β-carotene could be useful for the treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Sundas Hira
- Riphah institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
| | - Uzma Saleem
- Riphah institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54000, Pakistan.
- Faculty of Pharmaceutical Sciences, GC University, Faisalabad 38000, Pakistan.
| | - Fareeha Anwar
- Riphah institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54000, Pakistan.
| | - Muhammad Farhan Sohail
- Riphah institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
| | - Zohaib Raza
- Riphah institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
- Faculty of Pharmaceutical Sciences, GC University, Faisalabad 38000, Pakistan
| | - Bashir Ahmad
- Riphah institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
63
|
Stefani A, Grandi LC, Galati S. Deep brain stimulation of the pedunculopontine nucleus modulates subthalamic pathological oscillations. Neurobiol Dis 2019; 128:49-52. [DOI: 10.1016/j.nbd.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 01/24/2023] Open
|
64
|
Du X, Rowland LM, Summerfelt A, Choa FS, Wittenberg GF, Wisner K, Wijtenburg A, Chiappelli J, Kochunov P, Hong LE. Cerebellar-Stimulation Evoked Prefrontal Electrical Synchrony Is Modulated by GABA. THE CEREBELLUM 2019; 17:550-563. [PMID: 29766458 DOI: 10.1007/s12311-018-0945-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerebellar-prefrontal connectivity has been recognized as important for behaviors ranging from motor coordination to cognition. Many of these behaviors are known to involve excitatory or inhibitory modulations from the prefrontal cortex. We used cerebellar transcranial magnetic stimulation (TMS) with simultaneous electroencephalography (EEG) to probe cerebellar-evoked electrical activity in prefrontal cortical areas and used magnetic resonance spectroscopy (MRS) measures of prefrontal GABA and glutamate levels to determine if they are correlated with those potentials. Cerebellar-evoked bilateral prefrontal synchrony in the theta to gamma frequency range showed patterns that reflect strong GABAergic inhibitory function (r = - 0.66, p = 0.002). Stimulation of prefrontal areas evoked bilateral prefrontal synchrony in the theta to low beta frequency range that reflected, conversely, glutamatergic excitatory function (r = 0.66, p = 0.002) and GABAergic inhibitory function (r = - 0.65, p = 0.002). Cerebellar-evoked prefrontal synchronization had opposite associations with cognition and motor coordination: it was positively associated with working memory performance (r = 0.57, p = 0.008) but negatively associated with coordinated motor function as measured by rapid finger tapping (r = - 0.59, p = 0.006). The results suggest a relationship between regional GABA levels and interregional effects on synchrony. Stronger cerebellar-evoked prefrontal synchrony was associated with better working memory but surprisingly worse motor coordination, which suggests competing effects for motor activity and cognition. The data supports the use of a TMS-EEG-MRS approach to study the neurochemical basis of large-scale oscillations modulated by the cerebellar-prefrontal connectivity.
Collapse
Affiliation(s)
- Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA.
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA
| | - Fow-Sen Choa
- Department of Electrical Engineering and Computer Science, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - George F Wittenberg
- Department of Neurology, Physical Therapy and Rehabilitation Science, Internal Medicine, Older Americans Independence Center, University of Maryland, Baltimore, MD, 21201, USA
- Department of Veterans Affairs (VA) Maryland Health Care System, Geriatrics Research, Education and Clinical Center, and Maryland Exercise & Robotics Center of Excellence, Baltimore, MD, 21201, USA
| | - Krista Wisner
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA
| | - Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA
| |
Collapse
|
65
|
Early glioma is associated with abnormal electrical events in cortical cultures. Med Biol Eng Comput 2019; 57:1645-1656. [PMID: 31079355 DOI: 10.1007/s11517-019-01980-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 04/04/2019] [Indexed: 10/26/2022]
Abstract
The prodromal stages of some neurological diseases have a distinct electrical profile which can potentially be leveraged for early diagnosis, predicting disease recurrence, monitoring of disease progression, and better understanding of the disease pathology. Gliomas are tumors that originate from glial cells present in the brain and spinal cord. Healthy glial cells support normal neuronal function and play an important role in modulating the regular electrical activity of neurons. However, gliomas can disrupt the normal electrical dynamics of the brain. Though experimental and clinical studies suggest that glioma and injury to glial cells disrupt electrical dynamics of the brain, whether these disruptions are present during the earliest stages of glioma and glial injury are unclear. The primary aim of this study is to investigate the effect of early in vitro glial pathology (glioma and glial injury in specific) on neuronal electrical activity. In particular, we investigated the effect of glial pathology on neural synchronization: an important phenomenon that underlies several central neurophysiological processes (ScienceDirect, 2018 ). We used two in vitro disease samples: (a) a sample in which cortical cultures were treated with anti-mitotic agents that deplete glial cells and (b) a glioma sample in which healthy cortical cells were cultured with CRL-2303 (an aggressive glioma cell line). Healthy cortical culture samples were used as controls. Cultures were established over a glass dish embedded with microelectrodes that permits simultaneous measurement of extracellular electrical activity from multiple sites of the culture. We observed that healthy cortical cultures produce spontaneous and synchronized oscillations which were attenuated in the absence of glial cells. The presence of glioma was associated with the emergence of two types of "abnormal electrical activity" each with distinct amplitude and frequency profile. Our results indicate that even early stages of glioma and glial injury are associated with distinct changes in neuronal electrical activity. Graphical abstract.
Collapse
|
66
|
Vergara RC, Moënne-Loccoz C, Ávalos C, Egaña J, Maldonado PE. Finger Temperature: A Psychophysiological Assessment of the Attentional State. Front Hum Neurosci 2019; 13:66. [PMID: 30949037 PMCID: PMC6436084 DOI: 10.3389/fnhum.2019.00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Attention is a key cognitive phenomenon that is studied to understand cognitive disorders or even to estimate workloads to prevent accidents. Usually, it is studied using brain activity, even though it has many psychophysiological correlates. In the present study, we aim to evaluate if finger temperature, as a surrogate of peripheral vasoconstriction, can be used to obtain similar and complementary information to electroencephalography (EEG) brain activity measurements. To conduct this, 34 participants were recruited and submitted to performing four tasks-one as a baseline, and three attentional tasks. These three attentional tasks measured sustained attention, resilience to distractors, and attentional resources. During the tasks, the room, forehead, tympanic, and finger temperatures were measured. Furthermore, we included a 32-channel EEG recording. Our results showed a strong monotonic association between the finger temperature and the Alpha and Beta EEG spectral bands. When predicting attentional performance, the finger temperature was complementary to the EEG spectral measurements, through the prediction of aspects of attentional performance that had not been assessed by spectral EEG activity, or through the improvement of the model's fit. We also found that during the baseline task (non-goal-oriented task), the spectral EEG activity has an inverted correlation, as compared to a goal-oriented task. Our current results suggest that the psychophysiological assessment of attention is complementary to classic EEG approach, while also having the advantage of easy implementation of analysis tools in environments of reducing control (workplaces, student classrooms).
Collapse
Affiliation(s)
- Rodrigo C Vergara
- Departmento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristóbal Moënne-Loccoz
- Departmento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Camila Ávalos
- Departmento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - José Egaña
- Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Anestesiologiá y Medicina Perioperatoria, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pedro E Maldonado
- Departmento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
67
|
Zammit N, Muscat R. Beta band oscillatory deficits during working memory encoding in adolescents with attention-deficit hyperactive disorder. Eur J Neurosci 2019; 50:2905-2920. [PMID: 30825351 DOI: 10.1111/ejn.14398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 01/01/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurobehavioural disorder, characterized by symptoms of inattention and/or hyperactivity/impulsivity, in addition to various cognitive deficits, including working memory impairments. This pathology arises from a complex constellation of genetic, structural and neurotransmission abnormalities, which give rise to the aberrant electrophysiological patterns evident in patients with ADHD. Among such, findings have consistently provided support in favour of weaker power across the beta frequency range. Evidence has also emerged that beta rhythmic decrements are linked to working memory encoding. The catecholaminergic modulation of both working memory and beta oscillations may suggest that the link between the two might be rooted at the neurotransmission level. Studies have consistently shown that ADHD involves significant catecholaminergic dysregulation, which is also supported by other clinical studies that demonstrate stimulant-induced amelioration of ADHD symptomology. In this study, we explore the possible ways that might relate ADHD, working memory, beta rhythms and catecholaminergic signalling altogether by investigating the integrity of encoding-relevant electroencephalographic beta rhythms in medication-naïve and stimulant-medicated adolescent patients. The aberrant parietal and frontal encoding-related beta rhythm revealed in the ADHD patients together with a working memory (WM) deficit as observed herein was reversed by methylphenidate in the latter case but not with regard to the beta rhythm. This finding per se raises the issue of the role played by beta rhythms in the WM deficits associated with ADHD.
Collapse
Affiliation(s)
- Nowell Zammit
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Richard Muscat
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta.,Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| |
Collapse
|
68
|
Roh M, Jang IS, Suk K, Lee MG. Spectral Modification by Operant Conditioning of Cortical Theta Suppression in Rats. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:93-104. [PMID: 30690944 PMCID: PMC6361045 DOI: 10.9758/cpn.2019.17.1.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 11/25/2022]
Abstract
Objective Brain activity is known to be voluntarily controllable by neurofeedback, a kind of electroencephalographic (EEG) operant conditioning. Although its efficacy in clinical effects has been reported, it is yet to be uncovered whether or how a specific band activity is controllable. Here, we examined EEG spectral profiles along with conditioning training of a specific brain activity, theta band (4–8 Hz) amplitude, in rats. Methods During training, the experimental group received electrical stimulation to the medial forebrain bundle contingent to suppression of theta activity, while the control group received stimulation non-contingent to its own band activity. Results In the experimental group, theta activity gradually decreased within the training session, while there was an increase of theta activity in the control group. There was a significant difference in theta activity during the sessions between the two groups. The spectral theta peak, originally located at 7 Hz, shifted further towards higher frequencies in the experimental group. Conclusion Our results showed that an operant conditioning technique could train rats to control their specific EEG activity indirectly, and it may be used as an animal model for studying how neuronal systems work in human neurofeedback.
Collapse
Affiliation(s)
- Mootaek Roh
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Maan-Gee Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
69
|
Smit DJA, Wright MJ, Meyers JL, Martin NG, Ho YYW, Malone SM, Zhang J, Burwell SJ, Chorlian DB, de Geus EJC, Denys D, Hansell NK, Hottenga J, McGue M, van Beijsterveldt CEM, Jahanshad N, Thompson PM, Whelan CD, Medland SE, Porjesz B, Lacono WG, Boomsma DI. Genome-wide association analysis links multiple psychiatric liability genes to oscillatory brain activity. Hum Brain Mapp 2018; 39:4183-4195. [PMID: 29947131 PMCID: PMC6179948 DOI: 10.1002/hbm.24238] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/26/2018] [Accepted: 05/21/2018] [Indexed: 02/02/2023] Open
Abstract
Oscillatory activity is crucial for information processing in the brain, and has a long history as a biomarker for psychopathology. Variation in oscillatory activity is highly heritable, but current understanding of specific genetic influences remains limited. We performed the largest genome-wide association study to date of oscillatory power during eyes-closed resting electroencephalogram (EEG) across a range of frequencies (delta 1-3.75 Hz, theta 4-7.75 Hz, alpha 8-12.75 Hz, and beta 13-30 Hz) in 8,425 subjects. Additionally, we performed KGG positional gene-based analysis and brain-expression analyses. GABRA2-a known genetic marker for alcohol use disorder and epilepsy-significantly affected beta power, consistent with the known relation between GABAA interneuron activity and beta oscillations. Tissue-specific SNP-based imputation of gene-expression levels based on the GTEx database revealed that hippocampal GABRA2 expression may mediate this effect. Twenty-four genes at 3p21.1 were significant for alpha power (FDR q < .05). SNPs in this region were linked to expression of GLYCTK in hippocampal tissue, and GNL3 and ITIH4 in the frontal cortex-genes that were previously implicated in schizophrenia and bipolar disorder. In sum, we identified several novel genetic variants associated with oscillatory brain activity; furthermore, we replicated and advanced understanding of previously known genes associated with psychopathology (i.e., schizophrenia and alcohol use disorders). Importantly, these psychopathological liability genes affect brain functioning, linking the genes' expression to specific cortical/subcortical brain regions.
Collapse
Affiliation(s)
- Dirk J. A. Smit
- Psychiatry departmentAmsterdam Neuroscience, Academic Medical Center, University of AmsterdamThe Netherlands
| | - Margaret J. Wright
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
- Centre of Advanced Imaging, University QueenslandBrisbaneAustralia
| | - Jacquelyn L. Meyers
- Henri Begleiter Neurodynamics Lab., Department of PsychiatryState University of New York Downstate Medical CenterBrooklynNew York
| | | | | | | | - Jian Zhang
- Henri Begleiter Neurodynamics Lab., Department of PsychiatryState University of New York Downstate Medical CenterBrooklynNew York
| | - Scott J. Burwell
- Department of PsychologyUniversity of MinnesotaMinneapolisMinnesota
| | - David B. Chorlian
- Henri Begleiter Neurodynamics Lab., Department of PsychiatryState University of New York Downstate Medical CenterBrooklynNew York
| | - Eco J. C. de Geus
- Biological Psychology, Amsterdam Public Health research institute, Vrije Universiteit AmsterdamThe Netherlands
| | - Damiaan Denys
- Psychiatry departmentAmsterdam Neuroscience, Academic Medical Center, University of AmsterdamThe Netherlands
| | | | - Jouke‐Jan Hottenga
- Biological Psychology, Amsterdam Public Health research institute, Vrije Universiteit AmsterdamThe Netherlands
| | - Matt McGue
- Department of PsychologyUniversity of MinnesotaMinneapolisMinnesota
| | | | - Neda Jahanshad
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern CaliforniaMarina del ReyCalifornia
| | - Paul M. Thompson
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern CaliforniaMarina del ReyCalifornia
| | - Christopher D. Whelan
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern CaliforniaMarina del ReyCalifornia
| | | | - Bernice Porjesz
- Henri Begleiter Neurodynamics Lab., Department of PsychiatryState University of New York Downstate Medical CenterBrooklynNew York
| | | | - Dorret I. Boomsma
- Biological Psychology, Amsterdam Public Health research institute, Vrije Universiteit AmsterdamThe Netherlands
| |
Collapse
|
70
|
COMT Inhibition Alters Cue-Evoked Oscillatory Dynamics during Alcohol Drinking in the Rat. eNeuro 2018; 5:eN-NWR-0326-18. [PMID: 30406194 PMCID: PMC6220588 DOI: 10.1523/eneuro.0326-18.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/05/2018] [Indexed: 11/21/2022] Open
Abstract
Alterations in the corticostriatal system have been implicated in numerous substance use disorders, including alcohol use disorder (AUD). Adaptations in this neural system are associated with enhanced drug-seeking behaviors following exposure to cues predicting drug availability. Therefore, understanding how potential treatments alter neural activity in this system could lead to more refined and effective approaches for AUD. Local field potentials (LFPs) were acquired simultaneously in the prefrontal cortex (PFC) and nucleus accumbens (NA) of both alcohol preferring (P) and Wistar rats engaged in a Pavlovian conditioning paradigm wherein a light cue signaled the availability of ethanol (EtOH). On test days, the catechol-o-methyl-transferase (COMT) inhibitor tolcapone was administered prior to conditioning. Stimulus-evoked voltage changes were observed following the presentation of the EtOH cue in both strains and were most pronounced in the PFC of P rats. Phase analyses of LFPs in the θ band (5–11 Hz) revealed that PFC-NA synchrony was reduced in P rats relative to Wistars but was robustly increased during drinking. Presentation of the cue resulted in a larger phase reset in the PFC of P rats but not Wistars, an effect that was attenuated by tolcapone. Additionally, tolcapone reduced cued EtOH intake in P rat but not Wistars. These results suggest a link between corticostriatal synchrony and genetic risk for excessive drinking. Moreover, inhibition of COMT within these systems may result in reduced attribution of salience to reward paired stimuli via modulation of stimulus-evoked changes to cortical oscillations in genetically susceptible populations.
Collapse
|
71
|
Grandi LC, Kaelin-Lang A, Orban G, Song W, Salvadè A, Stefani A, Di Giovanni G, Galati S. Oscillatory Activity in the Cortex, Motor Thalamus and Nucleus Reticularis Thalami in Acute TTX and Chronic 6-OHDA Dopamine-Depleted Animals. Front Neurol 2018; 9:663. [PMID: 30210425 PMCID: PMC6122290 DOI: 10.3389/fneur.2018.00663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023] Open
Abstract
The motor thalamus (MTh) and the nucleus reticularis thalami (NRT) have been largely neglected in Parkinson's disease (PD) research, despite their key role as interface between basal ganglia (BG) and cortex (Cx). In the present study, we investigated the oscillatory activity within the Cx, MTh, and NRT, in normal and different dopamine (DA)-deficient states. We performed our experiments in both acute and chronic DA-denervated rats by injecting into the medial forebrain bundle (MFB) tetrodotoxin (TTX) or 6-hydroxydopamine (6-OHDA), respectively. Interestingly, almost all the electroencephalogram (EEG) frequency bands changed in acute and/or chronic DA depletion, suggesting alteration of all oscillatory activities and not of a specific band. Overall, δ (2-4 Hz) and θ (4-8 Hz) band decreased in NRT and Cx in acute and chronic state, whilst, α (8-13 Hz) band decreased in acute and chronic states in the MTh and NRT but not in the Cx. The β (13-40 Hz) and γ (60-90 Hz) bands were enhanced in the Cx. In the NRT the β bands decreased, except for high-β (Hβ, 25-30 Hz) that increased in acute state. In the MTh, Lβ and Hβ decreased in acute DA depletion state and γ decreased in both TTX and 6-OHDA-treated animals. These results confirm that abnormal cortical β band are present in the established DA deficiency and it might be considered a hallmark of PD. The abnormal oscillatory activity in frequency interval of other bands, in particular the dampening of low frequencies in thalamic stations, in both states of DA depletion might also underlie PD motor and non-motor symptoms. Our data highlighted the effects of acute depletion of DA and the strict interplay in the oscillatory activity between the MTh and NRT in both acute and chronic stage of DA depletion. Moreover, our findings emphasize early alterations in the NRT, a crucial station for thalamic information processing.
Collapse
Affiliation(s)
- Laura C. Grandi
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
| | - Alain Kaelin-Lang
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Gergely Orban
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
| | - Wei Song
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
| | - Agnese Salvadè
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
| | - Alessandro Stefani
- Department System Medicine, UOSD Parkinson, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Salvatore Galati
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
| |
Collapse
|
72
|
Sun L, Chen Y, Hou C, Sun X, Wang Z, Li S, Lv M, Chen X. Neuroprotective effect of total glycosides from paeonies against neurotoxicity induced by strychnos alkaloids related to recovering the levels of neurotransmitters and neuroendocrine hormones in rat serum and brain. RSC Adv 2018; 8:29210-29219. [PMID: 35548016 PMCID: PMC9084482 DOI: 10.1039/c8ra05384g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/09/2018] [Indexed: 01/13/2023] Open
Abstract
Semen Strychni, a classical traditional Chinese medicine, has been widely used for its anti-tumor, analgesic and anti-inflammatory angiogenesis effects. However, taking an overdose of Semen Strychni might result in extreme neurotoxicity. Strychnos alkaloids are the main toxic constituents of Semen Strychni. Total glycosides from paeonies are considered to have neuroprotective effects. In this study, twelve potential endogenous biomarkers in rat serum and brain were monitored to investigate the protective effect of total glycosides from the paeony against strychnos alkaloids-induced neurotoxicity. A sensitive liquid chromatography-tandem mass spectrometry method was developed and validated to monitor eight neurotransmitters including glutamate, γ-aminobutyric acid, acetylcholine serotonin, dopamine, norepinephrine, tryptophan and tyrosine. An enzyme-linked immunosorbent assay method was selected for determination of four neuroendocrine hormones including thyrotrophin-releasing hormone, corticotrophin-releasing hormone, antidiuretic hormone and prolactin. Results showed that continuous administration of strychnos alkaloids for 15 days caused significant changed levels of the biomarkers (especially the four neuroendocrine hormones). Meanwhile, total glycosides from paeony pretreated rats (administrated with total glycosides from the paeony for 15 days before exposure to strychnos alkaloids) showed recovered levels of these biomarkers. The results suggested that the neurotransmitters and neuroendocrine hormones in serum and brain might play potential roles as biomarkers. This study provides the possibility of alleviating the Semen Strychni-induced neurotoxicity in clinic by pre-protection with total glycosides from paeonies. Eight neurotransmitters and four neuroendocrine hormones in rat serum and brain were quantified to investigate the neuroprotective effect of total glycosides from paeony against neurotoxicity induced by strychnos alkaloids.![]()
Collapse
Affiliation(s)
- Linjia Sun
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road in Shenhe District Shenyang China 110016 +8602423986259
| | - Yu Chen
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road in Shenhe District Shenyang China 110016 +8602423986259
| | - Chenzhi Hou
- Department of Pharmaceutical Analysis, China Pharmaceutical University Nanjing China
| | - Xiaoyang Sun
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road in Shenhe District Shenyang China 110016 +8602423986259
| | - Zhipeng Wang
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road in Shenhe District Shenyang China 110016 +8602423986259
| | - Shujuan Li
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road in Shenhe District Shenyang China 110016 +8602423986259
| | - Mingming Lv
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road in Shenhe District Shenyang China 110016 +8602423986259
| | - Xiaohui Chen
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road in Shenhe District Shenyang China 110016 +8602423986259
| |
Collapse
|
73
|
Schulz S, Haueisen J, Bär KJ, Voss A. Multivariate assessment of the central-cardiorespiratory network structure in neuropathological disease. Physiol Meas 2018; 39:074004. [PMID: 29933248 DOI: 10.1088/1361-6579/aace9b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The new interdisciplinary field of network physiology is increasingly becoming a focus of interest in medicine. Autonomic nervous system (ANS) dysfunction is well described in schizophrenia (SZO). However, the linear and nonlinear coupling between the ANS and central nervous system (CNS) has only been partly addressed until now. This coupling can be assumed to be a feedback-feedforward network, reacting with flexible and adaptive responses to internal and external factors. APPROACH For the first time, in this study we investigated linear and nonlinear short-term central-cardiorespiratory coupling of 17 patients suffering from paranoid SZO in comparison to 17 age-gender matched healthy subjects analyzing heart rate (HR), respiration (RESP), and the power of frontal electroencephalogram (EEG) activity (P EEG). The objective is to determine how the different regulatory aspects of the CNS-ANS affect the central-cardiorespiratory network (CCRN). To quantify these couplings within the CCRN normalized short time partial directed coherence and the new multivariate high-resolution joint symbolic dynamics were applied. MAIN RESULTS We found that the CCRN in SZO can be characterized as a bidirectional one, with stronger central driving mechanisms (P EEG → HR) towards HR regulation than vice versa, and with stronger respiratory influence (RESP → P EEG) on central activity than vice versa. This suggests that the central-cardiorespiratory process (closed-loop) is mainly focused on adapting the HR via the sinoatrial node than focusing on respiratory regulation. On the other hand, the feedback-loop from ANS to CNS is strongly dominated via respiratory activity. SIGNIFICANCE We demonstrated a considerably significantly different CCRN structure in SZO with a strong central influence on the cardiac system and a strong respiratory influence on the CNS. Moreover, this study provides a more in-depth understanding of the interplay of the central and autonomic regulatory network in healthy subjects and SZO patients.
Collapse
Affiliation(s)
- Steffen Schulz
- Institute of Innovative Health Technologies, Ernst-Abbe-Hochschule Jena, Jena, Germany. Department of Pediatrics, Division of Oncology and Hematology, Charité Universitätsmedizin, Berlin, Germany
| | | | | | | |
Collapse
|
74
|
Slater JL, Tate MC. Timing Deficits in ADHD: Insights From the Neuroscience of Musical Rhythm. Front Comput Neurosci 2018; 12:51. [PMID: 30034331 PMCID: PMC6043674 DOI: 10.3389/fncom.2018.00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022] Open
Abstract
Everyday human behavior relies upon extraordinary feats of coordination within the brain. In this perspective paper, we argue that the rich temporal structure of music provides an informative context in which to investigate how the brain coordinates its complex activities in time, and how that coordination can be disrupted. We bring insights from the neuroscience of musical rhythm to considerations of timing deficits in Attention Deficit/Hyperactivity Disorder (ADHD), highlighting the significant overlap between neural systems involved in processing musical rhythm and those implicated in ADHD. We suggest that timing deficits warrant closer investigation since they could lead to the identification of potentially informative phenotypes, tied to neurobiological and genetic factors. Our novel interdisciplinary approach builds upon recent trends in both fields of research: in the neuroscience of rhythm, an increasingly nuanced understanding of the specific contributions of neural systems to rhythm processing, and in ADHD, an increasing focus on differentiating phenotypes and identifying distinct etiological pathways associated with the disorder. Finally, we consider the impact of musical experience on rhythm processing and the potential value of musical rhythm in therapeutic interventions.
Collapse
Affiliation(s)
- Jessica L. Slater
- Department of Neurological Surgery, Northwestern University, Chicago, IL, United States
| | - Matthew C. Tate
- Department of Neurological Surgery, Northwestern University, Chicago, IL, United States
- Department of Neurology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
75
|
Lau P, Wollbrink A, Wunderlich R, Engell A, Löhe A, Junghöfer M, Pantev C. Targeting Heterogeneous Findings in Neuronal Oscillations in Tinnitus: Analyzing MEG Novices and Mental Health Comorbidities. Front Psychol 2018; 9:235. [PMID: 29551983 PMCID: PMC5841018 DOI: 10.3389/fpsyg.2018.00235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Tinnitus is a prevalent phenomenon and bothersome for people affected by it. Its occurrence and maintenance have a clear neuroscientific tie and one aspect are differences in the neuronal oscillatory pattern, especially in auditory cortical areas. As studies in this field come to different results, the aim of this study was to analyze a large number of participants to achieve more stable results. Furthermore, we expanded our analysis to two variables of potential influence, namely being a novice to neuroscientific measurements and the exclusion of psychological comorbidities. Oscillatory brain activity of 88 subjects (46 with a chronic tinnitus percept, 42 without) measured in resting state by MEG was investigated. In the analysis based on the whole group, in sensor space increased activity in the delta frequency band was found in tinnitus patients. Analyzing the subgroup of novices, a significant difference in the theta band emerged additionally to the delta band difference (sensor space). Localizing the origin of the activity, we found a difference in theta and gamma band for the auditory regions for the whole group and the same significant difference in the subgroup of novices. However, no differences in oscillatory activity were observed between tinnitus and control groups once subjects with mental health comorbidity were excluded. Against the background of previous studies, the study at hand underlines the fragility of the results in the field of neuronal cortical oscillations in tinnitus. It supports the body of research arguing for low frequency oscillations and gamma band activity as markers associated with tinnitus.
Collapse
Affiliation(s)
- Pia Lau
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Andreas Wollbrink
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Robert Wunderlich
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Alva Engell
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Alwina Löhe
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Christo Pantev
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| |
Collapse
|
76
|
Bolaños AD, Coffman BA, Candelaria-Cook FT, Kodituwakku P, Stephen JM. Altered Neural Oscillations During Multisensory Integration in Adolescents with Fetal Alcohol Spectrum Disorder. Alcohol Clin Exp Res 2017; 41:2173-2184. [PMID: 28944474 DOI: 10.1111/acer.13510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/19/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Children with fetal alcohol spectrum disorder (FASD), who were exposed to alcohol in utero, display a broad range of sensory, cognitive, and behavioral deficits, which are broadly theorized to be rooted in altered brain function and structure. Based on the role of neural oscillations in multisensory integration from past studies, we hypothesized that adolescents with FASD would show a decrease in oscillatory power during event-related gamma oscillatory activity (30 to 100 Hz), when compared to typically developing healthy controls (HC), and that such decrease in oscillatory power would predict behavioral performance. METHODS We measured sensory neurophysiology using magnetoencephalography (MEG) during passive auditory, somatosensory, and multisensory (synchronous) stimulation in 19 adolescents (12 to 21 years) with FASD and 23 age- and gender-matched HC. We employed a cross-hemisphere multisensory paradigm to assess interhemispheric connectivity deficits in children with FASD. RESULTS Time-frequency analysis of MEG data revealed a significant decrease in gamma oscillatory power for both unisensory and multisensory conditions in the FASD group relative to HC, based on permutation testing of significant group differences. Greater beta oscillatory power (15 to 30 Hz) was also noted in the FASD group compared to HC in both unisensory and multisensory conditions. Regression analysis revealed greater predictive power of multisensory oscillations from unisensory oscillations in the FASD group compared to the HC group. Furthermore, multisensory oscillatory power, for both groups, predicted performance on the Intra-Extradimensional Set Shift Task and the Cambridge Gambling Task. CONCLUSIONS Altered oscillatory power in the FASD group may reflect a restricted ability to process somatosensory and multisensory stimuli during day-to-day interactions. These alterations in neural oscillations may be associated with the neurobehavioral deficits experienced by adolescents with FASD and may carry over to adulthood.
Collapse
Affiliation(s)
- Alfredo D Bolaños
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Brian A Coffman
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Felicha T Candelaria-Cook
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico.,Biomedical Informatics Unit, Health Sciences Library and Informatics Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Piyadasa Kodituwakku
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| |
Collapse
|
77
|
Synaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks. J Comput Neurosci 2017; 43:189-202. [PMID: 28895002 PMCID: PMC5691111 DOI: 10.1007/s10827-017-0657-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/15/2017] [Accepted: 08/27/2017] [Indexed: 01/23/2023]
Abstract
Correlated neural activities such as synchronizations can significantly alter the characteristics of spike transfer between neural layers. However, it is not clear how this synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. To address this question, we implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that, the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.
Collapse
|
78
|
Schulz S, Legorburu Cladera B, Giraldo B, Bolz M, Bar KJ, Voss A. Neuronal desynchronization as marker of an impaired brain network. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:2251-2254. [PMID: 29060345 DOI: 10.1109/embc.2017.8037303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synchronization is a central key feature of neural information processing and communication between different brain areas. Disturbance of oscillatory brain rhythms and decreased synchronization have been associated with different disorders including schizophrenia. The aim of this study was to investigate whether synchronization (in relaxed conditions with no stimuli) between different brain areas within the delta, theta, alpha (alpha1, alpha2), beta (beta1, beta2), and gamma bands is altered in patients with a neurological disorder in order to generate significant cortical enhancements. To achieve this, we investigated schizophrenic patients (SZO; N=17, 37.5±10.4 years, 15 males) and compared them to healthy subjects (CON; N=21, 36.7±13.4 years, 15 males) applying the phase locking value (PLV). We found significant differences between SZO and CON in different brain areas of the theta, alpha1, beta2 and gamma bands. These areas are related to the central and parietal lobes for the theta band, the parietal lobe for the alpha1, the parietal and frontal for the beta2 and the frontal-central for the gamma band. The gamma band revealed the most significant differences between CON and SZO. PLV were 61.7% higher on average in SZO in most of the clusters when compared to CON. The related brain areas are directly related to cognition skills which are proved to be impaired in SZO. The results of this study suggest that synchronization in SZO is also altered when the patients were not asked to perform a task that requires their cognitive skills (i.e., no stimuli are applied - in contrast to other findings).
Collapse
|
79
|
Padma Shri TK, Sriraam N. Pattern recognition of spectral entropy features for detection of alcoholic and control visual ERP's in multichannel EEGs. Brain Inform 2017; 4:147-158. [PMID: 28110475 PMCID: PMC5413593 DOI: 10.1007/s40708-017-0061-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/09/2017] [Indexed: 11/11/2022] Open
Abstract
This paper presents a novel ranking method to select spectral entropy (SE) features that discriminate alcoholic and control visual event-related potentials (ERP'S) in gamma sub-band (30-55 Hz) derived from a 64-channel electroencephalogram (EEG) recording. The ranking is based on a t test statistic that rejects the null hypothesis that the group means of SE values in alcoholics and controls are identical. The SE features with high ranks are indicative of maximal separation between their group means. Various sizes of top ranked feature subsets are evaluated by applying principal component analysis (PCA) and k-nearest neighbor (k-NN) classification. Even though ranking does not influence the performance of classifier significantly with the selection of all 61 active channels, the classification efficiency is directly proportional to the number of principal components (pc). The effect of ranking and PCA on classification is predominantly observed with reduced feature subsets of (N = 25, 15) top ranked features. Results indicate that for N = 25, proposed ranking method improves the k-NN classification accuracy from 91 to 93.87% as the number of pcs increases from 5 to 25. With same number of pcs, the k-NN classifier responds with accuracies of 84.42-91.54% with non-ranked features. Similarly for N = 15 and number of pcs varying from 5 to 15, ranking enhances k-NN detection accuracies from 88.9 to 93.08% as compared to 86.75-91.96% without ranking. This shows that the detection accuracy is increased by 6.5 and 2.8%, respectively, for N = 25, whereas it enhances by 2.2 and 1%, respectively, for N = 15 in comparison with non-ranked features. In the proposed t test ranking method for feature selection, the pcs of only top ranked feature candidates take part in classification process and hence provide better generalization.
Collapse
Affiliation(s)
- T. K. Padma Shri
- Department of Electronics and Communication, Manipal Institute of Technology, Manipal University, Manipal, Karnataka 576104 India
| | - N. Sriraam
- Department of Medical Electronics, M.S. Ramaiah Institute of Technology (An Autonomous Institute, Affiliated to Visvesvaraya Technological University), Bangalore, Karnataka 560054 India
| |
Collapse
|
80
|
Could LC-NE-Dependent Adjustment of Neural Gain Drive Functional Brain Network Reorganization? Neural Plast 2017; 2017:4328015. [PMID: 28607776 PMCID: PMC5457760 DOI: 10.1155/2017/4328015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 01/21/2023] Open
Abstract
The locus coeruleus-norepinephrine (LC-NE) system is thought to act at synaptic, cellular, microcircuit, and network levels to facilitate cognitive functions through at least two different processes, not mutually exclusive. Accordingly, as a reset signal, the LC-NE system could trigger brain network reorganizations in response to salient information in the environment and/or adjust the neural gain within its target regions to optimize behavioral responses. Here, we provide evidence of the co-occurrence of these two mechanisms at the whole-brain level, in resting-state conditions following a pharmacological stimulation of the LC-NE system. We propose that these two mechanisms are interdependent such that the LC-NE-dependent adjustment of the neural gain inferred from the clustering coefficient could drive functional brain network reorganizations through coherence in the gamma rhythm. Via the temporal dynamic of gamma-range band-limited power, the release of NE could adjust the neural gain, promoting interactions only within the neuronal populations whose amplitude envelopes are correlated, thus making it possible to reorganize neuronal ensembles, functional networks, and ultimately, behavioral responses. Thus, our proposal offers a unified framework integrating the putative influence of the LC-NE system on both local- and long-range adjustments of brain dynamics underlying behavioral flexibility.
Collapse
|
81
|
Fardo F, Vinding MC, Allen M, Jensen TS, Finnerup NB. Delta and gamma oscillations in operculo-insular cortex underlie innocuous cold thermosensation. J Neurophysiol 2017; 117:1959-1968. [PMID: 28250150 PMCID: PMC5411475 DOI: 10.1152/jn.00843.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 01/21/2023] Open
Abstract
Using magnetoencephalography, we identified spatiotemporal features of central cold processing, with respect to the time course, oscillatory profile, and neural generators of cold-evoked responses in healthy human volunteers. Cold thermosensation was associated with low- and high-frequency oscillatory rhythms, both originating in operculo-insular regions. These results support further investigations of central cold processing using magnetoencephalography or EEG and the clinical utility of cold-evoked potentials for neurophysiological assessment of cold-related small-fiber function and damage. Cold-sensitive and nociceptive neural pathways interact to shape the quality and intensity of thermal and pain perception. Yet the central processing of cold thermosensation in the human brain has not been extensively studied. Here, we used magnetoencephalography and EEG in healthy volunteers to investigate the time course (evoked fields and potentials) and oscillatory activity associated with the perception of cold temperature changes. Nonnoxious cold stimuli consisting of Δ3°C and Δ5°C decrements from an adapting temperature of 35°C were delivered on the dorsum of the left hand via a contact thermode. Cold-evoked fields peaked at around 240 and 500 ms, at peak latencies similar to the N1 and P2 cold-evoked potentials. Importantly, cold-related changes in oscillatory power indicated that innocuous thermosensation is mediated by oscillatory activity in the range of delta (1–4 Hz) and gamma (55–90 Hz) rhythms, originating in operculo-insular cortical regions. We suggest that delta rhythms coordinate functional integration between operculo-insular and frontoparietal regions, while gamma rhythms reflect local sensory processing in operculo-insular areas. NEW & NOTEWORTHY Using magnetoencephalography, we identified spatiotemporal features of central cold processing, with respect to the time course, oscillatory profile, and neural generators of cold-evoked responses in healthy human volunteers. Cold thermosensation was associated with low- and high-frequency oscillatory rhythms, both originating in operculo-insular regions. These results support further investigations of central cold processing using magnetoencephalography or EEG and the clinical utility of cold-evoked potentials for neurophysiological assessment of cold-related small-fiber function and damage.
Collapse
Affiliation(s)
- Francesca Fardo
- Danish Pain Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; .,Interacting Minds Centre, Aarhus University, Aarhus, Denmark.,Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Mikkel C Vinding
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.,Swedish National Facility for Magnetoencephalography, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Micah Allen
- Wellcome Trust Center for Neuroimaging, University College London, London, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom; and
| | - Troels Staehelin Jensen
- Danish Pain Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Nanna Brix Finnerup
- Danish Pain Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
82
|
Enriquez-Geppert S, Huster RJ, Herrmann CS. EEG-Neurofeedback as a Tool to Modulate Cognition and Behavior: A Review Tutorial. Front Hum Neurosci 2017; 11:51. [PMID: 28275344 PMCID: PMC5319996 DOI: 10.3389/fnhum.2017.00051] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/23/2017] [Indexed: 01/02/2023] Open
Abstract
Neurofeedback is attracting renewed interest as a method to self-regulate one’s own brain activity to directly alter the underlying neural mechanisms of cognition and behavior. It not only promises new avenues as a method for cognitive enhancement in healthy subjects, but also as a therapeutic tool. In the current article, we present a review tutorial discussing key aspects relevant to the development of electroencephalography (EEG) neurofeedback studies. In addition, the putative mechanisms underlying neurofeedback learning are considered. We highlight both aspects relevant for the practical application of neurofeedback as well as rather theoretical considerations related to the development of new generation protocols. Important characteristics regarding the set-up of a neurofeedback protocol are outlined in a step-by-step way. All these practical and theoretical considerations are illustrated based on a protocol and results of a frontal-midline theta up-regulation training for the improvement of executive functions. Not least, assessment criteria for the validation of neurofeedback studies as well as general guidelines for the evaluation of training efficacy are discussed.
Collapse
Affiliation(s)
- Stefanie Enriquez-Geppert
- Department of Clinical and Developmental Neuropsychology, Faculty of Behavioural and Social Sciences, University of Groningen Groningen, Netherlands
| | - René J Huster
- Department of Psychology, Faculty of Social Sciences, University of Oslo Oslo, Norway
| | - Christoph S Herrmann
- Experimental Psychology Laboratory, Department of Psychology, Faculty VI Medical and Health Sciences, University of Oldenburg Oldenburg, Germany
| |
Collapse
|
83
|
Abstract
Hallucinogens evoke sensory, perceptual, affective, and cognitive effects that may be useful to understand the neurobiological basis of mood and psychotic disorders. The present chapter reviews preclinical research carried out in recent years in order to better understand the action of psychotomimetic agents such as the noncompetitive NMDA receptor (NMDA-R) antagonists and serotonergic hallucinogens. Our studies have focused on the mechanisms through which these agents alter cortical activity. Noncompetitive NMDA-R antagonists, such as phencyclidine (PCP) and MK-801 (dizocilpine), as well as the serotonergic hallucinogens DOI and 5-MeO-DMT, produce similar effects on cellular and population activity in prefrontal cortex (PFC); these effects include alterations of pyramidal neuron discharge (with an overall increase in firing), as well as a marked attenuation of the low frequency oscillations (0.2-4 Hz) to which neuronal discharge is coupled in anesthetized rodents. PCP increases c-fos expression in excitatory neurons from various cortical and subcortical areas, particularly the thalamus. This effect of PCP involves the preferential blockade of NMDA-R on GABAergic neurons of the reticular nucleus of the thalamus, which provides feedforward inhibition to the rest of thalamic nuclei. It is still unknown whether serotonergic hallucinogens also affect thalamocortical networks. However, when examined, similar alterations in other cortical areas, such as the primary visual cortex (V1), have been observed, suggesting that these agents affect cortical activity in sensory and associative areas. Interestingly, the disruption of PFC activity induced by PCP, DOI and 5-MeO-DMT is reversed by classical and atypical antipsychotic drugs. This effect suggests a possible link between the mechanisms underlying the disruption of perception by multiple classes of hallucinogenic agents and the therapeutic efficacy of antipsychotic agents.
Collapse
|
84
|
Aitchison L, Lengyel M. The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics. PLoS Comput Biol 2016; 12:e1005186. [PMID: 28027294 PMCID: PMC5189947 DOI: 10.1371/journal.pcbi.1005186] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 10/06/2016] [Indexed: 12/19/2022] Open
Abstract
Probabilistic inference offers a principled framework for understanding both behaviour and cortical computation. However, two basic and ubiquitous properties of cortical responses seem difficult to reconcile with probabilistic inference: neural activity displays prominent oscillations in response to constant input, and large transient changes in response to stimulus onset. Indeed, cortical models of probabilistic inference have typically either concentrated on tuning curve or receptive field properties and remained agnostic as to the underlying circuit dynamics, or had simplistic dynamics that gave neither oscillations nor transients. Here we show that these dynamical behaviours may in fact be understood as hallmarks of the specific representation and algorithm that the cortex employs to perform probabilistic inference. We demonstrate that a particular family of probabilistic inference algorithms, Hamiltonian Monte Carlo (HMC), naturally maps onto the dynamics of excitatory-inhibitory neural networks. Specifically, we constructed a model of an excitatory-inhibitory circuit in primary visual cortex that performed HMC inference, and thus inherently gave rise to oscillations and transients. These oscillations were not mere epiphenomena but served an important functional role: speeding up inference by rapidly spanning a large volume of state space. Inference thus became an order of magnitude more efficient than in a non-oscillatory variant of the model. In addition, the network matched two specific properties of observed neural dynamics that would otherwise be difficult to account for using probabilistic inference. First, the frequency of oscillations as well as the magnitude of transients increased with the contrast of the image stimulus. Second, excitation and inhibition were balanced, and inhibition lagged excitation. These results suggest a new functional role for the separation of cortical populations into excitatory and inhibitory neurons, and for the neural oscillations that emerge in such excitatory-inhibitory networks: enhancing the efficiency of cortical computations. Our brain operates in the face of substantial uncertainty due to ambiguity in the inputs, and inherent unpredictability in the environment. Behavioural and neural evidence indicates that the brain often uses a close approximation of the optimal strategy, probabilistic inference, to interpret sensory inputs and make decisions under uncertainty. However, the circuit dynamics underlying such probabilistic computations are unknown. In particular, two fundamental properties of cortical responses, the presence of oscillations and transients, are difficult to reconcile with probabilistic inference. We show that excitatory-inhibitory neural networks are naturally suited to implement a particular inference algorithm, Hamiltonian Monte Carlo. Our network showed oscillations and transients like those found in the cortex and took advantage of these dynamical motifs to speed up inference by an order of magnitude. These results suggest a new functional role for the separation of cortical populations into excitatory and inhibitory neurons, and for the neural oscillations that emerge in such excitatory-inhibitory networks: enhancing the efficiency of cortical computations.
Collapse
Affiliation(s)
- Laurence Aitchison
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
- * E-mail:
| | - Máté Lengyel
- Computational & Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- Department of Cognitive Science, Central European University, Budapest, Hungary
| |
Collapse
|
85
|
David DJ, Tritschler L, Guilloux JP, Gardier AM, Sanchez C, Gaillard R. [Pharmacological properties of vortioxetine and its pre-clinical consequences]. Encephale 2016; 42:1S12-23. [PMID: 26879252 DOI: 10.1016/s0013-7006(16)30015-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selective Serotonin Reuptake Inhibitors (SSRIs) are extensively used for the treatment of major depressive disorder (MDD). SSRIs are defined as indirect receptor agonists since the activation of postsynaptic receptors is a consequence of an increase in extracellular concentrations of serotonin (5-HT) mediated by the blockade of serotonin transporter. The activation of some serotoninergic receptors (5-HT1A, post-synaptic, 5-HT1B post-synaptic, 5-HT2B, and 5-HT4), but not all (5-HT1A, pre-synaptic, 5-HT1B pre-synaptic, 5-HT2A, 5-HT2C, 5-HT3, and probably 5-HT6), induces anxiolytic/antidepressive - like effects. Targetting specifically some of them could potentially improve the onset of action and/or efficacy and/or prevent MD relapse. Vortioxetine (Brintellix, 1- [2-(2,4-dimethylphenyl-sulfanyl)-phenyl]-piperazine) is a novel multi-target antidepressant drug approved by the Food and Drug Administration (FDA) and by European Medicines Agency. Its properties are markedly different from the extensively prescribed SSRIs. Compared to the SSRIs, vortioxetine is defined as a multimodal antidepressant drug since it is not only a serotonin reuptake inhibitor, but also a 5-HT1D, 5-HT3, 5-HT7 receptor antagonist, 5-HT1B receptor partial agonist and 5-HT1A receptor agonist. This specific pharmacological profile enables vortioxetine to affect not only the serotoninergic and noradrenergic systems, but also the histaminergic, cholinergic, gamma-butyric acid (GABA) ergic and glutamatergic ones. Thus, vortioxetine not only induces antidepressant-like or anxiolytic-like activity but also improves cognitive parameters in several animal models. Indeed, vortioxetine was shown to improve working memory, episodic memory, cognitive flexibility and spatial memory in young adult rodents and also in old animal models. These specific effects of the vortioxetine are of interest considering that cognitive dysfunction is a common comorbidity to MDD. Altogether, even though this molecule still needs to be investigated further, especially in the insufficient-response to antidepressant drugs, vortioxetine is already an innovative therapeutic option for the treatment of major depression.
Collapse
Affiliation(s)
- D J David
- Inserm UMR-S 1178 Santé Mentale et Santé Publique, Université Paris-Sud, Fac Pharmacie, Université Paris Saclay, Châtenay-Malabry, France; DJD et LT ont contribué de façon équivalente à l'élaboration du manuscrit
| | - L Tritschler
- Inserm UMR-S 1178 Santé Mentale et Santé Publique, Université Paris-Sud, Fac Pharmacie, Université Paris Saclay, Châtenay-Malabry, France; DJD et LT ont contribué de façon équivalente à l'élaboration du manuscrit
| | - J-P Guilloux
- Inserm UMR-S 1178 Santé Mentale et Santé Publique, Université Paris-Sud, Fac Pharmacie, Université Paris Saclay, Châtenay-Malabry, France
| | - A M Gardier
- Inserm UMR-S 1178 Santé Mentale et Santé Publique, Université Paris-Sud, Fac Pharmacie, Université Paris Saclay, Châtenay-Malabry, France
| | - C Sanchez
- Lundbeck Research USA, Inc., 215 College Road, 07652 Paramus, NJ, United States
| | - R Gaillard
- Service Hospitalo-Universitaire - Addictologie, Centre Hospitalier Sainte Anne, 1, rue Cabanis, 75674 Paris cedex 14, France.
| |
Collapse
|
86
|
Naicker P, Anoopkumar-Dukie S, Grant GD, Kavanagh JJ. Anticholinergic activity in the nervous system: Consequences for visuomotor function. Physiol Behav 2016; 170:6-11. [PMID: 27965143 DOI: 10.1016/j.physbeh.2016.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022]
Abstract
Acetylcholine is present in the peripheral and central nervous system, where it is involved in a number of fundamental physiological and biochemical processes. In particular, interaction with muscarinic receptors can cause adverse effects such as dry mouth, drowsiness, mydriasis and cognitive dysfunction. Despite the knowledge that exists regarding these common side-effects, little is known about how anticholinergic medications influence central motor processes and fine motor control in healthy individuals. This paper reviews critical visuomotor processes that operate in healthy individuals, and how controlling these motor processes are influenced by medications that interfere with central cholinergic neurotransmission. An overview of receptor function and neurotransmitter interaction following the ingestion or administration of anticholinergics is provided, before exploring how visuomotor performance is affected by anticholinergic medications. In particular, this review will focus on the effects that anticholinergic medications have on fixation stability, saccadic eye movements, smooth pursuit eye movements, and general pupil dynamics.
Collapse
Affiliation(s)
- Preshanta Naicker
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; School of Pharmacy, Griffith University, Gold Coast, Queensland, Australia
| | - Shailendra Anoopkumar-Dukie
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; School of Pharmacy, Griffith University, Gold Coast, Queensland, Australia
| | - Gary D Grant
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; School of Pharmacy, Griffith University, Gold Coast, Queensland, Australia
| | - Justin J Kavanagh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
87
|
Brain Networks and α-Oscillations: Structural and Functional Foundations of Cognitive Control. Trends Cogn Sci 2016; 20:805-817. [PMID: 27707588 DOI: 10.1016/j.tics.2016.09.004] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 09/06/2016] [Indexed: 01/21/2023]
Abstract
The most salient electrical signal measured from the human brain is the α-rhythm, neural activity oscillating at ∼100ms intervals. Recent findings challenge the longstanding dogma of α-band oscillations as the signature of a passively idling brain state but diverge in terms of interpretation. Despite firm correlations with behavior, the mechanistic role of the α-rhythm in brain function remains debated. We suggest that three large-scale brain networks involved in different facets of top-down cognitive control differentially modulate α-oscillations, ranging from power within and synchrony between brain regions. Thereby, these networks selectively influence local signal processing, widespread information exchange, and ultimately perception and behavior.
Collapse
|
88
|
Spectral entropy feature subset selection using SEPCOR to detect alcoholic impact on gamma sub band visual event related potentials of multichannel electroencephalograms (EEG). Appl Soft Comput 2016. [DOI: 10.1016/j.asoc.2016.04.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
89
|
Atrophy of amygdala and abnormal memory-related alpha oscillations over posterior cingulate predict conversion to Alzheimer's disease. Sci Rep 2016; 6:31859. [PMID: 27546195 PMCID: PMC4992828 DOI: 10.1038/srep31859] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022] Open
Abstract
Synaptic dysfunction, a key pathophysiological hallmark of Alzheimer’s disease (AD), may account for abnormal memory-related EEG patterns in prodromal AD. Here, we investigate to what extent oscillatory EEG changes during memory encoding and/or retrieval enhance the accuracy of medial temporal lobe (MTL) atrophy in predicting conversion from amnestic mild cognitive impairment (aMCI) to AD. As expected, aMCI individuals that, within a 2-year follow-up period, developed dementia (N = 16) compared to healthy older (HO) (N = 26) and stable aMCI (N = 18) showed poorer associative memory, greater MTL atrophy, and lower capacity to recruit alpha oscillatory cortical networks. Interestingly, encoding-induced abnormal alpha desynchronized activity over the posterior cingulate cortex (PCC) at baseline showed significantly higher accuracy in predicting AD than the magnitude of amygdala atrophy. Nevertheless, the best accuracy was obtained when the two markers were fitted into the model (sensitivity = 78%, specificity = 82%). These results support the idea that synaptic integrity/function in the PCC is affected during prodromal AD and has the potential of improving early detection when combined with MRI biomarkers.
Collapse
|
90
|
Jing W, Wang Y, Fang G, Chen M, Xue M, Guo D, Yao D, Xia Y. EEG Bands of Wakeful Rest, Slow-Wave and Rapid-Eye-Movement Sleep at Different Brain Areas in Rats. Front Comput Neurosci 2016; 10:79. [PMID: 27536231 PMCID: PMC4971061 DOI: 10.3389/fncom.2016.00079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 12/02/2022] Open
Abstract
Accumulating evidence reveals that neuronal oscillations with various frequency bands in the brain have different physiological functions. However, the frequency band divisions in rats were typically based on empirical spectral distribution from limited channels information. In the present study, functionally relevant frequency bands across vigilance states and brain regions were identified using factor analysis based on 9 channels EEG signals recorded from multiple brain areas in rats. We found that frequency band divisions varied both across vigilance states and brain regions. In particular, theta oscillations during REM sleep were subdivided into two bands, 5–7 and 8–11 Hz corresponding to the tonic and phasic stages, respectively. The spindle activities of SWS were different along the anterior-posterior axis, lower oscillations (~16 Hz) in frontal regions and higher in parietal (~21 Hz). The delta and theta activities co-varied in the visual and auditory cortex during wakeful rest. In addition, power spectra of beta oscillations were significantly decreased in association cortex during REM sleep compared with wakeful rest. These results provide us some new insights into understand the brain oscillations across vigilance states, and also indicate that the spatial factor should not be ignored when considering the frequency band divisions in rats.
Collapse
Affiliation(s)
- Wei Jing
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Yanran Wang
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Guangzhan Fang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu, China
| | - Mingming Chen
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Miaomiao Xue
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Daqing Guo
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Yang Xia
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| |
Collapse
|
91
|
Aβ1-42-induced dysfunction in synchronized gamma oscillation during working memory. Behav Brain Res 2016; 307:112-9. [DOI: 10.1016/j.bbr.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 01/11/2023]
|
92
|
Schulz S, Bolz M, Bär KJ, Voss A. Central- and autonomic nervous system coupling in schizophrenia. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0178. [PMID: 27044986 PMCID: PMC4822441 DOI: 10.1098/rsta.2015.0178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 05/03/2023]
Abstract
The autonomic nervous system (ANS) dysfunction has been well described in schizophrenia (SZ), a severe mental disorder. Nevertheless, the coupling between the ANS and central brain activity has been not addressed until now in SZ. The interactions between the central nervous system (CNS) and ANS need to be considered as a feedback-feed-forward system that supports flexible and adaptive responses to specific demands. For the first time, to the best of our knowledge, this study investigates central-autonomic couplings (CAC) studying heart rate, blood pressure and electroencephalogram in paranoid schizophrenic patients, comparing them with age-gender-matched healthy subjects (CO). The emphasis is to determine how these couplings are composed by the different regulatory aspects of the CNS-ANS. We found that CAC were bidirectional, and that the causal influence of central activity towards systolic blood pressure was more strongly pronounced than such causal influence towards heart rate in paranoid schizophrenic patients when compared with CO. In paranoid schizophrenic patients, the central activity was a much stronger variable, being more random and having fewer rhythmic oscillatory components. This study provides a more in-depth understanding of the interplay of neuronal and autonomic regulatory processes in SZ and most likely greater insights into the complex relationship between psychotic stages and autonomic activity.
Collapse
Affiliation(s)
- Steffen Schulz
- Institute of Innovative Health Technologies, University of Applied Sciences, Jena, Germany
| | - Mathias Bolz
- Department of Child and Adolescent Psychiatry, Pain and Autonomics-Integrative Research, University Hospital, Jena, Germany
| | - Karl-Jürgen Bär
- Department of Psychiatry and Psychotherapy, Pain and Autonomics-Integrative Research, University Hospital, Jena, Germany
| | - Andreas Voss
- Institute of Innovative Health Technologies, University of Applied Sciences, Jena, Germany
| |
Collapse
|
93
|
Başar E, Schmiedt-Fehr C, Mathes B, Femir B, Emek-Savaş D, Tülay E, Tan D, Düzgün A, Güntekin B, Özerdem A, Yener G, Başar-Eroğlu C. What does the broken brain say to the neuroscientist? Oscillations and connectivity in schizophrenia, Alzheimer's disease, and bipolar disorder. Int J Psychophysiol 2016; 103:135-48. [DOI: 10.1016/j.ijpsycho.2015.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
94
|
|
95
|
Aznar S, Hervig MES. The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases. Neurosci Biobehav Rev 2016; 64:63-82. [DOI: 10.1016/j.neubiorev.2016.02.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/05/2015] [Accepted: 02/08/2016] [Indexed: 02/07/2023]
|
96
|
Pulizzi R, Musumeci G, Van den Haute C, Van De Vijver S, Baekelandt V, Giugliano M. Brief wide-field photostimuli evoke and modulate oscillatory reverberating activity in cortical networks. Sci Rep 2016; 6:24701. [PMID: 27099182 PMCID: PMC4838830 DOI: 10.1038/srep24701] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/04/2016] [Indexed: 01/18/2023] Open
Abstract
Cell assemblies manipulation by optogenetics is pivotal to advance neuroscience and neuroengineering. In in vivo applications, photostimulation often broadly addresses a population of cells simultaneously, leading to feed-forward and to reverberating responses in recurrent microcircuits. The former arise from direct activation of targets downstream, and are straightforward to interpret. The latter are consequence of feedback connectivity and may reflect a variety of time-scales and complex dynamical properties. We investigated wide-field photostimulation in cortical networks in vitro, employing substrate-integrated microelectrode arrays and long-term cultured neuronal networks. We characterized the effect of brief light pulses, while restricting the expression of channelrhodopsin to principal neurons. We evoked robust reverberating responses, oscillating in the physiological gamma frequency range, and found that such a frequency could be reliably manipulated varying the light pulse duration, not its intensity. By pharmacology, mathematical modelling, and intracellular recordings, we conclude that gamma oscillations likely emerge as in vivo from the excitatory-inhibitory interplay and that, unexpectedly, the light stimuli transiently facilitate excitatory synaptic transmission. Of relevance for in vitro models of (dys)functional cortical microcircuitry and in vivo manipulations of cell assemblies, we give for the first time evidence of network-level consequences of the alteration of synaptic physiology by optogenetics.
Collapse
Affiliation(s)
- Rocco Pulizzi
- Theoretical Neurobiology &Neuroengineering, University of Antwerp, Antwerp, Belgium
| | - Gabriele Musumeci
- Theoretical Neurobiology &Neuroengineering, University of Antwerp, Antwerp, Belgium
| | - Chris Van den Haute
- Laboratory of Neurobiology and Gene Therapy, Katholieke Universiteit Leuven, Leuven, Belgium.,Leuven Viral Vector Core, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Veerle Baekelandt
- Laboratory of Neurobiology and Gene Therapy, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Michele Giugliano
- Theoretical Neurobiology &Neuroengineering, University of Antwerp, Antwerp, Belgium.,Department of Computer Science, University of Sheffield, S1 4DP Sheffield, UK.,Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, CH-1015 Lausanne, Switzerland
| |
Collapse
|
97
|
Tan D, Özerdem A, Güntekin B, Atagün MI, Tülay E, Karadağ F, Başar E. Increased Beta Frequency (15-30 Hz) Oscillatory Responses in Euthymic Bipolar Patients Under Lithium Monotherapy. Clin EEG Neurosci 2016; 47:87-95. [PMID: 25465436 DOI: 10.1177/1550059414561056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/27/2014] [Indexed: 11/17/2022]
Abstract
The effect of lithium on neurocognition is not still fully explored. Brain oscillatory activity is altered in bipolar disorder. We aimed to assess the oscillatory responses of euthymic bipolar patients and how they are affected by lithium monotherapy. Event-related oscillations in response to visual target stimulus during an oddball paradigm in 16 euthymic drug-free and 13 euthymic lithium-treated bipolar patients were compared with 16 healthy controls. The maximum peak-to-peak amplitudes were measured for each subject's averaged beta (15-30 Hz) responses in the 0- to 300-ms time window over frontal (F3, Fz, F4), central (C3, Cz, C4), temporal (T7, T8), temporo-parietal (TP7, TP8), parietal (P3, Pz, P4), and occipital (O1, Oz, O2) areas. Patients under lithium monotherapy had significantly higher beta responses to visual target stimuli than healthy controls (P=.017) and drug-free patients (P=.015). The increase in beta response was observed at all electrode locations, however, the difference was statistically significant for the left (T7; P=.016) and right (T8; P=.031) temporal beta responses. Increased beta responses in drug-free patients and further significant increase in lithium-treated patients may be indicative of a core pathophysiological process of bipolar disorder and how it is affected by lithium. Whether the finding corresponds to lithium's corrective effect on the underlying pathology or to its neurocognitive side effect remains to be further explored. In either case, the finding is a sign that the oscillatory activity may be useful in tracking medication effect in bipolar disorder.
Collapse
Affiliation(s)
- Devran Tan
- Department of Psychiatry, Maltepe University, Faculty of Medicine, Istanbul, Turkey
| | - Ayşegül Özerdem
- Department of Psychiatry, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey Department of Neuroscience, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey Multidisciplinary Brain Dynamics Research Center, Dokuz Eylul University, Izmir, Turkey
| | - Bahar Güntekin
- Brain Dynamics, Cognition, and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | - M Ilhan Atagün
- Department of Psychiatry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| | - Elif Tülay
- Brain Dynamics, Cognition, and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | - Figen Karadağ
- Department of Psychiatry, Maltepe University, Faculty of Medicine, Istanbul, Turkey
| | - Erol Başar
- Brain Dynamics, Cognition, and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| |
Collapse
|
98
|
|
99
|
Kamarajan C, Pandey AK, Chorlian DB, Manz N, Stimus AT, Anokhin AP, Bauer LO, Kuperman S, Kramer J, Bucholz KK, Schuckit MA, Hesselbrock VM, Porjesz B. Deficient Event-Related Theta Oscillations in Individuals at Risk for Alcoholism: A Study of Reward Processing and Impulsivity Features. PLoS One 2015; 10:e0142659. [PMID: 26580209 PMCID: PMC4651365 DOI: 10.1371/journal.pone.0142659] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/26/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Individuals at high risk to develop alcoholism often manifest neurocognitive deficits as well as increased impulsivity. Event-related oscillations (EROs) have been used to effectively measure brain (dys)function during cognitive tasks in individuals with alcoholism and related disorders and in those at risk to develop these disorders. The current study examines ERO theta power during reward processing as well as impulsivity in adolescent and young adult subjects at high risk for alcoholism. METHODS EROs were recorded during a monetary gambling task (MGT) in 12-25 years old participants (N = 1821; males = 48%) from high risk alcoholic families (HR, N = 1534) and comparison low risk community families (LR, N = 287) from the Collaborative Study on the Genetics of Alcoholism (COGA). Impulsivity scores and prevalence of externalizing diagnoses were also compared between LR and HR groups. RESULTS HR offspring showed lower theta power and decreased current source density (CSD) activity than LR offspring during loss and gain conditions. Younger males had higher theta power than younger females in both groups, while the older HR females showed more theta power than older HR males. Younger subjects showed higher theta power than older subjects in each comparison. Differences in topography (i.e., frontalization) between groups were also observed. Further, HR subjects across gender had higher impulsivity scores and increased prevalence of externalizing disorders compared to LR subjects. CONCLUSIONS As theta power during reward processing is found to be lower not only in alcoholics, but also in HR subjects, it is proposed that reduced reward-related theta power, in addition to impulsivity and externalizing features, may be related in a predisposition to develop alcoholism and related disorders.
Collapse
Affiliation(s)
- Chella Kamarajan
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| | - Ashwini K. Pandey
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| | - David B. Chorlian
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| | - Niklas Manz
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| | - Arthur T. Stimus
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| | - Andrey P. Anokhin
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Lance O. Bauer
- University of Connecticut Health Center, Farmington, CT, United States of America
| | | | - John Kramer
- University of Iowa, Iowa City, IA, United States of America
| | - Kathleen K. Bucholz
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Marc A. Schuckit
- University of California San Diego, San Diego, CA, United States of America
| | | | - Bernice Porjesz
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| |
Collapse
|
100
|
Enhancing Anger Perception With Transcranial Alternating Current Stimulation Induced Gamma Oscillations. Brain Stimul 2015; 8:1138-43. [DOI: 10.1016/j.brs.2015.07.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/19/2015] [Accepted: 07/19/2015] [Indexed: 11/23/2022] Open
|