51
|
Reebye V, Bevan CL, Nohadani M, Hajitou A, Habib NA, Mintz PJ. Interaction between AR signalling and CRKL bypasses casodex inhibition in prostate cancer. Cell Signal 2010; 22:1874-81. [PMID: 20688158 DOI: 10.1016/j.cellsig.2010.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/15/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
The underlying mechanism of failed androgen ablation therapy is unknown. It is recognised that under therapeutic conditions the androgen receptor (AR) remains functionally active independent of hormone stimulation and may function through an alternative pathway. We report a novel cooperative interaction between CRKL (an intracellular signalling adaptor protein) and the AR. We demonstrate by biochemical and genetic approaches that CRKL is associated with the AR complex and is localised in the nucleus of prostate cancer cells and patient tissue biopsies. The interaction between CRKL and the AR is functionally relevant as demonstrated by its presence on the enhancer region of an androgen regulated gene (human Kallikrein-2), its upregulation of PSA, and reduction in AR transactivation following its disruption by siRNA knockdown. In the presence of the AR inhibitor casodex, the expression of CRKL co-stimulated by growth factors is able to rescue AR activity independent of hormone. Our data provides insight on how a non-nuclear factor such as CRKL may interact with the AR complex to bypass hormone dependency by using an alternative growth factor signalling pathway in advanced prostate cancer.
Collapse
Affiliation(s)
- Vikash Reebye
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
52
|
Giraldi T, Giovannelli P, Di Donato M, Castoria G, Migliaccio A, Auricchio F. Steroid signaling activation and intracellular localization of sex steroid receptors. J Cell Commun Signal 2010; 4:161-72. [PMID: 21234121 DOI: 10.1007/s12079-010-0103-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 10/13/2010] [Indexed: 12/21/2022] Open
Abstract
In addition to stimulating gene transcription, sex steroids trigger rapid, non-genomic responses in the extra-nuclear compartment of target cells. These events take place within seconds or minutes after hormone administration and do not require transcriptional activity of sex steroid receptors. Depending on cell systems, activation of extra-nuclear signaling pathways by sex steroids fosters cell cycle progression, prevents apoptosis, leads to epigenetic modifications and increases cell migration through cytoskeleton changes. These findings have raised the question of intracellular localization of sex steroid receptors mediating these responses. During the past years, increasing evidence has shown that classical sex steroid receptors localized in the extra-nuclear compartment or close to membranes of target cells induce these events. The emerging picture is that a process of bidirectional control between signaling activation and sex steroid receptor localization regulates the outcome of hormonal responses in target cells. This mechanism ensures cell cycle progression in estradiol-treated breast cancer cells, and its derangement might occur in progression of human proliferative diseases. These findings will be reviewed here together with unexpected examples of the relationship between sex steroid receptor localization, signaling activation and biological responses in target cells. We apologize to scientists whose reports are not mentioned or extensively discussed owing to space limitations.
Collapse
Affiliation(s)
- Tiziana Giraldi
- Department of General Pathology, II University of Naples, Via L. de Crecchio, 7, 80138 Naples, Italy
| | | | | | | | | | | |
Collapse
|
53
|
|
54
|
Setati MM, Prinsloo E, Longshaw VM, Murray PA, Edgar DH, Blatch GL. Leukemia inhibitory factor promotes Hsp90 association with STAT3 in mouse embryonic stem cells. IUBMB Life 2010; 62:61-6. [PMID: 20014282 DOI: 10.1002/iub.283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Self-renewal of in vitro cultured mouse embryonic stem (mES) cells is dependent on the presence of leukemia inhibitory factor (LIF). LIF induces overexpression and tyrosine phosphorylation of STAT3 (signal transducer and activator of transcription 3) and its subsequent nuclear translocation. The molecular chaperone heat shock protein 90 (Hsp90) is involved in the activation and maturation of a wide variety of substrate proteins. We investigated the effect of LIF withdrawal on the protein expression levels of STAT3 and Hsp90 and on the interactions between STAT3 and Hsp90. Taken together the data presented here suggest that LIF promotes the interaction of Hsp90 with STAT3 during self-renewal, indicating a potentially pivotal role for Hsp90 in the LIF-based maintenance of self-renewal of mouse embryonic stem cells.
Collapse
Affiliation(s)
- Mokgadi M Setati
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | | | | | | | | | | |
Collapse
|
55
|
|
56
|
Jaworski T. Degradation and beyond: control of androgen receptor activity by the proteasome system. Cell Mol Biol Lett 2009; 11:109-31. [PMID: 16847754 PMCID: PMC6275697 DOI: 10.2478/s11658-006-0011-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 01/31/2006] [Indexed: 12/29/2022] Open
Abstract
The androgen receptor (AR) is a transcription factor belonging to the family of nuclear receptors which mediates the action of androgens in the development of urogenital structures. AR expression is regulated post-translationally by the ubiquitin/proteasome system. This regulation involves more complex mechanisms than typical degradation. The ubiquitin/proteasome system may regulate AR via mechanisms that do not engage in receptor turnover. Given the critical role of AR in sexual development, this complex regulation is especially important. Deregulation of AR signalling may be a causal factor in prostate cancer development. AR is the main target in prostate cancer therapies. Due to the critical role of the ubiquitin/proteasome system in AR regulation, current research suggests that targeting AR degradation is a promising approach.
Collapse
Affiliation(s)
- Tomasz Jaworski
- Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
57
|
Abstract
PURPOSE OF REVIEW In a large proportion of advanced prostate cancer patients treated with androgen deprivation therapy, progression of the disease occurs despite low levels of testosterone, termed castration-resistant prostate cancer. This heralds the onset of the lethal form of the disease. Recent investigations into the mechanisms of castration resistance have shown that despite low levels of androgen, the androgen receptor remains active through a variety of mechanisms and thus represents a key treatment target in castration-resistant prostate cancer. RECENT FINDINGS Clinical approaches to these patients have rapidly progressed and include antiandrogen withdrawal, sequential antiandrogen use, adrenal androgen production inhibitors, and estrogenic compounds. Multiple efforts are underway to develop additional therapies targeted at this phenomenon. SUMMARY Hormonal therapy in advanced prostate cancer is rapidly evolving to more effectively target disease processes underlying prostate cancer, with multiple promising agents on the horizon.
Collapse
|
58
|
Satoh T, Ishizuka T, Tomaru T, Yoshino S, Nakajima Y, Hashimoto K, Shibusawa N, Monden T, Yamada M, Mori M. Tat-binding protein-1 (TBP-1), an ATPase of 19S regulatory particles of the 26S proteasome, enhances androgen receptor function in cooperation with TBP-1-interacting protein/Hop2. Endocrinology 2009; 150:3283-90. [PMID: 19325002 PMCID: PMC2703560 DOI: 10.1210/en.2008-1122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 26S proteasome, which degrades ubiquitinated proteins, appears to contribute to the cyclical loading of androgen receptor (AR) to androgen response elements of target gene promoters; however, the mechanism whereby the 26S proteasome modulates AR recruitment remains unknown. Using yeast two-hybrid screening, we previously identified Tat-binding protein-1 (TBP-1), an adenosine triphosphatase of 19S regulatory particles of the 26S proteasome, as a transcriptional coactivator of thyroid hormone receptor. Independently, TBP-1-interacting protein (TBPIP) was also identified as a coactivator of several nuclear receptors, including AR. Here, we investigated whether TBP-1 could interact with and modulate transcriptional activation by AR cooperatively with TBPIP. TBP-1 mRNA was ubiquitously expressed in human tissues, including the testis and prostate, as well as in LNCaP cells. TBP-1 directly bound TBPIP through the amino-terminal domain possessing the leucine zipper structure. AR is physically associated with TBP-1 and TBPIP in vitro and in LNCaP cells. TBP-1 similarly and additively augmented AR-mediated transcription upon coexpression with TBPIP, and the ATPase domain, as well as leucine zipper structure in TBP-1, was essential for transcriptional enhancement. Overexpression of TBP-1 did not alter AR protein and mRNA levels. In the chromatin immunoprecipitation assay, TBP-1 was transiently recruited to the proximal androgen response element of the prostate-specific antigen gene promoter in a ligand-dependent manner in LNCaP cells. These findings suggest that a component of 19S regulatory particles directly binds AR and might participate in AR-mediated transcriptional activation in cooperation with TBPIP.
Collapse
Affiliation(s)
- Tetsurou Satoh
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Chen Y, Lee NKL, Zajac JD, MacLean HE. Generation and analysis of an androgen-responsive myoblast cell line indicates that androgens regulate myotube protein accretion. J Endocrinol Invest 2008; 31:910-8. [PMID: 19092298 DOI: 10.1007/bf03346441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Androgens have anabolic actions in skeletal muscle and could potentially act to: (a) increase proliferation of myoblasts; (b) delay differentiation to myotubes; and (c) induce protein accretion in post-proliferative myofibers. To identify the site of androgens action, we investigated the proliferative response of the C2C12 mouse myoblast cell line to testosterone and dihydrotestosterone (DHT) treatment. Neither androgens affected cell proliferation after up to 7 days treatment, nor was there a synergistic effect of androgens on the proliferative response of C2C12 cells to IGF-I treatment. However, proliferating C2C12 cells expressed 0.1% of the level of androgen receptor (AR) mRNA found in adult mouse gastrocnemius muscle (p<0.01). Therefore, we generated mouse C2C12 myoblast cell lines stably transfected with the mouse AR cDNA driven by the SV40 promoter (C2C12-AR). C2C12-AR cell proliferation, differentiation, and protein content were analyzed in response to androgen treatment. Our data demonstrated that androgen treatment does not alter either proliferation rate or differentiation rate of C2C12-AR cells. However, treatment of differentiated C2C12-AR myotubes with 100 nM DHT for 3 days caused a 20% increase in total protein content vs vehicle treatment (p<0.05). This effect was not observed in control C2C12 cells transfected with empty vector. These data suggest that androgens act via the AR to upregulate myotube protein content. This model cell line will be useful to further investigate the molecular mechanisms via which androgens regulate protein accretion.
Collapse
Affiliation(s)
- Y Chen
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Australia
| | | | | | | |
Collapse
|
60
|
Kaku N, Matsuda KI, Tsujimura A, Kawata M. Characterization of nuclear import of the domain-specific androgen receptor in association with the importin alpha/beta and Ran-guanosine 5'-triphosphate systems. Endocrinology 2008; 149:3960-9. [PMID: 18420738 PMCID: PMC2488236 DOI: 10.1210/en.2008-0137] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 04/08/2008] [Indexed: 12/11/2022]
Abstract
Androgen induces androgen receptor (AR) nuclear import, which allows AR to act as a transcriptional factor and ultimately leads to biological activity. However, the mechanism of AR translocation to the nucleus is still unclear. In the present study, we assessed the nuclear import abilities of each domain of AR and their mechanisms related to Ran and importin alpha/beta using green fluorescent protein real-time imaging. The localization of AR to the nucleus in the absence and presence of ligands was dependent upon a complex interplay of the amino terminal transactivation domain (NTD), the DNA binding domain (DBD), and the ligand binding domain (LBD). NTD and DBD showed ligand-independent nuclear import ability, whereas LBD had ligand-dependent transport. In addition, AR deletion mutant lacking DBD was distributed in the cytoplasm regardless of ligand existence, suggesting that the remaining domains, NTD and LBD, are responsible for AR cytoplasmic localization. Cotransfection with a dominant negative form of Ran dramatically inhibited the nuclear import of all AR domains, and a dominant negative form of importin alpha prevented AR and DBD import. Importin beta-knockdown strongly blocked DBD import. These results indicate that there are two additional nuclear localization signals (NLSs) in the NTD and LBD, and there are distinct pathways used to attain domain-specific AR nuclear import: the NLS of DBD is Ran and importin alpha/beta-dependent, whereas the NLSs of NTD and LBD are Ran dependent but importin alpha/beta-independent. Our data suggest that the nuclear import of AR is regulated by the interplay between each domain of the AR.
Collapse
Affiliation(s)
- Natsuko Kaku
- Departments of Anatomy and Neurobiology, Research Institute for Geriatric and Neurobiological Diseases, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | |
Collapse
|
61
|
Goodarzi MO, Xu N, Cui J, Guo X, Chen YI, Azziz R. Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA), a candidate gene for polycystic ovary syndrome. Hum Reprod 2008; 23:1214-9. [PMID: 18332089 PMCID: PMC2767244 DOI: 10.1093/humrep/den065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogenic, complex common genetic disease. Multiple pathways are involved in its pathogenesis, including the androgen signaling pathway and insulin signaling pathway. Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA) is a putative member of the androgen receptor-chaperone-co-chaperone complex, and may play a role in androgen signaling as a co-chaperone. Polymorphisms in the SGTA gene have not been evaluated for a role in PCOS. METHODS Women with and without PCOS (287 cases, 187 controls) were genotyped for three single nucleotide polymorphisms (SNPs) in SGTA. SNPs and haplotypes were determined and tested for association with PCOS and component traits of PCOS. RESULTS For SNP rs1640262, homozygotes for the minor allele were protected against PCOS (P = 0.009). Haplotype 1 (G-A-T) was associated with increased risk of PCOS (P = 0.015). In women with PCOS, haplotype 2 (A-G-C) was associated with increased insulin resistance (P = 0.013), consequently resulting in increased insulin secretion (P = 0.014). CONCLUSIONS This study presents genetic evidence suggesting a potential role of SGTA in the pathogenesis of PCOS. SGTA may provide a connection between multiple pathways in PCOS.
Collapse
Affiliation(s)
- M. O. Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
- Department of Medicine, the David Geffen School of Medicine at UCLA, Los Angeles, California 90095, U.S.A
| | - N. Xu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
| | - J. Cui
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
| | - X. Guo
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
| | - Y. I. Chen
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
- Department of Medicine, the David Geffen School of Medicine at UCLA, Los Angeles, California 90095, U.S.A
| | - R. Azziz
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
- Department of Medicine, the David Geffen School of Medicine at UCLA, Los Angeles, California 90095, U.S.A
- Department of Obstetrics and Gynecology, the David Geffen School of Medicine at UCLA, Los Angeles, California 90095, U.S.A
| |
Collapse
|
62
|
Shank LC, Kelley JB, Gioeli D, Yang CS, Spencer A, Allison LA, Paschal BM. Activation of the DNA-dependent protein kinase stimulates nuclear export of the androgen receptor in vitro. J Biol Chem 2008; 283:10568-80. [PMID: 18270197 DOI: 10.1074/jbc.m800810200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The androgen receptor undergoes nuclear import in response to ligand, but the mechanism by which it undergoes nuclear export is poorly understood. We developed a permeabilized cell assay to characterize nuclear export of the androgen receptor in LNCaP prostate cancer cells. We found that nuclear export of endogenous androgen receptor can be stimulated by short double-stranded DNA oligonucleotides. This androgen receptor export pathway is dependent on ATP hydrolysis and is enhanced by phosphatase inhibition with okadaic acid. Fluorescence recovery after photobleaching in permeabilized cells, under the conditions that stimulate androgen receptor export, suggested that double-stranded DNA-dependent export does not simply reflect the relief of a nuclear retention mechanism. A radiolabeled androgen was used to show that the androgen receptor remains ligand-bound during translocation through the nuclear pore complex. A specific inhibitor to the DNA-dependent protein kinase, NU7026, inhibits androgen receptor export and phosphorylation. In living cells, NU7026 treatment increases androgen-dependent transcription from endogenous genes that are regulated by androgen receptor. We suggest that DNA-dependent protein kinase phosphorylation of the androgen receptor, or an interacting component, helps target the androgen receptor for export from the nucleus.
Collapse
Affiliation(s)
- Leonard C Shank
- Center for Cell Signaling, Department of Biochemistry and Molecular Genetics, and Cancer Center, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Somatic Genetic Changes in Prostate Cancer. Prostate Cancer 2008. [DOI: 10.1007/978-1-60327-079-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
64
|
Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 2007; 28:778-808. [PMID: 17940184 DOI: 10.1210/er.2007-0019] [Citation(s) in RCA: 520] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Androgens, acting through the androgen receptor (AR), are responsible for the development of the male phenotype during embryogenesis, the achievement of sexual maturation at puberty, and the maintenance of male reproductive function and behavior in adulthood. In addition, androgens affect a wide variety of nonreproductive tissues. Moreover, aberrant androgen action plays a critical role in multiple pathologies, including prostate cancer and androgen insensitivity syndromes. The formation of a productive AR transcriptional complex requires the functional and structural interaction of the AR with its coregulators. In the last decade, an overwhelming and ever increasing number of proteins have been proposed to possess AR coactivating or corepressing characteristics. Intriguingly, a vast diversity of functions has been ascribed to these proteins, indicating that a multitude of cellular functions and signals converge on the AR to regulate its function. The current review aims to provide an overview of the AR coregulator proteins identified to date and to propose a classification of these AR coregulator proteins according to the function(s) ascribed to them. Taken together, this approach will increase our understanding of the cellular pathways that converge on the AR to ensure an appropriate transcriptional response to androgens.
Collapse
Affiliation(s)
- Hannelore V Heemers
- Department of Urology Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
65
|
EstÉbanez-PerpiñÁ E, Jouravel N, Fletterick RJ. Perspectives on designs of antiandrogens for prostate cancer. Expert Opin Drug Discov 2007; 2:1341-55. [DOI: 10.1517/17460441.2.10.1341] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
66
|
Lu S, Wang A, Lu S, Dong Z. A novel synthetic compound that interrupts androgen receptor signaling in human prostate cancer cells. Mol Cancer Ther 2007; 6:2057-64. [PMID: 17620434 DOI: 10.1158/1535-7163.mct-06-0735] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to determine the effects of 6-amino-2-[2-(4-tert-butyl-phenoxy)-ethylsulfonyl]-1H-pyrimidine-4-one (DL3), a novel synthetic compound with small-molecule drug properties, on androgen-regulated gene expression and cell growth in human prostate cancer cells. LNCaP, 22Rv1, and LAPC-4 cells were used in the studies. Expression of prostate-specific antigen (PSA) and androgen receptor (AR) was determined by ELISA, Western blotting, real-time reverse transcription-PCR, nuclear run-on, and/or promoter luciferase reporter assays. Effects of DL3 on cell growth were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining. DL3 inhibited dihydrotestosterone (DHT)-induced PSA expression in a dose-dependent fashion. The inhibitory effects of DL3 were more potent than those of flutamide, nilutamide, and bicalutamide. Moreover, DL3 blocked the stimulatory effects of nilutamide on PSA expression in LNCaP cells. Unlike the three classic antiandrogens, DL3 did not show intrinsic AR agonist activity. Nuclear run-on and PSA promoter reporter assays revealed that DL3 blocked DHT-induced PSA gene transcription. Consistent with its effects on PSA expression, DL3 inhibited DHT-stimulated cell growth with a potency significantly superior to flutamide, nilutamide, or bicalutamide. Furthermore, cells resistant to flutamide or nilutamide were as susceptible as their parental counterparts to the inhibitory effects of DL3 on both PSA expression and cell growth. DL3 did not inhibit AR nuclear localization and the NH(2)- and COOH-terminal interaction of AR induced by DHT. These data show that DL3 is a novel inhibitor of the AR signaling axis and a potentially potent therapeutic agent for the management of advanced human prostate cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of Internal Medicine, University of Cincinnati College of Medicine, Room 1308, 3125 Eden Avenue, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
67
|
Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer 2007; 120:719-33. [PMID: 17163421 DOI: 10.1002/ijc.22365] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The androgen receptor signaling axis plays an essential role in the development, function and homeostasis of male urogenital structures including the prostate gland although the mechanism by which the AR axis contributes to the initiation, progression and metastatic spread of prostate cancer remains somewhat enigmatic. A number of molecular events have been proposed to act at the level of the AR and associated coregulators to influence the natural history of prostate cancer including deregulated expression, somatic mutation, and post-translational modification. The purpose of this article is to review the evidence for deregulated expression and function of the AR and associated coactivators and corepressors and how such events might contribute to the progression of prostate cancer by controlling the selection and expression of AR targets.
Collapse
Affiliation(s)
- Renée Chmelar
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
68
|
Tu LC, Yan X, Hood L, Lin B. Proteomics analysis of the interactome of N-myc downstream regulated gene 1 and its interactions with the androgen response program in prostate cancer cells. Mol Cell Proteomics 2007; 6:575-88. [PMID: 17220478 DOI: 10.1074/mcp.m600249-mcp200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NDRG1 is known to play important roles in both androgen-induced cell differentiation and inhibition of prostate cancer metastasis. However, the proteins associated with NDRG1 function are not fully enumerated. Using coimmunoprecipitation and mass spectrometry analysis, we identified 58 proteins that interact with NDRG1 in prostate cancer cells. These proteins include nuclear proteins, adhesion molecules, endoplasmic reticulum (ER) chaperons, proteasome subunits, and signaling proteins. Integration of our data with protein-protein interaction data from the Human Proteome Reference Database allowed us to build a comprehensive interactome map of NDRG1. This interactome map consists of several modules such as a nuclear module and a cell membrane module; these modules explain the reported versatile functions of NDRG1. We also determined that serine 330 and threonine 366 of NDRG1 were phosphorylated and demonstrated that the phosphorylation of NDRG1 was prominently mediated by protein kinase A (PKA). Further, we showed that NDRG1 directly binds to beta-catenin and E-cadherin. However, the phosphorylation of NDRG1 did not interrupt the binding of NDRG1 to E-cadherin and beta-catenin. Finally, we showed that the inhibition of NDRG1 expression by RNA interference decreased the ER inducible chaperon GRP94 expression, directly proving that NDRG1 is involved in the ER stress response. Intriguingly, we observed that many members of the NDRG1 interactome are androgen-regulated and that the NDRG1 interactome links to the androgen response network through common interactions with beta-catenin and heat shock protein 90. Therefore we overlaid the transcriptomic expression changes in the NDRG1 interactome in response to androgen treatment and built a dual dynamic picture of the NDRG1 interactome in response to androgen. This interactome map provides the first road map for understanding the functions of NDRG1 in cells and its roles in human diseases, such as prostate cancer, which can progress from androgen-dependent curable stages to androgen-independent incurable stages.
Collapse
Affiliation(s)
- Lan Chun Tu
- Institute for Systems Biology, Seattle, Washington 98103, USA
| | | | | | | |
Collapse
|
69
|
Desai SJ, Ma AH, Tepper CG, Chen HW, Kung HJ. Inappropriate Activation of the Androgen Receptor by Nonsteroids: Involvement of the Src Kinase Pathway and Its Therapeutic Implications. Cancer Res 2006; 66:10449-59. [PMID: 17079466 DOI: 10.1158/0008-5472.can-06-2582] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The inappropriate activation of androgen receptor (AR) by nonsteroids is considered a potential mechanism in the emergence of hormone-refractory prostate tumors, but little is known about the properties of these "pseudoactivated" AR. Here, we present the first comprehensive analysis closely examining the properties of AR activated by the neuropeptide bombesin that distinguish it from androgen-activated AR. We show that bombesin-activated AR (a) is required for bombesin-induced growth of LNCaP cells, (b) has a transcriptional profile overlapping with, but not identical to, androgen-activated AR, (c) activates prostate-specific antigen by preferentially binding to its proximal promoter, and (d) assembles a distinct coactivator complex. Significantly, we found that Src kinase is critical for bombesin-induced AR-mediated activity and is required for translocation and transactivation of AR. Additionally, we identify c-Myc, a Src target gene, to be activated by bombesin and a potential coactivator of AR-mediated activity specific to bombesin-induced signaling. Because Src kinase is often activated by other nonsteroids, such as other neuropeptides, growth factors, chemokines, and cytokines, our findings have general applicability and provide rationale for investigating the efficacy of the Src kinase pathway as a target for the prevention of relapsed prostate cancers.
Collapse
Affiliation(s)
- Sonal J Desai
- Department of Biological Chemistry and Cancer Center, University of California at Davis, Sacramento, California 95817, USA
| | | | | | | | | |
Collapse
|