51
|
Hung AL, Garzon-Muvdi T, Lim M. Biomarkers and Immunotherapeutic Targets in Glioblastoma. World Neurosurg 2017; 102:494-506. [PMID: 28300714 DOI: 10.1016/j.wneu.2017.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is an aggressive central nervous system cancer with poor prognosis despite maximal therapy. The recent advent of immunotherapy holds great promise for improving GBM survival and has already made great strides toward changing management strategies. A diverse set of biomarkers have been implicated as immunotherapeutic targets and prognostic indicators in other cancers. Some of the more extensively studied examples include cytokines (IL-4, IL-13, and TGF-β), checkpoint molecules (PD-1, CTLA-4, TIM-3, LAG-3, CD137, GITR, OX40), and growth/angiogenesis proteins (endoglin and EGFR). Emerging theories involving the tumor mutational landscape and microbiome have also been explored in relation to cancer treatment. Although identification of novel biomarkers may improve and help direct treatment of patients with GBM, the next step is to explore the role of biomarkers in precision medicine and selection of specific immunotherapeutic drugs in an individualized manner.
Collapse
Affiliation(s)
- Alice L Hung
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
52
|
Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells. PLoS One 2017; 12:e0169932. [PMID: 28107450 PMCID: PMC5249124 DOI: 10.1371/journal.pone.0169932] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.
Collapse
|
53
|
Lv QL, Huang YT, Wang GH, Liu YL, Huang J, Qu Q, Sun B, Hu L, Cheng L, Chen SH, Zhou HH. Overexpression of RACK1 Promotes Metastasis by Enhancing Epithelial-Mesenchymal Transition and Predicts Poor Prognosis in Human Glioma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:1021. [PMID: 27763568 PMCID: PMC5086760 DOI: 10.3390/ijerph13101021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 12/11/2022]
Abstract
Emerging studies show that dysregulation of the receptor of activated protein kinase C1 (RACK1) plays a crucial role in tumorigenesis and progression of various cancers. However, the biological function and underlying mechanism of RACK1 in glioma remains poorly defined. Here, we found that RACK1 was significantly up-regulated in glioma tissues compared with normal brain tissues, being closely related to clinical stage of glioma both in mRNA and protein levels. Moreover, Kaplan-Meier analysis demonstrated that patients with high RACK1 expression had a poor prognosis (p = 0.0062, HR = 1.898, 95% CI: 1.225-3.203). In vitro functional assays indicated that silencing of RACK1 could dramatically promote apoptosis and inhibit cell proliferation, migration, and invasion of glioma cells. More importantly, knockdown of RACK1 led to a vast accumulation of cells in G0/G1 phase and their reduced proportions at the S phase by suppressing the expression of G1/S transition key regulators Cyclin D1 and CDK6. Additionally, this forced down-regulation of RACK1 significantly suppressed migration and invasion via inhibiting the epithelial-mesenchymal transition (EMT) markers, such as MMP2, MMP9, ZEB1, N-Cadherin, and Integrin-β1. Collectively, our study revealed that RACK1 might act as a valuable prognostic biomarker and potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Qiao-Li Lv
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| | - Yuan-Tao Huang
- Department of Neurology, The Brain Hospital of Hunan Province, Changsha 410008, China.
| | - Gui-Hua Wang
- Department of Oncology, Changsha Central Hospital, Changsha 410008, China.
| | - Yan-Ling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| | - Jin Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Bao Sun
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| | - Lei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| | - Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shu-Hui Chen
- Department of Oncology, Changsha Central Hospital, Changsha 410008, China.
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| |
Collapse
|
54
|
Zhou Y, Liu Y, Hu C, Jiang Y. MicroRNA-16 inhibits the proliferation, migration and invasion of glioma cells by targeting Sal-like protein 4. Int J Mol Med 2016; 38:1768-1776. [PMID: 27748823 DOI: 10.3892/ijmm.2016.2775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 09/26/2016] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs or miRs), a class of non-coding RNAs 18-25 nucleotides in length, act as key regulators in the development and malignant progression of various human cancers by modulating the expression of their target genes. Recently, miR‑16 has been demonstrated to be play a role in glioma. However, the regulatory mechanisms of miR‑16 in glioma growth and metastasis remain largely unclear. In the present study, qRT-PCR revealed that miR‑16 was significantly downregulated in 23 glioma tissue specimens compared to 7 normal brain tissue specimens. Moreover, its levels were markedly lower in the glioma samples at stages T2-T4 compared to those at stage T1. The overexpression of miR-16 significantly suppressed the proliferation, migration and invasion of U251 and U87 glioma cells. Luciferase reporter assay identified Sal-like protein 4 (SALL4) as a target gene of miR‑16, and its protein levels were found to be decreased in miR‑16-overexpressing U251 and U87 cells. Furthermore, the overexpression of SALL4 significantly reversed the suppressive effects of miR‑16 on the proliferation, migration and invasion of U251 and U87 cells, suggesting that miR‑16 playsa tumor suppressor role in glioma by inhibiting cell proliferation and invasion through the targeting of SALL4. Finally, we found that SALL4 was significantly upregulated in glioma tissues compared to normal brain tissues, and its levels were markedly higher in the glioma tissues at stages T2-T4 compared to those at stage T1. In addition, the expression levels of SALL4 inversely correlated with the miR‑16 levels in glioma tissues, suggesting that the downregulation of miR‑16 contributes to the upregulation of SALL4 in glioma. On the whole, the findings of this study indicate a role for the miR‑16/SALL4 axis in glioma. Our data may also provide a potential therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yang Liu
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Chao Hu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
55
|
Dondeti MF, El-Maadawy EA, Talaat RM. Hepatitis-related hepatocellular carcinoma: Insights into cytokine gene polymorphisms. World J Gastroenterol 2016; 22:6800-6816. [PMID: 27570418 PMCID: PMC4974580 DOI: 10.3748/wjg.v22.i30.6800] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/11/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer, which is one of the most prevalent cancers among humans. Many factors are involved in the liver carcinogenesis as lifestyle and environmental factors. Hepatitis virus infections are now recognized as the chief etiology of HCC; however, the precise mechanism is still enigmatic till now. The inflammation triggered by the cytokine-mediated immune response, was reported to be the closest factor of HCC development. Cytokines are immunoregulatory proteins produced by immune cells, functioning as orchestrators of the immune response. Genes of cytokines and their receptors are known to be polymorphic, which give rise to variations in their genes. These variations have a great impact on the expression levels of the secreted cytokines. Therefore, cytokine gene polymorphisms are involved in the molecular mechanisms of several diseases. This piece of work aims to shed much light on the role of cytokine gene polymorphisms as genetic host factor in hepatitis related HCC.
Collapse
|
56
|
Gramatzki D, Frei K, Cathomas G, Moch H, Weller M, Mertz KD. Interleukin-33 in human gliomas: Expression and prognostic significance. Oncol Lett 2016; 12:445-452. [PMID: 27347163 PMCID: PMC4906635 DOI: 10.3892/ol.2016.4626] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 04/29/2016] [Indexed: 12/14/2022] Open
Abstract
Interleukin-33 (IL-33) is a nuclear and pleiotropic cytokine with regard to its cellular sources and its actions. IL-33 is involved in the pathogenesis of brain diseases. Several factors account for the tumorigenicity of human gliomas, including cytokines and their receptors. The present study assessed the expression and prognostic significance of IL-33 in human astroglial brain tumors. Protein levels of IL-33 were determined by immunohistochemistry using a tissue microarray containing 95 human gliomas. mRNA expression data of IL-33, as well as of its receptors, IL-1 receptor-like 1 protein and IL-1 receptor accessory protein (IL1RAcP), were obtained from The Cancer Genome Atlas database. IL-33 protein was expressed heterogeneously in tumor tissue, but was, however, not detected in normal brain tissue. There was no differential IL-33 protein expression by tumor grade, while IL-33 protein expression was associated with inferior survival in patients with recurrent glioblastomas. Interrogations of the TCGA database indicated that mRNA expression of IL-33 and the IL-33 receptors was heterogeneous, and that IL-33 and IL1RAcP mRNA levels were correlated with the tumor grade. Elevated IL-33 mRNA levels were associated with the inferior survival of glioblastoma patients. Therefore, IL-33 may play an important role in the pathogenesis and prognosis of human gliomas.
Collapse
Affiliation(s)
- Dorothee Gramatzki
- Laboratory for Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Karl Frei
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Gieri Cathomas
- Institute of Pathology Liestal, Cantonal Hospital Baselland, 4410 Liestal, Switzerland
| | - Holger Moch
- Department of Pathology, Institute of Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Laboratory for Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kirsten Diana Mertz
- Institute of Pathology Liestal, Cantonal Hospital Baselland, 4410 Liestal, Switzerland; Department of Pathology, Institute of Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
57
|
Ahn SH, Park H, Ahn YH, Kim S, Cho MS, Kang JL, Choi YH. Necrotic cells influence migration and invasion of glioblastoma via NF-κB/AP-1-mediated IL-8 regulation. Sci Rep 2016; 6:24552. [PMID: 27076368 PMCID: PMC4830983 DOI: 10.1038/srep24552] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/31/2016] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary intracranial tumor in adults and has poor prognosis. Diffuse infiltration into normal brain parenchyma, rapid growth, and the presence of necrosis are remarkable hallmarks of GBM. However, the effect of necrotic cells on GBM growth and metastasis is poorly understood at present. In this study, we examined the biological significance of necrotic tissues by exploring the molecular mechanisms underlying the signaling network between necrotic tissues and GBM cells. The migration and invasion of the GBM cell line CRT-MG was significantly enhanced by treatment with necrotic cells, as shown by assays for scratch wound healing and spheroid invasion. Incubation with necrotic cells induced IL-8 secretion in CRT-MG cells in a dose-dependent manner. In human GBM tissues, IL-8 positive cells were mainly distributed in the perinecrotic region, as seen in immunohistochemistry and immunofluorescence analysis. Necrotic cells induced NF-κB and AP-1 activation and their binding to the IL-8 promoter, leading to enhanced IL-8 production and secretion in GBM cells. Our data demonstrate that when GBM cells are exposed to and stimulated by necrotic cells, the migration and invasion of GBM cells are enhanced and facilitated via NF-κB/AP-1 mediated IL-8 upregulation.
Collapse
Affiliation(s)
- So-Hee Ahn
- Department of Physiology, Ewha Womans University School of Medicine, Seoul 911-1, Korea.,Tissue Injury Defense Research Center , School of Medicine, Ewha Womans University, Seoul, Korea
| | - Hyunju Park
- Department of Physiology, Ewha Womans University School of Medicine, Seoul 911-1, Korea.,Tissue Injury Defense Research Center , School of Medicine, Ewha Womans University, Seoul, Korea
| | - Young-Ho Ahn
- Tissue Injury Defense Research Center , School of Medicine, Ewha Womans University, Seoul, Korea.,Department of Molecular Medicine , School of Medicine, Ewha Womans University, Seoul, Korea
| | - Sewha Kim
- Department of Pathology, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Min-Sun Cho
- Department of Pathology, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Jihee Lee Kang
- Department of Physiology, Ewha Womans University School of Medicine, Seoul 911-1, Korea.,Tissue Injury Defense Research Center , School of Medicine, Ewha Womans University, Seoul, Korea
| | - Youn-Hee Choi
- Department of Physiology, Ewha Womans University School of Medicine, Seoul 911-1, Korea.,Tissue Injury Defense Research Center , School of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|
58
|
Hamard L, Ratel D, Selek L, Berger F, van der Sanden B, Wion D. The brain tissue response to surgical injury and its possible contribution to glioma recurrence. J Neurooncol 2016; 128:1-8. [PMID: 26961772 DOI: 10.1007/s11060-016-2096-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
Abstract
Surgery is the first line therapy for glioma. However, glioma recurs in 90 % of the patients in the resection margin. The impact of surgical brain injury (SBI) on glioma recurrence is largely overlooked. Herein, we review some of the mechanisms involved in tissue repair that may impact glioma recurrence at the resection margin. Many processes or molecules involved in tissue repair after brain injury are also critical for glioma growth. They include a wide array of secreted growth factors, cytokines and transcription factors including NFКB and STAT3 which in turn activate proliferative and anti-apoptotic genes and processes such as angiogenesis and inflammation. Because some residual glioma cells always remain in the tumor resection margin, there are now compelling arguments to suggest that some aspects of the brain tissue response to SBI can also participate to glioma recurrence at the resection margin. Brain tissue response to SBI recruits angiogenesis and inflammation that precede and then follow tumor recurrence at the resection margin. The healing response to SBI is double edged, as inflammation is involved in regeneration and healing, and has both pro- and anti-tumorigenic functions. A promising therapeutic approach is to normalize and re-educate the molecular and cellular responses at the resection margin to promote anti-tumorigenic processes involved in healing while inhibiting pro-tumorigenic activities. Manipulation of the inflammatory response to SBI to prevent local recurrence could also enhance the efficacy of other therapies such as immunotherapy. However, our current knowledge is far from sufficient to achieve this goal. Acknowledging, understanding and manipulating the double-edged role played by SBI in glioma recurrence is surely challenging, but it cannot be longer delayed.
Collapse
Affiliation(s)
- Lauriane Hamard
- INSERM UA 01, Clinatec, Centre de recherche biomédicale Edmond J. Safra, CEA 17 rue des Martyrs, 38054, Grenoble cedex, France
| | | | - Laurent Selek
- INSERM UA 01, Clinatec, Centre de recherche biomédicale Edmond J. Safra, CEA 17 rue des Martyrs, 38054, Grenoble cedex, France.,Clinique de neurochirurgie, CHU de Grenoble, Grenoble, France.,INSERM UMR 1205, bâtiment modulaire 40-23, CEA, 17 rue des Martyrs, 38054, Grenoble, France
| | - François Berger
- INSERM UA 01, Clinatec, Centre de recherche biomédicale Edmond J. Safra, CEA 17 rue des Martyrs, 38054, Grenoble cedex, France.,CHU de Grenoble, Grenoble, France.,Université Joseph Fourier, B.P. 217, 38043, Grenoble cedex 09, France.,INSERM UMR 1205, bâtiment modulaire 40-23, CEA, 17 rue des Martyrs, 38054, Grenoble, France.,Université Grenoble Alpes, 38043, Grenoble cedex 09, France
| | - Boudewijn van der Sanden
- INSERM UA 01, Clinatec, Centre de recherche biomédicale Edmond J. Safra, CEA 17 rue des Martyrs, 38054, Grenoble cedex, France.,INSERM UMR 1205, bâtiment modulaire 40-23, CEA, 17 rue des Martyrs, 38054, Grenoble, France
| | - Didier Wion
- INSERM UA 01, Clinatec, Centre de recherche biomédicale Edmond J. Safra, CEA 17 rue des Martyrs, 38054, Grenoble cedex, France. .,INSERM UMR 1205, bâtiment modulaire 40-23, CEA, 17 rue des Martyrs, 38054, Grenoble, France.
| |
Collapse
|
59
|
Pan J, Lu F, Xu H, Wang Q, Lin C, Zhang S. Low p21 level is necessary for the suppressive effects of micoRNA-31 on glioma cell migration and invasion. Tumour Biol 2016; 37:9663-70. [PMID: 26801671 DOI: 10.1007/s13277-016-4788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/12/2015] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs), a kind of endogenous non-coding RNAs, regulate gene expression through binding to the 3'-untranslational region (UTR) of target messenger RNAs (mRNAs) and act as endogenous agents of RNA interference, resulting in either mRNA degradation or translational repression. MiR-31 has been demonstrated to be associated with the development and progression of glioma. However, the underlying molecular mechanism remains largely unclear. In the present study, we demonstrated that miR-31 only inhibited the cell migration and invasion, as well as the expression of a known miR-31 target oncogene radixin, in U251 glioma cells that expressed low level of p21; however, miR-31 showed no above effects on glioma SHG44 cells that highly expressed p21. Moreover, upregulation of p21 in U251 cells reversed the suppressive effects of miR-31 on the cell migration and invasion, suggesting that low p21 level is necessary for the miR-31-mediated inhibitory effects on glioma. Furthermore, analysis for 35 glioma specimens showed that the expression of radixin was negatively correlated with the miR-31 level in glioma tissues with low p21 expression; however, no such correlation was found in glioma tissues with high p21 level, further supporting that the low p21 level is necessary for the suppressive effect of miR-31 on the expression of its target oncogenes. In summary, our study demonstrates that the suppressive effect of miR-31 on glioma cell migration and invasion is p21-dependent, and suggests that miR-31 may be used for the treatment of patients with p21-deficent glioma.
Collapse
Affiliation(s)
- Jun Pan
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong, 510282, China
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangdong, 510282, China
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253# Gongye Road, Guangzhou, 510282, Guangdong, China
| | - Fengfei Lu
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong, 510282, China
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangdong, 510282, China
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253# Gongye Road, Guangzhou, 510282, Guangdong, China
| | - Hongchao Xu
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong, 510282, China
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangdong, 510282, China
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253# Gongye Road, Guangzhou, 510282, Guangdong, China
| | - Qifu Wang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong, 510282, China
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangdong, 510282, China
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253# Gongye Road, Guangzhou, 510282, Guangdong, China
| | - Chunnan Lin
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong, 510282, China
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangdong, 510282, China
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253# Gongye Road, Guangzhou, 510282, Guangdong, China
| | - Shizhong Zhang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong, 510282, China.
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangdong, 510282, China.
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253# Gongye Road, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
60
|
LIU LIANG, LIU ZHIXIONG, WANG HAO, CHEN LONG, RUAN FUQIANG, ZHANG JIHUI, HU YI, LUO HENGSHAN, WEN SHUAI. Knockdown of PREX2a inhibits the malignant phenotype of glioma cells. Mol Med Rep 2016; 13:2301-7. [DOI: 10.3892/mmr.2016.4799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 11/19/2015] [Indexed: 11/06/2022] Open
|
61
|
Glioblastoma Stem Cells Microenvironment: The Paracrine Roles of the Niche in Drug and Radioresistance. Stem Cells Int 2016; 2016:6809105. [PMID: 26880981 PMCID: PMC4736577 DOI: 10.1155/2016/6809105] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022] Open
Abstract
Among all solid tumors, the high-grade glioma appears to be the most vascularized one. In fact, "microvascular hyperplasia" is a hallmark of GBM. An altered vascular network determines irregular blood flow, so that tumor cells spread rapidly beyond the diffusion distance of oxygen in the tissue, with the consequent formation of hypoxic or anoxic areas, where the bulk of glioblastoma stem cells (GSCs) reside. The response to this event is the induction of angiogenesis, a process mediated by hypoxia inducible factors. However, this new capillary network is not efficient in maintaining a proper oxygen supply to the tumor mass, thereby causing an oxygen gradient within the neoplastic zone. This microenvironment helps GSCs to remain in a "quiescent" state preserving their potential to proliferate and differentiate, thus protecting them by the effects of chemo- and radiotherapy. Recent evidences suggest that responses of glioblastoma to standard therapies are determined by the microenvironment of the niche, where the GSCs reside, allowing a variety of mechanisms that contribute to the chemo- and radioresistance, by preserving GSCs. It is, therefore, crucial to investigate the components/factors of the niche in order to formulate new adjuvant therapies rendering more efficiently the gold standard therapies for this neoplasm.
Collapse
|
62
|
Li J, Yuan J, Yuan X, Zhao J, Zhang Z, Weng L, Liu J. MicroRNA-200b inhibits the growth and metastasis of glioma cells via targeting ZEB2. Int J Oncol 2015; 48:541-50. [PMID: 26648487 DOI: 10.3892/ijo.2015.3267] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/27/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) have been found to play important roles in mediating a variety of biological processes in human cancers, including tumor cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). In the present study, we aimed to investigate the putative role of miR‑200b in the progression of glioma. Real-time RT-PCR data showed that the miR‑200b levels were frequently reduced in primary glioma tissues (n=88) and cell lines, when compared to normal brain tissues (n=25). Moreover, decreased miR‑200b level was tightly associated with the malignant progression of glioma. Overexpression of miR‑200b significantly suppressed cell proliferation, migration, invasion and EMT in glioma U251 and U87 cells. Luciferase reporter assay data further identified ZEB2 as a direct target of miR‑200b, and the protein expression of ZEB2 was markedly reduced after overexpression of miR‑200b in U251 and U87 cells. Furthermore, restoration of ZEB2 effectively reversed the reduced expression of ZEB2, as well as the suppressive effects of miR‑200b overexpression on the proliferation, migration, invasion and EMT in glioma U251 and U87 cells. Moreover, in vivo study showed that overexpression of miR‑200b significantly inhibited tumorigenesis as well as the tumor growth of glioma cells, and effectively protected nude mice from tumor-induced death. Taken together these findings suggest that miR‑200b has suppressive effects on the proliferation, migration, invasion and EMT of glioma cells, partly at least, via targeting ZEB2. Therefore, miR‑200b acts as a novel tumor suppressor in glioma, and thus may become a promising therapeutic candidate for glioma.
Collapse
Affiliation(s)
- Jian Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhiping Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jingping Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
63
|
Jiang P, Wang H, Li W, Zang C, Li B, Wong YJ, Meyer C, Liu JS, Aster JC, Liu XS. Network analysis of gene essentiality in functional genomics experiments. Genome Biol 2015; 16:239. [PMID: 26518695 PMCID: PMC4627418 DOI: 10.1186/s13059-015-0808-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022] Open
Abstract
Many genomic techniques have been developed to study gene essentiality genome-wide, such as CRISPR and shRNA screens. Our analyses of public CRISPR screens suggest protein interaction networks, when integrated with gene expression or histone marks, are highly predictive of gene essentiality. Meanwhile, the quality of CRISPR and shRNA screen results can be significantly enhanced through network neighbor information. We also found network neighbor information to be very informative on prioritizing ChIP-seq target genes and survival indicator genes from tumor profiling. Thus, our study provides a general method for gene essentiality analysis in functional genomic experiments ( http://nest.dfci.harvard.edu ).
Collapse
Affiliation(s)
- Peng Jiang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Hongfang Wang
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Wei Li
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Chongzhi Zang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Bo Li
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Yinling J Wong
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Cliff Meyer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Jun S Liu
- Department of Statistics, Harvard University, Cambridge, 200092, China
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA. .,School of Life Science and Technology, Tongji University, Shanghai, MA, 02138, USA.
| |
Collapse
|
64
|
Fabbri E, Brognara E, Montagner G, Ghimenton C, Eccher A, Cantù C, Khalil S, Bezzerri V, Provezza L, Bianchi N, Finotti A, Borgatti M, Moretto G, Chilosi M, Cabrini G, Gambari R. Regulation of IL-8 gene expression in gliomas by microRNA miR-93. BMC Cancer 2015; 15:661. [PMID: 26449498 PMCID: PMC4598972 DOI: 10.1186/s12885-015-1659-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Different strategies have been proposed to target neoangiogenesis in gliomas, besides those targeting Vascular Endothelial Growth Factor (VEGF). The chemokine Interleukin-8 (IL-8) has been shown to possess both tumorigenic and proangiogenic properties. Although different pathways of induction of IL-8 gene expression have been already elucidated, few data are available on its post-transcriptional regulation in gliomas. METHODS Here we investigated the role of the microRNA miR-93 on the expression levels of IL-8 and other pro-inflammatory genes by RT-qPCR and Bio-Plex analysis. We used different disease model systems, including clinical samples from glioma patients and two glioma cell lines, U251 and T98G. RESULTS IL-8 and VEGF transcripts are highly expressed in low and high grade gliomas in respect to reference healthy brain; miR-93 expression is also increased and inversely correlated with transcription of IL-8 and VEGF genes. Computational analysis showed the presence of miR-93 consensus sequences in the 3'UTR region of both VEGF and IL-8 mRNAs, predicting possible interaction with miR-93 and suggesting a potential regulatory role of this microRNA. In vitro transfection with pre-miR-93 and antagomiR-93 inversely modulated VEGF and IL-8 gene expression and protein release when the glioma cell line U251 was considered. Similar data were obtained on IL-8 gene regulation in the other glioma cell line analyzed, T98G. The effect of pre-miR-93 and antagomiR-93 in U251 cells has been extended to the secretion of a panel of cytokines, chemokines and growth factors, which consolidated the concept of a role of miR-93 in IL-8 and VEGF gene expression and evidenced a potential regulatory role also for MCP-1 and PDGF (also involved in angiogenesis). CONCLUSION In conclusion, our results suggest an increasing role of miR-93 in regulating the level of expression of several genes involved in the angiogenesis of gliomas.
Collapse
Affiliation(s)
- Enrica Fabbri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| | - Eleonora Brognara
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| | - Giulia Montagner
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| | - Claudio Ghimenton
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University-Hospital of Verona, P.le A Stefani n.1, 37126, Verona, Italy.
| | - Albino Eccher
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University-Hospital of Verona, P.le A Stefani n.1, 37126, Verona, Italy.
| | - Cinzia Cantù
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University-Hospital of Verona, P.le A Stefani n.1, 37126, Verona, Italy.
| | - Susanna Khalil
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University-Hospital of Verona, P.le A Stefani n.1, 37126, Verona, Italy.
| | - Valentino Bezzerri
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University-Hospital of Verona, P.le A Stefani n.1, 37126, Verona, Italy.
| | - Lisa Provezza
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University-Hospital of Verona, P.le A Stefani n.1, 37126, Verona, Italy.
| | - Nicoletta Bianchi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| | - Giuseppe Moretto
- Department of Neurosciences, University-Hospital of Verona, P.le A Stefani n.1, Verona, 37126, Italy.
| | - Marco Chilosi
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University-Hospital of Verona, P.le A Stefani n.1, 37126, Verona, Italy.
| | - Giulio Cabrini
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University-Hospital of Verona, P.le A Stefani n.1, 37126, Verona, Italy.
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| |
Collapse
|
65
|
Nijaguna MB, Patil V, Hegde AS, Chandramouli BA, Arivazhagan A, Santosh V, Somasundaram K. An Eighteen Serum Cytokine Signature for Discriminating Glioma from Normal Healthy Individuals. PLoS One 2015; 10:e0137524. [PMID: 26390214 PMCID: PMC4577083 DOI: 10.1371/journal.pone.0137524] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/18/2015] [Indexed: 02/04/2023] Open
Abstract
Glioblastomas (GBM) are largely incurable as they diffusely infiltrate adjacent brain tissues and are difficult to diagnose at early stages. Biomarkers derived from serum, which can be obtained by minimally invasive procedures, may help in early diagnosis, prognosis and treatment monitoring. To develop a serum cytokine signature, we profiled 48 cytokines in sera derived from normal healthy individuals (n = 26) and different grades of glioma patients (n = 194). We divided the normal and grade IV glioma/GBM serum samples randomly into equal sized training and test sets. In the training set, the Prediction Analysis for Microarrays (PAM) identified a panel of 18 cytokines that could discriminate GBM sera from normal sera with maximum accuracy (95.40%) and minimum error (4.60%). The 18-cytokine signature obtained in the training set discriminated GBM sera from normal sera in the test set as well (accuracy 96.55%; error 3.45%). Interestingly, the 18-cytokine signature also differentiated grade II/Diffuse Astrocytoma (DA) and grade III/Anaplastic Astrocytoma (AA) sera from normal sera very efficiently (DA vs. normal–accuracy 96.00%, error 4.00%; AA vs. normal–accuracy 95.83%, error 4.17%). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using 18 cytokines resulted in the enrichment of two pathways, cytokine-cytokine receptor interaction and JAK-STAT pathways with high significance. Thus our study identified an 18-cytokine signature for distinguishing glioma sera from normal healthy individual sera and also demonstrated the importance of their differential abundance in glioma biology.
Collapse
Affiliation(s)
- Mamatha B. Nijaguna
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Vikas Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Alangar S. Hegde
- Department of Neurosurgery, Sri Satya Sai Institute of Higher Medical Sciences, Bangalore 560066, India
| | - Bangalore A. Chandramouli
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | - Arimappamagan Arivazhagan
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
- * E-mail:
| |
Collapse
|
66
|
Association between Prediagnostic Allergy-Related Serum Cytokines and Glioma. PLoS One 2015; 10:e0137503. [PMID: 26352148 PMCID: PMC4564184 DOI: 10.1371/journal.pone.0137503] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 08/18/2015] [Indexed: 12/20/2022] Open
Abstract
Allergy is inversely related to glioma risk. To determine whether prediagnostic allergy-related serum proteins are associated with glioma, we conducted a nested case-control study of seven cytokines (IL4, IL13, IL5, IL6, IL10, IFNG, TGFB2), two soluble cytokine receptors (sIL4RA, sIL13RA2) and three allergy-related transcription factors (FOXP3, STAT3, STAT6) using serum specimens from the Janus Serum Bank Cohort in Oslo, Norway. Blood donors subsequently diagnosed with glioma (n = 487) were matched to controls (n = 487) on age and date of blood draw and sex. We first estimated individual effects of the 12 serum proteins and then interactions between IL4 and IL13 and their receptors using conditional logistic regression. We next tested equality of case-control inter-correlations among the 12 serum proteins. We found that TGFB2 is inversely related to glioblastoma (Odds Ratio (OR) = 0.87, 95% Confidence Interval (CI)) = 0.76, 0.98). In addition, ≤ 5 years before diagnosis, we observed associations between IL4 (OR = 0.82, 95% CI = 0.66, 1.01), sIL4RA (OR = 0.80, 95% CI = 0.65, 1.00), their interaction (OR = 1.06, 95% CI = 1.01, 1.12) and glioblastoma. This interaction was apparent > 20 years before diagnosis (IL4-sIL4RA OR = 1.20, 95% CI = 1.05, 1.37). Findings for glioma were similar. Case correlations were different from control correlations stratified on time before diagnosis. Five years or less before diagnosis, correlations among case serum proteins were weaker than were those among controls. Our findings suggest that IL4 and sIL4RA reduce glioma risk long before diagnosis and early gliomagenesis affects circulating immune function proteins.
Collapse
|
67
|
Abstract
Glioblastoma is the most common intracranial malignancy that constitutes about 50 % of all gliomas. Despite aggressive, multimodal therapy consisting of surgery, radiation, and chemotherapy, the outcome of patients with glioblastoma remains poor with 5-year survival rates of <10 %. Resistance to conventional therapies is most likely caused by several factors. Alterations in the functions of local immune mediators may represent a critical contributor to this resistance. The tumor microenvironment contains innate and adaptive immune cells in addition to the cancer cells and their surrounding stroma. These various cells communicate with each other by means of direct cell-cell contact or by soluble factors including cytokines and chemokines, and act in autocrine and paracrine manners to modulate tumor growth. There are dynamic interactions among the local immune elements and the tumor cells, where primarily the protective immune cells attempt to overcome the malignant cells. However, by developing somatic mutations and epigenetic modifications, the glioblastoma tumor cells acquire the capability of counteracting the local immune responses, and even exploit the immune cells and products for their own growth benefits. In this review, we survey those immune mechanisms that likely contribute to glioblastoma pathogenesis and may serve as a basis for novel treatment strategies.
Collapse
Affiliation(s)
- Katalin Eder
- Department of Molecular Pathology, Markusovszky University Teaching Hospital, Markusovszky Street 5, Szombathely, 9700, Hungary.
| | - Bernadette Kalman
- Department of Molecular Pathology, Markusovszky University Teaching Hospital, Markusovszky Street 5, Szombathely, 9700, Hungary
- University of Pecs, Pecs, Hungary
| |
Collapse
|
68
|
The Transcription Factor ZNF395 Is Required for the Maximal Hypoxic Induction of Proinflammatory Cytokines in U87-MG Cells. Mediators Inflamm 2015; 2015:804264. [PMID: 26229239 PMCID: PMC4502306 DOI: 10.1155/2015/804264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023] Open
Abstract
Hypoxia activates the expression of proangiogenic and survival promoting factors as well as proinflammatory cytokines that support tissue inflammation. Hypoxia and inflammation are associated with tumor progression. The identification of the factors participating in the hypoxia associated inflammation is essential to develop strategies to control tumor hypoxia. The transcription factor ZNF395 was found to be overexpressed in various tumors including glioblastomas particularly in the network of a hypoxic response pointing to a functional role of ZNF395. On the other hand, ZNF395 was suggested to have tumor suppressor activities which may rely on its repression of proinflammatory factors. To address these conflictive observations, we investigated the role of ZNF395 in the expression of proinflammatory cytokines in the astrocytoma cell line U87-MG under hypoxia. We show that ZNF395 is a target gene of the hypoxia inducible factor HIF-1α. By gene expression analysis, RT-PCR and ELISA, we demonstrated that the siRNA-mediated suppression of ZNF395 impairs the hypoxic induction of IL-1β, IL-6, IL-8, and LIF in U87-MG cells. At ambient oxygen concentrations, ZNF395 had no enhancing effect, indicating that this transcriptional activation by ZNF395 is restricted to hypoxic conditions. Our results suggest that ZNF395 contributes to hypoxia associated inflammation by superactivating proinflammatory cytokines.
Collapse
|
69
|
Pojo M, Gonçalves CS, Xavier-Magalhães A, Oliveira AI, Gonçalves T, Correia S, Rodrigues AJ, Costa S, Pinto L, Pinto AA, Lopes JM, Reis RM, Rocha M, Sousa N, Costa BM. A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide. Oncotarget 2015; 6:7657-74. [PMID: 25762636 PMCID: PMC4480707 DOI: 10.18632/oncotarget.3150] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/16/2015] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma is the most malignant brain tumor, exhibiting remarkable resistance to treatment. Here we investigated the oncogenic potential of HOXA9 in gliomagenesis, the molecular and cellular mechanisms by which HOXA9 renders glioblastoma more aggressive, and how HOXA9 affects response to chemotherapy and survival. The prognostic value of HOXA9 in glioblastoma patients was validated in two large datasets from TCGA and Rembrandt, where high HOXA9 levels were associated with shorter survival. Transcriptomic analyses identified novel HOXA9-target genes with key roles in cancer-related processes, including cell proliferation, DNA repair, and stem cell maintenance. Functional studies with HOXA9-overexpressing and HOXA9-silenced glioblastoma cell models revealed that HOXA9 promotes cell viability, stemness and invasion, and inhibits apoptosis. Additionally, HOXA9 promoted the malignant transformation of human immortalized astrocytes in an orthotopic in vivo model, and caused tumor-associated death. HOXA9 also mediated resistance to temozolomide treatment in vitro and in vivo via upregulation of BCL2. Importantly, the pharmacological inhibition of BCL2 with the BH3 mimetic ABT-737 reverted temozolomide resistance in HOXA9-positive cells. These data establish HOXA9 as a driver of glioma initiation, aggressiveness and resistance to therapy. In the future, the combination of BH3 mimetics with temozolomide should be further explored as an alternative treatment for glioblastoma.
Collapse
Affiliation(s)
- Marta Pojo
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Ana Xavier-Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Ana Isabel Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Tiago Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Sara Correia
- Centre of Biological Engineering/Department of Informatics, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Ana J. Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Sandra Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Afonso A. Pinto
- Department of Neurosurgery, Hospital de Braga, Sete Fontes, 4710-243 São Victor, Braga, Portugal
| | - José M. Lopes
- Department of Pathology, Hospital S. João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute of Molecular Pathology and Immunology at the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n 4200-465 Porto, Portugal
- Medical Faculty, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rui M. Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
- Barretos Cancer Hospital, Molecular Oncology Research Center, Rua Antenor Duarte Vilela, 1331 - Doutor Paulo Prata, Barretos - SP, 14780-000, Brasil
| | - Miguel Rocha
- Centre of Biological Engineering/Department of Informatics, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| |
Collapse
|
70
|
Akil H, Abbaci A, Lalloué F, Bessette B, Costes LMM, Domballe L, Charreau S, Guilloteau K, Karayan-Tapon L, Bernard FX, Morel F, Jauberteau MO, Lecron JC. IL22/IL-22R pathway induces cell survival in human glioblastoma cells. PLoS One 2015; 10:e0119872. [PMID: 25793261 PMCID: PMC4368808 DOI: 10.1371/journal.pone.0119872] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/02/2015] [Indexed: 12/31/2022] Open
Abstract
Interleukin-22 (IL-22) is a member of the IL-10 cytokine family that binds to a heterodimeric receptor consisting of IL-22 receptor 1 (IL-22R1) and IL-10R2. IL-22R expression was initially characterized on epithelial cells, and plays an essential role in a number of inflammatory diseases. Recently, a functional receptor was detected on cancer cells such as hepatocarcinoma and lung carcinoma, but its presence was not reported in glioblastoma (GBM). Two GBM cell lines and 10 primary cell lines established from patients undergoing surgery for malignant GBM were used to investigate the expression of IL-22 and IL-22R by using quantitative RT-PCR, western blotting and confocal microscopy studies. The role of IL-22 in proliferation and survival of GBM cell lines was investigated in vitro by BrdU and ELISA cell death assays. We report herein that the two subunits of the IL-22R complex are expressed on human GBM cells. Their activation, depending on exogenous IL-22, induced antiapoptotic effect and cell proliferation. IL-22 treatment of GBM cells resulted in increased levels of phosphorylated Akt, STAT3 signaling protein and its downstream antiapoptotic protein Bcl-xL and decreased level of phosphorylated ERK1/2. In addition, IL-22R subunits were expressed in all the 10 tested primary cell lines established from GBM tumors. Our results showed that IL-22R is expressed on GBM established and primary cell lines. Depending on STAT3, ERK1/2 and PI3K/Akt pathways, IL-22 induced GBM cell survival. These data are consistent with a potential role of IL-22R in tumorigenesis of GBM. Since endogenous IL-22 was not detected in all studied GBM cells, we hypothesize that IL-22R could be activated by immune microenvironmental IL-22 producing cells.
Collapse
Affiliation(s)
- Hussein Akil
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Amazigh Abbaci
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Fabrice Lalloué
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Barbara Bessette
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Léa M. M. Costes
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Linda Domballe
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Sandrine Charreau
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
| | - Karline Guilloteau
- INSERM U1084, Université de Poitiers, Poitiers, France
- Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Lucie Karayan-Tapon
- INSERM U1084, Université de Poitiers, Poitiers, France
- Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - François-Xavier Bernard
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
- BIOalternatives, Gençay, France
| | - Franck Morel
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
| | - Marie-Odile Jauberteau
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Jean-Claude Lecron
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
- Service Immunologie et inflammation, CHU de Poitiers, Poitiers, France
| |
Collapse
|
71
|
Deng Y, Xie M, Xie L, Wang J, Li T, He Y, Li R, Li S, Qin X. Association between polymorphism of the interleukin-13 gene and susceptibility to hepatocellular carcinoma in the Chinese population. PLoS One 2015; 10:e0116682. [PMID: 25658755 PMCID: PMC4319784 DOI: 10.1371/journal.pone.0116682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/09/2014] [Indexed: 02/08/2023] Open
Abstract
Objective Interleukin-13 (IL-13) is a potent pleiotropic cytokine that is produced by activated CD4 T cells. This study was undertaken to determine the relationship between two IL-13 gene single nucleotide polymorphisms (SNP rs1800925 and SNP rs20541) and the incidence of hepatitis B virus-related (HBV) hepatocellular carcinoma (HCC). Method Three hundred and ninety-eight HBV-positive individuals (192 HCC and 206 patients with chronic hepatitis) and one hundred and ninety-two healthy participants from the First Affiliated Hospital of Guangxi Medical University were enrolled in this study. Results The results showed no significant differences between the genotype and allele frequencies of the IL-13 gene rs1800925 and rs20541 polymorphisms and chronic hepatitis B risk after adjusting for age, sex, tobacco use, and alcohol intake using binary logistic regression analyses. Regarding the rs20541 SNP, the GA genotype was significantly related to a decreased risk of HCC after adjusting for age, sex, tobacco use, and alcohol intake using binary logistic regression analyses (The odds ratio (OR) = 0.54, 95% confidence intervals (CI) 0.34–0.87). The adjusted OR for the GA and AA genotypes combined was 0.68 (95% CI 0.39–0.90). Conclusion This study indicates that the functional IL-13 rs20541 polymorphism may contribute to the risk of HCC and that the rs20541 polymorphism is a protective factor for HCC.
Collapse
Affiliation(s)
- Yan Deng
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ming Xie
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Li Xie
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jian Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Taijie Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yu He
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ruolin Li
- Department of Medicine Research, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- * E-mail: (SL); (XQ)
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- * E-mail: (SL); (XQ)
| |
Collapse
|
72
|
Crucitti A, Corbi M, Tomaiuolo PMC, Fanali C, Mazzari A, Lucchetti D, Migaldi M, Sgambato A. Laparoscopic surgery for colorectal cancer is not associated with an increase in the circulating levels of several inflammation-related factors. Cancer Biol Ther 2015; 16:671-7. [PMID: 25875151 PMCID: PMC4622611 DOI: 10.1080/15384047.2015.1026476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/04/2015] [Accepted: 03/01/2015] [Indexed: 01/05/2023] Open
Abstract
It has been hypothesized that inflammatory response triggered by surgery might induce the release of molecules that could promote proliferation, invasion and metastasis of surviving cancer cells. To test this hypothesis, the levels of multiple inflammation-related circulating factors were analyzed in patients undergoing surgery for colorectal cancer. A Luminex xMAP system was used to simultaneously assess levels of IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, FGF, eotaxin, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α and VEGF in 20 colorectal cancer patients and 10 age-matched non-neoplastic patients. In cancer patients analyses were performed at baseline (before surgery) and at different time points (up to 30 days) following laparoscopic surgery. Significantly higher levels of IL-1β, IL-7, IL-8, G-CSF, IFN-γ and TNF-α were detected in colorectal cancer patients compared to controls at baseline. In colorectal cancer patients, circulating levels decreased progressively following surgery and after day 30 post-surgery were no longer different from controls. These findings suggest that expression levels of several cytokines are higher in colorectal cancer patients compared to control subjects and no significant increase in several inflammation-related circulating factors is observed following laparoscopic surgery for cancer. Confirmation and validation in a different and larger cohort of patients are warranted.
Collapse
Key Words
- CRC, Colorectal Cancer.
- CSC, Cancer Stem Cells
- EMT, Epithelial Mesenchymal Transition
- FGF-b, Fibroblast Growth Factor-basic
- G-CSF, Granulocyte Colony Stimulating Factor
- HuMCP-1, Human Monocyte Chemoattractant Protein 1
- IFN-γ, Interferon γ
- IL, Interleukin
- IP-10, IFN-γ
- Inducible Protein 10
- Luminex xMAP
- MIP-1α
- Normal T-cell Expressed Secreted
- PDGF-BB, Platelet Derived Growth Factor-BB
- RANTES, Regulated upon Activation
- Ra, Receptor antagonist
- TNF-α, Tumor Necrosis Factor-α
- VEGF, Vascular Endotelial Growth Factor
- and 1β
- and 1β, Macrophage Inflammatory Protein 1α
- cancer biology
- colon cancer
- cytokines
- inflammation
- serum markers
- surgery
Collapse
Affiliation(s)
- Antonio Crucitti
- Department of Surgery; Università Cattolica del Sacro Cuore; Rome, Italy
| | - Maddalena Corbi
- Institute of General Pathology; Università Cattolica del Sacro Cuore; Rome, Italy
| | | | - Caterina Fanali
- Institute of General Pathology; Università Cattolica del Sacro Cuore; Rome, Italy
| | - Andrea Mazzari
- Department of Surgery; Università Cattolica del Sacro Cuore; Rome, Italy
| | - Donatella Lucchetti
- Institute of General Pathology; Università Cattolica del Sacro Cuore; Rome, Italy
| | - Mario Migaldi
- Department of Pathology; Università di Modena e Reggio Emilia; Modena, Italy
| | - Alessandro Sgambato
- Institute of General Pathology; Università Cattolica del Sacro Cuore; Rome, Italy
| |
Collapse
|
73
|
Starkweather AR, Sherwood P, Lyon DE, Bovbjerg DH, Broaddus WC, Elswick RK, Sturgill J. Depressive symptoms and cytokine levels in Serum and Tumor Tissue in patients with an Astrocytoma: a pilot study. BMC Res Notes 2014; 7:423. [PMID: 24997057 PMCID: PMC4118281 DOI: 10.1186/1756-0500-7-423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/30/2014] [Indexed: 12/02/2022] Open
Abstract
Background Preoperative depressive symptoms are associated with poor outcomes in patients with an astrocytoma. Cytokines are associated with depressive symptoms in the general population and are important mediators of tumor growth and progression. The aims of this study were to: (1) characterize depressive symptoms, other treatment-related symptoms and biological mediators; and (2) determine whether preoperative depressive symptoms were associated with the selected biological mediators. Methods A prospective, exploratory study was carried out among 22 patients with a high-grade astrocytoma. Self-report questionnaires and peripheral blood samples were collected on the day of surgery. Tumor tissue was collected intraoperatively. Self-report questionnaires were assessed at 3, 6, 9, and 12-months postoperatively. Results In circulation, serum IL-8 was inversely correlated with depressive symptoms while IL-17 measured in tumor tissue supernatant was inversely correlated with depressive symptoms. Depressive symptoms showed a significant increase at 12 months from baseline levels and were positively associated with treatment-related symptoms at 3 months and symptom distress at 12 months post-surgery. Conclusions In this pilot study, depressive symptoms were negatively associated with IL-8 in serum and IL-17 in tumor tissue. The changes among depressive symptoms, treatment-related symptoms and symptom distress highlight the need for multi-faceted symptom management strategies over the treatment trajectory in this patient population.
Collapse
Affiliation(s)
- Angela R Starkweather
- Department of Adult Health and Nursing Systems, Virginia Commonwealth University School of Nursing, 1100 East Leigh Street, P, O, Box 980567, Richmond, VA 23298, USA.
| | | | | | | | | | | | | |
Collapse
|
74
|
Yu K, Fan J, Ding X, Li C, Wang J, Xiang Y, Wang QS. Association study of a functional copy number variation in theWWOXgene with risk of gliomas among Chinese people. Int J Cancer 2014; 135:1687-91. [PMID: 24585490 DOI: 10.1002/ijc.28815] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Ke Yu
- Department of Neurology; Chengdu Military General Hospital; Chengdu China
| | - Jin Fan
- Department of Neurology; Chengdu Military General Hospital; Chengdu China
| | - Xin Ding
- Department of Neurology; Chengdu Military General Hospital; Chengdu China
| | - CongYang Li
- Department of Neurology; Chengdu Military General Hospital; Chengdu China
| | - Jun Wang
- Department of Neurology; Chengdu Military General Hospital; Chengdu China
| | - Yang Xiang
- Department of Neurology; Chengdu Military General Hospital; Chengdu China
| | - Qing Song Wang
- Department of Neurology; Chengdu Military General Hospital; Chengdu China
| |
Collapse
|
75
|
Cheng Q, Cao H, Chen Z, Ma Z, Wan X, Peng R, Jiang B. PAX6, a novel target of miR-335, inhibits cell proliferation and invasion in glioma cells. Mol Med Rep 2014; 10:399-404. [PMID: 24737483 DOI: 10.3892/mmr.2014.2150] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 03/17/2014] [Indexed: 11/06/2022] Open
Abstract
Paired box 6 (PAX6), a highly conserved transcription factor, is important in glioma. However, the molecular mechanisms involved remain unclear. The present study demonstrated that the expression of PAX6 was significantly reduced with the malignancy of glioma and also identified PAX6 as a novel target of microRNA (miR)‑335, which was significantly upregulated in glioma. The inhibition of miR‑335 increased the protein expression of PAX6, whereas the upregulation of miR‑335 suppressed its expression in human glioma U251 and U87 cells. Furthermore, upregulation of miR-335 promoted U251 cell proliferation, colony formation and invasion, which was reversed by the overexpression of PAX6. Furthermore, the present study demonstrated that the effect of miR‑335 on U251 cell invasion was via the modulation of matrix metalloproteinase (MMP)‑2 and MMP‑9 expression by targeting PAX6. In conclusion, the present study demonstrated that PAX6, as a novel target of miR‑335, has an anti‑oncogenic function in glioma, and thus PAX6 may serve as a therapeutic target for glioma.
Collapse
Affiliation(s)
- Quan Cheng
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Hui Cao
- Department of Neurosurgery, Brain Hospital of Hunan Province, The Affiliated Hospital of Hunan Traditional Chinese Medicine University, Changsha, Hunan 410007, P.R. China
| | - Zigui Chen
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhiming Ma
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Xin Wan
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Renjun Peng
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Bing Jiang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
76
|
Gonda DD, Cheung VJ, Muller KA, Goyal A, Carter BS, Chen CC. The Cancer Genome Atlas expression profiles of low-grade gliomas. Neurosurg Focus 2014; 36:E23. [DOI: 10.3171/2012.12.focus12351] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Differentiating between low-grade gliomas (LGGs) of astrocytic and oligodendroglial origin remains a major challenge in neurooncology. Here the authors analyzed The Cancer Genome Atlas (TCGA) profiles of LGGs with the goal of identifying distinct molecular characteristics that would afford accurate and reliable discrimination of astrocytic and oligodendroglial tumors. They found that 1) oligodendrogliomas are more likely to exhibit the glioma-CpG island methylator phenotype (G-CIMP), relative to low-grade astrocytomas; 2) relative to oligodendrogliomas, low-grade astrocytomas exhibit a higher expression of genes related to mitosis, replication, and inflammation; and 3) low-grade astrocytic tumors harbor microRNA profiles similar to those previously described for glioblastoma tumors. Orthogonal intersection of these molecular characteristics with existing molecular markers, such as IDH1 mutation, TP53 mutation, and 1p19q status, should facilitate accurate and reliable pathological diagnosis of LGGs.
Collapse
Affiliation(s)
| | | | - Karra A. Muller
- 2Neuropathology, University of California, San Diego, California
| | | | | | | |
Collapse
|
77
|
Zhang KL, Zhou X, Han L, Chen LY, Chen LC, Shi ZD, Yang M, Ren Y, Yang JX, Frank TS, Zhang CB, Zhang JX, Pu PY, Zhang JN, Jiang T, Wagner EJ, Li M, Kang CS. MicroRNA-566 activates EGFR signaling and its inhibition sensitizes glioblastoma cells to nimotuzumab. Mol Cancer 2014; 13:63. [PMID: 24650032 PMCID: PMC3999939 DOI: 10.1186/1476-4598-13-63] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/11/2014] [Indexed: 01/14/2023] Open
Abstract
Background Epidermal growth factor receptor (EGFR) is amplified in 40% of human glioblastomas. However, most glioblastoma patients respond poorly to anti-EGFR therapy. MicroRNAs can function as either oncogenes or tumor suppressor genes, and have been shown to play an important role in cancer cell proliferation, invasion and apoptosis. Whether microRNAs can impact the therapeutic effects of EGFR inhibitors in glioblastoma is unknown. Methods miR-566 expression levels were detected in glioma cell lines, using real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays and Western blots were used to validate VHL as a direct target gene of miR-566. Cell proliferation, invasion, cell cycle distribution and apoptosis were also examined to confirm whether miR-566 inhibition could sensitize anti-EGFR therapy. Results In this study, we demonstrated that miR-566 is up-regulated in human glioma cell lines and inhibition of miR-566 decreased the activity of the EGFR pathway. Lentiviral mediated inhibition of miR-566 in glioblastoma cell lines significantly inhibited cell proliferation and invasion and led to cell cycle arrest in the G0/G1 phase. In addition, we identified von Hippel-Lindau (VHL) as a novel functional target of miR-566. VHL regulates the formation of the β-catenin/hypoxia-inducible factors-1α complex under miR-566 regulation. Conclusions miR-566 activated EGFR signaling and its inhibition sensitized glioblastoma cells to anti-EGFR therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eric J Wagner
- Department of Neurosurgery, Tianjin Medical University General Hospital; Laboratory of Neuro-Oncology, Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China.
| | | | | |
Collapse
|
78
|
Bian EB, Zong G, Xie YS, Meng XM, Huang C, Li J, Zhao B. TET family proteins: new players in gliomas. J Neurooncol 2014; 116:429-35. [PMID: 24395347 DOI: 10.1007/s11060-013-1328-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/27/2013] [Indexed: 12/31/2022]
Abstract
DNA methylation at the 5-position of cytosine (5mC) in the mammalian genome has emerged as a pivotal epigenetic event that plays important roles in development, aging and disease. The three members of the TET protein family, which convert 5mC to 5-hydroxymethylcytosine, has provided a potential mechanism resulting in DNA demethylation and maintaining cellular identity. Recent studies have shown that epigenetic modifications play a key role in the regulation of the molecular pathogenesis of gliomas. In this review we focus on demonstrating the TET proteins in DNA demethylation and transcriptional regulation of different target genes. In addition, we address the role of TET proteins in gliomas. This review will provide valuable insights into the potential targets of gliomas, and may open the possibility of novel therapeutic approaches to this fatal disease.
Collapse
Affiliation(s)
- Er-Bao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | | | | | | | | | | | | |
Collapse
|
79
|
Fang KM, Yang CS, Lin TC, Chan TC, Tzeng SF. Induced interleukin-33 expression enhances the tumorigenic activity of rat glioma cells. Neuro Oncol 2013; 16:552-66. [PMID: 24327583 DOI: 10.1093/neuonc/not234] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Glioma development is a multistep process associated with progressive genetic alterations but also regulated by cellular and noncellular components in a tumor-associated niche. METHODS Using 2 rat C6 glioma cell clones with different tumorigenesis, named C6-1 and C6-2, this study characterized genes associated with enhanced tumorigenic features of glioma cells by comparative cDNA microarray analysis combined with Q-PCR. Neurospehere formation and clonogenicity were examined to determine the growth of tumorigenic C6 glioma cells. The lentivirus-mediated gene knockdown approach was conducted to determine the role of interleukin-33 (IL-33) in glioma cell proliferation and migration. Transwell cell invasion assay was used to examine microglia migration induced by tumorigenic C6 cells. RESULTS The functional analysis of gene ontology (GO) biological processes shows that the upregulated genes found in tumorigenic C6 (C6-1) cells are closely related to cell proliferation. Tumorigenic C6 cells expressed cytokines and chemokines abundantly. Among these genes, IL-33 was profoundly induced in tumorigenic C6 cells with the expression of IL-33 receptor ST2. Furthermore, the growth rate and colony formation of tumorigenic C6 cells were attenuated by the inhibition of IL-33 and ST2 gene expression. Moreover, IL-33 was involved in tumorigenic glioma cell migration and regulation of the expression of several glioma-associated growth factors and chemokines in tumorigenic C6 cells. CONCLUSION Accordingly, we concluded that glioma cells with abundant production of IL-33 grow rapidly; moreover, the interactions of multiple cytokines/chemokines induced by glioma cells may develop a microenvironment that facilitates microglia/macrophage infiltration and fosters glioma growth in the brain.
Collapse
Affiliation(s)
- Kuan-Min Fang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan City, Taiwan (K.M.F., T.C.L., T.C.C., S.F.T.); Center for Nanomedicine Research, National Health Research Institutes, Zhunan, Taiwan (C.S.Y.)
| | | | | | | | | |
Collapse
|
80
|
Hu X, Chen D, Cui Y, Li Z, Huang J. Targeting microRNA-23a to inhibit glioma cell invasion via HOXD10. Sci Rep 2013; 3:3423. [PMID: 24305689 PMCID: PMC3851882 DOI: 10.1038/srep03423] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/18/2013] [Indexed: 11/09/2022] Open
Abstract
Glioma is the most frequent primary brain tumor. Recently, the upregulation of microRNA (miR)-23a was found to be associated with glioma, but the molecular mechanism by which miR-23a promotes glioma growth remains to be unveiled. In the present study, we found that miR-23a was significantly upregulated in glioma tissues compared to their matched adjacent tissues. miR-23a was also highly expressed in glioma cell lines SHG44, U251, and U87 cells. Moreover, we identified homeobox D10 (HOXD10) as a novel target for miR-23a. The expression of HOXD10 was significantly reduced in glioma tissues and cell lines, and miR-23a negatively regulates the protein expression of HOXD10 in U251 and U87 cells. We further showed that miRNA-23a promoted U251 and U87 cell invasion, at least partially, by directly targeting HOXD10 and further modulating MMP-14. These findings suggest that miR-23a may serve as a promising therapeutic target for glioma.
Collapse
Affiliation(s)
- Xing Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | | | | | | | | |
Collapse
|
81
|
Stellzig J, Chariot A, Shostak K, Ismail Göktuna S, Renner F, Acker T, Pagenstecher A, Schmitz ML. Deregulated expression of TANK in glioblastomas triggers pro-tumorigenic ERK1/2 and AKT signaling pathways. Oncogenesis 2013; 2:e79. [PMID: 24217713 PMCID: PMC3849693 DOI: 10.1038/oncsis.2013.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/29/2013] [Accepted: 10/03/2013] [Indexed: 12/21/2022] Open
Abstract
Signal transmission by the noncanonical IkappaB kinases (IKKs), TANK-binding kinase 1 (TBK1) and IKKɛ, requires interaction with adapter proteins such as TRAF associated NF-κB activator (TANK). Although increased expression or dysregulation of both kinases has been described for a variety of human cancers, this study shows that deregulated expression of the TANK protein is frequently occurring in glioblastomas (GBMs). The functional relevance of TANK was analyzed in a panel of GBM-derived cell lines and revealed that knockdown of TANK arrests cells in the S-phase and prohibits tumor cell migration. Deregulated TANK expression affects several signaling pathways controlling cell proliferation and the inflammatory response. Interference with stoichiometrically assembled signaling complexes by overexpression or silencing of TANK prevented constitutive interferon-regulatory factor 3 (IRF3) phosphorylation. Knockdown of TANK frequently prevents constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). TANK-mediated ERK1/2 activation is independent from the canonical MAP kinase or ERK kinase (MEK) 1/2-mediated pathway and utilizes an alternative pathway that uses a TBK1/IKKɛ/Akt signaling axis, thus identifying a novel pathway suitable to block constitutive ERK1/2 activity.
Collapse
Affiliation(s)
- J Stellzig
- Institute of Biochemistry, Justus-Liebig-University, Medical Faculty, Friedrichstraße 24, Gießen, Germany
| | - A Chariot
- Laboratory of Medical Chemistry, GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
- WELBIO, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - K Shostak
- Laboratory of Medical Chemistry, GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - S Ismail Göktuna
- Laboratory of Medical Chemistry, GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - F Renner
- Institute of Biochemistry, Justus-Liebig-University, Medical Faculty, Friedrichstraße 24, Gießen, Germany
| | - T Acker
- Institute of Neuropathology, Justus-Liebig-University, Aulweg 123, Gießen, Germany
| | - A Pagenstecher
- Department of Neuropathology, University of Marburg, Baldingerstraße, Marburg, Germany
| | - M L Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Medical Faculty, Friedrichstraße 24, Gießen, Germany
| |
Collapse
|
82
|
Infanger DW, Cho Y, Lopez BS, Mohanan S, Liu SC, Gursel D, Boockvar JA, Fischbach C. Glioblastoma stem cells are regulated by interleukin-8 signaling in a tumoral perivascular niche. Cancer Res 2013; 73:7079-89. [PMID: 24121485 DOI: 10.1158/0008-5472.can-13-1355] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme contains a subpopulation of cancer stem-like cells (CSC) believed to underlie tumorigenesis and therapeutic resistance. Recent studies have localized CSCs in this disease adjacent to endothelial cells (EC) in what has been termed a perivascular niche, spurring investigation into the role of EC-CSC interactions in glioblastoma multiforme pathobiology. However, these studies have been limited by a lack of in vitro models of three-dimensional disease that can recapitulate the relevant conditions of the niche. In this study, we engineered a scaffold-based culture system enabling brain endothelial cells to form vascular networks. Using this system, we showed that vascular assembly induces CSC maintenance and growth in vitro and accelerates tumor growth in vivo through paracrine interleukin (IL)-8 signaling. Relative to conventional monolayers, endothelial cells cultured in this three-dimensional system not only secreted enhanced levels of IL-8 but also induced CSCs to upregulate the IL-8 cognate receptors CXCR1 and CXCR2, which collectively enhanced CSC migration, growth, and stemness properties. CXCR2 silencing in CSCs abolished the tumor-promoting effects of endothelial cells in vivo, confirming a critical role for this signaling pathway in GMB pathogenesis. Together, our results reveal synergistic interactions between endothelial cells and CSCs that promote the malignant properties of CSCs in an IL-8-dependent manner. Furthermore, our findings underscore the relevance of tissue-engineered cell culture platforms to fully analyze signaling mechanisms in the tumor microenvironment.
Collapse
Affiliation(s)
- David W Infanger
- Authors' Affiliations: Departments of Biomedical Engineering and Comparative Biomedical Sciences, Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York; Department of Veterinary Medicine, Colorado State University, Fort Collins, Colorado; and Laboratory for Translational Stem Cell Research, Weill Cornell Brain Tumor Center, Department of Neurological Surgery, Weill Cornell Medical College, New York
| | | | | | | | | | | | | | | |
Collapse
|
83
|
PENG RENJUN, JIANG BING, MA JIANRONG, MA ZHIMING, WAN XIN, LIU HONGWEI, CHEN ZIGUI, CHENG QUAN, CHEN RUI. Forced downregulation of RACK1 inhibits glioma development by suppressing Src/Akt signaling activity. Oncol Rep 2013; 30:2195-202. [DOI: 10.3892/or.2013.2723] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/14/2013] [Indexed: 11/06/2022] Open
|
84
|
Jin T, Li X, Zhang J, Wang H, Geng T, Li G, Gao G, Chen C. Genetic association between selected cytokine genes and glioblastoma in the Han Chinese population. BMC Cancer 2013; 13:236. [PMID: 23663500 PMCID: PMC3655821 DOI: 10.1186/1471-2407-13-236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 05/08/2013] [Indexed: 11/10/2022] Open
Abstract
Background Glioblastoma (GBM) is the most malignant brain tumor. Many abnormal secretion and expression of cytokines have been found in GBM, initially speculated that the occurrence of GBM may be involved in these abnormal secretion of cytokines. This study aims to detect the association of cytokine genes with GBM. Methods We selected seven tag single nucleotide polymorphisms (tSNPs) in six cytokine genes, which previously reported to be associated with brain tumors, and analyzed their association with GBM in a Han Chinese population using χ2 test and genetic model analysis. Results We found two risk tSNPs and one protective tSNP. By χ2 test, the rs1801275 in IL-4R showed an increased risk of GBM. In the genetic model analysis, the genotype “TC” of rs20541 in IL-13 gene showed an increased risk of GBM in over-dominant model (OR = 2.00; 95% CI, 1.13-3.54, p = 0.015); the genotype “CT” of rs1800871 in the IL-10 gene showed a decrease risk in the over-dominant model (OR = 0.57; 95% CI, 0.33 – 0.97; p = 0.037). The genotype “AG” of rs1801275 in the IL-4R gene showed an increase risk in over-dominant model (OR = 2.29; 95% CI, 1.20 - 4.35; p = 0.0081) We further analyzed whether the six cytokine genes have a different effect on the disease in gender specific population, and found that the allele “G” of rs2243248 in the IL-4 gene showed a decrease risk of GBM in female (OR = 0.35, 95% CI, 0.13 - 0.94, p = 0.0032), but the allele “T” showed a decrease risk in male (OR = 0.30, 95% CI, 0.17 - 0.53, p = 0.0032). Conclusions Our findings, combined with previously reported results, suggest that cytokine genes have potential role in GBM development, which may be useful to early prognostics for GBM in the Han Chinese population.
Collapse
Affiliation(s)
- Tianbo Jin
- School of Life Sciences, Northwest University, Xi'an 710069, China
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Wang S, Wu Y, Hou Y, Guan X, Castelvetere MP, Oblak JJ, Banerjee S, Filtz TM, Sarkar FH, Chen X, Jena BP, Li C. CXCR2 macromolecular complex in pancreatic cancer: a potential therapeutic target in tumor growth. Transl Oncol 2013; 6:216-225. [PMID: 23544174 PMCID: PMC3610555 DOI: 10.1593/tlo.13133] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 12/22/2022] Open
Abstract
The signaling mediated by the chemokine receptor CXC chemokine receptor 2 (CXCR2) plays an important role in promoting the progression of many cancers, including pancreatic cancer, one of the most lethal human malignancies. CXCR2 possesses a consensus PSD-95/DlgA/ZO-1 (PDZ) motif at its carboxyl termini, which might interact with potential PDZ scaffold/adaptor proteins. We have previously reported that CXCR2 PDZ motif-mediated protein interaction is an important regulator for neutrophil functions. Here, using a series of biochemical assays, we demonstrate that CXCR2 is physically coupled to its downstream effector phospholipase C-β3 (PLC-β3) that is mediated by PDZ scaffold protein Na(+)/H(+) exchange regulatory factor 1 (NHERF1) into a macromolecular signaling complex both in vitro and in pancreatic cancer cells. We also observe that disrupting the CXCR2 complex, by gene delivery or peptide delivery of exogenous CXCR2 C-tail, significantly inhibits the biologic functions of pancreatic cancer cells (i.e., proliferation and invasion) in a PDZ motif-dependent manner. In addition, using a human pancreatic tumor xenograft model, we show that gene delivery of CXCR2 C-tail sequence (containing the PDZ motif) by adeno-associated virus type 2 viral vector potently suppresses human pancreatic tumor growth in immunodeficient mice. In summary, our results suggest the existence of a physical and functional coupling of CXCR2 and PLC-β3 mediated through NHERF1, forming a macromolecular complex that is critical for efficient and specific CXCR2 signaling in pancreatic cancer progression. Disrupting this CXCR2 complex could represent a novel and effective treatment strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI
| | - Yanning Wu
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI
| | - Yuning Hou
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI
| | - Xiaoqing Guan
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI
| | - Marcello P Castelvetere
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI
| | - Jacob J Oblak
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI
| | - Sanjeev Banerjee
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI
| | - Theresa M Filtz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR
| | - Fazlul H Sarkar
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI
| | - Xuequn Chen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI
| | - Bhanu P Jena
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI
- Tumor Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
86
|
Eibinger G, Fauler G, Bernhart E, Frank S, Hammer A, Wintersperger A, Eder H, Heinemann A, Mischel PS, Malle E, Sattler W. On the role of 25-hydroxycholesterol synthesis by glioblastoma cell lines. Implications for chemotactic monocyte recruitment. Exp Cell Res 2013; 319:1828-1838. [PMID: 23541792 DOI: 10.1016/j.yexcr.2013.03.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor and is invariably fatal to affected patients. Oxysterols belong to a class of bioactive lipids that are implicated in neurological disease and are associated with various types of cancer. Here, we investigated expression and transcriptional regulation of cholesterol 25-hydroxylase (CH25H) in human U87MG and GM133 glioblastoma cell lines. We demonstrate that in both cell lines transcription and translation of CH25H are increased in response to TNFα and IL1β. In parallel, both cell lines upregulate 25-hydroxycholesterol (25-OHC) synthesis and secretion to levels comparable to bone marrow-derived mouse macrophages under inflammatory conditions. To determine whether 25-OHC acts as chemoattractant for tumor-associated macrophages, the human THP-1 monoblastic leukemia cell line was treated with varying amounts of the oxysterol. Experiments revealed that 25-OHC and lipid extracts isolated from GM133-conditioned medium (containing 7-fold higher 25-OHC concentrations than U87MG medium) induce chemotactic migration of THP-1 cells. Of note, 25-OHC also induced the migration of primary human peripheral blood monocytes. In response to exogenously added 25-OHC, THP-1 cells reorganized intermediate filament-associated vimentin to more cortical and polarized structures. Chemotactic migration of monocytes in response to 25-OHC was pertussis toxin-sensitive, indicating the involvement of G protein-coupled receptors. Using RNA interference we demonstrated that G protein-coupled receptor 183 (EBI2) contributes to 25-OHC-mediated chemotactic migration of THP-1 cells. These in vitro data indicate that GBM-derived and secreted 25-OHC may be involved in the recruitment of immune-competent cells to a tumor via EBI2.
Collapse
Affiliation(s)
- Gerald Eibinger
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, Graz 8010, Austria
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz 8010, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, Graz 8010, Austria
| | - Sasa Frank
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, Graz 8010, Austria
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz 8010, Austria
| | - Andrea Wintersperger
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, Graz 8010, Austria
| | - Hans Eder
- Department of Neurosurgery, Medical University of Graz, Graz 8010, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz 8010, Austria
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, La Jolla, California, CA 92093, USA
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, Graz 8010, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, Graz 8010, Austria.
| |
Collapse
|
87
|
TGF-β as a therapeutic target in high grade gliomas - promises and challenges. Biochem Pharmacol 2012; 85:478-85. [PMID: 23159669 DOI: 10.1016/j.bcp.2012.11.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-β (TGF-β) is a cytokine with a key role in tissue homeostasis and cancer. TGF-β elicits both tumor suppressive and tumor promoting functions during cancer progression, in a wide range of cancers. Here, we review the tumor promoting function of TGF-β and its possible promise as a therapeutic target in high grade gliomas, including glioblastoma multiforme (GBM), a disease with very poor prognosis. TGF-β signaling is highly active in high grade gliomas and elevated TGF-β activity has been associated with poor clinical outcome in this deadly disease. Common features of GBMs include fast cell proliferation, invasion into normal brain parenchyma, hypoxia, high angiogenic - and immunosuppressive activity, characteristics that all have been linked to activation of the TGF-β pathway. TGF-β signaling has also been connected with the cancer stem cell (CSC) phenotype in GBM. CSCs represent a subset of GBM cells thought to be responsible for tumor initiation, progression and relapse of disease. Following the description of these different properties of TGF-β signaling and the underlying mechanisms identified thus far, the promise of TGF-β targeted therapy in malignant gliomas is discussed. Several drugs targeting TGF-β signaling have been developed that showed potent antitumor activity in preclinical models. A number of agents are currently evaluated in early clinical studies in glioma patients. Available results of these studies are highlighted and a perspective on the promise of TGF-β-targeted therapy is given.
Collapse
|