51
|
Gutierrez T, Morris G, Ellis D, Mulloy B, Aitken MD. Production and characterisation of a marine Halomonas surface-active exopolymer. Appl Microbiol Biotechnol 2019; 104:1063-1076. [PMID: 31813048 PMCID: PMC6962145 DOI: 10.1007/s00253-019-10270-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 11/26/2022]
Abstract
During screening for novel emulsifiers and surfactants, a marine gammaproteobacterium, Halomonas sp. MCTG39a, was isolated and selected for its production of an extracellular emulsifying agent, P39a. This polymer was produced by the new isolate during growth in a modified Zobell’s 2216 medium amended with 1% glucose, and was extractable by cold ethanol precipitation. Chemical, chromatographic and nuclear magnetic resonance spectroscopic analysis confirmed P39a to be a high-molecular-weight (~ 261,000 g/mol) glycoprotein composed of carbohydrate (17.2%) and protein (36.4%). The polymer exhibited high emulsifying activities against a range of oil substrates that included straight-chain aliphatics, mono- and alkyl- aromatics and cycloparaffins. In general, higher emulsification values were measured under low (0.1 M PBS) compared to high (synthetic seawater) ionic strength conditions, indicating that low ionic strength is more favourable for emulsification by the P39a polymer. However, as observed with other bacterial emulsifying agents, the polymer emulsified some aromatic hydrocarbon species, as well as refined and crude oils, more effectively under high ionic strength conditions, which we posit could be due to steric adsorption to these substrates as may be conferred by the protein fraction of the polymer. Furthermore, the polymer effected a positive influence on the degradation of phenanthrene by other marine bacteria, such as the specialist PAH-degrader Polycyclovorans algicola. Collectively, based on the ability of this Halomonas high-molecular-weight glycoprotein to emulsify a range of pure hydrocarbon species, as well as refined and crude oils, it shows promise for the bioremediation of contaminated sites.
Collapse
Affiliation(s)
- Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK. .,Department of Environmental Sciences and Engineering, Gillings School of Global Public Health,, University of North Carolina, Chapel Hill, NC, USA.
| | - Gordon Morris
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Dave Ellis
- Institute of Chemical Sciences (ICS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Barbara Mulloy
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health,, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
52
|
Isolation and characterization of dextran produced by Lactobacillus sakei L3 from Hubei sausage. Carbohydr Polym 2019; 223:115111. [DOI: 10.1016/j.carbpol.2019.115111] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 11/22/2022]
|
53
|
Adimoolam SR, Nanjan Easwaran S, Subramanian Mohanakrishnan A, Mahadevan S. Metabolic heat coherent growth of Halomonas variabilis (HV) for enhanced production of Extracellular Polymeric Substances (EPS) in a Bio Reaction Calorimeter (BioRC). Prep Biochem Biotechnol 2019; 50:56-65. [PMID: 31648576 DOI: 10.1080/10826068.2019.1663532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The optimum condition at which the halophilic salt-tolerant bacterium Halomonas variabilis (MTCC 3712) produces the maximum amount of extracellular polymeric substances (EPS) was investigated experimentally using response surface methodology based on the central composite design (CCD). Hyper-saline medium containing 1.5% w/v NaCl enriched nutrient medium with 1.5% glucose as a carbon source was used to produce about 4.74 g/L of EPS in 16 h compared to various other EPS production of this kind. The metabolic heat profile confirms net EPS production by HV was a growth-associated aerobic process. There is a good agreement between metabolic heat and Oxygen Uptake Rate (OUR). The maximum observed heat release was 2.1 W. The total protein content of the sample is 53% of the total EPS (Soluble EPS, Loosely bound EPS, and tightly bound EPS). The emulsifying and flocculating activities of the EPS were measured to explore the possibility of using the biopolymer for effluent treatment.
Collapse
Affiliation(s)
- Saravana Raj Adimoolam
- Department of Chemical Engineering, Vel Tech High Tech Dr.Rangarajan Dr.Sakunthala Engineering College, Avadi, India
| | | | | | | |
Collapse
|
54
|
Bahadori F, Eskandari Z, Ebrahimi N, Bostan MS, Eroğlu MS, Oner ET. Development and optimization of a novel PLGA-Levan based drug delivery system for curcumin, using a quality-by-design approach. Eur J Pharm Sci 2019; 138:105037. [DOI: 10.1016/j.ejps.2019.105037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
|
55
|
Chidambaram JSC, Veerapandian B, Sarwareddy KK, Mani KP, Shanmugam SR, Venkatachalam P. Studies on solvent precipitation of levan synthesized using Bacillus subtilis MTCC 441. Heliyon 2019; 5:e02414. [PMID: 31687543 PMCID: PMC6819800 DOI: 10.1016/j.heliyon.2019.e02414] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/21/2018] [Accepted: 08/30/2019] [Indexed: 12/28/2022] Open
Abstract
Levan is a water soluble biopolymer widely used in food, pharma, personal care and aquaculture industries. In this work, levan was synthesized by Bacillus subtilis MTCC 441 using sucrose as a sole carbon source. Effects of pH, sucrose concentration, nitrogen source, nitrogen concentration, inoculum size and agitation speed on levan production were studied. Yeast extract (YE) was found to be the best nitrogen source. Sucrose concentration - 100 g/L, pH - 7, YE concentration - 2 g/L, inoculum size 10% (v/v) and RPM - 150 were found to be optimal values for levan production. Effects of precipitation pH (3-12), choice of solvent (ethanol, isopropanol, acetone, and methanol) and supernatant to solvent ratio (1:1 to 1:6) on levan yield were also studied. Isopropanol resulted in maximum levan recovery among the four solvents considered. Optimal pH and supernatant to solvent ratio for levan precipitation were found to be 11 and 1:5, respectively. Corresponding levan yield was 0.395 g/g of sucrose supplied. The product obtained was characterized using FTIR, 1H-NMR, 13C-NMR, and GPC. The cytotoxicity of the precipitated levan was studied on EA.hy926 cell line using MTT assay and the compound was proven to be non-toxic to the cells.
Collapse
Affiliation(s)
- Jothi Sailaja C.A. Chidambaram
- Biomass Conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Bhuvaneshwari Veerapandian
- Biomass Conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Kartik Kumar Sarwareddy
- Cardiomyocyte Toxicity and Oncology Research Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Krishna Priya Mani
- Cardiomyocyte Toxicity and Oncology Research Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Saravanan Ramiah Shanmugam
- Biomass Conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Ponnusami Venkatachalam
- Biomass Conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, India
| |
Collapse
|
56
|
Kırtel O, Lescrinier E, Van den Ende W, Toksoy Öner E. Discovery of fructans in Archaea. Carbohydr Polym 2019; 220:149-156. [DOI: 10.1016/j.carbpol.2019.05.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
|
57
|
Taylan O, Yilmaz MT, Dertli E. Partial characterization of a levan type exopolysaccharide (EPS) produced by Leuconostoc mesenteroides showing immunostimulatory and antioxidant activities. Int J Biol Macromol 2019; 136:436-444. [PMID: 31201910 DOI: 10.1016/j.ijbiomac.2019.06.078] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/14/2019] [Accepted: 06/11/2019] [Indexed: 02/04/2023]
Abstract
Leuconostoc mesenteroides S81 was isolated from traditional sourdough as an exopolysaccharide (EPS) producer strain. The monosaccharide composition of the EPS from strain S81 was characterized by HPLC analysis and only fructose was found in the repeating unit structure. The NMR spectroscopy analysis revealed that EPS was a levan type EPS as a β-(2 → 6)-linked fructan. The FTIR analysis further confirmed the presence of the furanoid rings in the EPS structure. The levan S81 showed high level of thermal stability determined by DSC and TGA analysis. The lyophilised levan S81 showed a sheet-like compact morphology and its aqueous solution formed spheroidal lumps with a compact structure detected by SEM and AFM analysis, respectively. Importantly the levan S81 showed a high level of immunomodulatory role, induced the anti-inflammatory cytokine IL-4, and exhibited a strong antioxidant capacity with EC50 value 1.7 mg mL-1 obtained by hydroxyl radical scavenging activity test under in vitro conditions. These findings reveal potential of levan S81 for technological purposes and as a potential natural immunomodulatory and antioxidant.
Collapse
Affiliation(s)
- Osman Taylan
- King Abdulaziz University, Faculty of Engineering, Department of Industrial Engineering, Jeddah, Saudi Arabia
| | - Mustafa Tahsin Yilmaz
- King Abdulaziz University, Faculty of Engineering, Department of Industrial Engineering, Jeddah, Saudi Arabia
| | - Enes Dertli
- Bayburt University, Faculty of Engineering, Department of Food Engineering, Bayburt, Turkey.
| |
Collapse
|
58
|
Ernits K, Eek P, Lukk T, Visnapuu T, Alamäe T. First crystal structure of an endo-levanase - the BT1760 from a human gut commensal Bacteroides thetaiotaomicron. Sci Rep 2019; 9:8443. [PMID: 31186460 PMCID: PMC6560043 DOI: 10.1038/s41598-019-44785-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/24/2019] [Indexed: 01/05/2023] Open
Abstract
The endo-levanase BT1760 of a human gut commensal Bacteroides thetaiotaomicron randomly cuts a β-2,6-linked fructan, levan, into fructo-oligosaccharides providing a prebiotic substrate for gut microbiota. Here we introduce the crystal structure of BT1760 at resolution of 1.65 Å. The fold of the enzyme is typical for GH32 family proteins: a catalytic N-terminal five-bladed β-propeller connected with a C-terminal β-sandwich domain. The levantetraose-bound structure of catalytically inactive mutant E221A at 1.90-Å resolution reveals differences in substrate binding between the endo-acting fructanases. A shallow substrate-binding pocket of the endo-inulinase INU2 of Aspergillus ficuum binds at least three fructose residues at its flat bottom. In the levantetraose-soaked crystal of the endo-levanase E221A mutant the ligand was bent into the pond-like substrate pocket with its fructose residues making contacts at −3, −2, −1 and + 1 subsites residing at several pocket depths. Binding of levantetraose to the β-sandwich domain was not detected. The N- and C-terminal modules of BT1760 did not bind levan if expressed separately, the catalytic domain lost its activity and both modules tended to precipitate. We gather that endo-levanase BT1760 requires both domains for correct folding, solubility and stability of the protein.
Collapse
Affiliation(s)
- Karin Ernits
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Priit Eek
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Tiit Lukk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Triinu Visnapuu
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Tiina Alamäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia.
| |
Collapse
|
59
|
Desai M, Patel K. Isolation, optimization, and purification of extracellular levansucrase from nonpathogenic Klebsiella strain L1 isolated from waste sugarcane bagasse. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
60
|
Yaşar Yildiz S, Nikerel E, Toksoy Öner E. Genome-Scale Metabolic Model of a Microbial Cell Factory ( Brevibacillus thermoruber 423) with Multi-Industry Potentials for Exopolysaccharide Production. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:237-246. [PMID: 30932743 DOI: 10.1089/omi.2019.0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Brevibacillus thermoruber 423 is a thermophilic bacterium capable of producing high levels of exopolysaccharide (EPS) that has broad applications in nutrition, feed, cosmetics, pharmaceutical, and chemical industries, not to mention in health and bionanotechnology sectors. EPS is a natural, nontoxic, and biodegradable polymer of sugar residues and plays pivotal roles in cell-to-cell interactions, adhesion, biofilm formation, and protection of cell against environmental extremes. This bacterium is a thermophilic EPS producer while exceeding other thermophilic producers by virtue of high level of polymer synthesis. Recently, B. thermoruber 423 was noted for relevance to multiple industry sectors because of its capacity to use xylose, and produce EPS, isoprenoids, ethanol/butanol, lipases, proteases, cellulase, and glucoamylase enzymes as well as its resistance to arsenic. A key step in understanding EPS production with a systems-based approach is the knowledge of microbial genome sequence. To speed biotechnology and industrial applications, this study reports on a genome-scale metabolic model (GSMM) of B. thermoruber 423, constructed using the recently available high-quality genome sequence that we have subsequently validated using physiological data on batch growth and EPS production on seven different carbon sources. The model developed contains 1454 reactions (of which 1127 are assigned an enzyme commission number) and 1410 metabolites from 925 genes. This GSMM offers the promise to enable and accelerate further systems biology and industrial scale studies, not to mention the ability to calculate metabolic flux distribution in large networks and multiomic data integration.
Collapse
Affiliation(s)
- Songül Yaşar Yildiz
- 1 Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey
| | - Emrah Nikerel
- 2 Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Ebru Toksoy Öner
- 3 Department of Bioengineering, IBSB, Marmara University, Istanbul, Turkey
| |
Collapse
|
61
|
Kumar M, Kumar M, Pandey A, Thakur IS. Genomic analysis of carbon dioxide sequestering bacterium for exopolysaccharides production. Sci Rep 2019; 9:4270. [PMID: 30862945 PMCID: PMC6414628 DOI: 10.1038/s41598-019-41052-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/20/2019] [Indexed: 02/05/2023] Open
Abstract
In the present study, genomic analysis of a previously reported carbon dioxide (CO2) sequestering bacterium Serratia sp. ISTD04 was performed along with exopolysaccharide (EPS) production. Genomic analysis identified key and accessory enzymes responsible for CO2 sequestration. EPS synthesis genes were discovered in the genome and identified 8 putative clusters responsible for lipopolysaccharide, stewartan, emulsan, polysaccharide B, capsular polysaccharide and fatty acid-saccharide production. The production of EPS was found to be 0.88 ± 0.08, 1.25 ± 0.13 and 1.44 ± 0.10 g L-1 on glucose, bicarbonate (NaHCO3) and NaHCO3 plus glucose respectively at pH 7.8. After optimizing process parameters, the EPS production increased more than 3 folds. The morphology of strain and elemental composition of EPS was characterized by SEM-EDX. The functional groups, monomer composition, linkage analysis and structure of purified EPS was characterized by FTIR, GC-MS and 1H and 13C NMR. Glucose, galactose, mannose and glucosamine are the monomers detected in the EPS. EPS was further applied for bioflocculation (kaolin test) and dye removal. The EPS showed 68% ± 0.9 flocculating activity and decolorized cationic dye acridine orange (80%) and crystal violet (95%). The results highlight CO2 sequestration and EPS production potential of Serratia sp. ISTD04 that can be harnessed in future.
Collapse
Affiliation(s)
- Manish Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Madan Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, 31 MG Marg, Lucknow, 226 001, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
62
|
Scaling up of levan yield in Bacillus subtilis M and cytotoxicity study on levan and its derivatives. J Biosci Bioeng 2019; 127:655-662. [PMID: 30795878 DOI: 10.1016/j.jbiosc.2018.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 08/06/2018] [Accepted: 09/12/2018] [Indexed: 02/05/2023]
Abstract
This study focused on kinetics of levan yield by Bacillus subtilis M, in a 150 L stirred tank bioreactor under controlled pH conditions. The optimized production medium was composed of (g/L): commercial sucrose 100.0, yeast extract 2.0, K2HPO4 3.0 and MgSO4⋅7H2O 0.2; an increase in both carbohydrates consumption and cell growth depended on increasing the size of the stirred tank bioreactor from 16 L to 150 L. The highest levansucrase production (63.4 U/mL) and levan yield of 47 g/L was obtained after 24 h. Also, the specific levan yield (Yp/x) which reflects the cell productivity increased with the size increase of the stirred tank bioreactor and reached its maximum value of about 29.4 g/g cells. These results suggested that B. subtilis M could play an important role in levan yield on a large scale in the future. Chemical modifications of B. subtilis M crude levan (CL) into sulfated (SL), phosphorylated (PL), and carboxymethylated levans (CML) were done. The difference in CL structure and its derivatives was detected by FT-IR transmission spectrum. The cytotoxicity of CL and its derivatives were evaluated by HepGII, Mcf-7 and CaCo-2. In general most tested levans forms had no significant cytotoxicity effect. In fact, the carboxymethylated and phosphrylated forms had a lower anti-cancer effect than CL. On the other hand, SL had the highest cytotoxicity showing SL had a significant anti-cancer effect. The results of cytotoxicity and cell viability were statistically analyzed using three-way ANOVA.
Collapse
|
63
|
Barcelos MCS, Vespermann KAC, Pelissari FM, Molina G. Current status of biotechnological production and applications of microbial exopolysaccharides. Crit Rev Food Sci Nutr 2019; 60:1475-1495. [PMID: 30740985 DOI: 10.1080/10408398.2019.1575791] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbial exopolysaccharides (EPS) are an abundant and important group of compounds that can be secreted by bacteria, fungi and algae. The biotechnological production of these substances represents a faster alternative when compared to chemical and plant-derived production with the possibility of using industrial wastes as substrates, a feasible strategy after a comprehensive study of factors that may affect the synthesis by the chosen microorganism and desirable final product. Another possible difficulty could be the extraction and purification methods, a crucial part of the production of microbial polysaccharides, since different methods should be adopted. In this sense, this review aims to present the biotechnological production of microbial exopolysaccharides, exploring the production steps, optimization processes and current applications of these relevant bioproducts.
Collapse
Affiliation(s)
- Mayara C S Barcelos
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Kele A C Vespermann
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Franciele M Pelissari
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Gustavo Molina
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| |
Collapse
|
64
|
Extremophilic exopolysaccharides: A review and new perspectives on engineering strategies and applications. Carbohydr Polym 2019; 205:8-26. [DOI: 10.1016/j.carbpol.2018.10.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
|
65
|
Xu W, Peng J, Zhang W, Zhang T, Guang C, Mu W. Enhancement of the Brenneria sp. levansucrase thermostability by site-directed mutagenesis at Glu404 located at the “-TEAP-” residue motif. J Biotechnol 2019; 290:1-9. [DOI: 10.1016/j.jbiotec.2018.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/17/2018] [Accepted: 11/26/2018] [Indexed: 01/15/2023]
|
66
|
Exploring Marine Environments for the Identification of Extremophiles and Their Enzymes for Sustainable and Green Bioprocesses. SUSTAINABILITY 2018. [DOI: 10.3390/su11010149] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sea environments harbor a wide variety of life forms that have adapted to live in hard and sometimes extreme conditions. Among the marine living organisms, extremophiles represent a group of microorganisms that attract increasing interest in relation to their ability to produce an array of molecules that enable them to thrive in almost every marine environment. Extremophiles can be found in virtually every extreme environment on Earth, since they can tolerate very harsh environmental conditions in terms of temperature, pH, pressure, radiation, etc. Marine extremophiles are the focus of growing interest in relation to their ability to produce biotechnologically useful enzymes, the so-called extremozymes. Thanks to their resistance to temperature, pH, salt, and pollutants, marine extremozymes are promising biocatalysts for new and sustainable industrial processes, thus representing an opportunity for several biotechnological applications. Since the marine microbioma, i.e., the complex of microorganisms living in sea environments, is still largely unexplored finding new species is a central issue for green biotechnology. Here we described the main marine environments where extremophiles can be found, some existing or potential biotechnological applications of marine extremozymes for biofuels production and bioremediation, and some possible approaches for the search of new biotechnologically useful species from marine environments.
Collapse
|
67
|
Combie J, Öner ET. From healing wounds to resorbable electronics, levan can fill bioadhesive roles in scores of markets. BIOINSPIRATION & BIOMIMETICS 2018; 14:011001. [PMID: 30457113 DOI: 10.1088/1748-3190/aaed92] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Levan is a fructose homopolysaccharide which gained attention recently for its unusual combination of properties distinguishing it from other natural biodegradable polysaccharides like chitosan, cellulose or starch. Among the strongest bioadhesives, film-forming levan is garnering interest for its role in some simple solutions to difficult problems. One of these is illustrated by the elegant research using laser-based techniques to construct levan films for healing wounds and burned tissue. Another is the development of bioresorbable electronic implants. Levan has been found in habitats as diverse as salterns and thermal waters to tropical plants and sugar factories. This review of the low viscosity, levan adhesive describes the mechanisms by which it forms bonds and the reasons behind some of its practical and industrial applications. Here we present descriptions from the literature for feasible approaches ready to transition from the laboratory to those searching for answers in fields as varied as medicine, packaging and furniture assembly.
Collapse
Affiliation(s)
- Joan Combie
- Montana Biopolymers Inc., 119 Cathcart Circle, Winnsboro, SC 29180, United States of America
| | | |
Collapse
|
68
|
Halomonas smyrnensis as a cell factory for co-production of PHB and levan. Int J Biol Macromol 2018; 118:1238-1246. [DOI: 10.1016/j.ijbiomac.2018.06.197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/26/2018] [Accepted: 06/30/2018] [Indexed: 11/19/2022]
|
69
|
Xu W, Ni D, Yu S, Zhang T, Mu W. Insights into hydrolysis versus transfructosylation: Mutagenesis studies of a novel levansucrase from Brenneria sp. EniD312. Int J Biol Macromol 2018; 116:335-345. [DOI: 10.1016/j.ijbiomac.2018.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/21/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
|
70
|
Kirtel O, Menéndez C, Versluys M, Van den Ende W, Hernández L, Toksoy Öner E. Levansucrase from Halomonas smyrnensis AAD6T: first halophilic GH-J clan enzyme recombinantly expressed, purified, and characterized. Appl Microbiol Biotechnol 2018; 102:9207-9220. [DOI: 10.1007/s00253-018-9311-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
|
71
|
Avsar G, Agirbasli D, Agirbasli MA, Gunduz O, Oner ET. Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications. Carbohydr Polym 2018; 193:316-325. [DOI: 10.1016/j.carbpol.2018.03.075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022]
|
72
|
Affiliation(s)
- Xu Zhang
- MOE Lab of Bioinformatics; School of Life Sciences; Tsinghua University; Beijing 100084 China
- Center for Synthetic and Systems Biology; Tsinghua University; Beijing 100084 China
| | - Yina Lin
- MOE Lab of Bioinformatics; School of Life Sciences; Tsinghua University; Beijing 100084 China
- Center for Synthetic and Systems Biology; Tsinghua University; Beijing 100084 China
- Tsinghua-Peking Center for Life Sciences; Tsinghua University; Beijing 100084 China
| | - Guo-Qiang Chen
- MOE Lab of Bioinformatics; School of Life Sciences; Tsinghua University; Beijing 100084 China
- Center for Synthetic and Systems Biology; Tsinghua University; Beijing 100084 China
- Tsinghua-Peking Center for Life Sciences; Tsinghua University; Beijing 100084 China
| |
Collapse
|
73
|
Boyadzhieva I, Tomova I, Radchenkova N, Kambourova M, Poli A, Vasileva-Tonkova E. Diversity of Heterotrophic Halophilic Bacteria Isolated from Coastal Solar Salterns, Bulgaria and Their Ability to Synthesize Bioactive Molecules with Biotechnological Impact. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718040033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
74
|
Marine Invertebrates: Underexplored Sources of Bacteria Producing Biologically Active Molecules. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
75
|
Erkorkmaz BA, Kırtel O, Ateş Duru Ö, Toksoy Öner E. Development of a cost-effective production process for Halomonas levan. Bioprocess Biosyst Eng 2018; 41:1247-1259. [DOI: 10.1007/s00449-018-1952-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
|
76
|
Radchenkova N, Boyadzhieva I, Atanasova N, Poli A, Finore I, Di Donato P, Nicolaus B, Panchev I, Kuncheva M, Kambourova M. Extracellular polymer substance synthesized by a halophilic bacterium Chromohalobacter canadensis 28. Appl Microbiol Biotechnol 2018; 102:4937-4949. [DOI: 10.1007/s00253-018-8901-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/27/2022]
|
77
|
Physicochemical properties of a high molecular weight levan from Brenneria sp. EniD312. Int J Biol Macromol 2018; 109:810-818. [DOI: 10.1016/j.ijbiomac.2017.11.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/24/2017] [Accepted: 11/09/2017] [Indexed: 01/12/2023]
|
78
|
Nouha K, Kumar RS, Balasubramanian S, Tyagi RD. Critical review of EPS production, synthesis and composition for sludge flocculation. J Environ Sci (China) 2018; 66:225-245. [PMID: 29628091 DOI: 10.1016/j.jes.2017.05.020] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 05/08/2023]
Abstract
Extracellular polymeric substances (EPS) produced by microorganisms represent biological macromolecules with unfathomable potentials and they are required to be explored further for their potential application as a bioflocculant in various wastewater sludge treatment. Although several studies already exist on biosynthetic pathways of different classical biopolymers like alginate and xanthan, no dedicated studies are available for EPS in sludge. This review highlights the EPS composition, functionality, and biodegradability for its potential use as a carbon source for production of other metabolites. Furthermore, the effect of various extraction methods (physical and chemical) on compositional, structural, physical and functional properties of microbial EPS has been addressed. The vital knowledge of the effect of extraction method on various important attributes of EPS can help to choose the suitable extraction method depending upon the intended use of EPS. The possible use of different molecular biological techniques for enhanced production of desired EPS was summarized.
Collapse
Affiliation(s)
- Klai Nouha
- Université du Québec, Institut national de la Recherche Scientifique, Centre Eau, Terre & Environnement, 490 de la Couronne, Québec G1K 9A9, Canada
| | - Ram Saurabh Kumar
- Université du Québec, Institut national de la Recherche Scientifique, Centre Eau, Terre & Environnement, 490 de la Couronne, Québec G1K 9A9, Canada.
| | | | - Rajeshwar Dayal Tyagi
- Université du Québec, Institut national de la Recherche Scientifique, Centre Eau, Terre & Environnement, 490 de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
79
|
Aydin B, Ozer T, Oner ET, Arga KY. The Genome-Based Metabolic Systems Engineering to Boost Levan Production in a Halophilic Bacterial Model. ACTA ACUST UNITED AC 2018; 22:198-209. [DOI: 10.1089/omi.2017.0216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Busra Aydin
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Tugba Ozer
- Department of Bioengineering, Marmara University, Istanbul, Turkey
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Ebru Toksoy Oner
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
80
|
Exopolysaccharides from Marine and Marine Extremophilic Bacteria: Structures, Properties, Ecological Roles and Applications. Mar Drugs 2018; 16:md16020069. [PMID: 29461505 PMCID: PMC5852497 DOI: 10.3390/md16020069] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/08/2018] [Accepted: 02/16/2018] [Indexed: 11/16/2022] Open
Abstract
The marine environment is the largest aquatic ecosystem on Earth and it harbours microorganisms responsible for more than 50% of total biomass of prokaryotes in the world. All these microorganisms produce extracellular polymers that constitute a substantial part of the dissolved organic carbon, often in the form of exopolysaccharides (EPS). In addition, the production of these polymers is often correlated to the establishment of the biofilm growth mode, during which they are important matrix components. Their functions include adhesion and colonization of surfaces, protection of the bacterial cells and support for biochemical interactions between the bacteria and the surrounding environment. The aim of this review is to present a summary of the status of the research about the structures of exopolysaccharides from marine bacteria, including capsular, medium released and biofilm embedded polysaccharides. Moreover, ecological roles of these polymers, especially for those isolated from extreme ecological niches (deep-sea hydrothermal vents, polar regions, hypersaline ponds, etc.), are reported. Finally, relationships between the structure and the function of the exopolysaccharides are discussed.
Collapse
|
81
|
Poli A, Romano I, Mastascusa V, Buono L, Orlando P, Nicolaus B, Leone L, Hong KW, Chan KG, Goh KM, Pascual J. Vibrio coralliirubri sp. nov., a new species isolated from mucus of red coral (Corallium rubrum) collected at Procida island, Italy. Antonie van Leeuwenhoek 2018; 111:1105-1115. [PMID: 29299771 DOI: 10.1007/s10482-017-1013-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
Abstract
Strain Corallo1T was isolated from mucus of red coral (Corallium rubrum) at Punta Pizzaco (Procida island, Naples, Italy). It was characterised as a Gram-stain negative, motile, rod-shaped bacterium. Strain Corallo1T was found to show positive responses for cytochrome-c oxidase, catalase, reduction of nitrate and nitrite, β-galactosidase activity and hydrolysis of starch, xylan, peptone, Tween 40, Tween 80 and casein. Strain Corallo1T was found to be mesophilic, neutrophilic to alkalophilic and slightly halophilic. According to analysis of the almost-complete 16S rRNA gene, strain Corallo1T is closely related to Vibrio celticus (100% sequence similarity), Vibrio gigantis (100%), Vibrio crassostreae (99.7%), Vibrio artabrorum (99.7%) and Vibrio pomeroyi (99.6%). MLSA of five housekeeping genes (atpA, pyrH, recA, rpoA and rpoD) was performed to refine the phylogenetic relationships of strain Corallo1T. A draft genome sequence of strain Corallo1T was obtained. The DNA G+C content of this strain was determined to be 44.5 mol %. The major cellular fatty acids of strain Corallo1T are C16:1, n-C16:0 and C18:1, and the major isoprenoid ubiquinone is Q8. ANI indexes, in silico estimations of DDH values and wet lab DDH values demonstrated that strain Corallo1T represents an independent genomospecies. Based on a polyphasic taxonomic characterisation, strain Corallo1T is concluded to represent a novel species of the genus Vibrio, for which the name Vibrio coralliirubri sp. nov. is proposed. The type strain is Corallo1T (= DSM 27495T = CIP 110630T).
Collapse
Affiliation(s)
- Annarita Poli
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry (I.C.B.), via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Ida Romano
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry (I.C.B.), via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Vincenza Mastascusa
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry (I.C.B.), via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Lorena Buono
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry (I.C.B.), via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Pierangelo Orlando
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Applied Science and Intelligent Systems (I.S.A.S.I.-C.N.R.), via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Barbara Nicolaus
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry (I.C.B.), via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Luigi Leone
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry (I.C.B.), via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Kar Wai Hong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Javier Pascual
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Brunswick, Germany.
| |
Collapse
|
82
|
Versluys M, Kirtel O, Toksoy Öner E, Van den Ende W. The fructan syndrome: Evolutionary aspects and common themes among plants and microbes. PLANT, CELL & ENVIRONMENT 2018; 41:16-38. [PMID: 28925070 DOI: 10.1111/pce.13070] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/30/2017] [Accepted: 09/09/2017] [Indexed: 05/13/2023]
Abstract
Fructans are multifunctional fructose-based water soluble carbohydrates found in all biological kingdoms but not in animals. Most research has focused on plant and microbial fructans and has received a growing interest because of their practical applications. Nevertheless, the origin of fructan production, the so-called "fructan syndrome," is still unknown. Why fructans only occur in a limited number of plant and microbial species remains unclear. In this review, we provide an overview of plant and microbial fructan research with a focus on fructans as an adaptation to the environment and their role in (a)biotic stress tolerance. The taxonomical and biogeographical distribution of fructans in both kingdoms is discussed and linked (where possible) to environmental factors. Overall, the fructan syndrome may be related to water scarcity and differences in physicochemical properties, for instance, water retaining characteristics, at least partially explain why different fructan types with different branching levels are found in different species. Although a close correlation between environmental stresses and fructan production is quite clear in plants, this link seems to be missing in microbes. We hypothesize that this can be at least partially explained by differential evolutionary timeframes for plants and microbes, combined with potential redundancy effects.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| | - Onur Kirtel
- Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, Istanbul, 34722, Turkey
| | - Ebru Toksoy Öner
- Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, Istanbul, 34722, Turkey
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
83
|
KleinJan H, Jeanthon C, Boyen C, Dittami SM. Exploring the Cultivable Ectocarpus Microbiome. Front Microbiol 2017; 8:2456. [PMID: 29312170 PMCID: PMC5732352 DOI: 10.3389/fmicb.2017.02456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
Coastal areas form the major habitat of brown macroalgae, photosynthetic multicellular eukaryotes that have great ecological value and industrial potential. Macroalgal growth, development, and physiology are influenced by the microbial community they accommodate. Studying the algal microbiome should thus increase our fundamental understanding of algal biology and may help to improve culturing efforts. Currently, a freshwater strain of the brown macroalga Ectocarpus subulatus is being developed as a model organism for brown macroalgal physiology and algal microbiome studies. It can grow in high and low salinities depending on which microbes it hosts. However, the molecular mechanisms involved in this process are still unclear. Cultivation of Ectocarpus-associated bacteria is the first step toward the development of a model system for in vitro functional studies of brown macroalgal–bacterial interactions during abiotic stress. The main aim of the present study is thus to provide an extensive collection of cultivable E. subulatus-associated bacteria. To meet the variety of metabolic demands of Ectocarpus-associated bacteria, several isolation techniques were applied, i.e., direct plating and dilution-to-extinction cultivation techniques, each with chemically defined and undefined bacterial growth media. Algal tissue and algal growth media were directly used as inoculum, or they were pretreated with antibiotics, by filtration, or by digestion of algal cell walls. In total, 388 isolates were identified falling into 33 genera (46 distinct strains), of which Halomonas (Gammaproteobacteria), Bosea (Alphaproteobacteria), and Limnobacter (Betaproteobacteria) were the most abundant. Comparisons with 16S rRNA gene metabarcoding data showed that culturability in this study was remarkably high (∼50%), although several cultivable strains were not detected or only present in extremely low abundance in the libraries. These undetected bacteria could be considered as part of the rare biosphere and they may form the basis for the temporal changes in the Ectocarpus microbiome.
Collapse
Affiliation(s)
- Hetty KleinJan
- Sorbonne Universités, CNRS-UPMC, Station Biologique de Roscoff, UMR8227, Integrative Biology of Marine Models, Roscoff, France
| | - Christian Jeanthon
- CNRS, Station Biologique de Roscoff, UMR7144, Adaptation et Diversité en Milieu Marin, Roscoff, France.,Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, UMR7144, Adaptation et Diversité en Milieu Marin, Roscoff, France
| | - Catherine Boyen
- Sorbonne Universités, CNRS-UPMC, Station Biologique de Roscoff, UMR8227, Integrative Biology of Marine Models, Roscoff, France
| | - Simon M Dittami
- Sorbonne Universités, CNRS-UPMC, Station Biologique de Roscoff, UMR8227, Integrative Biology of Marine Models, Roscoff, France
| |
Collapse
|
84
|
Biswas J, Paul AK. Optimization of factors influencing exopolysaccharide production by Halomonas xianhensis SUR308 under batch culture. AIMS Microbiol 2017; 3:564-579. [PMID: 31294176 PMCID: PMC6604991 DOI: 10.3934/microbiol.2017.3.564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/28/2017] [Indexed: 11/18/2022] Open
Abstract
A moderately halophilic bacterium, Halomonas xianhensis SUR308 (GenBank Accession No. KJ933394) was isolated from multi-pond solar salterns of Odisha, India. Exopolysaccharide (EPS) production by this strain in malt extract yeast extract (MY) medium has been optimized under batch culture system. Among the different media tested, MY medium showed an EPS production of 2.55 g/L, which increased to 2.85 g/L under optimized aeration. An initial pH of 7.5 and incubation temperature of 32 °C were found to be most suitable for EPS production by the isolate under aerobic condition. An EPS production of 3.85 g/L was achieved when the growth medium was supplemented with 2.5% NaCl. Glucose was the most favourable carbon source for EPS production and maximum production (5.70 g/L) was recorded with 3% glucose. However, growth as well as production of EPS was remarkably affected when the growth medium was supplemented with hydrocarbons as sole source of carbon. Among different nitrogen sources, casein hydrolysate at 0.5% level was proved to be the best for EPS production and an initial inoculum dose of 7% (v/v) enhanced the EPS production to 7.78 g/L, while the divalent metal ions were in general toxic to growth and EPS production, EPS synthesis by SUR308 was enhanced with Cr (VI) supplementation.
Collapse
Affiliation(s)
- Jhuma Biswas
- Microbiology Laboratory, Department of Botany, University of Calcutta, Kolkata-700019, West Bengal, India
| | - Amal K Paul
- Microbiology Laboratory, Department of Botany, University of Calcutta, Kolkata-700019, West Bengal, India
| |
Collapse
|
85
|
|
86
|
Novel levan and pNIPA temperature sensitive hydrogels for 5-ASA controlled release. Carbohydr Polym 2017; 165:61-70. [DOI: 10.1016/j.carbpol.2017.01.097] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 11/20/2022]
|
87
|
González-Garcinuño Á, Tabernero A, Sánchez-Álvarez JM, Galán MA, Martin Del Valle EM. Effect of bacteria type and sucrose concentration on levan yield and its molecular weight. Microb Cell Fact 2017; 16:91. [PMID: 28535808 PMCID: PMC5442672 DOI: 10.1186/s12934-017-0703-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Levan has been traditionally produced from microorganism. However, there is a continuous effort in looking for new strains that improve levan production yield and uses alternative sugar sources for growth. Despite having a wide range of data about levan yield, there are not papers which allow controlling molecular weight, and that plays an essential role for further applications. RESULTS The effect of the sucrose concentration on levan yield (and its molecular weight) from Bacillus atrophaeus and Acinetobacter nectaris (Gram positive and Gram negative respectively) was studied in this work. It was found that A. nectaris growth (from 3 to 1.5 g L-1 in 40 h) and its levan production (from 3 to 1.5 g L-1) decreases by increasing sucrose concentration (best results at a concentration of 120 g L-1) whereas B. atrophaeus growth (3.5 g L-1 in 30 h) and its levan production (also 3.5 g L-1) were not affected by modifying that parameter. Levan molecular weight from A. nectaris decreases by increasing sucrose concentration (from 8000 to 2000 kDa) whereas levan molecular weight from B. Atrophaeus remains always around 50 kDa. By performing a kinetic study, it was shown that A. nectaris growth follows a substrate-inhibition model, whereas Monod equation provided a good fit for B. atrophaeus growth. Finally, wastes from orange juice industry were used as a medium culture to cultivate those microorganism, obtaining good results with B. atrophaeus (growth 3 g L-1 in 30 h). CONCLUSIONS Levan production kinetics was determined and compared between different bacteria types.
Collapse
Affiliation(s)
- Álvaro González-Garcinuño
- Department of Chemical Engineering, University of Salamanca, Plza. Los Caidos s/n, 37007, Salamanca, Spain
| | - Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Plza. Los Caidos s/n, 37007, Salamanca, Spain
| | - José Mª Sánchez-Álvarez
- Department of Chemical Engineering, University of Salamanca, Plza. Los Caidos s/n, 37007, Salamanca, Spain
| | - Miguel A Galán
- Department of Chemical Engineering, University of Salamanca, Plza. Los Caidos s/n, 37007, Salamanca, Spain
| | - Eva M Martin Del Valle
- Department of Chemical Engineering, University of Salamanca, Plza. Los Caidos s/n, 37007, Salamanca, Spain.
| |
Collapse
|
88
|
Mardo K, Visnapuu T, Vija H, Aasamets A, Viigand K, Alamäe T. A Highly Active Endo-Levanase BT1760 of a Dominant Mammalian Gut Commensal Bacteroides thetaiotaomicron Cleaves Not Only Various Bacterial Levans, but Also Levan of Timothy Grass. PLoS One 2017; 12:e0169989. [PMID: 28103254 PMCID: PMC5245892 DOI: 10.1371/journal.pone.0169989] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/27/2016] [Indexed: 12/11/2022] Open
Abstract
Bacteroides thetaiotaomicron, an abundant commensal of the human gut, degrades numerous complex carbohydrates. Recently, it was reported to grow on a β-2,6-linked polyfructan levan produced by Zymomonas mobilis degrading the polymer into fructooligosaccharides (FOS) with a cell surface bound endo-levanase BT1760. The FOS are consumed by B. thetaiotaomicron, but also by other gut bacteria, including health-promoting bifidobacteria and lactobacilli. Here we characterize biochemical properties of BT1760, including the activity of BT1760 on six bacterial levans synthesized by the levansucrase Lsc3 of Pseudomonas syringae pv. tomato, its mutant Asp300Asn, levansucrases of Zymomonas mobilis, Erwinia herbicola, Halomonas smyrnensis as well as on levan isolated from timothy grass. For the first time a plant levan is shown as a perfect substrate for an endo-fructanase of a human gut bacterium. BT1760 degraded levans to FOS with degree of polymerization from 2 to 13. At optimal reaction conditions up to 1 g of FOS were produced per 1 mg of BT1760 protein. Low molecular weight (<60 kDa) levans, including timothy grass levan and levan synthesized from sucrose by the Lsc3Asp300Asn, were degraded most rapidly whilst levan produced by Lsc3 from raffinose least rapidly. BT1760 catalyzed finely at human body temperature (37°C) and in moderately acidic environment (pH 5–6) that is typical for the gut lumen. According to differential scanning fluorimetry, the Tm of the endo-levanase was 51.5°C. All tested levans were sufficiently stable in acidic conditions (pH 2.0) simulating the gastric environment. Therefore, levans of both bacterial and plant origin may serve as a prebiotic fiber for B. thetaiotaomicron and contribute to short-chain fatty acids synthesis by gut microbiota. In the genome of Bacteroides xylanisolvens of human origin a putative levan degradation locus was disclosed.
Collapse
Affiliation(s)
- Karin Mardo
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Triinu Visnapuu
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Anneli Aasamets
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Katrin Viigand
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tiina Alamäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
89
|
Tabernero A, González-Garcinuño Á, Sánchez-Álvarez JM, Galán MA, Martín Del Valle EM. Development of a nanoparticle system based on a fructose polymer: Stability and drug release studies. Carbohydr Polym 2016; 160:26-33. [PMID: 28115097 DOI: 10.1016/j.carbpol.2016.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 01/08/2023]
Abstract
New drug delivery systems (DDSs) with levan or its carboxymethylated form, as carriers, and 5-fluorouracil as a drug, are produced in this work. Levan is obtained after cultivating A. nectaris and polymer nanoparticles are created in water by a self-assembled process. The effect of pH and the ionic strength on polymer nanoparticles aggregation is studied. Basic pHs produces a particle size between 300 and 400nm with a Z-potential around -20mV because a basic medium promotes repulsion forces. DDSs of 300-400nm and a Z-potential about -25mV are prepared by taking advantage of the amphiphilic properties of the levan. The drug is bound to either levan or carboxymethyllevan surfaces by electrostatic interactions, obtaining the best results at basic pHs. 45-70% of the drug is released from the levan in 23h depending on the pH preparation, whereas only a low percentage of the drug is released from the carboxymethyllevan.
Collapse
Affiliation(s)
- Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Plaza Los Caídos s/n, 37008 Salamanca, Spain
| | - Álvaro González-Garcinuño
- Department of Chemical Engineering, University of Salamanca, Plaza Los Caídos s/n, 37008 Salamanca, Spain
| | - José Mª Sánchez-Álvarez
- Department of Chemical Engineering, University of Salamanca, Plaza Los Caídos s/n, 37008 Salamanca, Spain
| | - Miguel A Galán
- Department of Chemical Engineering, University of Salamanca, Plaza Los Caídos s/n, 37008 Salamanca, Spain
| | - Eva M Martín Del Valle
- Department of Chemical Engineering, University of Salamanca, Plaza Los Caídos s/n, 37008 Salamanca, Spain.
| |
Collapse
|
90
|
Synthesis and characterization of a new type of levan-graft-polystyrene copolymer. Carbohydr Polym 2016; 154:20-9. [DOI: 10.1016/j.carbpol.2016.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/24/2016] [Accepted: 08/01/2016] [Indexed: 11/20/2022]
|
91
|
Optimization of Levan Production by Cold-Active Bacillus licheniformis ANT 179 and Fructooligosaccharide Synthesis by Its Levansucrase. Appl Biochem Biotechnol 2016; 181:986-1006. [DOI: 10.1007/s12010-016-2264-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
|
92
|
Erginer M, Akcay A, Coskunkan B, Morova T, Rende D, Bucak S, Baysal N, Ozisik R, Eroglu MS, Agirbasli M, Toksoy Oner E. Sulfated levan from Halomonas smyrnensis as a bioactive, heparin-mimetic glycan for cardiac tissue engineering applications. Carbohydr Polym 2016; 149:289-96. [DOI: 10.1016/j.carbpol.2016.04.092] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/12/2016] [Accepted: 04/21/2016] [Indexed: 02/04/2023]
|
93
|
Öner ET, Hernández L, Combie J. Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnol Adv 2016; 34:827-844. [DOI: 10.1016/j.biotechadv.2016.05.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/01/2016] [Accepted: 05/04/2016] [Indexed: 01/24/2023]
|
94
|
Wang T, Wei X, Xin Y, Zhuang J, Shan S, Zhang J. Halomonas lutescens sp. nov., a halophilic bacterium isolated from a lake sediment. Int J Syst Evol Microbiol 2016; 66:4697-4704. [PMID: 27514670 DOI: 10.1099/ijsem.0.001413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel, Gram-stain-negative, facultatively anaerobic, halophilic bacterium, designated strain Q1UT, was isolated from a sediment sample collected from Qinghai Lake, PR China. The cells of the strain were short rod-shaped (0.2-0.3×0.6-2.5 µm) and non-motile. Strain Q1UT formed yellowish colonies and grew at temperatures of 2-37 °C (optimum 30-33 °C), at pH 6.0-9.0 (optimum pH 7.0) and in the presence of 0-20 % (w/v) NaCl (optimum 7.5 %). The major cellular fatty acids were C18 : 1ω7c (58.6 %), C16 : 1ω7c and/or C16 : 1ω6c (14.8 %) and C16 : 0 (10.1 %). The polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unknown phospholipid and unknown lipids. The genomic DNA G+C content was 61.5 mol%, and the predominant respiratory ubiquinone Q-9. Based on phylogenetic analysis of the 16S rRNA gene sequences and concatenated 16S rRNA, gyrB and rpoD gene sequences, the isolate was found to belong to the genus Halomonas in the class Gammaproteobacteria. The most closely related species were Halomonas venusta DSM 4743T (98.3 % 16S rRNA sequence similarity), Halomonas songnenensis DSM 25870T (98.2 %) and Halomonas hydrothermalis DSM 15725T (98.2 %). DNA-DNA relatedness values between strain Q1UT and the type strains of eight other species of the genus Halomonas ranged from 21.3 % to 10.1 %. On the basis of phenotypic, phylogenetic and chemotaxonomic analyses, and DNA-DNA hybridization relatedness values, strain Q1UT is considered to represent a novel species of the genus Halomonas; the name Halomonas lutescens sp. nov. is proposed. The type strain is Q1UT (=CGMCC 1.15122T=KCTC 42517T).
Collapse
Affiliation(s)
- Tianying Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xuexin Wei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yuhua Xin
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Junli Zhuang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Shuangquan Shan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jianli Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
95
|
Gupta A, Thakur IS. Study of optimization of wastewater contaminant removal along with extracellular polymeric substances (EPS) production by a thermotolerant Bacillus sp. ISTVK1 isolated from heat shocked sewage sludge. BIORESOURCE TECHNOLOGY 2016; 213:21-30. [PMID: 26906445 DOI: 10.1016/j.biortech.2016.02.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
The present work involved study of wastewater contaminant removal along with EPS production by a thermotolerant bacterium Bacillus sp. ISTVK1, isolated from heat shocked sewage sludge. EPS production in basal and mineral medium containing 50% filter sterilized wastewater and 0.5% sucrose was found to be 0.83±0.12gL(-1) and 0.31±0.10gL(-1) culture, respectively. GC-MS analysis of EPS revealed the presence of β-d-glucose, α-d-galactose and β-d-arabinose. FT-IR spectrum confirmed the presence carbohydrates. Box-Behnken design was used to optimize process parameters for enhanced EPS production along with % COD reduction of wastewater. The optimised conditions when used in a 1.5L bioreactor showed EPS production of 1.67±0.06gL(-1) culture and 93.0±0.21 % COD removal.
Collapse
Affiliation(s)
- Asmita Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
96
|
Simultaneous Biosynthesis of Polyhydroxyalkanoates and Extracellular Polymeric Substance (EPS) from Crude Glycerol from Biodiesel Production by Different Bacterial Strains. Appl Biochem Biotechnol 2016; 180:1110-1127. [DOI: 10.1007/s12010-016-2155-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/01/2016] [Indexed: 02/04/2023]
|
97
|
Abbamondi GR, Suner S, Cutignano A, Grauso L, Nicolaus B, Toksoy Oner E, Tommonaro G. Identification of N-Hexadecanoyl-L-homoserine lactone (C16-AHL) as signal molecule in halophilic bacterium Halomonas smyrnensis AAD6. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1206-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
98
|
Han J, Xu X, Gao C, Liu Z, Wu Z. Levan-Producing Leuconostoc citreum Strain BD1707 and Its Growth in Tomato Juice Supplemented with Sucrose. Appl Environ Microbiol 2015; 82:1383-1390. [PMID: 26682858 PMCID: PMC4771333 DOI: 10.1128/aem.02944-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/20/2015] [Indexed: 11/20/2022] Open
Abstract
A levan-producing strain, BD1707, was isolated from Tibetan kefir and identified as Leuconostoc citreum. The effects of carbon sources on the growth of L. citreum BD1707 and levan production in tomato juice were measured. The changes in pH, viable cell count, sugar content, and levan yield in the cultured tomato juice supplemented with 15% (wt/vol) sucrose were also assayed. L. citreum BD1707 could synthesize more than 28 g/liter of levan in the tomato juice-sucrose medium when cultured at 30°C for 96 h. Based on the monosaccharide composition, molecular mass distribution, Fourier transform infrared (FTIR) spectra, and nuclear magnetic resonance (NMR) spectra, the levan synthesized by L. citreum BD1707 was composed of a linear backbone consisting of consecutive β-(2→6) linked d-fructofuranosyl units, with an estimated average molecular mass of 4.3 × 10(6) Da.
Collapse
Affiliation(s)
- Jin Han
- State Key Laboratory of Dairy Biotechnology, Shanghai, China
- Shanghai Engineering Research Center of Dairy Biotechnology, Shanghai, China
| | - Xiaofen Xu
- Shanghai Engineering Research Center of Dairy Biotechnology, Shanghai, China
- Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Caixia Gao
- Shanghai Engineering Research Center of Dairy Biotechnology, Shanghai, China
- Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai, China
- Shanghai Engineering Research Center of Dairy Biotechnology, Shanghai, China
| | - Zhengjun Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai, China
- Shanghai Engineering Research Center of Dairy Biotechnology, Shanghai, China
| |
Collapse
|
99
|
Ates O. Systems Biology of Microbial Exopolysaccharides Production. Front Bioeng Biotechnol 2015; 3:200. [PMID: 26734603 PMCID: PMC4683990 DOI: 10.3389/fbioe.2015.00200] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/30/2015] [Indexed: 11/23/2022] Open
Abstract
Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran.
Collapse
Affiliation(s)
- Ozlem Ates
- Department of Medical Services and Techniques, Nisantasi University, Istanbul, Turkey
| |
Collapse
|
100
|
Sezer AD, Kazak Sarılmışer H, Rayaman E, Çevikbaş A, Öner ET, Akbuğa J. Development and characterization of vancomycin-loaded levan-based microparticular system for drug delivery. Pharm Dev Technol 2015; 22:627-634. [DOI: 10.3109/10837450.2015.1116564] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ali Demir Sezer
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Haydarpaşa, Istanbul, Turkey,
| | - Hande Kazak Sarılmışer
- Department of Bioengineering, Faculty of Engineering, Marmara University, Göztepe, Istanbul, Turkey, and
| | - Erkan Rayaman
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Marmara University, Haydarpaşa, Istanbul, Turkey
| | - Adile Çevikbaş
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Marmara University, Haydarpaşa, Istanbul, Turkey
| | - Ebru Toksoy Öner
- Department of Bioengineering, Faculty of Engineering, Marmara University, Göztepe, Istanbul, Turkey, and
| | - Jülide Akbuğa
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Haydarpaşa, Istanbul, Turkey,
| |
Collapse
|