51
|
Che X, Zhao T, Hu J, Yang K, Ma N, Li A, Sun Q, Ding C, Ding Q. Application of Chitosan-Based Hydrogel in Promoting Wound Healing: A Review. Polymers (Basel) 2024; 16:344. [PMID: 38337233 DOI: 10.3390/polym16030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Chitosan is a linear polyelectrolyte with active hydroxyl and amino groups that can be made into chitosan-based hydrogels by different cross-linking methods. Chitosan-based hydrogels also have a three-dimensional network of hydrogels, which can accommodate a large number of aqueous solvents and biofluids. CS, as an ideal drug-carrying material, can effectively encapsulate and protect drugs and has the advantages of being nontoxic, biocompatible, and biodegradable. These advantages make it an ideal material for the preparation of functional hydrogels that can act as wound dressings for skin injuries. This review reports the role of chitosan-based hydrogels in promoting skin repair in the context of the mechanisms involved in skin injury repair. Chitosan-based hydrogels were found to promote skin repair at different process stages. Various functional chitosan-based hydrogels are also discussed.
Collapse
Affiliation(s)
- Xueyan Che
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Jing Hu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Kaicheng Yang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Nan Ma
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Anning Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Dunhua 133000, China
| | - Qi Sun
- Jilin Zhengrong Pharmaceutical Development Co., Ltd., Dunhua 133700, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
52
|
Wang YM, Shen JT. Chitosan-based promising scaffolds for the construction of tailored nanosystems against osteoporosis: Current status and future prospects. J Appl Biomater Funct Mater 2024; 22:22808000241266487. [PMID: 39129376 DOI: 10.1177/22808000241266487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
Despite advancements in therapeutic techniques, restoring bone tissue after damage remains a challenging task. Tissue engineering or targeted drug delivery solutions aim to meet the pressing clinical demand for treatment alternatives by creating substitute materials that imitate the structural and biological characteristics of healthy tissue. Polymers derived from natural sources typically exhibit enhanced biological compatibility and bioactivity when compared to manufactured polymers. Chitosan is a unique polysaccharide derived from chitin through deacetylation, offering biodegradability, biocompatibility, and antibacterial activity. Its cationic charge sets it apart from other polymers, making it a valuable resource for various applications. Modifications such as thiolation, alkylation, acetylation, or hydrophilic group incorporation can enhance chitosan's swelling behavior, cross-linking, adhesion, permeation, controllable drug release, enzyme inhibition, and antioxidative properties. Chitosan scaffolds possess considerable potential for utilization in several biological applications. An intriguing application is its use in the areas of drug distribution and bone tissue engineering. Due to their excellent biocompatibility and lack of toxicity, they are an optimal material for this particular usage. This article provides a comprehensive analysis of osteoporosis, including its pathophysiology, current treatment options, the utilization of natural polymers in disease management, and the potential use of chitosan scaffolds for drug delivery systems aimed at treating the condition.
Collapse
Affiliation(s)
- Ya-Ming Wang
- Department of Endocrine, Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, the Shengzhou Hospital of Shaoxing University), Shengzhou, Zhejiang, China
| | - Jiang-Tao Shen
- Department of Orthopedics, Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, the Shengzhou Hospital of Shaoxing University), Shengzhou, Zhejiang, China
| |
Collapse
|
53
|
Ma S, Ding Q, Xia G, Li A, Li J, Sun P, Ding C, Liu W. Multifunctional biomaterial hydrogel loaded with antler blood peptide effectively promotes wound repair. Biomed Pharmacother 2024; 170:116076. [PMID: 38147738 DOI: 10.1016/j.biopha.2023.116076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
Diabetes is an epidemic in contemporary society, which seriously affects people's health. Therefore, it is imperative to develop a multifunctional wound dressing that can expedite the healing of diabetic wounds. In this study, quaternized oxidized sodium alginate (QOSA) and carboxymethyl chitosan (CMCS) formed hydrogel through Schiff base reaction, and the composite hydrogel was prepared by adding the antioxidant activity of deer antler blood polypeptide (D). The hydrogel exhibits favorable attributes, including a high swelling ratio, biocompatibility, and noteworthy antioxidant, antibacterial, and hemostatic properties. Finally, it was used to evaluate its effectiveness in repairing diabetic wounds. Upon evaluation, this hydrogel can effectively promote diabetic wound healing. It facilitates cell proliferation at the wound site, mitigates inflammatory responses, and enhances the expression of growth factors at the wound site. This suggests that this hydrogel holds significant promise as an ideal candidate for advanced wound dressings.
Collapse
Affiliation(s)
- Shuang Ma
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Guofeng Xia
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Jilin 132101, China
| | - Anning Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Jilin 132101, China
| | - Jianguo Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Jilin 132101, China
| | - Pingping Sun
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Jilin 132101, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Jilin 132101, China; College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
54
|
Wang Y, Wang Z, Lu W, Hu Y. Review on chitosan-based antibacterial hydrogels: Preparation, mechanisms, and applications. Int J Biol Macromol 2024; 255:128080. [PMID: 37977472 DOI: 10.1016/j.ijbiomac.2023.128080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Chitosan (CS) is known for its remarkable properties, such as good biocompatibility, biodegradability, and renewability, in addition to its antibacterial and biological activities. However, as CS is insoluble in water, it displays limited antibacterial performance under neutral and physiological conditions. A viable solution to this problem is grafting chemically modified groups onto the CS framework, thereby increasing its solubility and enhancing its antibacterial effect. Herein, the antibacterial action mechanism of CS and its derivatives is reviewed, confirming the prevalent use of composite materials comprising CS and its derivatives as an antibacterial agent. Generally, the antimicrobial ability of CS-based biomaterials can be enhanced by incorporating supplementary polymers and antimicrobial agents. Research on CS-based composite biomaterials is ongoing and numerous types of biomaterials have been reported, including inorganic nanoparticles, antibacterial agents, and CS derivatives. The development of these composite materials has considerably expanded the application of CS-based antibacterial materials. This study reviews the latest progress in research regarding CS-based composite hydrogels for wound repair, tissue engineering, drug release, water purification, and three-dimensional printing applications. Finally, the summary and future outlook of CS-based antibacterial hydrogels are presented in anticipation of a broader range of applications of CS-based antibacterial hydrogels.
Collapse
Affiliation(s)
- Yixi Wang
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan 614000, China.
| | - Zhicun Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Wenya Lu
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China
| | - Yu Hu
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan 614000, China.
| |
Collapse
|
55
|
Ghorai S, Jana B, Ganguly J. Network-supported and adaptable binding efficacy for flexible and multi-functionalized chitosan/phenolic carbaldehyde hydrogels. Int J Biol Macromol 2023; 253:127004. [PMID: 37734526 DOI: 10.1016/j.ijbiomac.2023.127004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
A thoughtful strategy has been intended to control the hydrogel networking to assess the binding efficacy of multifunctional hydrogel. The processing of two distinct network-supported hydrogels has portrayed to express the operating interactions involved during co-existence with solvents, small molecules, biomolecules, etc. Herein, chitosan has separately functionalized in semisynthetic approaches with 4-hydroxyisopthalaldehyde (ChDA) and 2-hydroxybenzene-1,3,5-tricarbaldehyde (ChTA) to construct different gel networks. The disposition of gel networks ChDA adapts more flexible chain or spine, whereas ChTA possesses restricted movements within gel networks. The gel networks of hydrogels have a significant role in their distinct physical activities. Their gel-bonding elucidations have performed to establish the variation in mechanical, swelling photophysical properties, etc. Remarkable self-fluorescence behaviors are used as a tool for binding study. Distinctive gel networks and their flexibility have investigated against self-fluorescence, UV-Vis, and FTIR against small molecule, Boron trifluoride and biomolecule, and Bovine serum albumin. Hydrogel/BF3 shows variation in fluorescence due to the disposition of gel networks. Hydrogel/BSA quenching of fluorescence at three different temperatures provides the binding constant and Stern-Volmer quenching constant. Theoretical DFT and docking studies successfully established the flexibility against binding study. The controlling of cross-linking or functionalization is very crucial for the development of hydrogel-mediated applications.
Collapse
Affiliation(s)
- Shubhankar Ghorai
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, WB, India.
| | - Biswajit Jana
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, WB, India.
| | - Jhuma Ganguly
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, WB, India.
| |
Collapse
|
56
|
Gholivand K, Mohammadpour M, Derakhshankhah H, Samadian H, Aghaz F, Eshaghi Malekshah R, Rahmatabadi S. Composites based on alginate containing formylphosphazene-crosslinked chitosan and its Cu(II) complex as an antibiotic-free antibacterial hydrogel dressing with enhanced cytocompatibility. Int J Biol Macromol 2023; 253:127297. [PMID: 37813210 DOI: 10.1016/j.ijbiomac.2023.127297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Hydrogels based on chitosan or alginate biopolymers are believed to be desirable for covering skin lesions. In this research, we explored the potential of a new composite hydrogels series of sodium alginate (Alg) filled with cross-linked chitosan to use as hydrogel wound dressings. Cross-linked chitosan (CSPN) was synthesized by Schiff-base reaction with aldehydated cyclophosphazene, and its Cu(II) complex was manufactured and identified. Then, their powder suspension and Alg were transformed into hydrogel via ion-crosslinking with Ca2+. The hydrogel constituents were investigated by using FTIR, XRD, rheological techniques, and thermal analysis including TGA (DTG) and DSC. Moreover, structure optimization calculations were performed with the Material Studio 2017 program based on DFT-D per Dmol3 module. Examination of Alg's interactions with CSPN and CSPN-Cu using this module demonstrated that Alg molecules can be well adsorbed to the particle's surface. By changing the dosage of CSPN and CSPN-Cu, the number and size of pores, swelling rate, degradation behavior, protein absorption rate, cytotoxicity and blood compatibility were changed significantly. Subsequently, we employed erythromycin as a model drug to assess the entrapment efficiency, loading capacity, and drug release rate. FITC staining was selected to verify the hydrogels' intracellular uptake. Assuring the cytocompatibility of Alg-based hydrogels was approved by assessing the survival rate of fibroblast cells using MTT assay. However, the presence of Cu(II) in the developed hydrogels caused a significant antibacterial effect, which was comparable to the antibiotic-containing hydrogels. Our findings predict these porous, biodegradable, and mechanically stable hydrogels potentially have a promising future in the wound healing as antibiotic-free antibacterial dressings.
Collapse
Affiliation(s)
- Khodayar Gholivand
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mahnaz Mohammadpour
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faranak Aghaz
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Soheil Rahmatabadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
57
|
Almajidi YQ, Gupta J, Sheri FS, Zabibah RS, Faisal A, Ruzibayev A, Adil M, Saadh MJ, Jawad MJ, Alsaikhan F, Narmani A, Farhood B. Advances in chitosan-based hydrogels for pharmaceutical and biomedical applications: A comprehensive review. Int J Biol Macromol 2023; 253:127278. [PMID: 37806412 DOI: 10.1016/j.ijbiomac.2023.127278] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The treatment of diseases, such as cancer, is one of the most significant issues correlated with human beings health. Hydrogels (HGs) prepared from biocompatible and biodegradable materials, especially biopolymers, have been effectively employed for the sort of pharmaceutical and biomedical applications, including drug delivery systems, biosensors, and tissue engineering. Chitosan (CS), one of the most abundant bio-polysaccharide derived from chitin, is an efficient biomaterial in the prognosis, diagnosis, and treatment of diseases. CS-based HGs possess some potential advantages, like high values of bioactive encapsulation, efficient drug delivery to a target site, sustained drug release, good biocompatibility and biodegradability, high serum stability, non-immunogenicity, etc., which made them practical and useful for pharmaceutical and biomedical applications. In this review, we summarize recent achievements and advances associated with CS-based HGs for drug delivery, regenerative medicine, disease detection and therapy.
Collapse
Affiliation(s)
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura Pin Code 281406, U.P., India
| | - Fatime Satar Sheri
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Akbarali Ruzibayev
- Department of Food Products Technology, Tashkent Institute of Chemical Technology, Navoi street 32, 100011 Tashkent City, Uzbekistan
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
58
|
Riseh RS, Vazvani MG, Kennedy JF. The application of chitosan as a carrier for fertilizer: A review. Int J Biol Macromol 2023; 252:126483. [PMID: 37625747 DOI: 10.1016/j.ijbiomac.2023.126483] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The smart combination of agriculture and other sciences can greatly reduce the limits of fertilizer use. Chitosan is a linear amino polysaccharide with a rigid structure which has hydrophilic and crystal properties. The formation of intermolecular hydrogen bonds the presence of reactive groups and cross-linking, the formation of salts with organic and inorganic acids with complexing and chelating properties ionic conductivity, film formation are the characteristics of chitosan. With the presence of amino groups, chitosan can form a complex with other compounds and also enter the vascular system of plants and lead to the activation of metabolic-physiological pathways of plants. This polymeric compound can bond with other natural polymers and in combination with fertilizers and nutritional elements, on the one hand, it can provide the nutritional needs of the plant and on the other hand, it also helps to improve the soil texture. Chitosan nanomaterials as a Next-generation fertilizers act as plant immune system enhancers through slow, controlled, and targeted delivery of nutrients to plants. Chitosan can assist agricultural researchers and has become an ideal and effective option with its many applications in various fields.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
59
|
Itzhakov R, Hak H, Sadhasivam S, Belausov E, Fallik E, Spiegelman Z, Sionov E, Poverenov E. Nanogel Particles Based on Modified Nucleosides and Oligosaccharides as Advanced Delivery System. ACS NANO 2023; 17:23020-23031. [PMID: 37934119 DOI: 10.1021/acsnano.3c08627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
This work addresses the challenge of delivering bioactive molecules by designing biocompatible nanogel particles (NGPs) utilizing rationally modified nature-sourced building blocks: capryl-oligochitosan and oxidized inosine. Capryl substituents endowed the resultant NGPs with membrane-penetration capabilities, while purine-containing inosine allowed H-bond/π-π/π-cation interactions. The prepared NGPs were complexed with carboxyfluorescein-labeled single-stranded oligonucleotide (FAM-oligo) and DsRed-encoding plasmid DNA. The successful delivery of FAM-oligo to the cell cytoplasm of the Nicotiana benthamiana plant was observed. Alexa 555-labeled bovine serum albumin (Alexa 555-BSA) was also efficiently encapsulated and delivered to the plant. In addition to delivering FAM-oligo and Alexa 555-BSA separately, NGPs also successfully co-delivered both biomolecules to the plant. Finally, NGPs successfully encapsulated the drug amphotericin B and reduced its toxicity while maintaining its efficacy. The presented findings suggest that NGPs may become a promising platform for the advanced delivery of bioactive molecules in various applications.
Collapse
Affiliation(s)
- Rafael Itzhakov
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Biochemistry and Food Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Hagit Hak
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sudharsan Sadhasivam
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Biochemistry and Food Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
- Institute of Food and Postharvest Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Elazar Fallik
- Institute of Food and Postharvest Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Edward Sionov
- Institute of Food and Postharvest Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Elena Poverenov
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
60
|
Do NHN, Huynh TNA, Le TX, Ha AC, Le PK. Encapsulation of Triphasia trifolia extracts by pH and thermal dual-sensitive chitosan hydrogels for controlled release. Carbohydr Polym 2023; 320:121264. [PMID: 37659803 DOI: 10.1016/j.carbpol.2023.121264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 09/04/2023]
Abstract
Recent studies have developed varied delivery systems incorporating natural compounds to improve the limitations of plant extracts for clinical use while enabling their controlled release at treatment sites. For the first time, ethanolic limeberry extract (Triphasia trifolia) has been successfully encapsulated in thermo-sensitive chitosan hydrogels by a facile in situ loading. The extract-incorporated chitosan hydrogels have a pH value of nearly 7.00, gelation temperatures in the range of 37-38 °C, and exhibit an open-cell porous structure, thus allowing them to absorb and retain 756 % of their mass in water. The in vitro extract release from the hydrogels is driven by both temperature and pH, resulting in more than 70 % of the initial extract being released within the first 24 h. Although the release half-life of hydrogels at pH 7.4 is longer, their release capacity is higher than that at pH 6.5. Upon a 2 °C increase in temperature, the time to release 50 % initial extract is sharply reduced by 20-40 %. The release kinetics from the hydrogels mathematically demonstrated that diffusion is a prominent driving force over chitosan relaxation. Consequently, the developed hydrogels encapsulating the limeberry extract show their heat and pH sensitivity in controlled release for treating chronic wounds.
Collapse
Affiliation(s)
- Nga H N Do
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tuan N A Huynh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tien X Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Anh C Ha
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Phung K Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
61
|
Gong TY, Hsu SH, Chang SW, Chou CC. Effects of the Degree of Phenol Substitution on Molecular Structures and Properties of Chitosan-Phenol-Based Self-Healing Hydrogels. ACS Biomater Sci Eng 2023; 9:6146-6155. [PMID: 37857334 DOI: 10.1021/acsbiomaterials.3c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Click chemistry is commonly used to prepare hydrogels, and chitosan-phenol prepared by using a Schiff base has been widely employed in the field of biomaterials. Chitosan-phenol is a derivative of chitosan; the phenol groups can disrupt both the inter- and intramolecular hydrogen bonds in chitosan, thereby reducing its crystallinity and improving its water solubility. In addition, chitosan-phenol exhibits various beneficial physiological functions. However, it is still unclear whether the degree of phenol substitution in the chitosan main chain affects the molecular interactions and structural properties of the self-healing hydrogels. To explore this issue, we investigated the molecular structure and network of self-healing hydrogels composed of chitosan-phenol with varying degrees of phenol substitution and dibenzaldehyde poly(ethylene oxide) (DB-PEO) using molecular dynamics simulations. We observed that when the degree of phenol substitution in the self-healing hydrogel was less than 15%, an increase in the degree of phenol substitution led to an increase in the interactions between chitosan-phenol and DB-PEO, and it enhanced the dynamic covalent bond cross-linking generated through the Schiff base reaction. However, when the degree of phenol substitution exceeded 15%, excessive phenol groups caused excessive intramolecular interactions within chitosan-phenol molecules, which reduced the binding between chitosan-phenol and DB-PEO. Our results revealed the influence of the degree of phenol substitution on the molecular structure of the self-healing hydrogels and showed an optimal degree of phenol substitution. These findings provide important insights for the future design of self-healing hydrogels based on chitosan and should help in enhancing the applicability of hydrogels in the field of biomedicine.
Collapse
Affiliation(s)
- Tian-Yu Gong
- Institute of Polymer Science and Engineering, National Taiwan University, Roosevelt Road No. 1, Sec. 4, 10617 Taipei, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Roosevelt Road No. 1, Sec. 4, 10617 Taipei, Taiwan
| | - Shu-Wei Chang
- Department of Civil Engineering, College of Engineering, National Taiwan University, Roosevelt Road No. 1, Sec. 4, 10617 Taipei, Taiwan
- Department of Biomedical Engineering, College of Engineering, National Taiwan University, Roosevelt Road No. 1, Sec. 4, 10617 Taipei, Taiwan
| | - Chia-Ching Chou
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, Roosevelt Road No. 1, Sec. 4, 10617 Taipei, Taiwan
| |
Collapse
|
62
|
Jafari H, Namazi H. pH-sensitive biosystem based on laponite RD/chitosan/polyvinyl alcohol hydrogels for controlled delivery of curcumin to breast cancer cells. Colloids Surf B Biointerfaces 2023; 231:113585. [PMID: 37837689 DOI: 10.1016/j.colsurfb.2023.113585] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
In this study, a pH-responsive hydrogels based on laponite rapid dispersion (Lap®)/chitosan (CS)/polyvinyl alcohol (PVA) designed and was used for controlled delivery of the anticancer drug curcumin (CUR). First, it was accomplished by dissolving CUR in Lap® dispersion under the influence of the pH of the environment. Then, in the presence of Lap®CUR cross-linking was incorporated between CS and PVA polymers. The structural features of Lap®CUR/CS@PVA hydrogels are characterized using FT-IR, XRD, SEM/EDS, TEM, TGA, Zeta potential, and XPS. The in vitro drug release profiles confirmed a pH-responsive controlled release of CUR in acidic pH for all hydrogels. During 12 h, the cumulative release of CUR from Lap®CUR/0.1CS@PVA hydrogel was 27.9% and 12.3%, at pH 5.5 and 7.4, respectively. While during three days the release rate reached 48.5% and 18.5%. The CUR release kinetic from hydrogels also suggests that the kinetic data well fitted to the Korsmeyer-Peppas, diffusion-controlled and Fickian diffusion. Furthermore, in vitro cytotoxicity and DAPI staining study clearly illustrated that Lap®CUR/0.1CS@PVA hydrogel had lower cytotoxicity than CUR against MDA-MB 231 cancer cells, which confirmed the controlled release of drug through hydrogels. Meanwhile, in vitro hemolysis, antioxidant and antibacterial tests revealed that the prepared hydrogels have good blood compatibility, excellent antioxidant properties, and antibacterial activity. Based on the obtained results, the designed hydrogels could be potentially applied as pH-controlled drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Hessam Jafari
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
63
|
Zhang Z, Zhu J, Song X, Wen Y, Zhu C, Li J. Biomass-based single- and double-network hydrogels derived from cellulose microfiber and chitosan for potential application as plant growing substrate. Carbohydr Polym 2023; 319:121170. [PMID: 37567711 DOI: 10.1016/j.carbpol.2023.121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 08/13/2023]
Abstract
A series of hydrogels were synthesized from renewable and low-cost micro-sized cellulose fiber. The single-network hydrogel was composed of cellulose fiber and a small amount of another polysaccharide, chitosan, which 'glued' individual cellulose fiber pieces together through Schiff-base bonding. The double-network hydrogel was constructed by adding a secondary network, the covalently crosslinked polyacrylamide, into the single-network hydrogel, which was synthesized by conducting Schiff-base reaction and free radical polymerization at the same time in a facile one-pot process. In both single- and double-network hydrogels, cellulose fiber constituted the dominant component. Both types of hydrogels exhibited good swelling properties. The double-network hydrogel showed much improved stability against soaking in water and higher salt tolerance. Germination experiment with choy sum seeds sowed on hydrogel surface showed that the seeds were able to germinate and further develop roots, shoots, and true leaves, demonstrating the potential of the biomass-derived hydrogels for soilless plant growing applications.
Collapse
Affiliation(s)
- Zhongxing Zhang
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Chenxian Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
64
|
Xiong S, Ye S, Ni P, Zhong M, Shan J, Yuan T, Liang J, Fan Y, Zhang X. Polyvinyl-alcohol, chitosan and graphene-oxide composed conductive hydrogel for electrically controlled fluorescein sodium transdermal release. Carbohydr Polym 2023; 319:121172. [PMID: 37567713 DOI: 10.1016/j.carbpol.2023.121172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 08/13/2023]
Abstract
Accurate and controlled release of drug molecules is crucial for transdermal drug delivery. Electricity, as an adjustable parameter, offers the potential for precise and controllable drug delivery. However, challenges exist in selecting the appropriate drug carrier, electrical parameters, and release model to achieve controlled electronic drug release. To overcome these challenges, this study designed a functional hydrogel using polyvinyl alcohol, chitosan, and graphene oxide as components that can conduct electricity, and constructed a drug transdermal release model using fluorescein sodium salt with proper electrical parameters. The results demonstrated that the hydrogel system exhibited low cytotoxicity, good conductivity, and desirable drug delivery characteristics. The study also integrated the effects of drug release and tissue repair promotion under electrical stimulation. Cell growth was enhanced under low voltage direct current pulses, promoting cell migration and the release of VEGF and FGF. Furthermore, the permeability of fluorescein sodium salt in the hydrogel increased with direct current stimulation. These findings suggest that the carbohydrate polymers hydrogel could serve as a drug carrier for controlled release, and electrical stimulation offers new possibilities for functional drug delivery and transdermal therapy.
Collapse
Affiliation(s)
- Shuting Xiong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Sheng Ye
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Panxianzhi Ni
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Meng Zhong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jing Shan
- Department of Gastroenterology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, 82 Qinglong Road, Chengdu, Sichuan, China
| | - Tun Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China; Sichuan Testing Center for Biomaterials and Medical Devices Co., Ltd, 29 Wangjiang Road, Chengdu, Sichuan, China.
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China; Sichuan Testing Center for Biomaterials and Medical Devices Co., Ltd, 29 Wangjiang Road, Chengdu, Sichuan, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
65
|
Zhao L, Zhou Y, Zhang J, Liang H, Chen X, Tan H. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 2023; 15:2514. [PMID: 37896274 PMCID: PMC10610124 DOI: 10.3390/pharmaceutics15102514] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Hydrogels prepared from natural polymer have attracted extensive attention in biomedical fields such as drug delivery, wound healing, and regenerative medicine due to their good biocompatibility, degradability, and flexibility. This review outlines the commonly used natural polymer in hydrogel preparation, including cellulose, chitosan, collagen/gelatin, alginate, hyaluronic acid, starch, guar gum, agarose, and dextran. The polymeric structure and process/synthesis of natural polymers are illustrated, and natural polymer-based hydrogels including the hydrogel formation and properties are elaborated. Subsequently, the biomedical applications of hydrogels based on natural polymer in drug delivery, tissue regeneration, wound healing, and other biomedical fields are summarized. Finally, the future perspectives of natural polymers and hydrogels based on them are discussed. For natural polymers, novel technologies such as enzymatic and biological methods have been developed to improve their structural properties, and the development of new natural-based polymers or natural polymer derivatives with high performance is still very important and challenging. For natural polymer-based hydrogels, novel hydrogel materials, like double-network hydrogel, multifunctional composite hydrogels, and hydrogel microrobots have been designed to meet the advanced requirements in biomedical applications, and new strategies such as dual-cross-linking, microfluidic chip, micropatterning, and 3D/4D bioprinting have been explored to fabricate advanced hydrogel materials with designed properties for biomedical applications. Overall, natural polymeric hydrogels have attracted increasing interest in biomedical applications, and the development of novel natural polymer-based materials and new strategies/methods for hydrogel fabrication are highly desirable and still challenging.
Collapse
Affiliation(s)
- Lingling Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yifan Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jiaying Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children’s Hospital, Shenzhen 518038, China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xianwu Chen
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315211, China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children’s Hospital, Shenzhen 518038, China
| |
Collapse
|
66
|
Bhattacharyya A, Ham HW, Sonh J, Gunbayar M, Jeffy R, Nagarajan R, Khatun MR, Noh I. 3D bioprinting of complex tissue scaffolds with in situ homogeneously mixed alginate-chitosan-kaolin bioink using advanced portable biopen. Carbohydr Polym 2023; 317:121046. [PMID: 37364947 DOI: 10.1016/j.carbpol.2023.121046] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Control of in situ 3D bioprinting of hydrogel without toxic crosslinker is ideal for tissue regeneration by reinforcing and homogeneously distributing biocompatible reinforcing agent during fabrication of large area and complex tissue engineering scaffolds. In this study, homogeneous mixing, and simultaneous 3D bioprinting of a multicomponent bioink based on alginate (AL)-chitosan (CH), and kaolin was obtained by an advanced pen-type extruder to ensure structural and biological homogeneity during the large area tissue reconstruction. The static, dynamic and cyclic mechanical properties as well as in situ self-standing printability significantly improved with the kaolin concentration for AL-CH bioink-printed samples due to polymer-kaolin nanoclay hydrogen bonding and cross-linking with less amount of calcium ions. The Biowork pen ensures better mixing effectiveness for the kaolin-dispersed AL-CH hydrogels (evident from computational fluid dynamics study, aluminosilicate nanoclay mapping and 3D printing of complex multilayered structures) than the conventional mixing process. Two different cell lines (osteoblast and fibroblast) introduced during large area multilayered 3D bioprinting have confirmed the suitability of such multicomponent bioinks for in vitro even tissue regeneration. The effect of kaolin to promote uniform growth and proliferation of the cells throughout the bioprinted gel matrix is more significant for this advanced pen-type extruder processed samples.
Collapse
Affiliation(s)
- Amitava Bhattacharyya
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Hyeong-Wook Ham
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - JiAe Sonh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Marla Gunbayar
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - R Jeffy
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - R Nagarajan
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Mst Rita Khatun
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
67
|
Leong MY, Kong YL, Harun MY, Looi CY, Wong WF. Current advances of nanocellulose application in biomedical field. Carbohydr Res 2023; 532:108899. [PMID: 37478689 DOI: 10.1016/j.carres.2023.108899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Nanocellulose (NC) is a natural fiber that can be extracted in fibrils or crystals form from different natural sources, including plants, bacteria, and algae. In recent years, nanocellulose has emerged as a sustainable biomaterial for various medicinal applications including drug delivery systems, wound healing, tissue engineering, and antimicrobial treatment due to its biocompatibility, low cytotoxicity, and exceptional water holding capacity for cell immobilization. Many antimicrobial products can be produced due to the chemical functionality of nanocellulose, such disposable antibacterial smart masks for healthcare use. This article discusses comprehensively three types of nanocellulose: cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and bacterial nanocellulose (BNC) in view of their structural and functional properties, extraction methods, and the distinctive biomedical applications based on the recently published work. On top of that, the biosafety profile and the future perspectives of nanocellulose-based biomaterials have been further discussed in this review.
Collapse
Affiliation(s)
- M Y Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Y L Kong
- Department of Engineering and Applied Sciences, American Degree Program, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - M Y Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - C Y Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - W F Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
68
|
Pérez-Díaz MA, Martínez-Colin EJ, González-Torres M, Ortega-Sánchez C, Sánchez-Sánchez R, Delgado-Meza J, Machado-Bistraín F, Martínez-López V, Giraldo D, Márquez-Gutiérrez ÉA, Jiménez-Ávalos JA, García-Carvajal ZY, Melgarejo-Ramírez Y. Chondrogenic Potential of Human Adipose-Derived Mesenchymal Stromal Cells in Steam Sterilized Gelatin/Chitosan/Polyvinyl Alcohol Hydrogels. Polymers (Basel) 2023; 15:3938. [PMID: 37835986 PMCID: PMC10574893 DOI: 10.3390/polym15193938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Cross-linked polymer blends from natural compounds, namely gelatin (Gel), chitosan (CS), and synthetic poly (vinyl alcohol) (PVA), have received increasing scrutiny because of their versatility, biocompatibility, and ease of use for tissue engineering. Previously, Gel/CS/PVA [1:1:1] hydrogel produced via the freeze-drying process presented enhanced mechanical properties. This study aimed to investigate the biocompatibility and chondrogenic potential of a steam-sterilized Gel/CS/PVA hydrogel using differentiation of human adipose-derived mesenchymal stromal cells (AD-hMSC) and cartilage marker expression. AD-hMSC displayed fibroblast-like morphology, 90% viability, and 69% proliferative potential. Mesenchymal profiles CD73 (98.3%), CD90 (98.6%), CD105 (97.0%), CD34 (1.11%), CD45 (0.27%), HLA-DR (0.24%); as well as multilineage potential, were confirmed. Chondrogenic differentiation of AD-hMSC in monolayer revealed the formation of cartilaginous nodules composed of glycosaminoglycans after 21 days. Compared to nonstimulated cells, hMSC-derived chondrocytes shifted the expression of CD49a from 2.82% to 40.6%, CD49e from 51.4% to 92.2%, CD54 from 9.66 to 37.2%, and CD151 from 45.1% to 75.8%. When cultured onto Gel/CS/PVA hydrogel during chondrogenic stimulation, AD-hMSC changed to polygonal morphology, and chondrogenic nodules increased by day 15, six days earlier than monolayer-differentiated cells. SEM analysis showed that hMSC-derived chondrocytes adhered to the surface with extended filopodia and abundant ECM formation. Chondrogenic nodules were positive for aggrecan and type II collagen, two of the most abundant components in cartilage. This study supports the biocompatibility of AD-hMSC onto steam-sterilized GE/CS/PVA hydrogels and its improved potential for chondrocyte differentiation. Hydrogel properties were not altered after steam sterilization, which is relevant for biosafety and biomedical purposes.
Collapse
Affiliation(s)
- Mario Alberto Pérez-Díaz
- Laboratorio de Biotecnología, Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (M.A.P.-D.); (M.G.-T.); (C.O.-S.); (J.D.-M.); (F.M.-B.)
| | - Erick Jesús Martínez-Colin
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de México 07360, Mexico
| | - Maykel González-Torres
- Laboratorio de Biotecnología, Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (M.A.P.-D.); (M.G.-T.); (C.O.-S.); (J.D.-M.); (F.M.-B.)
| | - Carmina Ortega-Sánchez
- Laboratorio de Biotecnología, Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (M.A.P.-D.); (M.G.-T.); (C.O.-S.); (J.D.-M.); (F.M.-B.)
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación LGII, Ciudad de México 14389, Mexico; (R.S.-S.)
| | - Josselin Delgado-Meza
- Laboratorio de Biotecnología, Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (M.A.P.-D.); (M.G.-T.); (C.O.-S.); (J.D.-M.); (F.M.-B.)
| | - Fernando Machado-Bistraín
- Laboratorio de Biotecnología, Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (M.A.P.-D.); (M.G.-T.); (C.O.-S.); (J.D.-M.); (F.M.-B.)
| | - Valentín Martínez-López
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación LGII, Ciudad de México 14389, Mexico; (R.S.-S.)
| | - David Giraldo
- Department of Cell and Tissue Biology, School of Medicine, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Érik Agustín Márquez-Gutiérrez
- Cirugía Plástica y Reconstructiva, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación LGII, Ciudad de México 14389, Mexico;
| | - Jorge Armando Jiménez-Ávalos
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), Guadalajara 44270, Mexico;
| | - Zaira Yunuen García-Carvajal
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), Guadalajara 44270, Mexico;
| | - Yaaziel Melgarejo-Ramírez
- Laboratorio de Biotecnología, Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (M.A.P.-D.); (M.G.-T.); (C.O.-S.); (J.D.-M.); (F.M.-B.)
| |
Collapse
|
69
|
Xu J, Zhang Z, Ren X, Zhang Y, Zhou Y, Lan X, Guo L. In situ photo-crosslinked hydrogel promotes oral mucosal wound healing through sustained delivery of ginsenoside Rg1. Front Bioeng Biotechnol 2023; 11:1252574. [PMID: 37840668 PMCID: PMC10569426 DOI: 10.3389/fbioe.2023.1252574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Oral mucosal wounds exhibit an increased susceptibility to inflammation as a consequence of their direct exposure to a diverse range of microorganisms. This causes pain, slow healing, and other complications that interfere with patients' daily activities like eating and speaking. Consequently, patients experience a significant decline in their overall quality of life. Therefore, the pursuit of novel treatment approaches is of great importance. In this study, ginsenoside Rg1, a natural active substance extracted from ginseng root, was chosen as a therapeutic agent. It was encapsulated in a screened photo-crosslinked hydrogel scaffold for the treatment of mucosal defects in the rat palate. The results demonstrated that Rg1-hydrogel possessed excellent physical and chemical properties, and that oral mucosa wounds treated with Rg1-hydrogel exhibited the greatest healing performance, as evidenced by more pronounced wound re-epithelialization, increased collagen deposition, and decreased inflammatory infiltration. Subsequent investigations in molecular biology confirmed that Rg1-hydrogel stimulated the secretion of repair-related factors and inhibited the secretion of inflammatory factors. This study demonstrated that the hydrogel containing ginsenoside Rg1 significantly promotes oral mucosal tissue healing in vivo. Based on the findings, it can be inferred that the Rg1-hydrogel has promising prospects for the therapeutic management of oral mucosal wounds.
Collapse
Affiliation(s)
- Jie Xu
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Zhenghao Zhang
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Xiaofeng Ren
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Yunan Zhang
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Yang Zhou
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Xiaorong Lan
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Ling Guo
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| |
Collapse
|
70
|
Lee H, Jang J, Lee J, Shin M, Lee JS, Son D. Stretchable Gold Nanomembrane Electrode with Ionic Hydrogel Skin-Adhesive Properties. Polymers (Basel) 2023; 15:3852. [PMID: 37765706 PMCID: PMC10537659 DOI: 10.3390/polym15183852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Skin has a dynamic surface and offers essential information through biological signals originating from internal organs, blood vessels, and muscles. Soft and stretchable bioelectronics can be used in wearable machines for long-term stability and to continuously obtain distinct bio-signals in conjunction with repeated expansion and contraction with physical activities. While monitoring bio-signals, the electrode and skin must be firmly attached for high signal quality. Furthermore, the signal-to-noise ratio (SNR) should be high enough, and accordingly, the ionic conductivity of an adhesive hydrogel needs to be improved. Here, we used a chitosan-alginate-chitosan (CAC) triple hydrogel layer as an interface between the electrodes and the skin to enhance ionic conductivity and skin adhesiveness and to minimize the mechanical mismatch. For development, thermoplastic elastomer Styrene-Ethylene-Butylene-Styrene (SEBS) dissolved in toluene was used as a substrate, and gold nanomembranes were thermally evaporated on SEBS. Subsequently, CAC triple layers were drop-casted onto the gold surface one by one and dried successively. Lastly, to demonstrate the performance of our electrodes, a human electrocardiogram signal was monitored. The electrodes coupled with our CAC triple hydrogel layer showed high SNR with clear PQRST peaks.
Collapse
Affiliation(s)
- Hyelim Lee
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaepyo Jang
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea (M.S.)
| | - Jaebeom Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea (M.S.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mikyung Shin
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea (M.S.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jung Seung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea (M.S.)
- Department of Superintelligence Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
71
|
Liu H, Chen R, Wang P, Fu J, Tang Z, Xie J, Ning Y, Gao J, Zhong Q, Pan X, Wang D, Lei M, Li X, Zhang Y, Wang J, Cheng H. Electrospun polyvinyl alcohol-chitosan dressing stimulates infected diabetic wound healing with combined reactive oxygen species scavenging and antibacterial abilities. Carbohydr Polym 2023; 316:121050. [PMID: 37321740 DOI: 10.1016/j.carbpol.2023.121050] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
Diabetic wounds (DW) are constantly challenged by excessive reactive oxygen species (ROS) accumulation and susceptibility to bacterial contamination. Therefore, the elimination of ROS in the immediate vicinity and the eradication of local bacteria are critical to stimulating the efficient healing of diabetic wounds. In the current study, we encapsulated mupirocin (MP) and cerium oxide nanoparticles (CeNPs) into a polyvinyl alcohol/chitosan (PVA/CS) polymer, and then a PVA/chitosan nanofiber membrane wound dressing was fabricated using electrostatic spinning, which is a simple and efficient method for fabricating membrane materials. The PVA/chitosan nanofiber dressing provided a controlled release of MP, which produced rapid and long-lasting bactericidal activity against both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains. Simultaneously, the CeNPs embedded in the membrane exhibited the desired ROS scavenging capacity to maintain the local ROS at a normal physiological level. Moreover, the biocompatibility of the multifunctional dressing was evaluated both in vitro and in vivo. Taken together, PVA-CS-CeNPs-MP integrated the desirable features of a wound dressing, including rapid and broad-spectrum antimicrobial and ROS scavenging activities, easy application, and good biocompatibility. The results validated the effectiveness of our PVA/chitosan nanofiber dressing, highlighting its promising translational potential in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Haibing Liu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Orthopaedic, Affiliated Hengyang Hospital, Southern Medical University, Hengyang Central Hospital, Hengyang 421001, China
| | - Rong Chen
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Pinkai Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinlang Fu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zinan Tang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiajun Xie
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanhong Ning
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jian Gao
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiang Zhong
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin Pan
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ding Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mingyuan Lei
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqi Li
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Zhang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Jian Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Hao Cheng
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
72
|
Pan S, Zhu C, Wu Y, Tao L. Chitosan-Based Self-Healing Hydrogel: From Fabrication to Biomedical Application. Polymers (Basel) 2023; 15:3768. [PMID: 37765622 PMCID: PMC10535505 DOI: 10.3390/polym15183768] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Biocompatible self-healing hydrogels are new-generation smart soft materials that hold great promise in biomedical fields. Chitosan-based self-healing hydrogels, mainly prepared via dynamic imine bonds, have attracted broad attention due to their mild preparation conditions, excellent biocompatibility, and self-recovery ability under a physiological environment. In this review, we present a comprehensive overview of the design and fabrication of chitosan-based self-healing hydrogels, and summarize their biomedical applications in tissue regeneration, customized drug delivery, smart biosensors, and three/four dimensional (3D/4D) printing. Finally, we will discuss the challenges and future perspectives for the development of chitosan-based self-healing hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Siyu Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China;
| | - Chongyu Zhu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China;
| | - Yuwei Wu
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
73
|
Egorov AR, Kirichuk AA, Rubanik VV, Rubanik VV, Tskhovrebov AG, Kritchenkov AS. Chitosan and Its Derivatives: Preparation and Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6076. [PMID: 37763353 PMCID: PMC10532898 DOI: 10.3390/ma16186076] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
This comprehensive review illuminates the various methods of chitosan extraction, its antibacterial properties, and its multifarious applications in diverse sectors. We delve into chemical, physical, biological, hybrid, and green extraction techniques, each of which presents unique advantages and disadvantages. The choice of method is dictated by multiple variables, including the desired properties of chitosan, resource availability, cost, and environmental footprint. We explore the intricate relationship between chitosan's antibacterial activity and its properties, such as cationic density, molecular weight, water solubility, and pH. Furthermore, we spotlight the burgeoning applications of chitosan-based materials like films, nanoparticles, nonwoven materials, and hydrogels across the food, biomedical, and agricultural sectors. The review concludes by highlighting the promising future of chitosan, underpinned by technological advancements and growing sustainability consciousness. However, the critical challenges of optimizing chitosan's production for sustainability and efficiency remain to be tackled.
Collapse
Affiliation(s)
- Anton R. Egorov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Anatoly A. Kirichuk
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Alexander G. Tskhovrebov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Andreii S. Kritchenkov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| |
Collapse
|
74
|
Eghbali H, Sadeghi M, Noroozi M, Movahedifar F. Vanillin crosslinked 3D porous chitosan hydrogel for biomedicine applications: Preparation and characterization. J Mech Behav Biomed Mater 2023; 145:106044. [PMID: 37506568 DOI: 10.1016/j.jmbbm.2023.106044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Crosslinked chitosan (CS) is one of the most useable hydrogels in biomedicine and tissue engineering. Unlike most chitosan crosslinkers that are toxic, such as glutaraldehyde, vanillin is a natural, biocompatible, and antimicrobial alternative. The crosslinking of chitosan and vanillin consists of Schiff base bonds between the amines of chitosan and the aldehydes of vanillin, in addition to hydrogen bonds formed across the network. In most studies, the combination of chitosan and vanillin has been investigated in small sizes (micro/nanoscale and biofilms). In this study, a chitosan-vanillin (CV) hydrogel was studied on a macroscale with a three-dimensional porous structure, and it was compared with chitosan crosslinked with glutaraldehyde (CG) on the same scale. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (FE-SEM) used to identify the bonds formed and examine the morphology of the hydrogels. The gel content, swelling, porosity, mechanical properties, cell viability (on L929 and mesenchymal cells), and antibacterial activity (against Escherichia coli and Staphylococcus aureus) of the samples were investigated. The results showed that the CV had both gel content and high porosity (>90%), with an interconnected porous network of uniform pore size. The CV hydrogel exhibited good antibacterial activity and cell viability. In terms of mechanical properties, CV has weaker mechanical properties compared to CG in the dry state, while the mechanical properties of CV have more improved in the swollen state compared to CG.
Collapse
Affiliation(s)
- Hadis Eghbali
- Department of Chemical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohsen Sadeghi
- Department of Chemical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mojgan Noroozi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fahimeh Movahedifar
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
75
|
Pourtalebi Jahromi L, Rothammer M, Fuhrmann G. Polysaccharide hydrogel platforms as suitable carriers of liposomes and extracellular vesicles for dermal applications. Adv Drug Deliv Rev 2023; 200:115028. [PMID: 37517778 DOI: 10.1016/j.addr.2023.115028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Lipid-based nanocarriers have been extensively investigated for their application in drug delivery. Particularly, liposomes are now clinically established for treating various diseases such as fungal infections. In contrast, extracellular vesicles (EVs) - small cell-derived nanoparticles involved in cellular communication - have just recently sparked interest as drug carriers but their development is still at the preclinical level. To drive this development further, the methods and technologies exploited in the context of liposome research should be applied in the domain of EVs to facilitate and accelerate their clinical translation. One of the crucial steps for EV-based therapeutics is designing them as proper dosage forms for specific applications. This review offers a comprehensive overview of state-of-the-art polysaccharide-based hydrogel platforms designed for artificial and natural vesicles with application in drug delivery to the skin. We discuss their various physicochemical and biological properties and try to create a sound basis for the optimization of EV-embedded hydrogels as versatile therapeutic avenues.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Markus Rothammer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany; FAU NeW, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
76
|
Wu M, Mao S, Liu X, Liu Y, Cong P, Lv J, Tian H, Zhao Y. Strong tissue adhesive polyelectrolyte complex powders based on low molecular weight chitosan for acute hemorrhage control. Int J Biol Macromol 2023; 248:125755. [PMID: 37429337 DOI: 10.1016/j.ijbiomac.2023.125755] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Self-gelling and bioadhesive powders offered promising effective hemostats to suit irregularly shaped, complex and non-compressible wounds for clinical applications. In the current study, chitosan based polyelectrolyte complex coacervate were simply prepared by mixing high concentrations (10 %) of low molecular weight chitosan (CS) and polyacrylic acid (PAA) solutions. Obtained by lyophilization, the physical cross-linked polyelectrolyte complex powders would form a gel within 5 s upon hydration, which demonstrated excellent mechanical properties, significant antibacterial activities, strong and lasting adhesion on wet tissues in physiological environment. In vitro blood clotting assays showed that the CS/PAA powders could remarkably aggregate blood cells and accelerate blood clotting process. As studied by diverse hemorrhage models, including rat tail, liver and heart injuries and dog incision, CS/PAA powders significantly facilitated the decrease of blood loss as well as hemostatic time by creating robust physical barriers and promoting blood clot formation on the bleeding sites. These outstanding properties in terms of easy preparation, rapid self-gelling, strong wet adhesion, effective hemostasis and shape-adaptability endowed CS/PAA polyelectrolyte complex powders with great potential in managing acute hemorrhage of non-compressible trauma.
Collapse
Affiliation(s)
- Mi Wu
- Jihua Laboratory, Foshan, Guangdong 528200, China
| | - Shun Mao
- Shenyang Medical College, Shenyang 110034, China
| | - Xu Liu
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Yunen Liu
- Shenyang Medical College, Shenyang 110034, China.
| | - Peifang Cong
- Shenyang Medical College, Shenyang 110034, China
| | - Jianhua Lv
- Jihua Laboratory, Foshan, Guangdong 528200, China
| | - Huaqin Tian
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China.
| | - Yan Zhao
- Jihua Laboratory, Foshan, Guangdong 528200, China.
| |
Collapse
|
77
|
Niu Y, Wu J, Kang Y, Sun P, Xiao Z, Zhao D. Recent advances of magnetic chitosan hydrogel: Preparation, properties and applications. Int J Biol Macromol 2023; 247:125722. [PMID: 37419264 DOI: 10.1016/j.ijbiomac.2023.125722] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Magnetic chitosan hydrogels are organic-inorganic composite material with the characteristics of both magnetic materials and natural polysaccharides. Due to its biocompatibility, low toxicity and biodegradability, chitosan, a natural polymer has been widely used for preparing magnetic hydrogels. The addition of magnetic nanoparticles to chitosan hydrogels not only improves their mechanical strength, but also endows them with magnetic thermal effects, targeting capabilities, magnetically-sensitive release characteristics, easy separation and recovery, thus enabling them to be used in various applications including drug delivery, magnetic resonance imaging, magnetothermal therapy, and adsorption of heavy metals and dyes. In this review, the physical and chemical crosslinking methods of chitosan hydrogels and the methods for binding magnetic nanoparticles in hydrogel networks are first introduced. Subsequently, the properties of magnetic chitosan hydrogels were summarized including mechanical properties, self-healing, pH responsiveness and properties in magnetic fields. Finally, the potential for further technological and applicative advancements of magnetic chitosan hydrogels is discussed.
Collapse
Affiliation(s)
- Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Jiahe Wu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
78
|
Chelu M, Musuc AM, Popa M, Calderon Moreno JM. Chitosan Hydrogels for Water Purification Applications. Gels 2023; 9:664. [PMID: 37623119 PMCID: PMC10453846 DOI: 10.3390/gels9080664] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Chitosan-based hydrogels have gained significant attention for their potential applications in water treatment and purification due to their remarkable properties such as bioavailability, biocompatibility, biodegradability, environmental friendliness, high pollutants adsorption capacity, and water adsorption capacity. This article comprehensively reviews recent advances in chitosan-based hydrogel materials for water purification applications. The synthesis methods, structural properties, and water purification performance of chitosan-based hydrogels are critically analyzed. The incorporation of various nanomaterials into chitosan-based hydrogels, such as nanoparticles, graphene, and metal-organic frameworks, has been explored to enhance their performance. The mechanisms of water purification, including adsorption, filtration, and antimicrobial activity, are also discussed in detail. The potential of chitosan-based hydrogels for the removal of pollutants, such as heavy metals, organic contaminants, and microorganisms, from water sources is highlighted. Moreover, the challenges and future perspectives of chitosan-based hydrogels in water treatment and water purification applications are also illustrated. Overall, this article provides valuable insights into the current state of the art regarding chitosan-based hydrogels for water purification applications and highlights their potential for addressing global water pollution challenges.
Collapse
Affiliation(s)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| | | | - Jose M. Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| |
Collapse
|
79
|
Itzhakov R, Eretz-Kdosha N, Silberstein E, Alfer T, Gvirtz R, Fallik E, Ogen-Shtern N, Cohen G, Poverenov E. Oligochitosan and oxidized nucleoside-based bioderived hydrogels for wound healing. Carbohydr Polym 2023; 314:120947. [PMID: 37173046 DOI: 10.1016/j.carbpol.2023.120947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/28/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Herein, we report biocompatible hydrogel for wound healing that was prepared using nature-sourced building blocks. For the first time, OCS was employed as a building macromolecule to form bulk hydrogels along with the nature-sourced nucleoside derivative (inosine dialdehyde, IdA) as the cross-linker. A strong correlation was obtained between the mechanical properties and stability of the prepared hydrogels with a cross-linker concentration. The Cryo-SEM images of IdA/OCS hydrogels showed an interconnected spongy-like porous structure. Alexa 555 labeled bovine serum albumin was incorporated into the hydrogels matrix. The release kinetics studies under physiological conditions indicated that cross-linker concentration could also control the release rate. The potential of hydrogels in wound healing applications was tested in vitro and ex vivo on human skin. Topical application of the hydrogel was excellently tolerated by the skin with no impairment of epidermal viability or irritation, determined by MTT and IL-1α assays, respectively. The hydrogels were used to load and deliver epidermal growth factor (EGF), showing an increase in its ameliorating action, effectively enhancing wound closure inflicted by punch biopsy. Furthermore, BrdU incorporation assay performed in both fibroblast and keratinocyte cells revealed an increased proliferation in hydrogel-treated cells and an enhancement of EGF impact in keratinocytes.
Collapse
Affiliation(s)
- Rafael Itzhakov
- Agro-Nanotechnology and Advanced Materials Center, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, Biochemistry, and Food Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Noy Eretz-Kdosha
- The Skin Research Institute, Dead Sea & Arava Science Center, Masada 86910, Israel Eilat Campus, Ben-Gurion University of the Negev, Eilat 8855630, Israel.
| | - Eldad Silberstein
- Department of Plastic Surgery, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Topaz Alfer
- The Skin Research Institute, Dead Sea & Arava Science Center, Masada 86910, Israel Eilat Campus, Ben-Gurion University of the Negev, Eilat 8855630, Israel.
| | - Raanan Gvirtz
- The Skin Research Institute, Dead Sea & Arava Science Center, Masada 86910, Israel Eilat Campus, Ben-Gurion University of the Negev, Eilat 8855630, Israel.
| | - Elazar Fallik
- Agro-Nanotechnology and Advanced Materials Center, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.
| | - Navit Ogen-Shtern
- The Skin Research Institute, Dead Sea & Arava Science Center, Masada 86910, Israel Eilat Campus, Ben-Gurion University of the Negev, Eilat 8855630, Israel; Eilat Campus, Ben-Gurion University of the Negev, Eilat, Israel.
| | - Guy Cohen
- The Skin Research Institute, Dead Sea & Arava Science Center, Masada 86910, Israel Eilat Campus, Ben-Gurion University of the Negev, Eilat 8855630, Israel; Eilat Campus, Ben-Gurion University of the Negev, Eilat, Israel.
| | - Elena Poverenov
- Agro-Nanotechnology and Advanced Materials Center, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.
| |
Collapse
|
80
|
Yasin SNN, Said Z, Halib N, Rahman ZA, Mokhzani NI. Polymer-Based Hydrogel Loaded with Honey in Drug Delivery System for Wound Healing Applications. Polymers (Basel) 2023; 15:3085. [PMID: 37514474 PMCID: PMC10383286 DOI: 10.3390/polym15143085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 07/30/2023] Open
Abstract
Excellent wound dressings should have crucial components, including high porosity, non-toxicity, high water absorption, and the ability to retain a humid environment in the wound area and facilitate wound healing. Unfortunately, current wound dressings hamper the healing process, with poor antibacterial, anti-inflammatory, and antioxidant activity, frequent dressing changes, low biodegradability, and poor mechanical properties. Hydrogels are crosslinked polymer chains with three-dimensional (3D) networks that have been applicable as wound dressings. They could retain a humid environment on the wound site, provide a protective barrier against pathogenic infections, and provide pain relief. Hydrogel can be obtained from natural, synthetic, or hybrid polymers. Honey is a natural substance that has demonstrated several therapeutic efficacies, including anti-inflammatory, antibacterial, and antioxidant activity, which makes it beneficial for wound treatment. Honey-based hydrogel wound dressings demonstrated excellent characteristics, including good biodegradability and biocompatibility, stimulated cell proliferation and reepithelization, inhibited bacterial growth, and accelerated wound healing. This review aimed to demonstrate the potential of honey-based hydrogel in wound healing applications and complement the studies accessible regarding implementing honey-based hydrogel dressing for wound healing.
Collapse
Affiliation(s)
- Siti Nor Najihah Yasin
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| | - Zulfahmi Said
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| | - Nadia Halib
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| | - Zulaiha A Rahman
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| | - Noor Izzati Mokhzani
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| |
Collapse
|
81
|
Virmani T, Kumar G, Sharma A, Pathak K, Akhtar MS, Afzal O, Altamimi ASA. Amelioration of Cancer Employing Chitosan, Its Derivatives, and Chitosan-Based Nanoparticles: Recent Updates. Polymers (Basel) 2023; 15:2928. [PMID: 37447573 DOI: 10.3390/polym15132928] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The limitations associated with the conventional treatment of cancer have necessitated the design and development of novel drug delivery systems based mainly on nanotechnology. These novel drug delivery systems include various kinds of nanoparticles, such as polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, hydrogels, and polymeric micelles. Among the various kinds of novel drug delivery systems, chitosan-based nanoparticles have attracted the attention of researchers to treat cancer. Chitosan is a polycationic polymer generated from chitin with various characteristics such as biocompatibility, biodegradability, non-toxicity, and mucoadhesiveness, making it an ideal polymer to fabricate drug delivery systems. However, chitosan is poorly soluble in water and soluble in acidic aqueous solutions. Furthermore, owing to the presence of reactive amino groups, chitosan can be chemically modified to improve its physiochemical properties. Chitosan and its modified derivatives can be employed to fabricate nanoparticles, which are used most frequently in the pharmaceutical sector due to their possession of various characteristics such as nanosize, appropriate pharmacokinetic and pharmacodynamic properties, non-immunogenicity, improved stability, and improved drug loading capacity. Furthermore, it is capable of delivering nucleic acids, chemotherapeutic medicines, and bioactives using modified chitosan. Chitosan and its modified derivative-based nanoparticles can be targeted to specific cancer sites via active and passive mechanisms. Based on chitosan drug delivery systems, many anticancer drugs now have better effectiveness, potency, cytotoxicity, or biocompatibility. The characteristics of chitosan and its chemically tailored derivatives, as well as their use in cancer therapy, will be examined in this review.
Collapse
Affiliation(s)
- Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah 206001, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha 62223, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
82
|
Co CM, Nguyen T, Vaish B, Izuagbe S, Borrelli J, Tang L. Biomolecule-releasing bioadhesive for glenoid labrum repair through induced host progenitor cell responses. J Orthop Res 2023; 41:1624-1636. [PMID: 36448179 PMCID: PMC10355087 DOI: 10.1002/jor.25494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Glenoid labral tears occur with repetitive dislocation events and are common injuries observed in shoulder arthroscopic procedures. Although surgery can restore shoulder anatomy, repair is associated with poor clinical outcomes, which may be attributed to the poor regenerative capability of glenoid labral fibrocartilage. Thus, this study was designed to assess whether in situ tissue regeneration via biomolecule-stimulated recruitment of progenitor cells is a viable approach for the regeneration of labral tears. We developed a click chemistry-based bioadhesive to improve labral repair and reduce local inflammatory responses due to trauma. Additionally, we previously identified the presence of progenitor cells in the human labrum, which can be recruited by platelet-derived growth factor (PDGF). Thus, we hypothesized that PDGF-releasing adhesives could induce the regenerative responses of progenitor cells at the injury site to improve labral healing. In a rat glenoid labral tear model, we evaluated the effect of PDGF-releasing adhesives on promoting progenitor cells to participate in labral tear healing. After 3 and 6 weeks, the labrum was histologically analyzed for inflammatory responses, progenitor cell recruitment, proliferation, and extracellular matrix (ECM) production (collagen and glycosaminoglycan). Our results showed that adhesives alone considerably reduced local inflammatory responses and labral tissue dissolution. PDGF-releasing adhesives significantly increased progenitor cell recruitment, proliferation, and ECM production. These results demonstrate that by accelerating autologous progenitor cell responses, PDGF-releasing adhesives represent a novel clinically relevant strategy to improve the healing of glenoid labral tears.
Collapse
Affiliation(s)
- Cynthia M Co
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Tam Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Bhavya Vaish
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Samira Izuagbe
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Joseph Borrelli
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
83
|
Zhang Y, Zhu Y, Ma P, Wu H, Xiao D, Zhang Y, Sui X, Zhang L, Dong A. Functional carbohydrate-based hydrogels for diabetic wound therapy. Carbohydr Polym 2023; 312:120823. [PMID: 37059550 DOI: 10.1016/j.carbpol.2023.120823] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Diabetes wound are grave and universal complications of diabetes. Owing to poor treatment course, high amputation rate and mortality, diabetes wound treatment and care have become a global challenge. Wound dressings have received much attention due to their ease of use, good therapeutic effect, and low costs. Among them, carbohydrate-based hydrogels with excellent biocompatibility are considered to be the best candidates for wound dressings. Based on this, we first systematically summarized the problems and healing mechanism of diabetes wounds. Next, common treatment methods and wound dressings were discussed, and the application of various carbohydrate-based hydrogels and their corresponding functionalization (antibacterial, antioxidant, autoxidation and bioactive substance delivery) in the treatment of diabetes wounds were emphatically introduced. Ultimately, the future development of carbohydrate-based hydrogel dressings was proposed. This review aims to provide a deeper understanding of wound treatment and theoretical support for the design of hydrogel dressings.
Collapse
Affiliation(s)
- Yu Zhang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | - Douxin Xiao
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, People's Republic of China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| |
Collapse
|
84
|
López-González I, Hernández-Heredia AB, Rodríguez-López MI, Auñón-Calles D, Boudifa M, Gabaldón JA, Meseguer-Olmo L. Evaluation of the In Vitro Antimicrobial Efficacy against Staphylococcus aureus and epidermidis of a Novel 3D-Printed Degradable Drug Delivery System Based on Polycaprolactone/Chitosan/Vancomycin-Preclinical Study. Pharmaceutics 2023; 15:1763. [PMID: 37376211 DOI: 10.3390/pharmaceutics15061763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Acute and chronic bone infections, especially those caused by methicillin-resistant Staphylococcus aureus (MRSA), remains a major complication and therapeutic challenge. It is documented that local administration of vancomycin offers better results than the usual routes of administration (e.g., intravenous) when ischemic areas are present. In this work, we evaluate the antimicrobial efficacy against S. aureus and S. epidermidis of a novel hybrid 3D-printed scaffold based on polycaprolactone (PCL) and a chitosan (CS) hydrogel loaded with different vancomycin (Van) concentrations (1, 5, 10, 20%). Two cold plasma treatments were used to improve the adhesion of CS hydrogels to the PCL scaffolds by decreasing PCL hydrophobicity. Vancomycin release was measured by means of HPLC, and the biological response of ah-BM-MSCs growing in the presence of the scaffolds was evaluated in terms of cytotoxicity, proliferation, and osteogenic differentiation. The PCL/CS/Van scaffolds tested were found to be biocompatible, bioactive, and bactericide, as demonstrated by no cytotoxicity (LDH activity) or functional alteration (ALP activity, alizarin red staining) of the cultured cells and by bacterial inhibition. Our results suggest that the scaffolds developed would be excellent candidates for use in a wide range of biomedical fields such as drug delivery systems or tissue engineering applications.
Collapse
Affiliation(s)
- Iván López-González
- Tissue Regeneration and Repair Group: Orthobiology, Biomaterials and Tissue Engineering, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Ana Belén Hernández-Heredia
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - María Isabel Rodríguez-López
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - David Auñón-Calles
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Mohamed Boudifa
- CRITT-Matériaux Innovation, 9 Rue Claude Chrétien, Campus Sup Ardenne, 08000 Charleville-Mézières, France
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Luis Meseguer-Olmo
- Tissue Regeneration and Repair Group: Orthobiology, Biomaterials and Tissue Engineering, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
85
|
Budai L, Budai M, Fülöpné Pápay ZE, Vilimi Z, Antal I. Rheological Considerations of Pharmaceutical Formulations: Focus on Viscoelasticity. Gels 2023; 9:469. [PMID: 37367140 DOI: 10.3390/gels9060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Controlling rheological properties offers the opportunity to gain insight into the physical characteristics, structure, stability and drug release rate of formulations. To better understand the physical properties of hydrogels, not only rotational but also oscillatory experiments should be performed. Viscoelastic properties, including elastic and viscous properties, are measured using oscillatory rheology. The gel strength and elasticity of hydrogels are of great importance for pharmaceutical development as the application of viscoelastic preparations has considerably expanded in recent decades. Viscosupplementation, ophthalmic surgery and tissue engineering are just a few examples from the wide range of possible applications of viscoelastic hydrogels. Hyaluronic acid, alginate, gellan gum, pectin and chitosan are remarkable representatives of gelling agents that attract great attention applied in biomedical fields. This review provides a brief summary of rheological properties, highlighting the viscoelasticity of hydrogels with great potential in biomedicine.
Collapse
Affiliation(s)
- Lívia Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - Marianna Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | | | - Zsófia Vilimi
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| |
Collapse
|
86
|
Zhang T, Guo Y, Chen Y, Peng X, Toufouki S, Yao S. A multifunctional and sustainable poly(ionic liquid)-quaternized chitosan hydrogel with thermal-triggered reversible adhesion. Int J Biol Macromol 2023; 242:125198. [PMID: 37285877 DOI: 10.1016/j.ijbiomac.2023.125198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
A quaternized chitosan (QCS)@poly(ionic liquid) (PIL) hydrogel adhesive was prepared by in-situ ultraviolet (UV)-induced copolymerization of 1-vinyl-3-butyl imidazolium bromide ([BVIm][Br]) and methacryloyloxyethyl trimethylammonium chloride (DMC) in QCS aqueous solution without using any crosslinkers, which was stably crosslinked by reversible hydrogen bonding together with ion association and exhibited excellent adhesion, plasticity, conductivity and recyclability properties. Moreover, its thermal/pH-responsive behaviors and intermolecular interaction mechanism of thermal-triggered reversible adhesion were discovered, meanwhile good biocompatibility, antibacterial properties, repeated stickiness and degradability were also proved. The results showed that the newly developed hydrogel could make various tissues, organic, inorganic or metal materials adhered tightly within 1 min; after 10 binding-peeling cycles, the adhesive strength to glass, plastic, aluminum and porcine skin still remained beyond 96 %, 98 %, 92 % and 71 % of the original, respectively. The adhesion mechanism involves ion dipole interaction, electrostatic interaction, hydrophobic interaction, coordination, cation-π interaction, H-bonding and van der Waals force. For above merits, the new tricomponent hydrogel is expected to be applied in biomedical field to achieve adjustable adhesion and on-demand peeling.
Collapse
Affiliation(s)
- Tenghe Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yingying Guo
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610207, China
| | - Sara Toufouki
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
87
|
Li W, Wu Y, Zhang X, Wu T, Huang K, Wang B, Liao J. Self-healing hydrogels for bone defect repair. RSC Adv 2023; 13:16773-16788. [PMID: 37283866 PMCID: PMC10240173 DOI: 10.1039/d3ra01700a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Severe bone defects can be caused by various factors, such as tumor resection, severe trauma, and infection. However, bone regeneration capacity is limited up to a critical-size defect, and further intervention is required. Currently, the most common clinical method to repair bone defects is bone grafting, where autografts are the "gold standard." However, the disadvantages of autografts, including inflammation, secondary trauma and chronic disease, limit their application. Bone tissue engineering (BTE) is an attractive strategy for repairing bone defects and has been widely researched. In particular, hydrogels with a three-dimensional network can be used as scaffolds for BTE owing to their hydrophilicity, biocompatibility, and large porosity. Self-healing hydrogels respond rapidly, autonomously, and repeatedly to induced damage and can maintain their original properties (i.e., mechanical properties, fluidity, and biocompatibility) following self-healing. This review focuses on self-healing hydrogels and their applications in bone defect repair. Moreover, we discussed the recent progress in this research field. Despite the significant existing research achievements, there are still challenges that need to be addressed to promote clinical research of self-healing hydrogels in bone defect repair and increase the market penetration.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Tingkui Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Kangkang Huang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
88
|
Zhang D, Mei L, Hao Y, Yi B, Hu J, Wang D, Zhao Y, Wang Z, Huang H, Xu Y, Deng X, Li C, Li X, Zhou Q, Lu Y. A hydrogel-based first-aid tissue adhesive with effective hemostasis and anti-bacteria for trauma emergency management. Biomater Res 2023; 27:56. [PMID: 37269017 DOI: 10.1186/s40824-023-00392-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/08/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Clinical tissue adhesives remain some critical drawbacks for managing emergency injuries, such as inadequate adhesive strength and insufficient anti-infection ability. Herein, a novel, self-healing, and antibacterial carboxymethyl chitosan/polyaldehyde dextran (CMCS/PD) hydrogel is designed as the first-aid tissue adhesive for effective trauma emergency management. METHODS We examined the gel-forming time, porosity, self-healing, antibacterial properties, cytotoxicity, adhesive strength, and hemocompatibility. Liver hemorrhage, tail severance, and skin wound infection models of rats are constructed in vivo, respectively. RESULTS Results demonstrate that the CMCS/PD hydrogel has the rapid gel-forming (~ 5 s), good self-healing, and effective antibacterial abilities, and could adhere to tissue firmly (adhesive strength of ~ 10 kPa and burst pressure of 327.5 mmHg) with excellent hemocompatibility and cytocompatibility. This suggests the great prospect of CMCS/PD hydrogel in acting as a first-aid tissue adhesive for trauma emergency management. The CMCS/PD hydrogel is observed to not only achieve rapid hemostasis for curing liver hemorrhage and tail severance in comparison to commercial hemostatic gel (Surgiflo ®) but also exhibit superior anti-infection for treating acute skin trauma compared with clinical disinfectant gel (Prontosan ®). CONCLUSIONS Overall, the CMCS/PD hydrogel offers a promising candidate for first-aid tissue adhesives to manage the trauma emergency. Because of the rapid gel-forming time, it could also be applied as a liquid first-aid bandage for mini-invasive surgical treatment.
Collapse
Affiliation(s)
- Dongjie Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Li Mei
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Yuanping Hao
- Department of Stomatology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266003, China
| | - Bingcheng Yi
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Jilin Hu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Danyang Wang
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Yaodong Zhao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Zhe Wang
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Hailin Huang
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Yongzhi Xu
- Department of Stomatology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266003, China
| | - Xuyang Deng
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Cong Li
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Xuewei Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
| | - Yun Lu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
89
|
Norahan MH, Pedroza-González SC, Sánchez-Salazar MG, Álvarez MM, Trujillo de Santiago G. Structural and biological engineering of 3D hydrogels for wound healing. Bioact Mater 2023; 24:197-235. [PMID: 36606250 PMCID: PMC9803907 DOI: 10.1016/j.bioactmat.2022.11.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic wounds have become one of the most important issues for healthcare systems and are a leading cause of death worldwide. Wound dressings are necessary to facilitate wound treatment. Engineering wound dressings may substantially reduce healing time, reduce the risk of recurrent infections, and reduce the disability and costs associated. In the path of engineering of an ideal wound dressing, hydrogels have played a leading role. Hydrogels are 3D hydrophilic polymeric structures that can provide a protective barrier, mimic the native extracellular matrix (ECM), and provide a humid environment. Due to their advantages, hydrogels (with different architectural, physical, mechanical, and biological properties) have been extensively explored as wound dressing platforms. Here we describe recent studies on hydrogels for wound healing applications with a strong focus on the interplay between the fabrication method used and the architectural, mechanical, and biological performance achieved. Moreover, we review different categories of additives which can enhance wound regeneration using 3D hydrogel dressings. Hydrogel engineering for wound healing applications promises the generation of smart solutions to solve this pressing problem, enabling key functionalities such as bacterial growth inhibition, enhanced re-epithelialization, vascularization, improved recovery of the tissue functionality, and overall, accelerated and effective wound healing.
Collapse
Affiliation(s)
- Mohammad Hadi Norahan
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Sara Cristina Pedroza-González
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Mónica Gabriela Sánchez-Salazar
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
- Departamento de Bioingeniería, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
- Departamento de Bioingeniería, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Grissel Trujillo de Santiago
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| |
Collapse
|
90
|
Uysal E, Emil-Kaya E, Yesiltepe-Ozcelik D, Gurmen S. Nd Recovery from Wastewater with Magnetic Calcium Alginate ((1,4)-β-d-Mannuronic Acid and α-L-Guluronic Acid) Hydrogels. ACS OMEGA 2023; 8:16762-16778. [PMID: 37214708 PMCID: PMC10193390 DOI: 10.1021/acsomega.2c08221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
In this study, a magnetic adsorbent material was produced, by environmentally friendly and inexpensive precursor materials, to clean wastewater that may result from primary and secondary rare earth metal (REM) production. Then, the absorption of Nd3+ ions from wastewater was done and this process's kinetic and isotherm models were developed. Thus, the removal of Nd3+ from wastewater with magnetic materials was accomplished, and then, this precious metal was recovered by using different acid media. First, Fe sub-micron particles were successfully produced by the polyol method. To increase the stability of Fe-based particles, their surfaces were covered with an oxide layer, and the average thickness was determined as 16 nm. The synthesized Fe particles were added into the calcium alginate beads and then coated with chitosan to increase the pH stability of the gels. The chemical composition of the gels was determined by Fourier transform infrared spectroscopy, the thermal properties were determined by differential scanning calorimetry, and the magnetic properties were determined by vibrating-sample magnetometer analysis. The magnetic saturation of the hydrogels was 0.297 emu/g. After the production of magnetic calcium alginate hydrogels, Nd3+ ion removal from wastewater was done. Wastewater was cleaned with 94.22% efficiency. The kinetic models of the adsorption study were derived, and isotherm studies were done. Adsorption reaction fitted different kinetic models at different time intervals and the Freundlich isotherm model. The effect of pH, temperature, and solid-liquid ratio on the system was determined and the thermodynamic constants of the system were calculated. After the adsorption studies, Nd3+ ions were regenerated in different acid environments and achieved an 87.48% efficiency value. The removal of Nd3+ ions from wastewater was carried out with high efficiency, the gels obtained as a result of adsorption were regenerated with high efficiency by using acid media, and it was predicted that the gels could be reused. This study is thought to have reference results not only for the removal of REM from wastewater by magnetic adsorption materials but also for the adsorption of heavy metals from wastewater.
Collapse
Affiliation(s)
- Emircan Uysal
- Department
of Metallurgical and Materials Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye
| | - Elif Emil-Kaya
- Department
of Metallurgical and Materials Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye
- IME
Process Metallurgy and Metal Recycling, RWTH Aachen University, Aachen, Nodrhein-Westfalen DE 52062, Germany
| | - Duygu Yesiltepe-Ozcelik
- Department
of Metallurgical and Materials Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye
| | - Sebahattin Gurmen
- Department
of Metallurgical and Materials Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye
| |
Collapse
|
91
|
Sheng W, Qin H, Wang T, Zhao J, Fang C, Zhang P, Liu P, Udduttula A, Zeng H, Chen Y. Advanced phosphocreatine-grafted chitosan hydrogel promote wound healing by macrophage modulation. Front Bioeng Biotechnol 2023; 11:1199939. [PMID: 37251563 PMCID: PMC10213409 DOI: 10.3389/fbioe.2023.1199939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Background: The repair of wounds usually caused by trauma or other chronic diseases remained challenging in clinics due to the potential risk of inflammation and inadequate tissue regenerative properties. Among them, the behaviour of immune cells, such as macrophages, is critical in tissue repair. Materials and methods: In this study, a water-soluble phosphocreatine-grafted methacryloyl chitosan (CSMP) was synthesized with a one-step lyophilization method, followed by the fabrication of CSMP hydrogel with a photocrosslinked method. The microstructure, water absorption and mechanical properties for the hydrogels were investigated. Then, the macrophages were co-cultured with hydrogels and the pro-inflammatory factors and polarization markers for these macrophages were detected through real-time quantitative polymerase chain reaction (RT-qPCR), Western blot (WB), and flow cytometry methods. Finally, the CSMP hydrogel was implanted in a wound defect area in mice to test its ability to promote wound healing. Results: The lyophilized CSMP hydrogel had a porous structure with pores ranging in size from 200 to 400 μm, which was larger than the CSM hydrogel's. The lyophilized CSMP hydrogel possessed a higher water absorption rate compared with the CSM hydrogel. The compressive stress and modulus of these hydrogels were increased in the initial 7 days immersion and then gradually decreased during the in vitro immersion in PBS solution up to 21 days; the CSMP hydrogel showed a higher value in these parameters versus the CSM hydrogel. The CSMP hydrogel inhibited the expression of inflammatory factors such as interleukin-1β (IL-1β), IL-6, IL-12, and tumor necrosis factor-α (TNF-α) in an in vitro study cocultured with pro-inflammatory factors in pre-treated bone marrow-derived macrophages (BMM). The mRNA sequencing results showed that the CSMP hydrogel might inhibit the macrophages' M1 type polarization through the NF-κB signaling pathway. Furthermore, when compared to the control group, the CSMP hydrogel promoted more skin area repair in the mouse wound defect area, and inflammatory factors such as IL-1β, IL-6, and TNF-α were lower in the repaired tissue for the CSMP group. Conclusion: This phosphate-grafted chitosan hydrogel showed great promise for wound healing through regulating the macrophage's phenotype via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weibei Sheng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Tiehua Wang
- Department of Emergency, Shenzhen People’s Hospital, Shenzhen, China
| | - Jin Zhao
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chongzhou Fang
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, China
| | - Peng Zhang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Anjaneyulu Udduttula
- Centre of Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, India
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yingqi Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
92
|
Kurtuluş OÇ, Ondaral S, Emin N, Aşikuzun E. Different amount of carboxyl-aldehyde fractionated nanofibril cellulose and main characteristics of chitosan, gelatin, alginate added composites. Int J Biol Macromol 2023; 242:124824. [PMID: 37178884 DOI: 10.1016/j.ijbiomac.2023.124824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
In this research, two different types of nanofibrillated celluloses (NFCs) having different amounts of aldehyde and carboxyl groups were mixed with chitosan (CH), gelatin (GL), and alginate (AL) with different mixing ratios to produce biocomposite aerogels. There was no related study in the literature about producing aerogels with the addition of NC and mentioning biopolymers in addition to the effect of carboxyl and aldehyde fraction of the main matrix NC on composite properties. For this purpose, the main aim of this study was to investigate how carboxyl and aldehyde groups affect the basic characteristics of NFC-biopolymer based materials addition to efficiency of biopolymer amount in main matrix. Even after preparing homogenous NC-biopolymer compositions at 1 % concentration with varied proportions (75 %-25 %, 50 %-50 %, 25 %-75 %, 100 %), aerogels were still made using the fundamentally easy lyophilization procedure. Porosity values for NC-Chitosan (NC/CH) based aerogels range from 97.85 to 99.84 %, whereas those made from NC-Gelatin (NC/GL) and NC-Alginate (NC-AL) have values of 99.2-99.8 % and 98.47 to 99.7 %, respectively. In addition, densities were determined in the range of 0.01 g/cm3 for both NC-CH and NC-GL composites, but higher values were obtained in ranged between 0.01 and 0.03 g/cm3 for NC-AL samples. The crystallinity index values showed a decreasing trend with the addition of biopolymers into NC composition. SEM images showed that all materials have a porous micro structure with different size pores and homogenous surface topography. As a result of the specified tests, these materials can be used in many different industrial applications, such as dust collectors, liquid adsorbers, specific material for packaging and medical materials.
Collapse
Affiliation(s)
- Orçun Çağlar Kurtuluş
- Kastamonu University, Department of Material and Materials Processing Technologies, 37300 Tosya, Kastamonu, Turkey.
| | - Sedat Ondaral
- Karadeniz Technical University, Department of Forest Products Engineering, 61000 Trabzon, Turkey
| | - Nuray Emin
- Kastamonu University, Department of Biomedical Engineering, 37100 Kastamonu, Turkey
| | - Elif Aşikuzun
- Kastamonu University, Department of Metallurgy and Materials Engineering, 37100 Kastamonu, Turkey
| |
Collapse
|
93
|
Fletes-Vargas G, Espinosa-Andrews H, Cervantes-Uc JM, Limón-Rocha I, Luna-Bárcenas G, Vázquez-Lepe M, Morales-Hernández N, Jiménez-Ávalos JA, Mejía-Torres DG, Ramos-Martínez P, Rodríguez-Rodríguez R. Porous Chitosan Hydrogels Produced by Physical Crosslinking: Physicochemical, Structural, and Cytotoxic Properties. Polymers (Basel) 2023; 15:2203. [PMID: 37177348 PMCID: PMC10180930 DOI: 10.3390/polym15092203] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Chitosan hydrogels are biomaterials with excellent potential for biomedical applications. In this study, chitosan hydrogels were prepared at different concentrations and molecular weights by freeze-drying. The chitosan sponges were physically crosslinked using sodium bicarbonate as a crosslinking agent. The X-ray spectroscopy (XPS and XRD diffraction), equilibrium water content, microstructural morphology (confocal microscopy), rheological properties (temperature sweep test), and cytotoxicity of the chitosan hydrogels (MTT assay) were investigated. XPS analysis confirmed that the chitosan hydrogels obtained were physically crosslinked using sodium bicarbonate. The chitosan samples displayed a semi-crystalline nature and a highly porous structure with mean pore size between 115.7 ± 20.5 and 156.3 ± 21.8 µm. In addition, the chitosan hydrogels exhibited high water absorption, showing equilibrium water content values from 23 to 30 times their mass in PBS buffer and high thermal stability from 5 to 60 °C. Also, chitosan hydrogels were non-cytotoxic, obtaining cell viability values ≥ 100% for the HT29 cells. Thus, physically crosslinked chitosan hydrogels can be great candidates as biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Gabriela Fletes-Vargas
- Tecnología de Alimentos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C (CIATEJ, A.C), Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico; (G.F.-V.); (N.M.-H.)
- Departamento de Ciencias Clínicas, Centro Universitario de los Altos (CUALTOS), Universidad de Guadalajara, Carretera Tepatitlán Yahualica de González Gallo, Tepatitlan de Morelos 47620, Jalisco, Mexico;
| | - Hugo Espinosa-Andrews
- Tecnología de Alimentos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C (CIATEJ, A.C), Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico; (G.F.-V.); (N.M.-H.)
| | - José Manuel Cervantes-Uc
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, A.C (CICY A.C), Calle 43 No. 130 X 32 y 34, Chuburná de Hidalgo, Mérida 97205, Yucatan, Mexico;
| | - Isaías Limón-Rocha
- Departamento de Ciencias Clínicas, Centro Universitario de los Altos (CUALTOS), Universidad de Guadalajara, Carretera Tepatitlán Yahualica de González Gallo, Tepatitlan de Morelos 47620, Jalisco, Mexico;
| | - Gabriel Luna-Bárcenas
- Departamento de Polímeros y Biopolímeros, CINVESTAV Unidad Querétaro, Mexico City 76230, Queretaro, Mexico;
| | - Milton Vázquez-Lepe
- Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingeniería (CUCEI), Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, esq. Calzada Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Norma Morales-Hernández
- Tecnología de Alimentos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C (CIATEJ, A.C), Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico; (G.F.-V.); (N.M.-H.)
| | - Jorge Armando Jiménez-Ávalos
- Departamento de Oncología Celular y Molecular, Centro de Investigación y Desarrollo Oncológico S.A de C.V (CIDO S.A de C.V), San Luis Potosí 78218, San Luis Potosí, Mexico; (J.A.J.-Á.); (D.G.M.-T.)
| | - Dante Guillermo Mejía-Torres
- Departamento de Oncología Celular y Molecular, Centro de Investigación y Desarrollo Oncológico S.A de C.V (CIDO S.A de C.V), San Luis Potosí 78218, San Luis Potosí, Mexico; (J.A.J.-Á.); (D.G.M.-T.)
| | - Paris Ramos-Martínez
- Departamento de Histopatología, Centro de Investigación y Desarrollo Oncológico S.A de C.V (CIDO S.A de C.V), San Luis Potosí 78218, San Luis Potosí, Mexico
| | - Rogelio Rodríguez-Rodríguez
- Tecnología de Alimentos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C (CIATEJ, A.C), Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico; (G.F.-V.); (N.M.-H.)
- Departamento de Ciencias Naturales y Exactas, Centro Universitario de los Valles (CUVALLES), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico
| |
Collapse
|
94
|
Kuang H, Ma J, Chi X, Fu Q, Zhu Q, Cao W, Zhang P, Xie X. Integrated Osteoinductive Factors─Exosome@MicroRNA-26a Hydrogel Enhances Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22805-22816. [PMID: 37145861 DOI: 10.1021/acsami.2c21933] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
MicroRNAs (miRNAs) are a new therapeutic tool that can target multiple genes by inducing translation repression and target mRNA degradation. Although miRNAs have gained significant attention in oncology and in work on genetic disorders and autoimmune diseases, their application in tissue regeneration remains hindered by several challenges, such as miRNA degradation. Here, we reported Exosome@MicroRNA-26a (Exo@miR-26a), an osteoinductive factor that can be substituted for routinely used growth factors, which was constructed using bone marrow stem cell (BMSC)-derived exosomes and microRNA-26a (miR-26a). Exo@miR-26a-integrated hydrogels significantly promoted bone regeneration when implanted into defect sites; as the exosome stimulated angiogenesis, miR-26a promoted osteogenesis while the hydrogel enabled a site-directed release. Moreover, BMSC-derived exosomes further facilitated healthy bone regeneration by repressing osteoclast differentiation-related genes rather than damaging osteoclasts. Taken together, our findings demonstrate the promising potential of Exo@miR-26a for bone regeneration and provide a new strategy for the application of miRNA therapy in tissue engineering.
Collapse
Affiliation(s)
- Haizhu Kuang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Jing Ma
- Department of Pharmacy, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518000, China
| | - Xinyu Chi
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Qichen Fu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Qianzhe Zhu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Weiling Cao
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Xin Xie
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
95
|
Jafari H, Namazi H, Mahdavinia GR. pH-sensitive biocompatible chitosan/sepiolite-based cross-linked citric acid magnetic nanocarrier for efficient sunitinib release. Int J Biol Macromol 2023; 242:124739. [PMID: 37148933 DOI: 10.1016/j.ijbiomac.2023.124739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
In this study, the magnetite nanoparticles were immobilized on the sepiolite needles via co-precipitation of iron ions. Then, the resulted magnetic sepiolite (mSep) nanoparticles were coated with chitosan biopolymer (Chito) in the presence of citric acid (CA) to prepare mSep@Chito core-shell drug nanocarriers (NCs). TEM images showed magnetic Fe3O4 nanoparticles with small sizes (less than 25 nm) on the sepiolite needles. Sunitinib anticancer drug loading efficiencies were ⁓45 and 83.7 % for the NCs with low and high content of Chito, respectively. The in-vitro drug release results exhibited that the mSep@Chito NCs have a sustained release behavior with high pH-dependent properties. Cytotoxic results (MTT assay) showed that the sunitinib-loaded mSep@Chito2 NC had a significant cytotoxic effect on the MCF-7 cell lines. Also, the in-vitro compatibility of erythrocytes, physiological stability, biodegradability, and antibacterial and antioxidant activities of NCs was evaluated. The results showed that the synthesized NCs had excellent hemocompatibility, good antioxidant properties, and were sufficiently stable and biocompatible. Based on the antibacterial data, the minimal inhibitory concentration (MIC) values for mSep@Chito1, mSep@Chito2, and mSep@Chito3 were obtained as 125, 62.5, and 31.2 μg/mL towards S. aureus, respectively. All in all, the prepared NCs could be potentially used as a pH-triggered system for biomedical applications.
Collapse
Affiliation(s)
- Hessam Jafari
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Gholam Reza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111 Maragheh, Iran
| |
Collapse
|
96
|
Lupu A, Gradinaru LM, Gradinaru VR, Bercea M. Diversity of Bioinspired Hydrogels: From Structure to Applications. Gels 2023; 9:gels9050376. [PMID: 37232968 DOI: 10.3390/gels9050376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels are three-dimensional networks with a variety of structures and functions that have a remarkable ability to absorb huge amounts of water or biological fluids. They can incorporate active compounds and release them in a controlled manner. Hydrogels can also be designed to be sensitive to external stimuli: temperature, pH, ionic strength, electrical or magnetic stimuli, specific molecules, etc. Alternative methods for the development of various hydrogels have been outlined in the literature over time. Some hydrogels are toxic and therefore are avoided when obtaining biomaterials, pharmaceuticals, or therapeutic products. Nature is a permanent source of inspiration for new structures and new functionalities of more and more competitive materials. Natural compounds present a series of physico-chemical and biological characteristics suitable for biomaterials, such as biocompatibility, antimicrobial properties, biodegradability, and nontoxicity. Thus, they can generate microenvironments comparable to the intracellular or extracellular matrices in the human body. This paper discusses the main advantages of the presence of biomolecules (polysaccharides, proteins, and polypeptides) in hydrogels. Structural aspects induced by natural compounds and their specific properties are emphasized. The most suitable applications will be highlighted, including drug delivery, self-healing materials for regenerative medicine, cell culture, wound dressings, 3D bioprinting, foods, etc.
Collapse
Affiliation(s)
- Alexandra Lupu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Luiza Madalina Gradinaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, "Alexandru Ioan Cuza" University, 11 Carol I Bd., 700506 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
97
|
EzEldeen M, Moroni L, Nejad ZM, Jacobs R, Mota C. Biofabrication of engineered dento-alveolar tissue. BIOMATERIALS ADVANCES 2023; 148:213371. [PMID: 36931083 DOI: 10.1016/j.bioadv.2023.213371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/19/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Oral health is essential for a good overall health. Dento-alveolar conditions have a high prevalence, ranging from tooth decay periodontitis to alveolar bone resorption. However, oral tissues exhibit a limited regenerative capacity, and full recovery is challenging. Therefore, regenerative therapies for dento-alveolar tissue (e.g., alveolar bone, periodontal membrane, dentin-pulp complex) have gained much attention, and novel approaches have been proposed in recent decades. This review focuses on the cells, biomaterials and the biofabrication methods used to develop therapies for tooth root bioengineering. Examples of the techniques covered are the multitude of additive manufacturing techniques and bioprinting approaches used to create scaffolds or tissue constructs. Furthermore, biomaterials and stem cells utilized during biofabrication will also be described for different target tissues. As these new therapies gradually become a reality in the lab, the translation to the clinic is still minute, with a further need to overcome multiple challenges and broaden the clinical application of these alternatives.
Collapse
Affiliation(s)
- Mostafa EzEldeen
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Lorenzo Moroni
- Institute for Technology-inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, the Netherlands
| | - Zohre Mousavi Nejad
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Biomaterials Research Group, Department of Nanotechnology and Advance Materials, Materials and Energy Research Center, P.O. Box: 31787-316, Karaj, Alborz, Iran
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Carlos Mota
- Institute for Technology-inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
98
|
Chen J, Wang Z, Sun J, Zhou R, Guo L, Zhang H, Liu D, Rong M, Ostrikov KK. Plasma-Activated Hydrogels for Microbial Disinfection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207407. [PMID: 36929325 DOI: 10.1002/advs.202207407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/11/2023] [Indexed: 05/18/2023]
Abstract
A continuous risk from microbial infections poses a major environmental and public health challenge. As an emerging strategy for inhibiting bacterial infections, plasma-activated water (PAW) has proved to be highly effective, environmental-friendly, and non-drug resistant to a broad range of microorganisms. However, the relatively short lifetime of reactive oxygen and nitrogen species (RONS) and the high spreadability of liquid PAW inevitably limit its real-life applications. In this study, plasma-activated hydrogel (PAH) is developed to act as reactive species carrier that allow good storage and controlled slow-release of RONS to achieve long-term antibacterial effects. Three hydrogel materials, including hydroxyethyl cellulose (HEC), carbomer 940 (Carbomer), and acryloyldimethylammonium taurate/VP copolymer (AVC) are selected, and their antibacterial performances under different plasma activation conditions are investigated. It is shown that the composition of the gels plays the key role in determining their biochemical functions after the plasma activation. The antimicrobial performance of AVC is much better than that of PAW and the other two hydrogels, along with the excellent stability to maintain the antimicrobial activity for more than 14 days. The revealed mechanism of the antibacterial ability of the PAH identifies the unique combination of short-lived species (1 O2 , ∙OH, ONOO- and O2 - ) stored in hydrogels. Overall, this study demonstrates the efficacy and reveals the mechanisms of the PAH as an effective and long-term disinfectant capable of delivering and preserving antibacterial chemistries for biomedical applications.
Collapse
Affiliation(s)
- Jinkun Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Jiachen Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Materials Science, and Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
99
|
Phonrachom O, Charoensuk P, Kiti K, Saichana N, Kakumyan P, Suwantong O. Potential use of propolis-loaded quaternized chitosan/pectin hydrogel films as wound dressings: Preparation, characterization, antibacterial evaluation, and in vitro healing assay. Int J Biol Macromol 2023; 241:124633. [PMID: 37119912 DOI: 10.1016/j.ijbiomac.2023.124633] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Quaternized chitosan (QCS) was blended with pectin (Pec) to improve water solubility and antibacterial activity of the hydrogel films. Propolis was also loaded into hydrogel films to improve wound healing ability. Therefore, the aim of this study was to fabricate and characterize the propolis-loaded QCS/Pec hydrogel films for use as wound dressing materials. The morphology, mechanical properties, adhesiveness, water swelling, weight loss, release profiles, and biological activities of the hydrogel films were investigated. Scanning Electron Microscope (SEM) investigation indicated a homogenous smooth surface of the hydrogel films. The blending of QCS and Pec increased tensile strength and Young's modulus values of the hydrogel films. Moreover, the blending of QCS and Pec improved the stability of the hydrogel films in the medium and controlled the release characteristics of propolis from the hydrogel films. The antioxidant activity of the released propolis from the propolis-loaded hydrogel films was ~21-36 %. The propolis-loaded QCS/Pec hydrogel films showed the bacterial growth inhibition, especially against S. aureus and S. pyogenes. The propolis-loaded hydrogel films were non-toxicity to mouse fibroblast cell line (NCTC clone 929) and supported the wound closure. Therefore, the propolis-loaded QCS/Pec hydrogel films might be good candidates for use as wound dressing materials.
Collapse
Affiliation(s)
| | | | - Kitipong Kiti
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Natsaran Saichana
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Pattana Kakumyan
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Orawan Suwantong
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; Center of Chemical Innovation for Sustainability, Mae Fah Luang University, Chiang Rai 57100, Thailand.
| |
Collapse
|
100
|
Li G, Lan N, Huang Y, Mo C, Wang Q, Wu C, Wang Y. Preparation and Characterization of Gluten/SDS/Chitosan Composite Hydrogel Based on Hydrophobic and Electrostatic Interactions. J Funct Biomater 2023; 14:jfb14040222. [PMID: 37103311 PMCID: PMC10146719 DOI: 10.3390/jfb14040222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Gluten is a natural byproduct derived from wheat starch, possessing ideal biocompatibility. However, its poor mechanical properties and heterogeneous structure are not suitable for cell adhesion in biomedical applications. To resolve the issues, we prepare novel gluten (G)/sodium lauryl sulfate (SDS)/chitosan (CS) composite hydrogels by electrostatic and hydrophobic interactions. Specifically, gluten is modified by SDS to give it a negatively charged surface, and then it conjugates with positively charged chitosan to form the hydrogel. In addition, the composite formative process, surface morphology, secondary network structure, rheological property, thermal stability, and cytotoxicity are investigated. Moreover, this work demonstrates that the change can occur in surface hydrophobicity caused by the pH-eading influence of hydrogen bonds and polypeptide chains. Meanwhile, the reversible non-covalent bonding in the networks is beneficial to improving the stability of the hydrogels, which shows a prominent prospect in biomedical engineering.
Collapse
Affiliation(s)
- Guangfeng Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Ni Lan
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Yanling Huang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Chou Mo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiaoli Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Chaoxi Wu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
- Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Guangzhou 510642, China
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
- Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Guangzhou 510642, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510642, China
| |
Collapse
|