51
|
Lin Q, Si Y, Zhou F, Hao W, Zhang P, Jiang P, Cha R. Advances in polysaccharides for probiotic delivery: Properties, methods, and applications. Carbohydr Polym 2024; 323:121414. [PMID: 37940247 DOI: 10.1016/j.carbpol.2023.121414] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 11/10/2023]
Abstract
Probiotics are essential to improve the health of the host, whereas maintaining the viability of probiotics in harsh environments remains a challenge. Polysaccharides have non-toxicity, excellent biocompatibility, and outstanding biodegradability, which can protect probiotics by forming a physical barrier and show a promising prospect for probiotic delivery. In this review, we summarize polysaccharides commonly used for probiotic microencapsulation and introduce the microencapsulation technologies, including extrusion, emulsion, spray drying, freeze drying, and electrohydrodynamics. We discuss strategies for better protection of probiotics and introduce the applications of polysaccharides-encapsulated probiotics in functional food, oral formulation, and animal feed. Finally, we propose the challenges of polysaccharides-based delivery systems in industrial production and application. This review will help provide insight into the advances and challenges of polysaccharides in probiotic delivery.
Collapse
Affiliation(s)
- Qianqian Lin
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China; Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| | - Yanxue Si
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Pai Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Peng Jiang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| |
Collapse
|
52
|
Saya L, Singh WR, Hooda S. Design and performance assessment of novel Fe3O4 decorated nanoblend of guar gum/graphene oxide flakes and CuO for mitigation of fluoroquinolones from wastewater. JOURNAL OF WATER PROCESS ENGINEERING 2024; 57:104577. [DOI: 10.1016/j.jwpe.2023.104577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
53
|
Adhikary ND, Bains A, Sridhar K, Kaushik R, Chawla P, Sharma M. Recent advances in plant-based polysaccharide ternary complexes for biodegradable packaging. Int J Biol Macromol 2023; 253:126725. [PMID: 37678691 DOI: 10.1016/j.ijbiomac.2023.126725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Polysaccharide-based packaging has been directed toward the development of technologies for the generation of packaging with biodegradable materials that can serve as substitutes for conventional packaging. Polysaccharides are reliable sources of edible packaging materials with excellent renewability, biodegradability, and bio-compatibility as well as antioxidant and antimicrobial activities. Apart from these properties, packaging film developed from a single polysaccharide has various disadvantages due to undesirable properties. Thus, to overcome these problems, researchers focused on ternary blend-based bio-packaging instead of the primary and binary complex to improve their characteristics and properties. The review emphasizes the extraction of polysaccharides and their combination with other polymers to provide desirable characteristics and physico-mechanical properties of the biodegradable film which will upgrade the green packaging technology in the future generation This review also explores the advancement of ternary blend-based biodegradable film and their application in foods with different requirements and the future aspects for developing advanced biodegradable film. Moreover, the review concludes that cellulose, modified starch, and another plant-based polysaccharide film mostly provides good gas barrier property and better tensile strength, which can be used as a safeguard of perishable and semi-perishable foods which brings them closer to replacing commercial synthetic packaging.
Collapse
Affiliation(s)
- Nibedita Das Adhikary
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| | - Minaxi Sharma
- CARAH ASBL, Rue Paul Pastur, 11, Ath - 7800, Belgium.
| |
Collapse
|
54
|
Timothy UJ, Umoren PS, Solomon MM, Igwe IO, Umoren SA. An appraisal of the utilization of natural gums as corrosion inhibitors: Prospects, challenges, and future perspectives. Int J Biol Macromol 2023; 253:126904. [PMID: 37714237 DOI: 10.1016/j.ijbiomac.2023.126904] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Natural gums are macro compounds containing monosaccharide (sugar) units bonded by glycosidic to form long polymeric sugar chains of considerably high molecular weight. Natural gums are multifaceted in applications with the main areas being the food and pharmaceutical industries. The recent research interest in corrosion inhibitors is considering natural gums because of their abundance and ecological compatibility. Hence, this review takes a look at the use of natural gums in pure and modified forms in metals protection. The review establishes that the corrosion-protecting ability of natural gums has a direct connotation with their macromolecular weights, chemical composition, and molecular and electronic structures. Immersion duration and temperature are other factors found to affect the inhibition performance of natural gums considerably. The inhibition of natural gums in pure form is found not to be excellent due to their high hydration rate, algal and microbial contamination, solubility that depends on pH, and thermal instability. Common modification techniques adopted by corrosion inhibitor scientists are copolymerization, mixing with chemicals to induce synergism, crosslinking, and insertion of inorganic nanomaterials into the polymer matrix. Infusion of biosynthesized nanoparticles approach towards enhancing the corrosion inhibition efficiency of natural gums is recommended for future studies because of the unique characteristics of nanoparticles.
Collapse
Affiliation(s)
- Ukeme J Timothy
- Department of Polymer and Textile Engineering, Federal University of Technology, Owerri, Nigeria
| | - Peace S Umoren
- Department of Bioengineering, Cyprus International University, via Mersin 10, Nicosia 98258, Turkey
| | - Moses M Solomon
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, China.
| | - Isaac O Igwe
- Department of Polymer and Textile Engineering, Federal University of Technology, Owerri, Nigeria
| | - Saviour A Umoren
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran 62131, Saudi Arabia.
| |
Collapse
|
55
|
Teng H, He Y, Fu L, Xiong H, Lu M, Zhang C, Ai C, Cao H, Zhong S, Chen L. Effects of blackberry ( Rubus spp.) polysaccharide on the structure and thermal behavior of the myofibrillar protein of chicken breast meat. Food Chem X 2023; 20:100914. [PMID: 38144761 PMCID: PMC10739915 DOI: 10.1016/j.fochx.2023.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/22/2023] [Accepted: 09/29/2023] [Indexed: 12/26/2023] Open
Abstract
Blackberry crude polysaccharides (BCP) was added to chicken breast to inspect the intermolecular interaction with myofibrillar protein (MP). The influence of BCP on the thermal transformation behavior and protein micro-structure during temperature rise period was studied. The results showed that the interaction between BCP and MP was mainly affected by the concentration of BCP and heating temperature. The results of infrared spectrophotometer and nano-particle/zeta potentiometer showed that a BCP-MP complex was generated through hydrogen bond and electrostatic interaction, which could promote the transformation of MP from β-folding to β-Angle transformation. The fluorescence spectra showed that the BCP was helped to the spread of protein structure of the MP. Moreover, synchronous thermal analyzer and rheometer results revealed that the BCP increased the enthalpy value and elastic modulus of MP. Scanning electron microscope verified pores inside the BCP-MP complex are more evenly distributed and smaller, which led to the high cross-linking of network and good stability of water distribution for the MP. The addition of BCP enhances the hydrogen bonds and disulfide bonds of MP molecules, which can strengthen the network structure and ultimately improve the performance of meat products.
Collapse
Affiliation(s)
- Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Centre of Technology, Fujian Zhengda Food Company Limited, Longyan 364000, China
| | - Yuanju He
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lingyun Fu
- Centre of Technology, Fujian Zhengda Food Company Limited, Longyan 364000, China
| | - Huaxing Xiong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Minxin Lu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Chang Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| |
Collapse
|
56
|
Alam M, Malakar S, Pant K, Dar BN, Nanda V. Comparative studies on the rheological characteristics, functional attributes, and baking stability of xanthan and guar gum formulated honey gel matrix. FOOD SCI TECHNOL INT 2023:10820132231219715. [PMID: 38099822 DOI: 10.1177/10820132231219715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The research aims to enhance the characteristics of honey by incorporating xanthan gum (XG) and guar gum (GG) at various concentrations (0.5-2.0% w/w) and preparing a honey gel matrix (HGM) through high-shear homogenization. This approach serves as a substitute for fat-based filling materials commonly used in bakery products. The study encompassed an investigation of the rheological characteristics (steady and dynamic), total phenolic content (TPC), antioxidant activity, and baking stability of the HGMs. The concentration of the gums used significantly influenced the transformation of honey into the HGM and its stability. Notably, the XG-HGM demonstrated greater shear thinning behavior and higher consistency compared to the GG-HGM. Herschel Bulkley and power law models were found to be the best-fitted models for XG-HGM and GG-HGM, respectively. Furthermore, both XG-HGM and GG-HGM exhibited a higher viscous component (G″) than an elastic component (G') at low concentrations, up to 1% (w/w) for XG-HGM and 1.5% (w/w) for GG-HGM; however, this behavior reversed beyond those concentrations (G' > G″). The XG-HGM exhibited lower temperature sensitivity compared to GG-HGM, indicating better stability under varying heat conditions. Moreover, both TPC and antioxidant activity decreased with increasing concentrations of both gums. The XG-HGM achieved the highest baking stability index, reaching 95.23% at a 2% concentration. This modified HGM formulated with XG demonstrated superior consistency, color retention, and exceptional baking stability, making it a promising candidate for application as a filling material in the bakery sector. Its improved stability and quality can facilitate the development of a wide range of baking products in the food industry.
Collapse
Affiliation(s)
- Masud Alam
- Department of Food Engineering and Technology, Sant Longwal Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Santanu Malakar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, India
| | - Kirty Pant
- Department of Food Engineering and Technology, Sant Longwal Institute of Engineering and Technology, Sangrur, Punjab, India
| | - B N Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Vikas Nanda
- Department of Food Engineering and Technology, Sant Longwal Institute of Engineering and Technology, Sangrur, Punjab, India
| |
Collapse
|
57
|
Lima MB, Santos HV, Barbosa JC, Penna LO, Pereira PAP. Effect of hydrocolloid concentration in low-calorie orange jellies on preservation of bioactive compounds and antioxidant capacity. AN ACAD BRAS CIENC 2023; 95:e20191092. [PMID: 38055602 DOI: 10.1590/0001-3765202320191092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/07/2020] [Indexed: 12/08/2023] Open
Abstract
The purpose of this paper was to avaliate of the concentration of hydrocolloids (low methoxyl pectin [LMP], guar gum [GG], and carrageenan gum [CG]) in low-calorie orange jellies in order to maximize the amount of bioactive compounds and antioxidant capacity, and to study the influence on degradation these compounds. A mixture design with seven tests was used to analyze the total phenolic compounds, ascorbic acid (vitamin C) and antioxidant capacity (ABTS, DPPH and β-carotene/linoleic acid methods). The results were analyzed by response surface methodology and the Scott-Knott mean test at a significance level of 5% (p ≤ 0.05). In general, the regions containing 0.5% GG and 0.5% GC had higher levels of the variables under study, and this combination preserved the bioactive compounds and antioxidant activity of jellies in relation to that of orange juice.
Collapse
Affiliation(s)
- Michelle B Lima
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Rua Dois, s/n, Campus Morro do Cruzeiro, 35400-000 Ouro Preto, MG, Brazil
| | - Hellen V Santos
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Rua Dois, s/n, Campus Morro do Cruzeiro, 35400-000 Ouro Preto, MG, Brazil
| | - Junia Cristina Barbosa
- Universidade Federal de Ouro Preto, Departamento de Alimentos, Rua Dois, s/n, Campus Morro do Cruzeiro, 35400-000 Ouro Preto, MG, Brazil
| | - Leonardo O Penna
- Universidade Federal de Ouro Preto, Departamento de Alimentos, Rua Dois, s/n, Campus Morro do Cruzeiro, 35400-000 Ouro Preto, MG, Brazil
| | - Patrícia Aparecida P Pereira
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Rua Dois, s/n, Campus Morro do Cruzeiro, 35400-000 Ouro Preto, MG, Brazil
- Universidade Federal de Ouro Preto, Departamento de Alimentos, Rua Dois, s/n, Campus Morro do Cruzeiro, 35400-000 Ouro Preto, MG, Brazil
| |
Collapse
|
58
|
Chen H, Li T, Bilal M, Cao C, Zhao P, Zhou X, Yu L, Huang Q, Cao L. Multifunctional Borax Cross-Linked Hydroxypropyl Guar Gum Hydrogels with Crop Nutritional Function as Carriers for Dual-Responsive Acaricide Release. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16521-16532. [PMID: 37877155 DOI: 10.1021/acs.jafc.3c05241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Hydrogels with porous networks have received considerable attention in smart pesticide delivery due to their inherent versatility. In this study, acaricide cyetpyrafen (CPF)-loaded borax (BO) cross-linked hydroxypropyl guar gum (HPG) (CPF@BO-co-HPG, CBG) hydrogels were prepared by cross-linking and pesticide loading simultaneously. The flowable CBG hydrogels with 3D porous network structures had better wetting and spreading ability on Citrus reticulata Blanco leaves and a hydrophobic interface. The nonflowable CBG hydrogels had pH- and temperature-responsive release properties. Meanwhile, the acaricidal efficacy of CBG against Panonychus citri (McGregor) at both 24 and 48 h was significantly higher than those of CPF-loaded BO-free HPG hydrogels. Furthermore, CBG had a nutritional function for cotton growth and environmental safety for zebrafish. This research developed a BO cross-linked HPG hydrogel as a smart pesticide delivery vehicle and crop nutrient replenishment, which can be widely applied in sustainable agriculture.
Collapse
Affiliation(s)
- Huiping Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Tengjiao Li
- Beijing Tiandun Advanced Materials Technology Co., Ltd., Beijing 100094, P. R. China
| | - Muhammad Bilal
- National Agricultural Research Center (NARC), Islamabad 44000, Pakistan
| | - Chong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Pengyue Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiaomao Zhou
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, P. R. China
| | - Lu Yu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Qiliang Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Lidong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
59
|
Huang X, Xu F, Yun D, Li C, Kan J, Liu J. Development and application of intelligent packaging films based on guar gum, polyvinyl alcohol and hyacinth bean (Lablab purpureus (L.) sweet) anthocyanins. Int J Biol Macromol 2023; 251:126369. [PMID: 37595704 DOI: 10.1016/j.ijbiomac.2023.126369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The pH-response color-changeable films were prepared by adding different contents (1 %, 2 % and 3 %) of hyacinth bean anthocyanins (HBA) into guar gum/polyvinyl alcohol blend matrix. The structural characterization and optical, barrier, mechanical, thermal, antioxidant and color-changeable properties of the films were determined. The films were applied to monitor the freshness of chilled shrimp and pork. Results showed that HBA were pH-dependent color-changeable pigments that endowed the films with purple color. 2 % and 3 % of HBA improved the uniformity and compactness of the films by forming hydrogen bonds with film matrix. The barrier ability of the films against UV-vis light, water vapor and oxygen was significantly elevated by 2 % and 3 % of HBA. The mechanical, thermal and antioxidant properties of the films were improved by HBA. The films containing HBA were much sensitive to pH variation and ammonia vapor, presenting obvious color changes (purple→green→yellow-green). The films containing HBA showed good color stability when stored at 4 °C for 30 days. Moreover, the film containing 2 % HBA showed color changes (purple→green) when the chilled shrimp and pork decayed. The results suggested that the film containing 2 % HBA was suitable to monitor the freshness of meat products in intelligent packaging field.
Collapse
Affiliation(s)
- Xiaoqian Huang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Fengfeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Dawei Yun
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Chenchen Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
60
|
Rehman MU, Taj MB, Carabineiro SAC. Biogenic adsorbents for removal of drugs and dyes: A comprehensive review on properties, modification and applications. CHEMOSPHERE 2023; 338:139477. [PMID: 37442388 DOI: 10.1016/j.chemosphere.2023.139477] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
This comprehensive review explores the potential and versatility of biogenic materials as sustainable and environmentally benign alternatives to conventional adsorbents for the removal of drugs and dyes. Biogenic adsorbents derived from plants, animals, microorganisms, algae and biopolymers have bioactive compounds that interact with functional groups of pollutants, resulting in their binding with the sorbent. These materials can be modified mechanically, thermally and chemically to enhance their adsorption properties. Biogenic hybrid composites, which integrate the characteristics of more than one material, have also been fabricated. Additionally, microorganisms and algae are analyzed for their ability to uptake pollutants. Various influential factors that contribute to the adsorption process are also discussed. The challenge, limitations and future prospects for research are reviewed and bridging gap between large scale application and laboratory scale. This comprehensive review, involves a combination of various biogenic adsorbents, going beyond the existing literature where typically only specific adsorbents are reported. The review also covers the isotherms, kinetics, and desorption studies of biogenic adsorbents, providing an improved framework for their effective use in removing pharmaceuticals and dyes from wastewater.
Collapse
Affiliation(s)
- Mobeen Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Babar Taj
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Sónia A C Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
61
|
Qureshi MAUR, Arshad N, Rasool A, Rizwan M, Rasheed T. Guar gum-based stimuli responsive hydrogels for sustained release of diclofenac sodium. Int J Biol Macromol 2023; 250:126275. [PMID: 37567541 DOI: 10.1016/j.ijbiomac.2023.126275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
In the current study, hydrogels for the controlled release of diclofenac sodium were synthesized from graphene oxide-reinforced guar gum and poly (N-vinyl-2-pyrrolidone) using the Solution Casting Technique. Varying concentrations of 3-Glycidyloxypropyl trimethoxysilane (GLYMO) were employed for the crosslinking of hydrogels. Further, the characterization of hydrogels was carried out using different techniques such as Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction, thermal analysis and scanning electron microscope. The FTIR investigations reveals particular functionalities and development of hydrogel interfaces. While thermal analysis prophesied that, improvement in forces among hydrogel components is directly proportional to the GLYMO concentration. In-vitro biodegradation test and cell viability assay against HEK-293 cell lines confirmed their biodegradable and biocompatible nature. GPG-32 demonstrated maximum antibacterial activity against P.aeruginosa and E.coli strains. The maximum swelling 2001 % and 1814 % in distilled water were recorded for GPG (control) and GPG-8 respectively that obeyed Fick's law. Hydrogels displayed high swelling responses at pH 6 in buffer and non-buffer solutions. In 2.5 h, 88.7 % diclofenac sodium was released which was determined by UV visible spectrophotometer. In conclusion, guar gum-based non-toxic, biocompatible and biodegradable hydrogels would be a model platform for targeting inflammation and pains. Furthermore, improved mechanical and viscoelastic behavior of hydrogels could also be explored for making drug loaded dressings for wound healing applications.
Collapse
Affiliation(s)
| | - Nasima Arshad
- Department of Chemistry, Allama Iqbal Open University Islamabad, Pakistan.
| | - Atta Rasool
- School of Chemistry, University of the Punjab, 54590 Lahore, Pakistan
| | - Muhmmad Rizwan
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
62
|
Usman M, Taj MB, Carabineiro SAC. Gum-based nanocomposites for the removal of metals and dyes from waste water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102027-102046. [PMID: 37674071 PMCID: PMC10567940 DOI: 10.1007/s11356-023-29389-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
The importance of water for all living organisms is unquestionable and protecting its sources is crucial. In order to reduce water contaminants, like toxic metals and organic dyes, researchers are exploring different techniques, such as adsorption, photocatalytic degradation, and electrolysis. Novel materials are also being sought. In particular, biopolymers like guar gum and xanthan gum, that are eco-friendly, non-toxic, reusable, abundant and cost-effective, have enormous potential. Gum-based nanocomposites can be prepared and used for removing heavy metals and colored dyes by adsorption and degradation, respectively. This review explains the significance of gum-based nanomaterials in waste water treatment, including preparative steps, characterization techniques, kinetics models, and the degradation and adsorption mechanisms involved.
Collapse
Affiliation(s)
- Muhammad Usman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Babar Taj
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | |
Collapse
|
63
|
Huang X, Song J, Xu F, Yun D, Li C, Liu J. Characterization and Application of Guar Gum/Polyvinyl Alcohol-Based Food Packaging Films Containing Betacyanins from Pokeweed ( Phytolacca acinosa Roxb.) Berries and Silver Nanoparticles. Molecules 2023; 28:6243. [PMID: 37687072 PMCID: PMC10489142 DOI: 10.3390/molecules28176243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Food packaging films were prepared by using guar gum/polyvinyl alcohol (GP) as the film matrix, 2% Ag nanoparticles (AgNPs) as reinforcing filler and antimicrobial agent, and 1%, 2% and 3% pokeweed betacyanins (PB) as the colorant and antioxidant agent. The structures and color-changing, barrier, mechanical, thermal and antioxidant/antibacterial properties of different films were measured. The results show that the PB were pH-sensitive pigments with pink, purple and yellow colors at pH 3-8, pH 9-11 and pH 12, respectively. PB improved the compatibility of guar gum and polyvinyl alcohol through hydrogen bonds. The films with PB showed a color-changing capacity under ammonia vapor and good color stability in chilled storage. AgNPs and PB elevated the barrier capacity of GP film to light, water vapor and oxygen gas. Meanwhile, AgNPs and PB improved the stiffness, thermal stability and antioxidant/antibacterial activity of GP film. The film with AgNPs and 3% PB showed the highest barrier capacity, stiffness, thermal stability and antioxidant/antimicrobial activity. In shrimp spoilage test, the films with AgNPs and 2% and 3% PB indicated shrimp freshness through film color changes. The results reveal the potential use of the prepared films in active and smart packaging.
Collapse
Affiliation(s)
- Xiaoqian Huang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.H.); (F.X.); (D.Y.); (C.L.)
| | - Jiangfeng Song
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Fengfeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.H.); (F.X.); (D.Y.); (C.L.)
| | - Dawei Yun
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.H.); (F.X.); (D.Y.); (C.L.)
| | - Chenchen Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.H.); (F.X.); (D.Y.); (C.L.)
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.H.); (F.X.); (D.Y.); (C.L.)
| |
Collapse
|
64
|
Geng X, Xue R, Teng S, Fan W, Wang G, Li J, Liu Y, Huang Z, Yang W. Guar gum-enhanced emission of gold nanoclusters for α-glucosidase activity detection and anti-diabetic agents screening in plant extracts. Anal Chim Acta 2023; 1267:341393. [PMID: 37257966 DOI: 10.1016/j.aca.2023.341393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
The development of efficient fluorescent methods for α-glucosidase (α-Glu) detection and α-Glu inhibitor screening plays a critical role in the therapy of type 2 diabetes (T2D). Herein, guar gum (GG), a high-abundant and non-toxic natural polymer originated from the seeds of a drought-tolerant plant, Cyamposis tetragonolobus, was found to be able to enhance the fluorescence emission of gold nanoclusters (AuNCs) probe. The emission enhancement effect was achieved by using GG at very low concentrations (<1.0 wt%) and presented in a viscosity-dependent manner through increasing solvent reorientation time and inhibiting intramolecular motions of AuNCs. Furthermore, the enhanced emission of the AuNCs was quenched by Fe3+via dynamic quenching and then restored by α-Glu. Accordingly, a fluorimetric method was proposed for the determination of α-Glu. Owing to the fluorescence enhancement effect of GG on the AuNCs probe, the detection limit of the approach was 0.13 U L-1 and the detection range was up to 5 orders of magnitude from 0.2 to 4000 U L-1, which was much better than most current α-Glu detection methods. The approach was further applied to α-Glu inhibitors screening from natural plant extracts, providing great prospects for the prevention and treatment of T2D.
Collapse
Affiliation(s)
- Xiaoyu Geng
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruisong Xue
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shiyong Teng
- Department of Anesthesiology, First Hospital, Jilin University, Changchun, 130021, China
| | - Weiqiang Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guanhua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jinshuo Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yanmei Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Wensheng Yang
- College of Chemistry, Jilin University, Changchun, 130012, China; Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
65
|
Heyns IM, Davis G, Ganugula R, Ravi Kumar MNV, Arora M. Glucose-Responsive Microgel Comprising Conventional Insulin and Curcumin-Laden Nanoparticles: a Potential Combination for Diabetes Management. AAPS J 2023; 25:72. [PMID: 37442863 DOI: 10.1208/s12248-023-00839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Successful management of type 2 diabetes mellitus (T2DM), a complex and chronic disease, requires a combination of anti-hyperglycemic and anti-inflammatory agents. Here, we have conceptualized and tested an integrated "closed-loop mimic" in the form of a glucose-responsive microgel (GRM) based on chitosan, comprising conventional insulin (INS) and curcumin-laden nanoparticles (nCUR) as a potential strategy for effective management of the disease. In addition to mimicking the normal, on-demand INS secretion, such delivery systems display an uninterrupted release of nCUR to combat the inflammation, oxidative stress, lipid metabolic abnormality, and endothelial dysfunction components of T2DM. Additives such as gum arabic (GA) led to a fivefold increased INS loading capacity compared to GRM without GA. The GRMs showed excellent in vitro on-demand INS release, while a constant nCUR release is observed irrespective of glucose concentrations. Thus, this study demonstrates a promising drug delivery technology that can simultaneously, and at physiological/pathophysiological relevance, deliver two drugs of distinct physicochemical attributes in the same formulation.
Collapse
Affiliation(s)
- Ingrid M Heyns
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Garrett Davis
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA
| | - Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA
- Chemical and Biological Engineering, University of Alabama, SEC 3448, Box 870203, Tuscaloosa, Alabama, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meenakshi Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA.
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA.
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA.
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA.
| |
Collapse
|
66
|
Sultana A, Kumar L, Gaikwad KK. Lignocellulose nanofibrils/guar gum-based ethylene scavenging composite film integrated with zeolitic imidazolate framework-8 for food packaging. Int J Biol Macromol 2023:125031. [PMID: 37244327 DOI: 10.1016/j.ijbiomac.2023.125031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Ethylene, a ripening hormone, is critical in limiting the shelf life of fresh produce, specifically climacteric fruits and vegetables. A simple and benign fabrication approach is used to transform sugarcane bagasse, an agro-industrial waste into lignocellulosic nanofibrils (LCNF). In this investigation, biodegradable film was fabricated using LCNF (extracted from sugarcane bagasse) and guar gum (GG) which was reinforced with zeolitic imidazolate framework (ZIF)-8/zeolite. The LCNF/GG film not only acts as a biodegradable matrix to hold the ZIF-8/zeolite composite, but also possesses ethylene scavenging, antioxidant, and UV-blocking properties. The characterization results suggested that pure LCNF showed antioxidant activity of around 69.55 %. The LCNF/GG/MOF-4 film has shown lowest UV-transmittance (5.06 %) and highest ethylene scavenging capacity (40.2 %) among all the samples. After 6 days of storage at 25 ± 2 °C, packaged control bananas samples underwent significant degradation. In contrast, a banana package consisting of LCNF/GG/MOF-4 film maintained their high quality in terms of colour. Fabricated novel biodegradable film has potential application prospects for being used in prolonging the shelf life of fresh produce.
Collapse
Affiliation(s)
- Afreen Sultana
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Lokesh Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kirtiraj K Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
67
|
Li X, He P, Ma R, Dong C, Lv Y, Dai L. Modulation of composite hydrogel consisting of TEMPO-oxidized cellulose nanofibers and cationic guar gum. Int J Biol Macromol 2023; 241:124483. [PMID: 37086775 DOI: 10.1016/j.ijbiomac.2023.124483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 04/24/2023]
Abstract
The applications of hydrogels are prominently affected by the modulation of their structure and performance. We herein systematically implemented the modulation of an all-polysaccharide hydrogel consisting of TEMPO-oxidized cellulose nanofibers (TOCN) and cationic guar gum (CGG). Four different factors including the carboxylate content and size of TOCN, the freezing-thawing treatment and solid content of hydrogel were studied to disclose their influence on the structure and property of TOCN/CGG hydrogel. The results indicated that the increase of carboxylate content of TOCN, the number of freezing-thawing cycles and solid content all increased the crosslinking density of hydrogel as a result of the improved interactions. Accordingly, the hydrogels exhibited more compact structures and enhanced rheological properties. The influence of TOCN size on the hydrogel structure and property was demonstrated to be dependent on the compromise between the exposed functional groups of TOCN and their ability in generating entanglements inside the hydrogel. This work helps shed light on the modulation of hydrogel structure and performance, which might facilitate the exploration of hydrogel applications.
Collapse
Affiliation(s)
- Xinyu Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ping He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ruoteng Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Cuihua Dong
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yong Lv
- School of Mechanical Engineering and Information, Yiwu Industrial & Commercial College, Yiwu 322000, China
| | - Lei Dai
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
68
|
Xiao L, Hou Y, Xue Z, Bai L, Wang W, Chen H, Yang H, Yang L, Wei D. Soy Protein Isolate/Genipin-Based Nanoparticles for the Stabilization of Pickering Emulsion to Design Self-Healing Guar Gum-Based Hydrogels. Biomacromolecules 2023; 24:2087-2099. [PMID: 37079862 DOI: 10.1021/acs.biomac.2c01507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Nowadays, stretchable self-healing hydrogels designed by biomass-based materials have gathered remarkable attention in numerous frontier fields such as wound healing, health monitoring issues, and electronic skin. In this study, soy protein isolate (SPI), a common plant protein, was cross-linked to nanoparticles (SPI NPs) by Genipin, (Gen) which was attracted from the native Geniposide. Oil-in-water (O/W) Pickering emulsion was formed by SPI NPs wrapping the linseed oil, and further implanted into poly(acrylic acid)/guar gum (PAA/GG)-based self-healing hydrogels by multiple reversible weak interactions. With the addition of Pickering emulsion, the hydrogels have achieved a remarkable self-healing ability (self-healing efficiency could reach 91.6% within 10 h) and mechanical properties (tensile strength of 0.89 MPa and strain of 853.2%). Therefore, these hydrogels with good reliable durability have outstanding application prospects in sustainable materials.
Collapse
Affiliation(s)
- Lixuan Xiao
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Yaning Hou
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Zhiyan Xue
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| |
Collapse
|
69
|
Li Y, Hilliard C, Kuo T, Nelson C, Rinken M, Broomall C, Hawkes A, Pearce E, Donate F, Ouellette S, Kalantar TH. Chemical composition, particle size, and molecular weight distributions of chemically degraded guar gum solutions. J Appl Polym Sci 2023. [DOI: 10.1002/app.53914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Yongfu Li
- The Dow Chemical Company Core R&D Analytical Sciences Midland Michigan USA
| | - Casie Hilliard
- The Dow Chemical Company Dow Industrial Solution R&D Lake Jackson Texas USA
| | - Tzu‐Chi Kuo
- The Dow Chemical Company Core R&D Formulation, Automation, & Materials Science Midland Michigan USA
| | - Christopher Nelson
- The Dow Chemical Company Core R&D Formulation, Automation, & Materials Science Midland Michigan USA
| | - Marian Rinken
- The Dow Chemical Company Core R&D Analytical Sciences Stade Germany
| | - Charles Broomall
- The Dow Chemical Company Core R&D Analytical Sciences Midland Michigan USA
| | - Alice Hawkes
- The Dow Chemical Company Core R&D Analytical Sciences Lake Jackson Texas USA
| | - Eric Pearce
- The Dow Chemical Company Core R&D Analytical Sciences Midland Michigan USA
| | - Felipe Donate
- The Dow Chemical Company Dow Industrial Solution R&D Midland Michigan USA
| | - Sara Ouellette
- The Dow Chemical Company Core R&D Formulation, Automation, & Materials Science Midland Michigan USA
| | - Thomas H. Kalantar
- The Dow Chemical Company Core R&D Formulation, Automation, & Materials Science Midland Michigan USA
| |
Collapse
|
70
|
Orthogonal Design and Microstructure Mechanism Analysis of Novel Bentonite Polymer Slurry in Pipe Jacking. Polymers (Basel) 2023; 15:polym15061461. [PMID: 36987241 PMCID: PMC10053124 DOI: 10.3390/polym15061461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
The selection of an appropriate slurry ingredient and its percentage ratio is a vital and necessary task for engineers in slurry pipe jacking operations. However, traditional bentonite grouting materials are difficult to degrade because of their single and non-biodegradable composition. Nowadays crosslinked polymers have been widely considered due to their excellent performance and application in engineering practices, which enlighten novel polymer slurry in pipe jacking. This study innovatively proposed using boric acid crosslinked polymers added into polyacrylamide bentonite slurry, which not only solves the shortcomings of traditional grouting materials but also meets the general working performance requirements. The new slurry’s funnel viscosity, filter loss, water dissociation ratio and dynamic shear were tested according to an orthogonal experiment. Single factor range analysis was conducted to identify the optimal mix proportion based on an orthogonal design, and the formation behavior of mineral crystals and microstructure characteristics were evaluated by X-ray diffraction and scanning electron microscopy respectively. According to the results, guar gum and borax form a dense boric acid crosslinked polymer through cross-linking reaction. The internal structure grew tighter and more continuous as the crosslinked polymer concentration grew. It improved the anti-permeability plugging action and viscosity of slurries by 36.1~94.3%. The optimal proportions of sodium bentonite, guar gum, polyacrylamide, borax, and water were 10%, 0.2%, 0.25%, 0.1%, and 89.45% respectively. All these works indicated that the improvement of slurry composition by using boric acid crosslinked polymers was feasible.
Collapse
|
71
|
A review on remediation of dye adulterated system by ecologically innocuous "biopolymers/natural gums-based composites". Int J Biol Macromol 2023; 231:123240. [PMID: 36639083 DOI: 10.1016/j.ijbiomac.2023.123240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The mitigation of wastewater exploiting biopolymers/natural gums-based composites is an appealing research theme in today's scenario. The following review presents a comprehensive description of the polysaccharides derived from biopolymers (chitosan, collagen, cellulose, starch, pectin, lignin, and alginate) and natural gums (guar, gellan, carrageenan, karaya, moringa oliefera, tragacanth, and xanthan gum). These biopolymers/natural gums-based composites depicted excellent surface functionality, non-toxicity, economic and environmental viability, which corroborated them as potential candidates in the decontamination process. The presence of -OH, -COOH, and -NH functional groups in their backbone rendered them tailorable for modification/functionalization, and anchor an array of pollutants via electrostatic interaction, hydrogen bonding, and Van der Waals forces. Further, due to these functional moieties, these bio-based composites revealed an excellent adsorption capacity than conventional adsorbents. This review provides an overview of the classification of biopolymers/natural gums based on their origin, different ways of their modification, and the remediation of dye-contaminated aqueous environments employing diverse bio-based adsorbents. The isotherm, kinetic modelling along with thermodynamics of the adsorption process is discussed. Additionally, the reusable efficacy of these bio-adsorbents is reviewed.
Collapse
|
72
|
Jalili M, Meftahizade H, Golafshan A, Zamani E, Zamani M, Behzadi Moghaddam N, Ghorbanpour M. Green synthesized guar plant composites for wastewater remediation: a comprehensive review. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
73
|
Garg SS, Gupta J. Guar gum-based nanoformulations: Implications for improving drug delivery. Int J Biol Macromol 2023; 229:476-485. [PMID: 36603711 DOI: 10.1016/j.ijbiomac.2022.12.271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
Poorly soluble drugs are reported to easily degrade in the gastrointestinal tract and contribute in limiting the effect of drug to its targeted site. Oral administration of drug is one of the prominent ways to deliver a drug, although, it experiences barriers like acidic pH, presence of microflora and enzymes in the gastrointestinal tract. Collectively all of these participate in the degradation of drug before it reaches its target site and thus, they impede the sustained effect of drug. A quest of choosing a polymer with good stability profile and releasing the drug to its targeted site is always been a challenge for the scientists worldwide. Many polymers have been reported to prevent the degradation of drug and one such naturally occurring biocompatible polymer is guar gum. Guar gum-based nanoformulations have been extensively used in past decades to achieve controlled drug release which defines its importance. The coating of guar gum over the drug improves the bioavailability of the drug and thus helps in minimizing the risk of drug degradation. This review intends to highlight the beneficial role of guar gum-based nanoformulations to improve drug delivery by ameliorating the bioavailibility.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India.
| |
Collapse
|
74
|
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Sustainable Biodegradable Biopolymer-Based Nanoparticles for Healthcare Applications. Int J Mol Sci 2023; 24:3188. [PMID: 36834596 PMCID: PMC9964453 DOI: 10.3390/ijms24043188] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Biopolymeric nanoparticles are gaining importance as nanocarriers for various biomedical applications, enabling long-term and controlled release at the target site. Since they are promising delivery systems for various therapeutic agents and offer advantageous properties such as biodegradability, biocompatibility, non-toxicity, and stability compared to various toxic metal nanoparticles, we decided to provide an overview on this topic. Therefore, the review focuses on the use of biopolymeric nanoparticles of animal, plant, algal, fungal, and bacterial origin as a sustainable material for potential use as drug delivery systems. A particular focus is on the encapsulation of many different therapeutic agents categorized as bioactive compounds, drugs, antibiotics, and other antimicrobial agents, extracts, and essential oils into protein- and polysaccharide-based nanocarriers. These show promising benefits for human health, especially for successful antimicrobial and anticancer activity. The review article, divided into protein-based and polysaccharide-based biopolymeric nanoparticles and further according to the origin of the biopolymer, enables the reader to select the appropriate biopolymeric nanoparticles more easily for the incorporation of the desired component. The latest research results from the last five years in the field of the successful production of biopolymeric nanoparticles loaded with various therapeutic agents for healthcare applications are included in this review.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
75
|
Shao B, Li H, Zhang P, Teng X, Wang H, Verdi T, Bhat LT, Zhang F. The effect of gum consumption on blood pressure as a risk factor for coronary heart disease: A meta-analysis of controlled trials. INT J VITAM NUTR RES 2023; 93:61-71. [PMID: 33472439 DOI: 10.1024/0300-9831/a000696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Guar gum has been used in the management of hypercholesterolemia, constipation, weight loss, type 2 diabetes mellitus and hypertension. Our aim was to verify the hypothesis that Guar gum can be used as an alternative to pharmacological agents in the treatment of mild hypertension. Thus, we conducted a systematic review and meta-analysis to evaluate the effectiveness of Guar gum in reducing blood pressure. We searched the Cochrane Library, PubMed/Medline, Scopus and Google Scholar databases for studies published in the English language up to June 2020 which evaluated the effects of gum consumption on systolic blood pressure (SBP) and diastolic blood pressure (DBP). Nine randomized clinical trials with suitable comparison groups (placebo/control) reported SBP and DBP as outcome measures. These trials involved in total 640 participants. The overall results indicated that the consumption of gum resulted in a significant change in SBP (WMD: -1.190 mmHg, 95% CI: -2.011, -0.370) and DBP (WMD: -1.101 mmHg, 95% CI: -1.597, -0.605). Moreover, the greatest reduction in blood pressure was seen in patients with type 2 diabetes mellitus and metabolic syndrome who consumed Guar gum (WMD: -3.375 mmHg). In addition, there was a significant decrease in SBP if the gum dosage was > 15 g (WMD: -6.637 mmHg) and if the intervention duration was > 12 weeks (WMD: -1.668 mmHg). The results of the present dose-response meta-analysis support the employment of gum consumption in the reduction of SBP and DBP. Based on the sub-group analyses, we highlight that the greatest decrease in SBP was experienced if the gum dosage was > 15 g and when the intervention lasted > 12 weeks.
Collapse
Affiliation(s)
- Baowei Shao
- Department of Cardiac Surgery, Jinan Central Hospital, Shandong, China
| | - Haijie Li
- Department of Cardiac Surgery, Jinan Central Hospital, Shandong, China
| | - Pengfei Zhang
- Department of Cardiac Surgery, Jinan Central Hospital, Shandong, China
| | - Xilong Teng
- Department of Cardiac Surgery, Jinan Central Hospital, Shandong, China
| | - Honglu Wang
- Department of Cardiac Surgery, Jinan Central Hospital, Shandong, China
| | - Thais Verdi
- Department of iochemistry, physioPlogy, Training and Sports nutrition, Campinas State University, Brazil
| | - Latha T Bhat
- Department of Medical Surgical Nursing, Manipal College of Nursing Manipal, Manipal University, India
| | - Fengquan Zhang
- Department of Cardiac Surgery, Jinan Central Hospital, Shandong, China
| |
Collapse
|
76
|
Wang F, Xie C, Ye R, Tang H, Jiang L, Liu Y. Development of active packaging with chitosan, guar gum and watermelon rind extract: Characterization, application and performance improvement mechanism. Int J Biol Macromol 2023; 227:711-725. [PMID: 36565825 DOI: 10.1016/j.ijbiomac.2022.12.210] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The objective of this study was to make a film matrix containing chitosan (CS) and guar gum (GG), and to improve the physicochemical properties of the film using watermelon rind extract (WRE) as a cross-linker and active substance for the preservation of fresh-cut bananas. The results of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy showed that the WRE and CG matrix formed intermolecular hydrogen bond interactions, which made the structure of the resulting films more compact. With increasing amounts of WRE, the mechanical properties of the films were significantly increased, but the permeability of water vapor and oxygen was significantly decreased (p < 0.05). Notably, when the amount of extract reached 4 wt%, the DPPH radical scavenging activity of the composite film significantly increased to 83.24 %, and the antibacterial activity also reached its highest value. Fresh-cut bananas were stored at room temperature with polyethylene film, CG and CG-WRE. The CG with 4 wt% WRE effectively inhibited the changes in appearance, firmness, weight, color and total soluble solids content of fresh-cut bananas during storage. Therefore, CG-WRE as a novel active food packaging material, has good physicochemical properties and great potential to extend the shelf life of foods.
Collapse
Affiliation(s)
- Fenghui Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cancan Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rong Ye
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hongjie Tang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Longwei Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| | - Yingzhu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
77
|
Mandal S, Hwang S, Shi SQ. Guar gum, a low-cost sustainable biopolymer, for wastewater treatment: A review. Int J Biol Macromol 2023; 226:368-382. [PMID: 36513177 DOI: 10.1016/j.ijbiomac.2022.12.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Rapid population growth and the resultant pollution of freshwater resources have created a water stress condition reducing the availability of safe and affordable water. Guar gum, a biocompatible macromolecule obtained from the endosperm of the seeds of Cyamopsis tetragonolobus, is a fascinating raw material for multifunctional adsorbents. This review assembled the work conducted by various researchers over the past few decades and discussed the structure, properties, and different modifications methods employed to develop versatile guar gum-based adsorbent. The paper also summarized the recent progress of guar gum-based nanocomposites for the remediation of multiple hazardous substances such as organic dyes, toxic heavy metal ions, oil-water separation as well as inhibiting the growth of bacterial pathogens. Thus, the important contribution of guar gum composites to safeguard the water quality is highlighted which will overcome the limitations and streamline the future course of innovative research.
Collapse
Affiliation(s)
- Sujata Mandal
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Sangchul Hwang
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA.
| | - Sheldon Q Shi
- Department of Mechanical Engineering, University of North Texas, Denton, TX 76207, USA
| |
Collapse
|
78
|
Identification, Purification, Characterization and Biopreservation Potential of Antimicrobial Peptide of Pediococcus acidilactici NCDC 252. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-022-10485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
79
|
Dristant U, Mukherjee K, Saha S, Maity D. An Overview of Polymeric Nanoparticles-Based Drug Delivery System in Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231152083. [PMID: 36718541 PMCID: PMC9893377 DOI: 10.1177/15330338231152083] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Cancer is recognized as one of the world's deadliest diseases, with more than 10 million new cases each year. Over the past 2 decades, several studies have been performed on cancer to pursue solutions for effective treatment. One of the vital benefits of utilizing nanoparticles (NPs) in cancer treatment is their high adaptability for modification and amalgamation of different physicochemical properties to boost their anti-cancer activity. Various nanomaterials have been designed as nanocarriers attributing nontoxic and biocompatible drug delivery systems with improved bioactivity. The present review article briefly explained various types of nanocarriers, such as organic-inorganic-hybrid NPs, and their targeting mechanisms. Here a special focus is given to the synthesis, benefits, and applications of polymeric NPs (PNPs) involved in various anti-cancer therapeutics. It has also been discussed about the drug delivery approach by the functionalized/encapsulated PNPs (without/with targeting ability) that are being applied in the therapy and diagnostic (theranostics). Overall, this review can give a glimpse into every aspect of PNPs, from their synthesis to drug delivery application for cancer cells.
Collapse
Affiliation(s)
- Utkarsh Dristant
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
80
|
Le TA, Huynh TP. Current advances in the Chemical functionalization and Potential applications of Guar gum and its derivatives. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
81
|
Pirsa S, Hafezi K. Hydrocolloids: Structure, preparation method, and application in food industry. Food Chem 2023; 399:133967. [DOI: 10.1016/j.foodchem.2022.133967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/25/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
|
82
|
Li J, Sun J, Chang C, Gu L, Su Y, Zhai J, Yang Y. Influence of selected gums on the foaming properties of egg white powders: Kinetics of foam formation and baking performance. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
83
|
Kian-Pour N, Yildirim-Yalcin M, Kurt A, Ozmen D, Toker OS. A review on latest innovations in physical modifications of galactomannans. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
84
|
Zheng BD, Xiao MT. Polysaccharide-based hydrogel with photothermal effect for accelerating wound healing. Carbohydr Polym 2023; 299:120228. [PMID: 36876827 DOI: 10.1016/j.carbpol.2022.120228] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
Polysaccharide-based hydrogel has excellent biochemical function, abundant sources, good biocompatibility and other advantages, and has a broad application prospect in biomedical fields, especially in the field of wound healing. With its inherent high specificity and low invasive burden, photothermal therapy has shown great application prospect in preventing wound infection and promoting wound healing. Combining polysaccharide-based hydrogel with photothermal therapy (PTT), multifunctional hydrogel with photothermal, bactericidal, anti-inflammatory and tissue regeneration functions can be designed, so as to achieve better therapeutic effect. This review first focuses on the basic principles of hydrogel and PTT, and the types of polysaccharides that can be used to design hydrogels. In addition, according to the different materials that produce photothermal effects, the design considerations of several representative polysaccharide-based hydrogels are emphatically introduced. Finally, the challenges faced by polysaccharide-based hydrogels with photothermal properties are discussed, and the future prospects of this field are put forward.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
85
|
Armghan Khalid M, Niaz B, Saeed F, Afzaal M, Islam F, Hussain M, Mahwish, Muhammad Salman Khalid H, Siddeeg A, Al-Farga A. Edible coatings for enhancing safety and quality attributes of fresh produce: A comprehensive review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022; 25:1817-1847. [DOI: 10.1080/10942912.2022.2107005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/24/2022] [Indexed: 10/15/2022]
Affiliation(s)
| | - Bushra Niaz
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Fakhar Islam
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Mahwish
- Institute of Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Muhammad Salman Khalid
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture Faisalabad Faisalabad Pakistan
| | - Azhari Siddeeg
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
86
|
Nehra A, Biswas D, Siracusa V, Roy S. Natural Gum-Based Functional Bioactive Films and Coatings: A Review. Int J Mol Sci 2022; 24:485. [PMID: 36613928 PMCID: PMC9820387 DOI: 10.3390/ijms24010485] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Edible films and coatings are a current and future food packaging trend. In the food and envi-ronmental sectors, there is a growing need to understand the role of edible packaging and sus-tainability. Gums are polysaccharides of natural origin that are frequently utilized as thickeners, clarifying agents, gelling agents, emulsifiers, and stabilizers in the food sector. Gums come in a variety of forms, including seed gums, mucilage gums, exudate gums, and so on. As a biodegradable and sustainable alternative to petrochemical-based film and coatings, gums could be a promising option. Natural plant gum-based edible packaging helps to ensure extension of shelf-life of fresh and processed foods while also reducing microbiological alteration and/or oxidation processes. In this review, the possible applications of gum-based polymers and their functional properties in development of edible films and coatings, were comprehensively dis-cussed. In the future, technology for developing natural gum-based edible films and coatings might be applied commercially to improve shelf life and preserve the quality of foods.
Collapse
Affiliation(s)
- Arushri Nehra
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Valentina Siracusa
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| |
Collapse
|
87
|
Jíménez-Arias D, Morales-Sierra S, Silva P, Carrêlo H, Gonçalves A, Ganança JFT, Nunes N, Gouveia CSS, Alves S, Borges JP, Pinheiro de Carvalho MÂA. Encapsulation with Natural Polymers to Improve the Properties of Biostimulants in Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010055. [PMID: 36616183 PMCID: PMC9823467 DOI: 10.3390/plants12010055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 05/28/2023]
Abstract
Encapsulation in agriculture today is practically focused on agrochemicals such as pesticides, herbicides, fungicides, or fertilizers to enhance the protective or nutritive aspects of the entrapped active ingredients. However, one of the most promising and environmentally friendly technologies, biostimulants, is hardly explored in this field. Encapsulation of biostimulants could indeed be an excellent means of counteracting the problems posed by their nature: they are easily biodegradable, and most of them run off through the soil, losing most of the compounds, thus becoming inaccessible to plants. In this respect, encapsulation seems to be a practical and profitable way to increase the stability and durability of biostimulants under field conditions. This review paper aims to provide researchers working on plant biostimulants with a quick overview of how to get started with encapsulation. Here we describe different techniques and offer protocols and suggestions for introduction to polymer science to improve the properties of biostimulants for future agricultural applications.
Collapse
Affiliation(s)
- David Jíménez-Arias
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Sarai Morales-Sierra
- Grupo de Biología Vegetal Aplicada, Departamento de Botánica, Ecología y Fisiología Vegetal-Facultad de Farmacia, Universidad de La Laguna, Avenida, Astrofísico Francisco Sánchez s/n, 38071 La Laguna, Spain
| | - Patrícia Silva
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Faculty of Exact Sciences and Engineering, University of Madeira, 9020-105 Funchal, Portugal
| | - Henrique Carrêlo
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Adriana Gonçalves
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - José Filipe Teixeira Ganança
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Nuno Nunes
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- CiTAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Carla S. S. Gouveia
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- CiTAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Faculty of Life Sciences, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Sónia Alves
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - João Paulo Borges
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Miguel Â. A. Pinheiro de Carvalho
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- CiTAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Faculty of Life Sciences, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
88
|
Frosi I, Ferron L, Colombo R, Papetti A. Natural carriers: Recent advances in their use to improve the stability and bioaccessibility of food active compounds. Crit Rev Food Sci Nutr 2022; 64:5700-5718. [PMID: 36533404 DOI: 10.1080/10408398.2022.2157371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decades, the incorporation of bioactive compounds in food supplements aroused the attention of scientists. However, these ingredients often exhibit both low solubility and stability and their poor bioaccessibility within the gastrointestinal tract limits their effectiveness. To overcome these drawbacks, many carriers have been investigated for encapsulating nutraceuticals and enhancing their bioavailability. It is note that several different vegetable wall materials have been applied to build delivery systems. Considering their encapsulation mechanism, lipid and protein-based carriers display specific interaction patterns with bioactives, whereas polysaccharidic-based carriers can entrap them by creating porous highly stable networks. To maximize the encapsulation efficiency, mixed systems are very promising. Following the current goal of using natural and sustainable ingredients, only a limited number of studies about the isolation of new ingredients from agro-food waste are available. In this review, a comprehensive overview of the state of art in the development of innovative natural lipid-, protein- and polysaccharide-based plant carriers is presented, focusing on their application as food active compounds. Different aspects to be considered in the design of delivery systems are discussed, including the carrier structure and chemical features, the interaction between the encapsulating and the core material, and the parameters affecting bioactives entrapment.
Collapse
Affiliation(s)
- Ilaria Frosi
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | - Lucia Ferron
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | | | - Adele Papetti
- Drug Sciences Department, University of Pavia, Pavia, Italy
| |
Collapse
|
89
|
Physicochemical and antimicrobial properties of biodegradable films based on gelatin/guar gum incorporated with grape seed oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
90
|
Valente AJM, Pirozzi D, Cinquegrana A, Utzeri G, Murtinho D, Sannino F. Synthesis of β-cyclodextrin-based nanosponges for remediation of 2,4-D polluted waters. ENVIRONMENTAL RESEARCH 2022; 215:114214. [PMID: 36058273 DOI: 10.1016/j.envres.2022.114214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Two cyclodextrin-based nanosponges (CD-NSs) were synthesized using diamines with 6 and 12 methylene groups, CDHD6 and CDHD12, respectively, and used as adsorbents to remove 2,4-D from aqueous solutions. The physico-chemical characterization of the CD‒NSs demonstrated that, when using the linker with the longest chain length, the nanosponges show a more compact structure and higher thermal stability, probably due to hydrophobic interactions. SEM micrographs showed significant differences between the two nanosponges used. The adsorption of 2,4-D was assessed in terms of different parameters, including solid/liquid ratio, pH, kinetics and isotherms. Adsorption occurred preferentially at lower pH values and for short-chain crosslinked nanosponges; while the former is explained by the balance of acid-base characteristics of the adsorbent and adsorbate, the latter can be justified by the increase in the crosslinker-crosslinker interactions, predominantly hydrophobic, rather than adsorbent-adsorbate interactions. The maximum adsorption capacity at the equilibrium (qe) was 20,903 mmol/kg, obtained using CDHD12 with an initial 2,4-D concentration of 2 mmol/L. An environmentally friendly strategy, based on alkali desorption, was developed to recycle and reuse the adsorbents. On the basis of the results obtained, cyclodextrin-based nanosponges appear promising materials for an economically feasible removal of phenoxy herbicides, to be used as potential adsorbents for the sustainable management of agricultural wastewaters.
Collapse
Affiliation(s)
- Artur J M Valente
- University of Coimbra, Department of Chemistry, CQC, 3004-535 Coimbra, Portugal
| | - Domenico Pirozzi
- University of Naples "Federico II", Department of Chemical Engineering, Materials and Industrial Production (DICMaPI), Laboratory of Biochemical Engineering, Piazzale Tecchio, 80, 80125, Naples, Italy
| | - Alessia Cinquegrana
- University of Naples "Federico II", Department of Agricultural Sciences, Via Università 100, 80055 Portici, Naples, Italy
| | - Gianluca Utzeri
- University of Coimbra, Department of Chemistry, CQC, 3004-535 Coimbra, Portugal
| | - Dina Murtinho
- University of Coimbra, Department of Chemistry, CQC, 3004-535 Coimbra, Portugal
| | - Filomena Sannino
- University of Naples "Federico II", Department of Agricultural Sciences, Via Università 100, 80055 Portici, Naples, Italy.
| |
Collapse
|
91
|
Theocharidou A, Lousinian S, Tsagaris A, Ritzoulis C. Interactions and rheology of guar gum–mucin mixtures. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
92
|
Tudu M, Samanta A. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
93
|
Venkatesh K, Jenova I, Karthikeyan S, Madeswaran S, Arivanandhan M, Joice Sheeba D, Nithya S. Polymer electrolyte based on guar gum and ammonium thiocyanate for proton battery application. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
94
|
Yang L, Liu J, Qi X, Cheng X, Ma C, Wang Z. Effects of polysaccharides on the hydrodynamic parameters of sheet erosion on loessial slopes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80705-80715. [PMID: 35727511 DOI: 10.1007/s11356-022-21481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The variations in hydrodynamic parameters at different polysaccharides rates and the relationships between sheet erosion modulus and hydrodynamic parameters were analyzed to reveal the hydrodynamic mechanism of sheet erosion on loessial slopes. Artificially simulated rainfall experiments were carried out under three slope gradients (10°, 15°, and 20°), three rainfall intensities (1.0, 1.5, and 2.0 mm·min-1), and four dry-spreading rates of polysaccharides (0, 1, 3, and 5 g·m-2). The results showed that (1) four hydrodynamic parameters (flow velocity, shear stress, stream power, and unit stream power) all increased with both rainfall intensities and slope gradients at four rates of polysaccharides. (2) Polysaccharides could effectively reduce hydrodynamic parameters. In contrast to the bare slope, the average flow velocity, shear stress, stream power, and unit stream power diminished by 27.11~41.18%, 9.53~18.67%, 31.82~50.24%, and 27.11~41.18%, respectively. (3) Polysaccharides could effectively reduce the growth rate of the sheet erosion modulus with hydrodynamic parameters, and there were few differences among the different rates (1, 3, and 5 g·m-2). The increasing rates of the sheet erosion modulus with flow velocity, shear stress, stream power, and unit stream power were 14.0~65.7%, 14.8~33.9%, 7.8~23.7%, and 9.7~29.5%, respectively. (4) At different polysaccharides rates, the relationships between sheet erosion modulus and hydrodynamic parameters were all in logarithmic functions. Moreover, flow velocity (R2 ≥ 0.920) and stream power (R2 ≥ 0.876) were better hydrodynamic parameters than shear stress (R2 ≥ 0.598) or unit stream power (R2 ≥ 0.537). Polysaccharides decreased the hydrodynamic parameters and the response rates of sheet erosion to hydrodynamics.
Collapse
Affiliation(s)
- Liting Yang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Jun'e Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| | - Xiaoqian Qi
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xike Cheng
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Chunyan Ma
- Yulin University, Shaanxi Key Laboratory of Ecological Restoration in Shaanbei Mining Area, Yulin, 719000, Shaanxi, China
| | - Zhanli Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
95
|
Jiang H, Zhang W, Chen L, Liu J, Cao J, Jiang W. Recent advances in guar gum-based films or coatings: Diverse property enhancement strategies and applications in foods. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
96
|
Derosa G, D'Angelo A, Maffioli P. The role of selected nutraceuticals in management of prediabetes and diabetes: An updated review of the literature. Phytother Res 2022; 36:3709-3765. [PMID: 35912631 PMCID: PMC9804244 DOI: 10.1002/ptr.7564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 01/05/2023]
Abstract
Dysglycemia is a disease state preceding the onset of diabetes and includes impaired fasting glycemia and impaired glucose tolerance. This review aimed to collect and analyze the literature reporting the results of clinical trials evaluating the effects of selected nutraceuticals on glycemia in humans. The results of the analyzed trials, generally, showed the positive effects of the nutraceuticals studied alone or in association with other supplements on fasting plasma glucose and post-prandial plasma glucose as primary outcomes, and their efficacy in improving insulin resistance as a secondary outcome. Some evidences, obtained from clinical trials, suggest a role for some nutraceuticals, and in particular Berberis, Banaba, Curcumin, and Guar gum, in the management of prediabetes and diabetes. However, contradictory results were found on the hypoglycemic effects of Morus, Ilex paraguariensis, Omega-3, Allium cepa, and Trigonella faenum graecum, whereby rigorous long-term clinical trials are needed to confirm these data. More studies are also needed for Eugenia jambolana, as well as for Ascophyllum nodosum and Fucus vesiculosus which glucose-lowering effects were observed when administered in combination, but not alone. Further trials are also needed for quercetin.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Angela D'Angelo
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pamela Maffioli
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
| |
Collapse
|
97
|
Loganathan M, Raj AS, Murugesan A, Kumar PS. Effective adsorption of crystal violet onto aromatic polyimides: Kinetics and isotherm studies. CHEMOSPHERE 2022; 304:135332. [PMID: 35709844 DOI: 10.1016/j.chemosphere.2022.135332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The motive of this work is to synthesis aromatic polyimides by a two-step poly condensation process and the prepared aromatic polyamides (APIs) is been used as an effective functionalized adsorbent for the removal of carcinogenic crystal violet (CV) from aqueous medium. The adsorption efficiency of the APIs was enhanced by incorporation different functional moieties (varying aromatic dianhydrides with -O-, -(CF3)2-, -(CH3)2-) in the polymer structure. The initial and final concentration of CV was measured using UV-Vis spectrometer. The adsorption process was optimized by varying the parameters such as the effect of solution pH, contact time, initial dye concentration, and adsorbent dosage. Kinetics and isotherms of the adsorption system were appraised using data obtained from effect of contact time and initial dye concentration with corresponding empirical modelling techniques respectively. The evaluated results of the adsorption kinetic studies confirmed that the adsorption of API onto CV is followed a pseudo-second-order kinetic model. The adsorption behaviour and their interactions between APIs and CV are well established. The experimental results of this research output could be confirmed that APIs is a very effective adsorbent for the removal of cationic dye from aqueous.
Collapse
Affiliation(s)
- M Loganathan
- Polymer Science and Engineering Lab, Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, India
| | - Arya S Raj
- Polymer Science and Engineering Lab, Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, India
| | - A Murugesan
- Polymer Science and Engineering Lab, Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, India
| |
Collapse
|
98
|
Advances in plant gum polysaccharides; Sources, techno-functional properties, and applications in the food industry - A review. Int J Biol Macromol 2022; 222:2327-2340. [DOI: 10.1016/j.ijbiomac.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
99
|
Villada Y, Taverna ME, Maffi JM, Giletta S, Casis N, Estenoz D. On the use of espina corona gum as a polymeric additive in water-based drilling fluid. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
100
|
Advances in the role of natural gums-based hydrogels in water purification, desalination and atmospheric-water harvesting. Int J Biol Macromol 2022; 222:2888-2921. [DOI: 10.1016/j.ijbiomac.2022.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|