51
|
Zhou S, Xie M, Su J, Cai B, Li J, Zhang K. New insights into balancing wound healing and scarless skin repair. J Tissue Eng 2023; 14:20417314231185848. [PMID: 37529248 PMCID: PMC10388637 DOI: 10.1177/20417314231185848] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
Scars caused by skin injuries after burns, wounds, abrasions and operations have serious physical and psychological effects on patients. In recent years, the research of scar free wound repair has been greatly expanded. However, understanding the complex mechanisms of wound healing, in which various cells, cytokines and mechanical force interact, is critical to developing a treatment that can achieve scarless wound healing. Therefore, this paper reviews the types of wounds, the mechanism of scar formation in the healing process, and the current research progress on the dual consideration of wound healing and scar prevention, and some strategies for the treatment of scar free wound repair.
Collapse
Affiliation(s)
- Shengxi Zhou
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Mengbo Xie
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingjing Su
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| |
Collapse
|
52
|
Wang M, Deng Z, Guo Y, Xu P. Engineering functional natural polymer-based nanocomposite hydrogels for wound healing. NANOSCALE ADVANCES 2022; 5:27-45. [PMID: 36605790 PMCID: PMC9765432 DOI: 10.1039/d2na00700b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Skin injury occurs due to acute trauma, chronic trauma, infection, and surgical intervention, which can result in severe dysfunction and even death in humans. Therefore, clinical intervention is critical for the treatment of skin wounds. One idealized method is to use wound dressings to protect skin wounds and promote wound healing. Among these wound dressings, nanocomposite natural polymer hydrogels (NNPHs) are multifunctional wound dressings for wound healing. The combination of nanomaterials and natural polymer hydrogels avoids the shortcomings of a single component. Moreover, nanomaterials could provide improved antibacterial, anti-inflammatory, antioxidant, stimuli-responsive, electrically conductive and mechanical properties of hydrogels to accelerate wound healing. This review focuses on recent advancements in NNPHs for skin wound healing and repair. Initially, the functions and requirements of NNPHs as wound dressings were introduced. Second, the design, preparation and capacities of representative NNPHs are classified based on their nanomaterial. Third, skin wound repair applications of NNPHs have been summarized based on the types of wounds. Finally, the potential issues of NNPHs are discussed, and future research is proposed to prepare idealized multifunctional NNPHs for skin tissue regeneration.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University Xi'an 710000 China
| | - Zexing Deng
- College of Materials Science and Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Yi Guo
- Shaanxi Key Laboratory of Brain Disorders, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University Xi'an 710021 China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University Xi'an 710000 China
| |
Collapse
|
53
|
Jaldin-Crespo L, Silva N, Martínez J. Nanomaterials Based on Honey and Propolis for Wound Healing-A Mini-Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4409. [PMID: 36558262 PMCID: PMC9785851 DOI: 10.3390/nano12244409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Wound healing is a public health concern worldwide, particularly in chronic wounds due to delayed healing and susceptibility to bacterial infection. Nanomaterials are widely used in wound healing treatments due to their unique properties associated with their size and very large surface-area-to-volume ratio compared to the same material in bulk. The properties of nanomaterials can be expanded and improved upon with the addition of honey and propolis, due to the presence of bioactive molecules such as polyphenols, flavonoids, peptides, and enzymes. These bionanomaterials can act at different stages of wound healing and through different mechanisms, including anti-inflammatory, antimicrobial, antioxidant, collagen synthesis stimulation, cell proliferation, and angiogenic effects. Biomaterials, at the nanoscale, show new alternatives for wound therapy, allowing for targeted and continuous delivery of beekeeping products at the injection site, thus avoiding possible systemic adverse effects. Here, we summarize the most recent therapies for wound healing based on bionanomaterials assisted by honey and propolis, with a focus on in vitro and in vivo studies. We highlight the type, composition (honey, propolis, and polymeric scaffolds), biological, physicochemical/mechanical properties, potential applications and patents related of the last eight years. Furthermore, we discuss the challenges, advantages, disadvantages and stability of different bionanomaterials related to their clinical translation and insight into the investigation and development of new treatments for wound healing.
Collapse
Affiliation(s)
- Limberg Jaldin-Crespo
- Regenerative Medicine Center, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Nataly Silva
- Faculty of Design, Universidad del Desarrollo, Santiago 7610658, Chile
| | - Jessica Martínez
- Regenerative Medicine Center, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| |
Collapse
|
54
|
Yilmaz MT, Hassanein WS, Alkabaa AS, Ceylan Z. Electrospun eugenol-loaded gelatin nanofibers as bioactive packaging materials to preserve quality characteristics of beef. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
55
|
Liu Y, Lan X, Zhang J, Wang Y, Tian F, Li Q, Wang H, Wang M, Wang W, Tang Y. Preparation and in vitro evaluation of ε-poly(L-lysine) immobilized poly(ε-caprolactone) nanofiber membrane by polydopamine-assisted decoration as a potential wound dressing material. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
56
|
Solid phase synthesis of oxidized sodium alginate-tobramycin conjugate and its application for infected wound healing. Carbohydr Polym 2022; 295:119843. [PMID: 35988976 DOI: 10.1016/j.carbpol.2022.119843] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
Although sodium alginate possesses excellent biocompatibility, moisture retention and easy availability, it cannot be directly applied for infected wound treatment. Herein, a solid phase synthesis strategy was proposed to fabricate oxidized sodium alginate-tobramycin conjugate (OSA-TOB) for anti-infection dressing development. 13C nuclear magnetic resonance spectra indicated that the oxidization process does not change the ratio of β-D-mannuronic acid (M) / α-L-guluronic acid (G) in OSA and the oxidization reaction shows no stereoselectivity. Elemental analysis disclosed that the graft ratio of tobramycin in OSA-TOB is 13.8 %. Antibacterial test indicated that OSA-TOB can effectively inhibit four prevalent pathogenic bacterial S.epidermidis, P. aeruginosa, S. aureus and E. coli via a different antibacterial mechanism compared to the original TOB. Hemolysis and cytotoxicity assays shown that OSA-TOB have superior hemocompatibility and cytocompatibility. Infected wound healing assay shown that the healing rate of OSA-TOB is the highest. Further analysis indicated that OSA-TOB can reduce the local inflammatory response, accelerate the form of epithelium and collagen deposition. In conclusions, OSA-TOB synthesized in solid phase can be potentially applied as a promising anti-infection wound dressing.
Collapse
|
57
|
Shahid MA, Khan MS, Hasan MM. Licorice extract-infused electrospun nanofiber scaffold for wound healing. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
58
|
Chen Y, Huang W, Chen Y, Wu M, Jia R, You L. Influence of Molecular Weight of Polysaccharides from Laminaria japonica to LJP-Based Hydrogels: Anti-Inflammatory Activity in the Wound Healing Process. Molecules 2022; 27:6915. [PMID: 36296508 PMCID: PMC9607980 DOI: 10.3390/molecules27206915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, polysaccharides from Laminaria japonica (LJP) were produced by the treatment of ultraviolet/hydrogen peroxide (UV/H2O2) degradation into different molecular weights. Then, the degraded LJP were used to prepare LJP/chitosan/PVA hydrogel wound dressings. As the molecular weight of LJP decreased from 315 kDa to 20 kDa, the swelling ratio of the LJP-based hydrogels rose from 14.38 ± 0.60 to 20.47 ± 0.42 folds of the original weight. However, the mechanical properties of LJP-based hydrogels slightly decreased. With the extension of the UV/H2O2 degradation time, the molecular weight of LJP gradually decreased, and the anti-inflammatory activities of LJP-based hydrogels gradually increased. LJP that were degraded for 60 min (60-gel) showed the best inhibition effects on proinflammatory cytokines, while the contents of TNF-α, IL-6, and IL-1β decreased by 57.33%, 44.80%, and 67.72%, respectively, compared with the Model group. The above results suggested that low Mw LJP-based hydrogels showed great potential for a wound dressing application.
Collapse
Affiliation(s)
| | | | | | | | | | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
59
|
Oxidized Bletilla rhizome polysaccharide-based aerogel with synergistic antibiosis and hemostasis for wound healing. Carbohydr Polym 2022; 293:119696. [DOI: 10.1016/j.carbpol.2022.119696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
|
60
|
Tan G, Wang L, Pan W, Chen K. Polysaccharide Electrospun Nanofibers for Wound Healing Applications. Int J Nanomedicine 2022; 17:3913-3931. [PMID: 36097445 PMCID: PMC9464040 DOI: 10.2147/ijn.s371900] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/23/2022] [Indexed: 12/26/2022] Open
Abstract
As a type of biological macromolecule, natural polysaccharides have been widely used in wound healing due to their low toxicity, good biocompatibility, degradability and reproducibility. Electrospinning is a versatile and simple technique for producing continuous nanoscale fibers from a variety of natural and synthetic polymers. The application of electrospun nanofibers as wound dressings has made great progress and they are considered one of the most effective wound dressings. This paper reviews the preparation of polysaccharide nanofibers by electrospinning and their application prospects in the field of wound healing. A variety of polysaccharide nanofibers, including chitosan, starch, alginate, and hyaluronic acid are introduced. The preparation strategy of polysaccharide electrospun nanofibers and their functions in promoting wound healing are summarized. In addition, the future prospects and challenges for the preparation of polysaccharide nanofibers by electrospinning are also discussed.
Collapse
Affiliation(s)
- Guoxin Tan
- School of Pharmacy, Hainan University, Haikou, 570228, People's Republic of China
| | - Lijie Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Kai Chen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| |
Collapse
|
61
|
|
62
|
Li S, Shi W, Wang X, Hu X, Li S, Zhang Y. The preparation and characterization of electrospun gelatin nanofibers containing chitosan/eugenol-sulfobutyl-β-cyclodextrin nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
63
|
Honey: An Advanced Antimicrobial and Wound Healing Biomaterial for Tissue Engineering Applications. Pharmaceutics 2022; 14:pharmaceutics14081663. [PMID: 36015289 PMCID: PMC9414000 DOI: 10.3390/pharmaceutics14081663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
Honey was used in traditional medicine to treat wounds until the advent of modern medicine. The rising global antibiotic resistance has forced the development of novel therapies as alternatives to combat infections. Consequently, honey is experiencing a resurgence in evaluation for antimicrobial and wound healing applications. A range of both Gram-positive and Gram-negative bacteria, including antibiotic-resistant strains and biofilms, are inhibited by honey. Furthermore, susceptibility to antibiotics can be restored when used synergistically with honey. Honey’s antimicrobial activity also includes antifungal and antiviral properties, and in most varieties of honey, its activity is attributed to the enzymatic generation of hydrogen peroxide, a reactive oxygen species. Non-peroxide factors include low water activity, acidity, phenolic content, defensin-1, and methylglyoxal (Leptospermum honeys). Honey has also been widely explored as a tissue-regenerative agent. It can contribute to all stages of wound healing, and thus has been used in direct application and in dressings. The difficulty of the sustained delivery of honey’s active ingredients to the wound site has driven the development of tissue engineering approaches (e.g., electrospinning and hydrogels). This review presents the most in-depth and up-to-date comprehensive overview of honey’s antimicrobial and wound healing properties, commercial and medical uses, and its growing experimental use in tissue-engineered scaffolds.
Collapse
|
64
|
Nezhad-Mokhtari P, Asadi N, Rahmani Del Bakhshayesh A, Milani M, Gama M, Ghorbani M, Akbarzadeh A. Honey-Loaded Reinforced Film Based on Bacterial Nanocellulose/Gelatin/Guar Gum as an Effective Antibacterial Wound Dressing. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, the use of bacterial nanocellulose (BNC) produced by Acetobacter, which has suitable properties for tissue engineering application as a perfect wound dressing, has attracted considerable attention. For this purpose, we successfully developed honey loaded BNC-reinforced gelatin/dialdehyde-modified
guar gum films (H/BNC/Ge/D-GG). Prepared films were studied for their morphological, thermal stability, mechanical, water solubility and degradability properties. The physicochemical properties of the developed films with or without honey loading were studied. The results indicated that by
enhancing the honey content of the film, the degradation behavior, adhesion and proliferation of NIH-3T3 fibroblast cells were improved. The films with 15 wt% of honey revealed inhibition activity against S. aureus (13.0±0.1 mm) and E. coli (15.0±1.0 mm) bacteria.
Cell culture results demonstrated that the prepared films had good cytocompatibility. Based on the results, the prepared H/BNC/Ge/D-GG films appear to have high potential for antibacterial wound dressings.
Collapse
Affiliation(s)
- Parinaz Nezhad-Mokhtari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran
| | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran
| | - Miguel Gama
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4715057, Braga, Portugal
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614711, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran
| |
Collapse
|
65
|
Bahari N, Hashim N, Md Akim A, Maringgal B. Recent Advances in Honey-Based Nanoparticles for Wound Dressing: A Review. NANOMATERIALS 2022; 12:nano12152560. [PMID: 35893528 PMCID: PMC9332021 DOI: 10.3390/nano12152560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022]
Abstract
Wounds with impaired healing, including delayed acute injuries and chronic injuries, generally fail to progress through normal healing stages. A deeper understanding of the biochemical processes involved in chronic wound cures is necessary to correct the microenvironmental imbalances in the wound treatment designs of products. The therapeutic benefits of honey, particularly its antimicrobial activity, make it a viable option for wound treatment in a variety of situations. Integration with nanotechnology has opened up new possibilities not only for wound healing but also for other medicinal applications. In this review, recent advances in honey-based nanoparticles for wound healing are discussed. This also covers the mechanism of the action of nanoparticles in the wound healing process and perspectives on the challenges and future trends of using honey-based nanoparticles. The underlying mechanisms of wound healing using honey are believed to be attributed to hydrogen peroxide, high osmolality, acidity, non-peroxide components, and phenols. Therefore, incorporating honey into various wound dressings has become a major trend due to the increasing demand for combination dressings in the global wound dressing market because these dressings contain two or more types of chemical and physical properties to ensure optimal functionality. At the same time, their multiple features (low cost, biocompatibility, and swelling index) and diverse fabrication methods (electrospun fibres, hydrogels, etc.) make them a popular choice among researchers.
Collapse
Affiliation(s)
- Norfarina Bahari
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Malaysian Agricultural Research and Development Institute (MARDI), Serdang 43400, Selangor, Malaysia
| | - Norhashila Hashim
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- SMART Farming Technology Research Centre (SFTRC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Bernard Maringgal
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia;
| |
Collapse
|
66
|
Electrospinning Drug-Loaded Alginate-Based Nanofibers towards Developing a Drug Release Rate Catalog. Polymers (Basel) 2022; 14:polym14142773. [PMID: 35890549 PMCID: PMC9320888 DOI: 10.3390/polym14142773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
Electrospinning natural polymers represents a developing interest in the field of biomaterials. Electrospun nanofibers have been shown to facilitate tissue regeneration and emulate body tissue, making them ideal for modern biomedical applications. These water-soluble natural polymers including alginate, have also shown promise as drug delivery vehicles. However, many biopolymers including alginate are inherently charged, making the formation of nanofibers difficult. To better understand the potential of natural polymer-based fibers in drug delivery applications, fiber formulations and drug loading concentrations of alginate-based scaffolds were investigated. It was found electrospinning poly(vinyl alcohol) with alginate facilitated fiber formation while the co-polymer agarose showed minor improvement in terms of alginate electrospinnability. Once uniform fibers were formed, the antibiotic ciprofloxacin was added into the polymer electrospinning solution to yield drug-loaded nanofibers. These optimized parameters coupled with small molecule release rate data from the drug-loaded, alginate-based fibers have been used to establish a catalog of small molecule release profiles. In the future, this catalog will be further expanded to include drug release rate data from other innately charged natural polymer-based fibers such as chitosan. It is anticipated that the cataloged profiles can be applied in the further development of biomaterials used in drug delivery.
Collapse
|
67
|
Tahami SR, Nemati NH, Keshvari H, Khorasani MT. In vitro and in vivo evaluation of nanofibre mats containing Calendula officinalis extract as a wound dressing. J Wound Care 2022; 31:598-611. [PMID: 35797256 DOI: 10.12968/jowc.2022.31.7.598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The present study aims to create Calendula officinalis-loaded nanofibre-based wound dressing materials to enhance the wound healing process. Calendula officinalis is an annual herb native to the Mediterranean region. It is antipyretic, antifungal, antioedema, antidiabetic, anti-inflammatory (wound, oral and pharyngeal mucosa), antispasmodic, treats chronic ocular surface diseases, acts as a stimulant and a diaphoretic. It is also used in the prevention of acute dermatitis, and in the treatment of gastrointestinal ulcers, wounds and burns. METHOD Electrospinning is an effective method for creating nano- and microfibres for biomedical applications. Calendula officinalis (CA) of various concentrations 5%, 10% and 15%)-loaded polyvinyl alcohol (PVA)/sodium alginate (SAlg) nanofibre mats were successfully produced via blend electrospinning. Nanofibre mats were evaluated using: scanning electron microscopy (SEM); Fourier transform infrared spectroscopy (FTIR) analysis; gel content; water vapour transmission rate (WVTR); swelling ratio; in vitro drug release studies; viability evaluation (cell culture and MTT assay); and an in vivo study using male Wistar rats. Rats were divided into three groups (n=3). In each group, rats were inflicted with five full-thickness wounds on the back and were treated with sterile gauze (control), PVA/SAlg nanofibre dressing (CA-free control), PVA/SAlg/CA5%, PVA/SAlg/CA10%, and PVA/SAlg/CA15% nanofibre dressing. RESULTS Results showed that the obtained fibres were smooth with no surface aggregates, indicating complete incorporation of Calendula officinalis. The release of Calendula officinalis from loaded PVA/SAlg fibre mats in the first four hours was burst released and then was constant. PVA/SAlg and PVA/SAlg/CA nanofibres were not toxic to L929 mouse fibroblasts and supported cell attachment and proliferation. The results of the in vivo study showed that the PVA/SAlg/CA10% nanofibre dressing had a higher full-thickness wound healing closure rate compared with the control group on days seven, 14 and 21 after treatment. CONCLUSION The results of this evaluation showed that PVA/SAlg/CA nanofibrous mats could be a candidate as an effective wound dressing; however, the percentage of CA in this compound needs further investigation.
Collapse
Affiliation(s)
- Seyed Rasoul Tahami
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Keshvari
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Taghi Khorasani
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Department of Biomaterial, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
68
|
Formulation and Optimal Design of Dioscorea bulbifera and Honey-Loaded Gantrez ®/Xyloglucan Hydrogel as Wound Healing Patches. Pharmaceutics 2022; 14:pharmaceutics14061302. [PMID: 35745874 PMCID: PMC9229440 DOI: 10.3390/pharmaceutics14061302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogel patches are some of the most effective dressings for wound healing. In this study, the Gantrez® S-97 (Gan)/xyloglucan (XG) hydrogel patches were formulated by using a full central composite design (CCD). The optimized hydrogel patches consisted of 17.78% w/w of Gan and 0.1% w/w of XG. Honey and D. bulbifera extract were loaded in the Gan/XG hydrogel patches. The physical properties of the hydrogel patches, including water content, water absorption, rate of water vapor transmission, and mechanical properties, were examined. The D. bulbifera extract/honey-loaded patch exhibited a higher value of water absorption, tensile strength, and elongation than the honey-loaded patch and the unloaded patch, respectively. The biological activities of the patches were also investigated. All hydrogel patches protected wounds from external bacterial infection. The D. bulbifera extract/honey-loaded patch exhibited stronger antioxidant activity than the honey-loaded patch and the unloaded patch. Besides, all the hydrogel patches with concentrations of 0.5-2.5 mg/mL showed that they were nontoxic to fibroblast cells. The combination of D. bulbifera extract and honey in the patch affected fibroblast proliferation. In addition, all Gan/XG hydrogel patches significantly induced recovery of the scratch area. Therefore, the Gan/XG hydrogel patches could be candidates as wound dressings.
Collapse
|
69
|
Zhang J, Zhang J, Guan Y, Huang X, Arslan M, Shi J, Li Z, Gong Y, Holmes M, Zou X. High- sensitivity bilayer nanofiber film based on polyvinyl alcohol/sodium alginate/polyvinylidene fluoride for pork spoilage visual monitoring and preservation. Food Chem 2022; 394:133439. [PMID: 35753256 DOI: 10.1016/j.foodchem.2022.133439] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
A colorimetric bilayer film for pork freshness detection and preservation was developed using electrospinning technique. The bilayer film consisted of a layer with polyvinyl alcohol - sodium alginate - alizarin as sensor layer and a layer with polyvinylidene fluoride - vanillin as antibacterial layer. The water contact angle of bilayer film was larger than the single colorimetric layer. The color sensitivity to the ammonia of the bilayer film was higher, with an ΔE value of 47.99. The film could display color shifts from yellow to purple with the naked eye is critical for checking pork freshness. In addition, the bilayer film exhibited sensitive antibacterial activity, with an inhibition zone against S. aureus (8.3 mm) and E. coli (14.7 mm), respectively. Finally, the bilayer film was applied to freshness monitoring of pork. The film displayed significant color changes and prolonged the pork shelf life by 24 h at 25 °C.
Collapse
Affiliation(s)
- Jianing Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Junjun Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yefeng Guan
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Muhammad Arslan
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
70
|
Naseri E, Ahmadi A. A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
71
|
Kazeminava F, Javanbakht S, Nouri M, Adibkia K, Ganbarov K, Yousefi M, Ahmadi M, Gholizadeh P, Kafil HS. Electrospun nanofibers based on carboxymethyl cellulose/polyvinyl alcohol as a potential antimicrobial wound dressing. Int J Biol Macromol 2022; 214:111-119. [PMID: 35640851 DOI: 10.1016/j.ijbiomac.2022.05.175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 11/05/2022]
Abstract
In this work, citric acid-based quantum dots (CA-QDs) as a novel and safe crosslinked agent was applied in different feeding ratios (5-15 wt%) to synthesize carboxymethyl cellulose/polyvinyl alcohol (CMC/PVA) nanofibers (NFs) for the first time. Colistin (CL) as an antibacterial agent was also loaded (2 w/w%) during the synthesizing process of CMC/PVA electrospun NFs to trigger antimicrobial properties. The morphological, hydrophilic, and mechanical properties of the prepared NFs were fully investigated with different techniques. The electrospun NFs with crosslinking ratios of 10 wt% CA-QDs revealed appropriate mechanical properties. According to cell culture data, the prepared NFs demonstrated good cytocompatibility against HFF-1 cells (over 80% cell viability). Remarkably, CL-loaded NFs showed desired antibacterial efficacy against S. aureus, E. coli, K. pneumoniae, and P. aeruginosa with 1.0-1.4, 1.3-1.4, 0.8-1.0, and 1.3-1.5 cm inhibition zones, respectively. These outcomes suggested that the fabricated NFs can be useful as wound healing scaffolds.
Collapse
Affiliation(s)
- Fahimeh Kazeminava
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Javanbakht
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Mehdi Yousefi
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
72
|
Bioactivity of star-shaped polycaprolactone/chitosan composite hydrogels for biomaterials. Int J Biol Macromol 2022; 212:420-431. [PMID: 35623458 DOI: 10.1016/j.ijbiomac.2022.05.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
Recently, our group reported the synthesis and fabrication of composite hydrogels of chitosan (CS) and star-shaped polycaprolactone (stPCL). The co-crosslink of modified stPCL with carboxyl at the end chain (stPCL-COOH) provided good mechanical properties and stability to the composite hydrogels. This research presents the bioactivities of composite hydrogels showing a potential candidate to develop biomaterials such as wound dressing and bone tissue engineering. The bioactivities were the antibacterial activity, cell viability, skin irritation, decomposability, and ability to attach ions for apatite nucleation. The results showed that all the composite hydrogels were completely decomposed within 2 days. The composite hydrogels had better antibacterial activity and higher efficiency to Gram-negative (Escherichia coli) than to Gram-positive (Staphylococcus epidermidis) bacteria. The composite hydrogels were studied for cell viability based on MTT assay and skin irritation on rabbit skin. The results indicated high cell survival more than 80% and no skin irritation. In addition, the results showed that calcium and phosphorous were preferentially attached to the composite hydrogel surface to grow apatite crystal (Ca/P ratio 1.86) compared to attaching to the chitosan hydrogel (Ca/P ratio 1.48) in 21 days of testing.
Collapse
|
73
|
Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res B Appl Biomater 2022; 110:2542-2573. [PMID: 35579269 PMCID: PMC9544096 DOI: 10.1002/jbm.b.35086] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex process that is critical in restoring the skin's barrier function. This process can be interrupted by numerous diseases resulting in chronic wounds that represent a major medical burden. Such wounds fail to follow the stages of healing and are often complicated by a pro‐inflammatory milieu attributed to increased proteinases, hypoxia, and bacterial accumulation. The comprehensive treatment of chronic wounds is still regarded as a significant unmet medical need due to the complex symptoms caused by the metabolic disorder of the wound microenvironment. As a result, several advanced medical devices, such as wound dressings, wearable wound monitors, negative pressure wound therapy devices, and surgical sutures, have been developed to correct the chronic wound environment and achieve skin tissue regeneration. Most medical devices encompass a wide range of products containing natural (e.g., chitosan, keratin, casein, collagen, hyaluronic acid, alginate, and silk fibroin) and synthetic (e.g., polyvinyl alcohol, polyethylene glycol, poly[lactic‐co‐glycolic acid], polycaprolactone, polylactic acid) polymers, as well as bioactive molecules (e.g., chemical drugs, silver, growth factors, stem cells, and plant compounds). This review addresses these medical devices with a focus on biomaterials and applications, aiming to deliver a critical theoretical reference for further research on chronic wound healing.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
74
|
Electrospun nanofibrous membrane for biomedical application. SN APPLIED SCIENCES 2022; 4:172. [PMID: 35582285 PMCID: PMC9099337 DOI: 10.1007/s42452-022-05056-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/02/2022] [Indexed: 11/09/2022] Open
Abstract
Electrospinning is a simple, cost-effective, flexible, and feasible continuous micro-nano polymer fiber preparation technology that has attracted extensive scientific and industrial interest over the past few decades, owing to its versatility and ability to manufacture highly tunable nanofiber networks. Nanofiber membrane materials prepared using electrospinning have excellent properties suitable for biomedical applications, such as a high specific surface area, strong plasticity, and the ability to manipulate their nanofiber components to obtain the desired properties and functions. With the increasing popularity of nanomaterials in this century, electrospun nanofiber membranes are gradually becoming widely used in various medical fields. Here, the research progress of electrospun nanofiber membrane materials is reviewed, including the basic electrospinning process and the development of the materials as well as their biomedical applications. The main purpose of this review is to discuss the latest research progress on electrospun nanofiber membrane materials and the various new electrospinning technologies that have emerged in recent years for various applications in the medical field. The application of electrospun nanofiber membrane materials in recent years in tissue engineering, wound dressing, cancer diagnosis and treatment, medical protective equipment, and other fields is the main topic of discussion in this review. Finally, the development of electrospun nanofiber membrane materials in the biomedical field is systematically summarized and prospects are discussed. In general, electrospinning has profound prospects in biomedical applications, as it is a practical and flexible technology used for the fabrication of microfibers and nanofibers. This review summarizes recent research on the application of electrospun nanofiber membranes as tissue engineering materials for the cardiovascular system, motor system, nervous system, and other clinical aspects. Research on the application of electrospun nanofiber membrane materials as protective products is discussed in the context of the current epidemic situation. Examples and analyses of recent popular applications in tissue engineering, wound dressing, protective products, and cancer sensors are presented.
Collapse
|
75
|
Iliou K, Kikionis S, Ioannou E, Roussis V. Marine Biopolymers as Bioactive Functional Ingredients of Electrospun Nanofibrous Scaffolds for Biomedical Applications. Mar Drugs 2022; 20:md20050314. [PMID: 35621965 PMCID: PMC9143254 DOI: 10.3390/md20050314] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
Marine biopolymers, abundantly present in seaweeds and marine animals, feature diverse structures and functionalities, and possess a wide range of beneficial biological activities. Characterized by high biocompatibility and biodegradability, as well as unique physicochemical properties, marine biopolymers are attracting a constantly increasing interest for the development of advanced systems for applications in the biomedical field. The development of electrospinning offers an innovative technological platform for the production of nonwoven nanofibrous scaffolds with increased surface area, high encapsulation efficacy, intrinsic interconnectivity, and structural analogy to the natural extracellular matrix. Marine biopolymer-based electrospun nanofibrous scaffolds with multifunctional characteristics and tunable mechanical properties now attract significant attention for biomedical applications, such as tissue engineering, drug delivery, and wound healing. The present review, covering the literature up to the end of 2021, highlights the advancements in the development of marine biopolymer-based electrospun nanofibers for their utilization as cell proliferation scaffolds, bioadhesives, release modifiers, and wound dressings.
Collapse
|
76
|
AL-MOALEMI HAFEDHAHMED, IZWAN ABD RAZAK SAIFUL, BOHARI SITIPAULIENAMOHD. ELECTROSPUN SODIUM ALGINATE/POLY(ETHYLENE OXIDE) NANOFIBERS FOR WOUND HEALING APPLICATIONS: CHALLENGES AND FUTURE DIRECTIONS. CELLULOSE CHEMISTRY AND TECHNOLOGY 2022; 56:251-270. [DOI: 10.35812/cellulosechemtechnol.2022.56.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Alginate is an interesting natural biopolymer to be considered for biomedical applications due to its advantages and good biological properties. These biological properties make electrospun alginate nanofibers suitable for various uses in the biomedical field, such as wound healing dressings, drug delivery systems, or both. Unfortunately, the fabrication of alginate nanofibers by electrospinning is very challenging because of the high viscosity of the solution, high surface tension and rigidity in water due to hydrogen bonding, and also their diaxial linkages. This review presents an overview of the factors affecting the electrospinning process of sodium alginate/poly(ethylene oxide) (SA/PEO), the application of SA/PEO in drug delivery systems for wound healing applications, and the degradation and swelling properties of SA/PEO. The challenges and future directions of SA/PEO in the medical field are also discussed.
Collapse
|
77
|
Loureiro J, Miguel SP, Seabra IJ, Ribeiro MP, Coutinho P. Single-Step Self-Assembly of Zein–Honey–Chitosan Nanoparticles for Hydrophilic Drug Incorporation by Flash Nanoprecipitation. Pharmaceutics 2022; 14:pharmaceutics14050920. [PMID: 35631506 PMCID: PMC9144985 DOI: 10.3390/pharmaceutics14050920] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022] Open
Abstract
Zein- and chitosan-based nanoparticles have been described as promising carrier systems for food, biomedical and pharmaceutical applications. However, the manufacture of size-controlled zein and chitosan particles is challenging. In this study, an adapted anti-solvent nanoprecipitation method was developed. The effects of the concentration of zein and chitosan and the pH of the collection solution on the properties of the zein–honey–chitosan nanoparticles were investigated. Flash nanoprecipitation was demonstrated as a rapid, scalable, single-step method to achieve the self-assembly of zein–honey–chitosan nanoparticles. The nanoparticles size was tuned by varying certain formulation parameters, including the total concentration and ratio of the polymers. The zein–honey–chitosan nanoparticles’ hydrodynamic diameter was below 200 nm and the particles were stable for 30 days. Vitamin C was used as a hydrophilic model substance and efficiently encapsulated into these nanoparticles. This study opens a promising pathway for one-step producing zein–honey–chitosan nanoparticles by flash nanoprecipitation for hydrophilic compounds’ encapsulation.
Collapse
Affiliation(s)
- Jorge Loureiro
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (J.L.); (S.P.M.); (M.P.R.)
| | - Sónia P. Miguel
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (J.L.); (S.P.M.); (M.P.R.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Inês J. Seabra
- Bioengineering Department, Lehigh University, Bethlehem, PA 18015, USA;
| | - Maximiano P. Ribeiro
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (J.L.); (S.P.M.); (M.P.R.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (J.L.); (S.P.M.); (M.P.R.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: ; Tel.: +351-965544187
| |
Collapse
|
78
|
Al-Hatamleh MAI, Alshaer W, Hatmal MM, Lambuk L, Ahmed N, Mustafa MZ, Low SC, Jaafar J, Ferji K, Six JL, Uskoković V, Mohamud R. Applications of Alginate-Based Nanomaterials in Enhancing the Therapeutic Effects of Bee Products. Front Mol Biosci 2022; 9:865833. [PMID: 35480890 PMCID: PMC9035631 DOI: 10.3389/fmolb.2022.865833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Since the ancient times, bee products (i.e., honey, propolis, pollen, bee venom, bee bread, and royal jelly) have been considered as natural remedies with therapeutic effects against a number of diseases. The therapeutic pleiotropy of bee products is due to their diverse composition and chemical properties, which is independent on the bee species. This has encouraged researchers to extensively study the therapeutic potentials of these products, especially honey. On the other hand, amid the unprecedented growth in nanotechnology research and applications, nanomaterials with various characteristics have been utilized to improve the therapeutic efficiency of these products. Towards keeping the bee products as natural and non-toxic therapeutics, the green synthesis of nanocarriers loaded with these products or their extracts has received a special attention. Alginate is a naturally produced biopolymer derived from brown algae, the desirable properties of which include biodegradability, biocompatibility, non-toxicity and non-immunogenicity. This review presents an overview of alginates, including their properties, nanoformulations, and pharmaceutical applications, placing a particular emphasis on their applications for the enhancement of the therapeutic effects of bee products. Despite the paucity of studies on fabrication of alginate-based nanomaterials loaded with bee products or their extracts, recent advances in the area of utilizing alginate-based nanomaterials and other types of materials to enhance the therapeutic potentials of bee products are summarized in this work. As the most widespread and well-studied bee products, honey and propolis have garnered a special interest; combining them with alginate-based nanomaterials has led to promising findings, especially for wound healing and skin tissue engineering. Furthermore, future directions are proposed and discussed to encourage researchers to develop alginate-based stingless bee product nanomedicines, and to help in selecting suitable methods for devising nanoformulations based on multi-criteria decision making models. Also, the commercialization prospects of nanocomposites based on alginates and bee products are discussed. In conclusion, preserving original characteristics of the bee products is a critical challenge in developing nano-carrier systems. Alginate-based nanomaterials are well suited for this task because they can be fabricated without the use of harsh conditions, such as shear force and freeze-drying, which are often used for other nano-carriers. Further, conjunction of alginates with natural polymers such as honey does not only combine the medicinal properties of alginates and honey, but it could also enhance the mechanical properties and cell adhesion capacity of alginates.
Collapse
Affiliation(s)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohd Zulkifli Mustafa
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Siew Chun Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Khalid Ferji
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | - Jean-Luc Six
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- *Correspondence: Rohimah Mohamud,
| |
Collapse
|
79
|
Effect of surfactants addition on physical, structure and antimicrobial activity of (Na-CMC/Na–Alg) biofilms. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
80
|
Hussein MAM, Gunduz O, Sahin A, Grinholc M, El-Sherbiny IM, Megahed M. Dual Spinneret Electrospun Polyurethane/PVA-Gelatin Nanofibrous Scaffolds Containing Cinnamon Essential Oil and Nanoceria for Chronic Diabetic Wound Healing: Preparation, Physicochemical Characterization and In-Vitro Evaluation. Molecules 2022; 27:2146. [PMID: 35408546 PMCID: PMC9000402 DOI: 10.3390/molecules27072146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023] Open
Abstract
In this study, a dual spinneret electrospinning technique was applied to fabricate a series of polyurethane (PU) and polyvinyl alcohol-gelatin (PVA/Gel) nanofibrous scaffolds. The study aims to enhance the properties of PU/PVA-Gel NFs loaded with a low dose of nanoceria through the incorporation of cinnamon essential oil (CEO). The as-prepared nCeO2 were embedded into the PVA/Gel nanofibrous layer, where the cinnamon essential oil (CEO) was incorporated into the PU nanofibrous layer. The morphology, thermal stability, mechanical properties, and chemical composition of the produced NF mats were investigated by STEM, DSC, and FTIR. The obtained results showed improvement in the mechanical, and thermal stability of the dual-fiber scaffolds by adding CEO along with nanoceria. The cytotoxicity evaluation revealed that the incorporation of CEO to PU/PVA-Gel loaded with a low dose of nanoceria could enhance the cell population compared to using pure PU/PVA-Gel NFs. Moreover, the presence of CEO could inhibit the growth rate of S. aureus more than E. coli. To our knowledge, this is the first time such nanofibrous membranes composed of PU and PVA-Gel have been produced. The first time was to load the nanofibrous membranes with both CEO and nCeO2. The obtained results indicate that the proposed PU/PVA-Gel NFs represent promising platforms with CEO and nCeO2 for effectively managing diabetic wounds.
Collapse
Affiliation(s)
- Mohamed Ahmed Mohamady Hussein
- Clinic of Dermatology, University Hospital of RWTH Aachen, 52074 Aachen, Germany;
- Department of Pharmacology, Medical Research Division, National Research Center, Dokki, Cairo 12622, Egypt
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey;
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Ali Sahin
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul 34854, Turkey;
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul 34854, Turkey
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 80307 Gdansk, Poland;
| | - Ibrahim Mohamed El-Sherbiny
- Nanomedicine Laboratory, Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza 12578, Egypt
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of RWTH Aachen, 52074 Aachen, Germany;
| |
Collapse
|
81
|
Lamei E, Hasanzadeh M. Fabrication of chitosan nanofibrous scaffolds based on tannic acid and metal-organic frameworks for hemostatic wound dressing applications. Int J Biol Macromol 2022; 208:409-420. [PMID: 35339500 DOI: 10.1016/j.ijbiomac.2022.03.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022]
Abstract
Here, we developed chitosan (CS)-based nanofibrous scaffold consisting of tannic acid (TA) and zinc-based metal-organic framework (MOF) as a novel antibacterial and hemostatic wound dressing. The effect of MOF content and its incorporation within and onto CS/PVA-TA nanofibrous scaffolds were studied. The morphological characterization of fabricated nanofibrous scaffolds revealed the formation of uniform and bead-free nanofibers with an average diameter between 120 and 150 nm. The uniform and continuous decoration of MOF crystals on nanofibrous scaffold surfaces were confirmed by FESEM. The developed nanofibrous scaffolds exhibit appropriate physicochemical characteristics such as chemical and crystalline structure, surface wettability and swelling, and mechanical properties. It is shown that the incorporation of TA and MOFs greatly enhanced the hemostatic performance of the CS/PVA nanofibrous scaffold by providing rapid liquid absorbability and accelerating the aggregation of coagulation factors and platelets. Furthermore, the results of the MTT assay suggested the good biocompatibility of nanofibrous scaffolds containing MOF nanoparticles. The nanofibrous scaffolds exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. The disk diffusion antibacterial assay showed that the nanofibrous scaffolds containing TA and MOF could protect wound from bacterial infection. The findings provide new insights to develop a MOF-modified nanofibrous structure with great potential for hemostatic wound dressing application.
Collapse
Affiliation(s)
- Elnaz Lamei
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd, Iran
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd, Iran.
| |
Collapse
|
82
|
Gao T, Guan G, Wang X, Lou T. Electrospun molecularly imprinted sodium alginate/polyethylene oxide nanofibrous membranes for selective adsorption of methylene blue. Int J Biol Macromol 2022; 207:62-71. [PMID: 35247421 DOI: 10.1016/j.ijbiomac.2022.02.193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
Molecular imprinting technique is an efficient method to improve the selective adsorption capacity for the target pollutant. In this study, sodium alginate/polyethylene oxide molecularly imprinted nanofibrous membrane (SA/PEO-MINM) with average diameter of 185 ± 20 nm was successfully synthesized by electrospinning for selective adsorption of methylene blue (MB). Benefiting from the molecular imprinted technology, the adsorption amount of SA/PEO-MINM for MB was increased by about 65%, significantly higher than the non-imprinted membrane. Results showed that the adsorption equilibrium could be well fitted with Langmuir isotherm model and the maximum adsorption capacity towards MB was 3186.7 mg/g. Kinetic experiments well complied with the Pseudo second order model. Reusability studies indicated that the removal efficiency of MB could maintain 93% of the original adsorption capacity after four consecutive adsorption/desorption cycles. More importantly, the SA/PEO-MINM with high surface area and specific adsorption recognition sites showed excellent selective adsorption capacity in the adsorption experiment of MB and methylene orange mixed dye solution. In general, the SA/PEO-MINM can be successfully applied for the selective removal of MB from dye wastewater.
Collapse
Affiliation(s)
- Tong Gao
- Department of Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Guohao Guan
- Department of Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xuejun Wang
- Department of Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Tao Lou
- Department of Chemical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
83
|
Shalaby MA, Anwar MM, Saeed H. Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02870-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractNanoparticles are the gateway to the new era in drug delivery of biocompatible agents. Several products have emerged from nanomaterials in quest of developing practical wound healing dressings that are nonantigenic, antishear stress, and gas-exchange permeable. Numerous studies have isolated and characterised various wound healing nanomaterials and nanoproducts. The electrospinning of natural and synthetic materials produces fine products that can be mixed with other wound healing medications and herbs. Various produced nanomaterials are highly influential in wound healing experimental models and can be used commercially as well. This article reviewed the current state-of-the-art and briefly specified the future concerns regarding the different systems of nanomaterials in wound healing (i.e., inorganic nanomaterials, organic and hybrid nanomaterials, and nanofibers). This review may be a comprehensive guidance to help health care professionals identify the proper wound healing materials to avoid the usual wound complications.
Collapse
|
84
|
The Profile of Polyphenolic Compounds, Contents of Total Phenolics and Flavonoids, and Antioxidant and Antimicrobial Properties of Bee Products. Molecules 2022; 27:molecules27041301. [PMID: 35209088 PMCID: PMC8880577 DOI: 10.3390/molecules27041301] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
This study aimed to characterize bee products (bee bread, bee pollen, beeswax, and multiflorous honey) with the profile of phenolic compounds, total phenolic (TPC) and flavonoid (TFC) contents, and antioxidant and microbiological properties. The TP and TF contents could be ordered as follows: bee pollen > bee bread > beeswax > honey. The UPLC-PDA-MS/MS analysis allowed identifying 20 polyphenols. Sinapic acid dominated in bee pollen, gallic acid in the bee bread and honey, while pinobanksin was the major compound of beeswax. The data showed that bee pollen and bee bread had a stronger antioxidant potential than honey and beeswax. Moreover, the antibacterial activity of the bee products was studied using 14 bacterial strains. Bee bread's and bee pollen's antimicrobial activity was higher towards Gram-negative strains. In comparison, honey was more potent in inhibiting Gram-positive bacteria. Our study indicates that bee products may represent valuable sources of bioactive compounds offering functional properties.
Collapse
|
85
|
Niculescu AG, Grumezescu AM. An Up-to-Date Review of Biomaterials Application in Wound Management. Polymers (Basel) 2022; 14:421. [PMID: 35160411 PMCID: PMC8839538 DOI: 10.3390/polym14030421] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Whether they are caused by trauma, illness, or surgery, wounds may occur throughout anyone's life. Some injuries' complexity and healing difficulty pose important challenges in the medical field, demanding novel approaches in wound management. A highly researched possibility is applying biomaterials in various forms, ranging from thin protective films, foams, and hydrogels to scaffolds and textiles enriched with drugs and nanoparticles. The synergy of biocompatibility and cell proliferative effects of these materials is reflected in a more rapid wound healing rate and improved structural and functional properties of the newly grown tissue. This paper aims to present the biomaterial dressings and scaffolds suitable for wound management application, reviewing the most recent studies in the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
86
|
Aslan E, Vyas C, Yupanqui Mieles J, Humphreys G, Diver C, Bartolo P. Preliminary Characterization of a Polycaprolactone-SurgihoneyRO Electrospun Mesh for Skin Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 15:89. [PMID: 35009233 PMCID: PMC8746156 DOI: 10.3390/ma15010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 05/09/2023]
Abstract
Skin is a hierarchical and multi-cellular organ exposed to the external environment with a key protective and regulatory role. Wounds caused by disease and trauma can lead to a loss of function, which can be debilitating and even cause death. Accelerating the natural skin healing process and minimizing the risk of infection is a clinical challenge. Electrospinning is a key technology in the development of wound dressings and skin substitutes as it enables extracellular matrix-mimicking fibrous structures and delivery of bioactive materials. Honey is a promising biomaterial for use in skin tissue engineering applications and has antimicrobial properties and potential tissue regenerative properties. This preliminary study investigates a solution electrospun composite nanofibrous mesh based on polycaprolactone and a medical grade honey, SurgihoneyRO. The processing conditions were optimized and assessed by scanning electron microscopy to fabricate meshes with uniform fiber diameters and minimal presence of beads. The chemistry of the composite meshes was examined using Fourier transform infrared spectroscopy and X-ray photon spectroscopy showing incorporation of honey into the polymer matrix. Meshes incorporating honey had lower mechanical properties due to lower polymer content but were more hydrophilic, resulting in an increase in swelling and an accelerated degradation profile. The biocompatibility of the meshes was assessed using human dermal fibroblasts and adipose-derived stem cells, which showed comparable or higher cell metabolic activity and viability for SurgihoneyRO-containing meshes compared to polycaprolactone only meshes. The meshes showed no antibacterial properties in a disk diffusion test due to a lack of hydrogen peroxide production and release. The developed polycaprolactone-honey nanofibrous meshes have potential for use in skin applications.
Collapse
Affiliation(s)
- Enes Aslan
- Department of Machine and Metal Technologies, Gumusova Vocational School, Duzce University, Duzce 81850, Turkey;
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (C.V.); (J.Y.M.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (C.V.); (J.Y.M.)
| | - Joel Yupanqui Mieles
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (C.V.); (J.Y.M.)
| | - Gavin Humphreys
- School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Carl Diver
- Department of Engineering, Manchester Metropolitan University, Manchester M15 6BH, UK;
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (C.V.); (J.Y.M.)
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
87
|
Ionescu OM, Iacob AT, Mignon A, Van Vlierberghe S, Baican M, Danu M, Ibănescu C, Simionescu N, Profire L. Design, preparation and in vitro characterization of biomimetic and bioactive chitosan/polyethylene oxide based nanofibers as wound dressings. Int J Biol Macromol 2021; 193:996-1008. [PMID: 34756969 DOI: 10.1016/j.ijbiomac.2021.10.166] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/03/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
Chitosan-based nanofibers (CS-NFs) are excellent artificial extracellular matrices (ECMs) due to the resemblance of CS with the glycosaminoglycans of the natural ECMs. Despite this excellent feature, the poor electrospinnability and mechanical properties of CS are responsible for important limitations in respect to its biomedical applications. To improve the CS's physico-chemical properties, new bioactive and biomimetic CS-NFs were formulated with polyethylene oxide (PEO), having incorporated different active components (ACs) with important beneficial effects for healing. Manuka honey (trophic and antimicrobial effects), propolis (antimicrobial effects), Calendula officinalis infusion (antioxidant effect, reepithelialization stimulating agent), insulin (trophic effect), and L-arginine (angiogenic effect) were selected as ACs. SEM morphology analysis revealed well-alignment, unidirectional arrays, with small diameters, no beads, and smooth surfaces for developed CS_PEO-ACs NFs. The developed NFs showed good biodegradability (NFs mats lost up to 60% of their initial weight in PBS), increased hemocompatibility (hemolytic index less than 4%), and a reduced cytotoxicity degree (cell viability degree more than 90%). In addition, significant antioxidant and antimicrobial effects were noted for the developed NFs which make them suitable for chronic wounds, due to the role of oxidative stress and infection risk in delaying normal wound healing. The most suitable for wound healing applications seems to be CS_PEO@P_C which showed an improved hemolysis index (2.92 ± 0.16%), is non-toxic (cell viability degree more than 97%), and has also significant radical scavenging effect (DPPH inhibition more than 65%). In addition, CS_PEO@P_C presents increased antimicrobial effects, more noticeably for Staphylococcus aureus strain, which is a key feature in preventing wound infection and delaying the healing process. It can be concluded that the developed CS/PEO-ACs NFs are very promising biomaterials for wound care, especially CS_PEO@P_C.
Collapse
Affiliation(s)
- Oana Maria Ionescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania
| | - Andreea-Teodora Iacob
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania
| | - Arn Mignon
- Smart Polymeric Biomaterials, Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, 9000 Ghent, Belgium
| | - Mihaela Baican
- Department of Pharmaceutical Physics, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania
| | - Maricel Danu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iaşi, Mangeron Avenue 73, 700050 Iaşi, Romania; "Petru Poni" Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Constanța Ibănescu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iaşi, Mangeron Avenue 73, 700050 Iaşi, Romania; "Petru Poni" Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Natalia Simionescu
- "Petru Poni" Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; "Prof. Dr. Nicolae Oblu" Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania
| | - Lenuța Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania.
| |
Collapse
|
88
|
Li C, Qiu Y, Li R, Li M, Qin Z, Yin X. Preparation of poly (N-isopropylacrylamide)/polycaprolactone electrospun nanofibres as thermoresponsive drug delivery systems in wound dressing. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2006654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Changgui Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Yuheng Qiu
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Rongguo Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Ziyu Qin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| |
Collapse
|
89
|
Gul A, Gallus I, Tegginamath A, Maryska J, Yalcinkaya F. Electrospun Antibacterial Nanomaterials for Wound Dressings Applications. MEMBRANES 2021; 11:908. [PMID: 34940410 PMCID: PMC8707140 DOI: 10.3390/membranes11120908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022]
Abstract
Chronic wounds are caused by bacterial infections and create major healthcare discomforts; to overcome this issue, wound dressings with antibacterial properties are to be utilized. The requirements of antibacterial wound dressings cannot be fulfilled by traditional wound dressing materials. Hence, to improve and accelerate the process of wound healing, an antibacterial wound dressing is to be designed. Electrospun nanofibers offer a promising solution to the management of wound healing, and numerous options are available to load antibacterial compounds onto the nanofiber webs. This review gives us an overview of some recent advances of electrospun antibacterial nanomaterials used in wound dressings. First, we provide a brief overview of the electrospinning process of nanofibers in wound healing and later discuss electrospun fibers that have incorporated various antimicrobial agents to be used in wound dressings. In addition, we highlight the latest research and patents related to electrospun nanofibers in wound dressing. This review also aims to concentrate on the importance of nanofibers for wound dressing applications and discuss functionalized antibacterial nanofibers in wound dressing.
Collapse
Affiliation(s)
- Aysegul Gul
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic;
| | - Izabela Gallus
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| | - Akshat Tegginamath
- Faculty of Mechanical Engineering, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic;
| | - Jiri Maryska
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| | - Fatma Yalcinkaya
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| |
Collapse
|
90
|
Dodero A, Alberti S, Gaggero G, Ferretti M, Botter R, Vicini S, Castellano M. An Up‐to‐Date Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. ADVANCED MATERIALS INTERFACES 2021; 8. [DOI: 10.1002/admi.202100809] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 01/06/2025]
Abstract
AbstractAlginate is a naturally occurring polysaccharide commonly derived from brown algae cell walls which possesses unique features that make it extremely promising for several biomedical and pharmaceutical purposes. Alginate biomaterials are indeed nowadays gaining increasing interest in drug delivery and tissue engineering applications owing to their intrinsic biocompatibility, non‐toxicity, versatility, low cost, and ease of functionalization. Specifically, alginate‐based nanostructures show enhanced capabilities with respect to alginate bulk materials in the targeted delivery of drugs and chemotherapies, as well as in helping tissue reparation and regeneration. Hence, it is not surprising that the number of scientific reports related to this topic have rapidly grown in the last decade. With these premises, the present review aims to provide a comprehensive state‐of‐the‐art of the most recent advances in the preparation of alginate‐based nanoparticles and electrospun nanofibers for drug delivery, cancer therapy, and tissue engineering purposes. After a short introduction concerning the general properties and uses of alginate and the concept of nanotechnology, the recent literature is then critically presented to highlight the main advantages of alginate‐based nanostructures. Finally, the current limitations and the future perspectives and objectives are discussed in detail.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Stefano Alberti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Giulia Gaggero
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Maurizio Ferretti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Rodolfo Botter
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| |
Collapse
|
91
|
Liu X, Xu H, Zhang M, Yu DG. Electrospun Medicated Nanofibers for Wound Healing: Review. MEMBRANES 2021; 11:770. [PMID: 34677536 PMCID: PMC8537333 DOI: 10.3390/membranes11100770] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022]
Abstract
With the increasing demand for wound care and treatment worldwide, traditional dressings have been unable to meet the needs of the existing market due to their limited antibacterial properties and other defects. Electrospinning technology has attracted more and more researchers' attention as a simple and versatile manufacturing method. The electrospun nanofiber membrane has a unique structure and biological function similar to the extracellular matrix (ECM), and is considered an advanced wound dressing. They have significant potential in encapsulating and delivering active substances that promote wound healing. This article first discusses the common types of wound dressing, and then summarizes the development of electrospun fiber preparation technology. Finally, the polymers and common biologically active substances used in electrospinning wound dressings are summarized, and portable electrospinning equipment is also discussed. Additionally, future research needs are put forward.
Collapse
Affiliation(s)
- Xinkuan Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Haixia Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Mingxin Zhang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
92
|
Bee Products: A Representation of Biodiversity, Sustainability, and Health. Life (Basel) 2021; 11:life11090970. [PMID: 34575119 PMCID: PMC8464958 DOI: 10.3390/life11090970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Biodiversity strengthens the productivity of any ecosystem (agricultural land, forest, lake, etc.). The loss of biodiversity contributes to food and energy insecurity; increases vulnerability to natural disasters, such as floods or tropical storms; and decreases the quality of both life and health. Wild and managed bees play a key role in maintaining the biodiversity and in the recovery and restoration of degraded habitats. The novelty character of this perspective is to give an updated representation of bee products’ biodiversity, sustainability, and health relationship. The role of bees as bioindicators, their importance in the conservation of biodiversity, their ecosystem services, and the variety of the bee products are described herein. An overview of the main components of bee products, their biological potentials, and health is highlighted and detailed as follows: (i) nutritional value of bee products, (ii) bioactive profile of bee products and the related beneficial properties; (iii) focus on honey and health through a literature quantitative analysis, and (iv) bee products explored through databases. Moreover, as an example of the interconnection between health, biodiversity, and sustainability, a case study, namely the “Cellulose Park”, realized in Rome (Italy), is presented here. This case study highlights how bee activities can be used to assess and track changes in the quality of agricultural ecosystems—hive products could be valid indicators of the quality and health of the surrounding environment, as well as the changes induced by the biotic and abiotic factors that impact the sustainability of agricultural production and biodiversity conservation in peri-urban areas.
Collapse
|
93
|
Jafari M, Baniasadi H, Rezvanpour A, Lotfi M. Fabrication and characterisation of a wound dressing composed of polyvinyl alcohol and quince seed mucilage. J Wound Care 2021; 30:XIIIi-XIIIx. [PMID: 34597172 DOI: 10.12968/jowc.2021.30.sup9a.xiii] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Providing a suitable environment to improve the healing process is the main target of wound dressing that also protects the wound from additional harms. In the present study, fabrication and characterisation of a new kind of electrospun wound dressing composed of polyvinyl alcohol (PVA) and quince seed mucilage (QSM) is reported. METHOD QSM was extracted from quince seeds, purified, freeze-dried and used to produce aqueous solutions containing different amounts of PVA and QSM. The wound dressings were fabricated via the electrospinning method and their characteristics were investigated with scanning electron microscope (SEM) images, Fourier transform infrared (FTIR) spectra, tensile and swelling test, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cytotoxicity assay against fibroblast cells. RESULTS SEM images confirmed that proper, uniform, non-oriented nanofibres with an average diameter in the range of 60-240nm, depending on the QSM content had been fabricated. The tensile test showed that with increasing QSM content, the tensile strength of fibre increased while elongation at break was decreased, which was consistent with SEM images where the diameter of samples decreased by increasing QSM content. MTT assay showed significant biocompatibility against fibroblast cells; however, it was increased by increased QSM proportion. In addition, SEM images supported the proper adhesion of fibroblast cells on the sample one day after culturing. CONCLUSION Overall, the findings of the current study support the potential of PVA/QSM nanofibres as a proper candidate for biomedical applications, especially as a wound dressing.
Collapse
Affiliation(s)
- Mahshid Jafari
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Baniasadi
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Rezvanpour
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Lotfi
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
94
|
Kamoun EA, Loutfy SA, Hussein Y, Kenawy ERS. Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: A review. Int J Biol Macromol 2021; 187:755-768. [PMID: 34358597 DOI: 10.1016/j.ijbiomac.2021.08.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 02/08/2023]
Abstract
Among several types of carbohydrate polymers blend PVA hydrogel membranes used for biomedical applications in particular wound dressings; electrospun nanofibrous membranes have gained increased interest because of their extraordinary features e.g. huge surface area to volume ratio, high porosity, adequate permeability, excellent wound-exudates absorption capacity, architecture similarity with skin ECM and sustained release-profile over long time. In this study, modern perspectives of synthesized/developed electrospun nanofibrous hydrogel membranes based popular carbohydrate polymers blend PVA which recently have been employed for versatile biomedical applications particularly wound dressings, were discussed intensively and compared in detail with traditional fabricated membranes based films, as well. Clinically relevant and advantages of electrospun nanofibrous membranes were discussed in terms of their biocompatibility and easily fabrication and functionalization in different biomedical applications.
Collapse
Affiliation(s)
- Elbadawy A Kamoun
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt; Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt.
| | - Samah A Loutfy
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt; Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Egypt
| | - Yasmein Hussein
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt
| | - El-Refaie S Kenawy
- Polymer Research Group, Department of Chemistry, Faculty of Science, University of Tanta, Tanta 31527, Egypt
| |
Collapse
|
95
|
Arida IA, Ali IH, Nasr M, El-Sherbiny IM. Electrospun polymer-based nanofiber scaffolds for skin regeneration. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
96
|
Fan Y, Lu Q, Liang W, Wang Y, Zhou Y, Lang M. Preparation and characterization of antibacterial polyvinyl alcohol/chitosan sponge and potential applied for wound dressing. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
97
|
Hu X, Wang X, Li S, Zhou W, Song W. Antibacterial Electrospun Polyvinyl Alcohol Nanofibers Encapsulating Berberine-Hydroxypropyl-β-cyclodextrin inclusion complex. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
98
|
Ghorbani M, Ramezani S, Rashidi MR. Fabrication of honey-loaded ethylcellulose/gum tragacanth nanofibers as an effective antibacterial wound dressing. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
99
|
Diep E, Schiffman JD. Encapsulating bacteria in alginate-based electrospun nanofibers. Biomater Sci 2021; 9:4364-4373. [PMID: 34128000 DOI: 10.1039/d0bm02205e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Encapsulation technologies are imperative for the safe delivery of live bacteria into the gut where they regulate bodily functions and human health. In this study, we develop alginate-based nanofibers that could potentially serve as a biocompatible, edible probiotic delivery system. By systematically exploring the ratio of three components, the biopolymer alginate (SA), the carrier polymer poly(ethylene oxide) (PEO), and the FDA approved surfactant polysorbate 80 (PS80), the surface tension and conductivity of the precursor solutions were optimized to electrospin bead-free fibers with an average diameter of 167 ± 23 nm. Next, the optimized precursor solution (2.8/1.2/3 wt% of SA/PEO/PS80) was loaded with Escherichia coli (E. coli, 108 CFU mL-1), which served as our model bacterium. We determined that the bacteria in the precursor solution remained viable after passing through a typical electric field (∼1 kV cm-1) employed during electrospinning. This is because the microbes are pulled into a sink-like flow, which encapsulates them into the polymer nanofibers. Upon electrospinning the E. coli-loaded solutions, beads that were much smaller than the size of an E. coli were initially observed. To compensate for the addition of bacteria, the SA/PEO/PS80 weight ratio was reoptimized to be 2.5/1.5/3. Smooth fibers with bulges around the live microbes were formed, as confirmed using fluorescence and scanning electron microscopy. By dissolving and plating the nanofibers, we found that 2.74 × 105 CFU g-1 of live E. coli cells were contained within the alginate-based fibers. This work demonstrates the use of electrospinning to encapsulate live bacteria in alginate-based nanofibers for the potential delivery of probiotics to the gut.
Collapse
Affiliation(s)
- Emily Diep
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-9303, USA.
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-9303, USA.
| |
Collapse
|
100
|
Su X, Xian C, Gao M, Liu G, Wu J. Edible Materials in Tissue Regeneration. Macromol Biosci 2021; 21:e2100114. [PMID: 34117831 DOI: 10.1002/mabi.202100114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/28/2021] [Indexed: 11/07/2022]
Abstract
Edible materials have attracted increasing attention because of their excellent properties including availability, biocompatibility, biological activity, and biodegradability. Natural polysaccharides, phenolic compounds, and proteins are widely used in tissue regeneration. To better characterize their healing effect, this review article describes the applications of edible materials in tissue regeneration including wound healing and bone tissue regeneration. As an introduction to the topic, their sources and main bioactive properties are discussed. Then, the mechanism by which they facilitate wound healing based on their hemostasis, antibacterial, anti-inflammatory, and antioxidant properties is systematically investigated. Moreover, a more comprehensive discussion is presented on the approaches by which edible materials can be used as scaffolds or agents for the provision of the components of natural bones for regulating the level of osteogenesis-related cytokines to enhance bone repair. Finally, the prospects of edible materials for tissue regeneration are discussed.
Collapse
Affiliation(s)
- Xiaohan Su
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518057, China
| | - Caihong Xian
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518057, China
| | - Ming Gao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Guiting Liu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518057, China
| |
Collapse
|