51
|
Ganesan A, Jaiganesh R. A review on fabrication methods of nanofibers and a special focus on application of cellulose nanofibers. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
52
|
Yang Y, Guo Z, Li Y, Qing Y, Dansawad P, Wu H, Liang J, Li W. Electrospun rough PVDF nanofibrous membranes via introducing fluorinated SiO2 for efficient oil-water emulsions coalescence separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
53
|
Miri L, Irani S, Pezeshki-Modaress M, Daemi H, Atyabi SM. Guiding mesenchymal stem cells differentiation into chondrocytes using sulfated alginate/cold atmospheric plasma modified polycaprolactone nanofibrous scaffold. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
54
|
Ricardo PC, Serudo RL, Ţălu Ş, Lamarão CV, da Fonseca Filho HD, de Araújo Bezerra J, Sanches EA, Campelo PH. Encapsulation of Bromelain in Combined Sodium Alginate and Amino Acid Carriers: Experimental Design of Simplex-Centroid Mixtures for Digestibility Evaluation. Molecules 2022; 27:6364. [PMID: 36234901 PMCID: PMC9570880 DOI: 10.3390/molecules27196364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Bromelain has potential as an analgesic, an anti-inflammatory, and in cancer treatments. Despite its therapeutic effects, this protein undergoes denaturation when administered orally. Microencapsulation processes have shown potential in protein protection and as controlled release systems. Thus, this paper aimed to develop encapsulating systems using sodium alginate as a carrier material and positively charged amino acids as stabilizing agents for the controlled release of bromelain in in vitro tests. The systems were produced from the experimental design of centroid simplex mixtures. Characterizations were performed by FTIR showing that bromelain was encapsulated in all systems. XRD analyses showed that the systems are semi-crystalline solids and through SEM analysis the morphology of the formed systems followed a pattern of rough microparticles. The application of statistical analysis showed that the systems presented behavior that can be evaluated by quadratic and special cubic models, with a p-value < 0.05. The interaction between amino acids and bromelain/alginate was evaluated, and free bromelain showed a reduction of 74.0% in protein content and 23.6% in enzymatic activity at the end of gastric digestion. Furthermore, a reduction of 91.6% of protein content and 65.9% of enzymatic activity was observed at the end of intestinal digestion. The Lis system showed better interaction due to the increased stability of bromelain in terms of the amount of proteins (above 63% until the end of the intestinal phase) and the enzymatic activity of 89.3%. Thus, this study proposes the development of pH-controlled release systems aiming at increasing the stability and bioavailability of bromelain in intestinal systems.
Collapse
Affiliation(s)
- Philipi Cavalcante Ricardo
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Ricardo Lima Serudo
- Higher School of Technology (EST), State University of Amazonas (UEA), Av. Djalma Batista 2470, Manaus 69050-300, AM, Brazil
| | - Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, 15 Constantin Daicoviciu St., 400020 Cluj-Napoca, Romania
| | - Carlos Victor Lamarão
- School of Agrarian Science, Federal University of Amazonas, Manaus 69067-005, AM, Brazil
| | - Henrique Duarte da Fonseca Filho
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Laboratory of Synthesis of Nanomaterials and Nanoscopy (LSNN), Department of Physics, Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Jaqueline de Araújo Bezerra
- Federal Institute of Education, Science and Technology of Amazonas (IFAM), IFAM Analytical Center, Manaus Centro Campus, Manaus 69067-005, AM, Brazil
| | - Edgar Aparecido Sanches
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Pedro Henrique Campelo
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Department of Food Technology, Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| |
Collapse
|
55
|
Anti-Aging Effect and Mechanism of Proanthocyanidins Extracted from Sea buckthorn on Hydrogen Peroxide-Induced Aging Human Skin Fibroblasts. Antioxidants (Basel) 2022; 11:antiox11101900. [PMID: 36290623 PMCID: PMC9598642 DOI: 10.3390/antiox11101900] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress is the leading cause of skin aging damage. Excessive accumulation of reactive oxygen species (ROS) in cells induced by hydrogen peroxide (H2O2) triggers a decrease in collagen synthesis and an increase in collagen degradation, which are biomarkers of skin aging. We evaluated the potential protective mechanism of Sea buckthorn proanthocyanidins (SBP) against the oxidative stress-induced skin aging process from multiple aspects. We treated human skin fibroblasts (HSFs) with 300 µmoL/L of H2O2 for 24 h, followed by 25, 50, and 100 µg/mL of SBP for 24 h. The results showed that SBP could enhance the activities of superoxide dismutase (SOD) and glutathione (GSH), effectively remove excess ROS, and significantly improve the changes in cell morphology and viability caused by excessive ROS in skin cells. In addition, SBP could promote the synthesis of Col I in aging HSFs through the TGF-β1/Smads pathway and inhibit the degradation of Col I by regulating the MMPs/TIMPs system, thereby maintaining the stability of the ECM structure to achieve anti-aging purposes. Finally, we studied the migration ability of SBP, and the results showed that 100 µg/mL of SBP was most conducive to the cell migration of senescent cells, laying a foundation for follow-up animal experiments. These results will increase the application value of SBP in the cosmetic and antioxidative functional food industries.
Collapse
|
56
|
Ashouri Sharafshadeh S, Mehdinavaz Aghdam R, Akhlaghi P, Heirani-Tabasi A. Amniotic membrane/silk fibroin-alginate nanofibrous scaffolds containing Cu-based metal organic framework for wound dressing. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Sina Ashouri Sharafshadeh
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Parisa Akhlaghi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Asieh Heirani-Tabasi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular, Tehran Heart Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
57
|
|
58
|
Electrospinning Drug-Loaded Alginate-Based Nanofibers towards Developing a Drug Release Rate Catalog. Polymers (Basel) 2022; 14:polym14142773. [PMID: 35890549 PMCID: PMC9320888 DOI: 10.3390/polym14142773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
Electrospinning natural polymers represents a developing interest in the field of biomaterials. Electrospun nanofibers have been shown to facilitate tissue regeneration and emulate body tissue, making them ideal for modern biomedical applications. These water-soluble natural polymers including alginate, have also shown promise as drug delivery vehicles. However, many biopolymers including alginate are inherently charged, making the formation of nanofibers difficult. To better understand the potential of natural polymer-based fibers in drug delivery applications, fiber formulations and drug loading concentrations of alginate-based scaffolds were investigated. It was found electrospinning poly(vinyl alcohol) with alginate facilitated fiber formation while the co-polymer agarose showed minor improvement in terms of alginate electrospinnability. Once uniform fibers were formed, the antibiotic ciprofloxacin was added into the polymer electrospinning solution to yield drug-loaded nanofibers. These optimized parameters coupled with small molecule release rate data from the drug-loaded, alginate-based fibers have been used to establish a catalog of small molecule release profiles. In the future, this catalog will be further expanded to include drug release rate data from other innately charged natural polymer-based fibers such as chitosan. It is anticipated that the cataloged profiles can be applied in the further development of biomaterials used in drug delivery.
Collapse
|
59
|
Scaffold Production and Bone Tissue Healing Using Electrospinning: Trends and Gap of Knowledge. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
60
|
Kazeminava F, Javanbakht S, Nouri M, Adibkia K, Ganbarov K, Yousefi M, Ahmadi M, Gholizadeh P, Kafil HS. Electrospun nanofibers based on carboxymethyl cellulose/polyvinyl alcohol as a potential antimicrobial wound dressing. Int J Biol Macromol 2022; 214:111-119. [PMID: 35640851 DOI: 10.1016/j.ijbiomac.2022.05.175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 11/05/2022]
Abstract
In this work, citric acid-based quantum dots (CA-QDs) as a novel and safe crosslinked agent was applied in different feeding ratios (5-15 wt%) to synthesize carboxymethyl cellulose/polyvinyl alcohol (CMC/PVA) nanofibers (NFs) for the first time. Colistin (CL) as an antibacterial agent was also loaded (2 w/w%) during the synthesizing process of CMC/PVA electrospun NFs to trigger antimicrobial properties. The morphological, hydrophilic, and mechanical properties of the prepared NFs were fully investigated with different techniques. The electrospun NFs with crosslinking ratios of 10 wt% CA-QDs revealed appropriate mechanical properties. According to cell culture data, the prepared NFs demonstrated good cytocompatibility against HFF-1 cells (over 80% cell viability). Remarkably, CL-loaded NFs showed desired antibacterial efficacy against S. aureus, E. coli, K. pneumoniae, and P. aeruginosa with 1.0-1.4, 1.3-1.4, 0.8-1.0, and 1.3-1.5 cm inhibition zones, respectively. These outcomes suggested that the fabricated NFs can be useful as wound healing scaffolds.
Collapse
Affiliation(s)
- Fahimeh Kazeminava
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Javanbakht
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Mehdi Yousefi
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
61
|
Iliou K, Kikionis S, Ioannou E, Roussis V. Marine Biopolymers as Bioactive Functional Ingredients of Electrospun Nanofibrous Scaffolds for Biomedical Applications. Mar Drugs 2022; 20:md20050314. [PMID: 35621965 PMCID: PMC9143254 DOI: 10.3390/md20050314] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
Marine biopolymers, abundantly present in seaweeds and marine animals, feature diverse structures and functionalities, and possess a wide range of beneficial biological activities. Characterized by high biocompatibility and biodegradability, as well as unique physicochemical properties, marine biopolymers are attracting a constantly increasing interest for the development of advanced systems for applications in the biomedical field. The development of electrospinning offers an innovative technological platform for the production of nonwoven nanofibrous scaffolds with increased surface area, high encapsulation efficacy, intrinsic interconnectivity, and structural analogy to the natural extracellular matrix. Marine biopolymer-based electrospun nanofibrous scaffolds with multifunctional characteristics and tunable mechanical properties now attract significant attention for biomedical applications, such as tissue engineering, drug delivery, and wound healing. The present review, covering the literature up to the end of 2021, highlights the advancements in the development of marine biopolymer-based electrospun nanofibers for their utilization as cell proliferation scaffolds, bioadhesives, release modifiers, and wound dressings.
Collapse
|
62
|
AL-MOALEMI HAFEDHAHMED, IZWAN ABD RAZAK SAIFUL, BOHARI SITIPAULIENAMOHD. ELECTROSPUN SODIUM ALGINATE/POLY(ETHYLENE OXIDE) NANOFIBERS FOR WOUND HEALING APPLICATIONS: CHALLENGES AND FUTURE DIRECTIONS. CELLULOSE CHEMISTRY AND TECHNOLOGY 2022; 56:251-270. [DOI: 10.35812/cellulosechemtechnol.2022.56.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Alginate is an interesting natural biopolymer to be considered for biomedical applications due to its advantages and good biological properties. These biological properties make electrospun alginate nanofibers suitable for various uses in the biomedical field, such as wound healing dressings, drug delivery systems, or both. Unfortunately, the fabrication of alginate nanofibers by electrospinning is very challenging because of the high viscosity of the solution, high surface tension and rigidity in water due to hydrogen bonding, and also their diaxial linkages. This review presents an overview of the factors affecting the electrospinning process of sodium alginate/poly(ethylene oxide) (SA/PEO), the application of SA/PEO in drug delivery systems for wound healing applications, and the degradation and swelling properties of SA/PEO. The challenges and future directions of SA/PEO in the medical field are also discussed.
Collapse
|
63
|
Hurtado A, Aljabali AAA, Mishra V, Tambuwala MM, Serrano-Aroca Á. Alginate: Enhancement Strategies for Advanced Applications. Int J Mol Sci 2022; 23:4486. [PMID: 35562876 PMCID: PMC9102972 DOI: 10.3390/ijms23094486] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate is an excellent biodegradable and renewable material that is already used for a broad range of industrial applications, including advanced fields, such as biomedicine and bioengineering, due to its excellent biodegradable and biocompatible properties. This biopolymer can be produced from brown algae or a microorganism culture. This review presents the principles, chemical structures, gelation properties, chemical interactions, production, sterilization, purification, types, and alginate-based hydrogels developed so far. We present all of the advanced strategies used to remarkably enhance this biopolymer's physicochemical and biological characteristics in various forms, such as injectable gels, fibers, films, hydrogels, and scaffolds. Thus, we present here all of the material engineering enhancement approaches achieved so far in this biopolymer in terms of mechanical reinforcement, thermal and electrical performance, wettability, water sorption and diffusion, antimicrobial activity, in vivo and in vitro biological behavior, including toxicity, cell adhesion, proliferation, and differentiation, immunological response, biodegradation, porosity, and its use as scaffolds for tissue engineering applications. These improvements to overcome the drawbacks of the alginate biopolymer could exponentially increase the significant number of alginate applications that go from the paper industry to the bioprinting of organs.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
64
|
Li S, Zhang H, Chen K, Jin M, Vu SH, Jung S, He N, Zheng Z, Lee MS. Application of chitosan/alginate nanoparticle in oral drug delivery systems: prospects and challenges. Drug Deliv 2022; 29:1142-1149. [PMID: 35384787 PMCID: PMC9004504 DOI: 10.1080/10717544.2022.2058646] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oral drug delivery systems (ODDSs) have various advantages of simple operation and few side effects. ODDSs are highly desirable for colon-targeted therapy (e.g. ulcerative colitis and colorectal cancer), as they improve therapeutic efficiency and reduce systemic toxicity. Chitosan/alginate nanoparticles (CANPs) show strong electrostatic interaction between the carboxyl group of alginates and the amino group of chitosan which leads to shrinkage and gel formation at low pH, thereby protecting the drugs from the gastrointestinal tract (GIT) and aggressive gastric environment. Meanwhile, CANPs as biocompatible polymer, show intestinal mucosal adhesion, which could extend the retention time of drugs on inflammatory sites. Recently, CANPs have attracted increasing interest as colon-targeted oral drug delivery system for intestinal diseases. The purpose of this review is to summarize the application and treatment of CANPs in intestinal diseases and insulin delivery. And then provide a future perspective of the potential and development direction of CANPs as colon-targeted ODDSs.
Collapse
Affiliation(s)
- Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.,Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| | - Hui Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Kaiwei Chen
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Mengfei Jin
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Son Hai Vu
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea.,Institute of Applied Sciences, Ho Chi Minh City University of Technology HUTECH, Ho Chi Minh City, Viet Nam
| | - Samil Jung
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhou Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao, China
| | - Myeong-Sok Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
65
|
Angel N, Li S, Yan F, Kong L. Recent advances in electrospinning of nanofibers from bio-based carbohydrate polymers and their applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
66
|
Mechanical and Shape Memory Properties of Electrospun Polyurethane with Thiol-Ene Crosslinking. NANOMATERIALS 2022; 12:nano12030406. [PMID: 35159750 PMCID: PMC8839717 DOI: 10.3390/nano12030406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023]
Abstract
The ability to treat complex medical issues often requires dynamic and versatile materials. Electrospinning is a fabrication technique which produces nano-/microfibers that can mimic the extracellular matrix of many biological tissues while shape memory polymers allow for geometric changes in devices upon implantation. Here, we present the fabrication of electrospun polyurethane which exhibits the shape memory effect. To improve the mechanical and shape memory properties of this system, we incorporate vinyl side chains in the polymer backbone which enable crosslinking via thiol-ene click chemistry post fabrication. We also discuss a novel technique to improve photoinitiated crosslinking for electrospun materials. A material with these properties is potentially beneficial for various medical applications, such as vascular anastomosis, and the characterization of this material will be valuable in directing those applications.
Collapse
|
67
|
Niculescu AG, Grumezescu AM. Applications of Chitosan-Alginate-Based Nanoparticles-An Up-to-Date Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:186. [PMID: 35055206 PMCID: PMC8778629 DOI: 10.3390/nano12020186] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Chitosan and alginate are two of the most studied natural polymers that have attracted interest for multiple uses in their nano form. The biomedical field is one of the domains benefiting the most from the development of nanotechnology, as increasing research interest has been oriented to developing chitosan-alginate biocompatible delivery vehicles, antimicrobial agents, and vaccine adjuvants. Moreover, these nanomaterials of natural origin have also become appealing for environmental protection (e.g., water treatment, environmental-friendly fertilizers, herbicides, and pesticides) and the food industry. In this respect, the present paper aims to discuss some of the newest applications of chitosan-alginate-based nanomaterials and serve as an inception point for further research in the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
68
|
Mbese Z, Alven S, Aderibigbe BA. Collagen-Based Nanofibers for Skin Regeneration and Wound Dressing Applications. Polymers (Basel) 2021; 13:4368. [PMID: 34960918 PMCID: PMC8703599 DOI: 10.3390/polym13244368] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Skin regeneration after an injury is very vital, but this process can be impeded by several factors. Regenerative medicine is a developing biomedical field with the potential to decrease the need for an organ transplant. Wound management is challenging, particularly for chronic injuries, despite the availability of various types of wound dressing scaffolds in the market. Some of the wound dressings that are in clinical practice have various drawbacks such as poor antibacterial and antioxidant efficacy, poor mechanical properties, inability to absorb excess wound exudates, require frequent change of dressing and fails to offer a suitable moist environment to accelerate the wound healing process. Collagen is a biopolymer and a major constituent of the extracellular matrix (ECM), making it an interesting polymer for the development of wound dressings. Collagen-based nanofibers have demonstrated interesting properties that are advantageous both in the arena of skin regeneration and wound dressings, such as low antigenicity, good biocompatibility, hemostatic properties, capability to promote cellular proliferation and adhesion, and non-toxicity. Hence, this review will discuss the outcomes of collagen-based nanofibers reported from the series of preclinical trials of skin regeneration and wound healing.
Collapse
|
69
|
Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
70
|
Tamayo L, Santana P, Forero JC, Leal M, González N, Díaz M, Guiliani N, Hamm E, Urzúa M. Coaxial fibers of poly(styrene-co-maleic anhydride)@poly(vinyl alcohol) for wound dressing applications: Dual and sustained delivery of bioactive agents promoting fibroblast proliferation with reduced cell adherence. Int J Pharm 2021; 611:121292. [PMID: 34780927 DOI: 10.1016/j.ijpharm.2021.121292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022]
Abstract
The prevalence of chronic and acute wounds, as well as the complexity of their treatment represent a great challenge for health systems around the world. In this context, the development of bioactive wound dressings that release active agents to prevent infections and promote wound healing, appears as the most promising solution. In this work, we develop an antibacterial and biocompatible wound dressing material made from coaxial electrospun fibers of poly(styrene-co-maleic anhydride) and poly(vinyl alcohol) (PSMA@PVA). The coaxial configuration of the fibers consists of a shell of poly (styrene-co-maleic anhydride) containing a variable concentration of silver nanoparticles (AgNPs) 0.1-0.6 wt% as antibacterial agent, and a core of PVA containing 1 wt% allantoin as healing agent. The fibers present diameters between 0.72 and 1.7 µm. The release of Ag+ in a physiological medium was studied for 72 h, observing a burst release during the first 14 h and then a sustained and controlled release during the remaining 58 h. Allantoin release curves showed significant release only after 14 h. The meshes showed an antibacterial activity against Pseudomonas aeruginosa and Bacillus subtilis that correlates with the amount of AgNPs incorporated and the release rate of Ag+. Indeed, meshes containing 0.3 and 0.6 wt% of AgNPs showed a 99.99% inhibition against both bacteria. The adherence and cell viability of the meshes were evaluated in mouse embryonic fibroblasts NIH/3T3, observing a significant increase in cell viability after 72 h of incubation accompanied by a reduced adhesion of fibroblasts that decreased in the presence of the active agents. These results show that the material prepared here is capable of significantly promoting fibroblast cell proliferation but without strong adherence, which makes it an ideal material for wound dressings with non-adherent characteristics and with potential for wound healing.
Collapse
Affiliation(s)
- Laura Tamayo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | - Paula Santana
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Juan C Forero
- Laboratorio de Química Biológica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, 2340000, Chile
| | - Matías Leal
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | - Nicolás González
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | - Mauricio Díaz
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, P. C. 780-0023, Santiago, Chile
| | - Nicolás Guiliani
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, P. C. 780-0023, Santiago, Chile
| | - Eugenio Hamm
- Departamento Física, Facultad de Ciencia, Universidad de Santiago de Chile, av. Ecuador 3493, Estación Central, Santiago, Chile
| | - Marcela Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| |
Collapse
|
71
|
Dodero A, Alberti S, Gaggero G, Ferretti M, Botter R, Vicini S, Castellano M. An Up‐to‐Date Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. ADVANCED MATERIALS INTERFACES 2021; 8. [DOI: 10.1002/admi.202100809] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 01/06/2025]
Abstract
AbstractAlginate is a naturally occurring polysaccharide commonly derived from brown algae cell walls which possesses unique features that make it extremely promising for several biomedical and pharmaceutical purposes. Alginate biomaterials are indeed nowadays gaining increasing interest in drug delivery and tissue engineering applications owing to their intrinsic biocompatibility, non‐toxicity, versatility, low cost, and ease of functionalization. Specifically, alginate‐based nanostructures show enhanced capabilities with respect to alginate bulk materials in the targeted delivery of drugs and chemotherapies, as well as in helping tissue reparation and regeneration. Hence, it is not surprising that the number of scientific reports related to this topic have rapidly grown in the last decade. With these premises, the present review aims to provide a comprehensive state‐of‐the‐art of the most recent advances in the preparation of alginate‐based nanoparticles and electrospun nanofibers for drug delivery, cancer therapy, and tissue engineering purposes. After a short introduction concerning the general properties and uses of alginate and the concept of nanotechnology, the recent literature is then critically presented to highlight the main advantages of alginate‐based nanostructures. Finally, the current limitations and the future perspectives and objectives are discussed in detail.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Stefano Alberti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Giulia Gaggero
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Maurizio Ferretti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Rodolfo Botter
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| |
Collapse
|
72
|
Bacterial cellulose and its potential for biomedical applications. Biotechnol Adv 2021; 53:107856. [PMID: 34666147 DOI: 10.1016/j.biotechadv.2021.107856] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
Bacterial cellulose (BC) is an important polysaccharide synthesized by some bacterial species under specific culture conditions, which presents several remarkable features such as microporosity, high water holding capacity, good mechanical properties and good biocompatibility, making it a potential biomaterial for medical applications. Since its discovery, BC has been used for wound dressing, drug delivery, artificial blood vessels, bone tissue engineering, and so forth. Additionally, BC can be simply manipulated to form its derivatives or composites with enhanced physicochemical and functional properties. Several polymers, carbon-based nanomaterials, and metal nanoparticles (NPs) have been introduced into BC by ex situ and in situ methods to design hybrid materials with enhanced functional properties. This review provides comprehensive knowledge and highlights recent advances in BC production strategies, its structural features, various in situ and ex situ modification techniques, and its potential for biomedical applications.
Collapse
|
73
|
İnan B, Özçimen D. Preparation and characterization of microalgal oil loaded alginate/poly (vinyl alcohol) electrosprayed nanoparticles. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
74
|
Osório LA, Silva E, Mackay RE. A Review of Biomaterials and Scaffold Fabrication for Organ-on-a-Chip (OOAC) Systems. Bioengineering (Basel) 2021; 8:113. [PMID: 34436116 PMCID: PMC8389238 DOI: 10.3390/bioengineering8080113] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Drug and chemical development along with safety tests rely on the use of numerous clinical models. This is a lengthy process where animal testing is used as a standard for pre-clinical trials. However, these models often fail to represent human physiopathology. This may lead to poor correlation with results from later human clinical trials. Organ-on-a-Chip (OOAC) systems are engineered microfluidic systems, which recapitulate the physiochemical environment of a specific organ by emulating the perfusion and shear stress cellular tissue undergoes in vivo and could replace current animal models. The success of culturing cells and cell-derived tissues within these systems is dependent on the scaffold chosen; hence, scaffolds are critical for the success of OOACs in research. A literature review was conducted looking at current OOAC systems to assess the advantages and disadvantages of different materials and manufacturing techniques used for scaffold production; and the alternatives that could be tailored from the macro tissue engineering research field.
Collapse
Affiliation(s)
- Luana A. Osório
- Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Elisabete Silva
- Department of Life Science, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Ruth E. Mackay
- Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, Uxbridge UB8 3PH, UK;
| |
Collapse
|
75
|
Yang Y, Li Y, Cao L, Wang Y, Li L, Li W. Electrospun PVDF-SiO2 nanofibrous membranes with enhanced surface roughness for oil-water coalescence separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118726] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
76
|
Lima TDPDL, Passos MF. Skin wounds, the healing process, and hydrogel-based wound dressings: a short review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1910-1925. [PMID: 34156314 DOI: 10.1080/09205063.2021.1946461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skin wounds are damage to the epithelial layer and the integrity of living tissue. The healing mechanism is dynamic and complex, and often treatments with wound dressings help in tissue regeneration, reducing the risk of infections. Polymeric hydrogels become good candidates for wet curing process. These materials prevent dehydration of the tissue and avoid discomfort to the patient when changing the dressing. In this short review, we demonstrate the importance of the healing process, the types of skin wounds, and the hydrogels that are potentially attractive as wound dressings.
Collapse
|
77
|
Alturki AM. Rationally design of electrospun polysaccharides polymeric nanofiber webs by various tools for biomedical applications: A review. Int J Biol Macromol 2021; 184:648-665. [PMID: 34102239 DOI: 10.1016/j.ijbiomac.2021.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Nanofibers have a particular benefit when delivering a spectrum of therapeutic drugs for diverse biomedical applications. Nanofibers are easily fabricated from cellulose acetate, chitosan, polycaprolactone, and other polymers with regulated morphology and release profiles due to nanotechnology's recent advancement. This review will provide the latest approaches to the fabrication of electrospun nanofibers containing herbal extracts, antimicrobial peptides, and antibiotics for wound-healing potential. Besides, synthesis and evaluation of nanofibrous mats, including conducting polymer and evaluate their possibility for wound healing. In addition, nanofibers are loaded with some drugs for skin cancer treatment and contain growth factors for tissue regeneration. Also, the current two-dimensional nanofibers limitations and the various techniques for convert two-dimensional to three-dimension nanofibers to avoid these drawbacks. Moreover, the future direction in improving the three-dimensional structure and functionality has been including.
Collapse
Affiliation(s)
- Asma M Alturki
- Department of Chemistry, Faculty of Science, University of Tabuk, Saudi Arabia.
| |
Collapse
|
78
|
Potential benefits of high-added-value compounds from aquaculture and fish side streams on human gut microbiota. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
79
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
80
|
Hernández-González AC, Téllez-Jurado L, Rodríguez-Lorenzo LM. Preparation of covalently bonded silica-alginate hybrid hydrogels by SCHIFF base and sol-gel reactions. Carbohydr Polym 2021; 267:118186. [PMID: 34119154 DOI: 10.1016/j.carbpol.2021.118186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Organic-inorganic hybrid materials overcome drawbacks associated with alginate hydrogels. In this work, covalently coupled silica-alginate hybrids were prepared by Schiff base formation and sol-gel reaction using alginate dialdehyde (ADA), (3-Aminopropyl) triethoxysilane (APTES), and APTES/tetraethylorthosilicate (TEOS) precursors. The influence of the polysaccharide/inorganic ratio, the nature of the inorganic precursor and the ionic crosslinking ability are studied. Prepared hybrids were characterized by FT-IR, 13C and 29Si NMR spectroscopies, SEM, and rheology. For ADA/APTES hybrids, at higher ADA content, Schiff base formation is predominant, but at lower ADA content, the sol-gel reaction is prevalent. However, the progress of the sol-gel reactions for ADA/(APTES+TEOS), is favored with higher ADA compositions. Introducing a posterior ionic crosslinking treatment was possible, increasing the moduli in ADA/(APTES+TEOS) hybrids from 86,207 Pa for 1.5 ADA/Si to 362,171 Pa for 1.5 ADA/Si-Ca. In-situ ADA-Silica hybrid hydrogels containing both ionic and covalent crosslinking can be successfully synthesized with the proposed method. CARBPOL-D-21-01042.
Collapse
Affiliation(s)
| | - Lucía Téllez-Jurado
- Instituto Politécnico Nacional, Depto. de Ingeniería en Metalurgia y Materiales-ESIQIE, CDMX, Mexico.
| | | |
Collapse
|
81
|
Dodero A, Donati I, Scarfì S, Mirata S, Alberti S, Lova P, Comoretto D, Alloisio M, Vicini S, Castellano M. Effect of sodium alginate molecular structure on electrospun membrane cell adhesion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112067. [PMID: 33947560 DOI: 10.1016/j.msec.2021.112067] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/19/2021] [Accepted: 03/16/2021] [Indexed: 02/09/2023]
Abstract
Alginate-based electrospun nanofibers prepared via electrospinning technique represent a class of materials with promising applications in the biomedical and pharmaceutical industries. However, to date, the effect of alginate molecular mass and block composition on the biological response of such systems remains to some extent unclear. As such, in the present work, three alginates (i.e., M.pyr, L.hyp, A.nod) with different molecular features are employed to prepare nanofibers whose ability to promote cell adhesion is explored by using both skin and bone cell lines. Initially, a preliminary investigation of the raw materials is carried out via rheological and zeta-potential measurements to determine the different grade of polyelectrolyte behaviour of the alginate samples. Specifically, both the molecular mass and block composition are found to be important factors affecting the alginate response, with long chains and a predominance of guluronic moieties leading to a marked polyelectrolyte nature (i.e., lower dependence of the solution viscosity upon the polymer concentration). Subsequently, physically crosslinked alginate nanofibrous mats are first morphologically characterized via both scanning electron and atomic force microscopy, which show a homogenous and defect-free structure, and their biological response is then evaluated. Noticeably, fibroblast and keratinocyte cell lines do not show significant differences in terms of cell adhesion on the three mats (i.e., 30-40% and 10-20% with respect to the seeded cells, respectively), with the formers presenting a greater affinity toward the alginate-based nanofibers. Conversely, both the investigated osteoblast cells are characterized by a distinct behaviour depending on the alginate type. Specifically, polysaccharide samples with an evident polyelectrolyte nature are found to better promote cell viability (i.e., cell adhesion in the range 15-36% with respect to seeded cells) compared to the ones displaying a nearly neutral behaviour (i.e., cell adhesion in the range 5-25% with respect to seeded cells). Therefore, the obtained results, despite being preliminary, suggest that the alginate type (i.e., molecular structure properties) may play a topical role in conditioning the efficiency of healing patches for bone reparation, but it has a negligible effect in the case of skin regeneration.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences, University of Genoa, Via Pastore 3, 16132 Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy
| | - Serena Mirata
- Department of Earth, Environment and Life Sciences, University of Genoa, Via Pastore 3, 16132 Genoa, Italy
| | - Stefano Alberti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Paola Lova
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Davide Comoretto
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Marina Alloisio
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy.
| |
Collapse
|
82
|
Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian J Pharm Sci 2021; 16:280-306. [PMID: 34276819 PMCID: PMC8261255 DOI: 10.1016/j.ajps.2020.10.001] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Alginate is an edible heteropolysaccharide that abundantly available in the brown seaweed and the capsule of bacteria such as Azotobacter sp. and Pseudomonas sp. Owing to alginate gel forming capability, it is widely used in food, textile and paper industries; and to a lesser extent in biomedical applications as biomaterial to promote wound healing and tissue regeneration. This is evident from the rising use of alginate-based dressing for heavily exuding wound and their mass availability in the market nowadays. However, alginate also has limitation. When in contact with physiological environment, alginate could gelate into softer structure, consequently limits its potential in the soft tissue regeneration and becomes inappropriate for the usage related to load bearing body parts. To cater this problem, wide range of materials have been added to alginate structure, producing sturdy composite materials. For instance, the incorporation of adhesive peptide and natural polymer or synthetic polymer to alginate moieties creates an improved composite material, which not only possesses better mechanical properties compared to native alginate, but also grants additional healing capability and promote better tissue regeneration. In addition, drug release kinetic and cell viability can be further improved when alginate composite is used as encapsulating agent. In this review, preparation of alginate and alginate composite in various forms (fibre, bead, hydrogel, and 3D-printed matrices) used for biomedical application is described first, followed by the discussion of latest trend related to alginate composite utilization in wound dressing, drug delivery, and tissue engineering applications.
Collapse
Affiliation(s)
- Raha Ahmad Raus
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Wan Mohd Fazli Wan Nawawi
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
- Nanoscience and Nanotechnology Research Group (NanoRG), International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Ricca Rahman Nasaruddin
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
- Nanoscience and Nanotechnology Research Group (NanoRG), International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| |
Collapse
|
83
|
Mostafavi A, Daemi H, Rajabi S, Baharvand H. Highly tough and ultrafast self-healable dual physically crosslinked sulfated alginate-based polyurethane elastomers for vascular tissue engineering. Carbohydr Polym 2021; 257:117632. [PMID: 33541658 DOI: 10.1016/j.carbpol.2021.117632] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
Since vascular diseases are regarded as a major cause of death worldwide, developing engineered biomimetic elastomers with physicochemical and biological properties resembling those of the natural vascular tissues, is vital for vascular tissue engineering (VTE). This study reports synthesis of highly tough supramolecular biologically active alginate-based supramolecular polyurethane (BASPU) elastomers that benefit from the presence of two physical networks with different strength of soft tertiary ammonium-soft sulfate pairs, as strong ionic bonds, and soft tertiary ammonium-hard carboxylate groups, as the weak bonds. The presence of sulfate groups resulted in low Young's modulus, high toughness and stretchability, proper energy dissipation, ultrafast self-healing and complete healing efficiency of BASPU. In vitro studies showed higher endothelial cells attachment, higher anticoagulation ability and significantly less platelet adhesion for BASPUs compared to the commercial vascular prosthesis. The histological studies of subcutaneously implanted scaffolds confirmed their low fibrosis and gradual biodegradation during 2 months of following.
Collapse
Affiliation(s)
- Azadeh Mostafavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
84
|
Li Y, Wang X, Han Y, Sun HY, Hilborn J, Shi L. Click chemistry-based biopolymeric hydrogels for regenerative medicine. Biomed Mater 2021; 16:022003. [PMID: 33049725 DOI: 10.1088/1748-605x/abc0b3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Click chemistry is not a single specific reaction, but describes ways of generating products which emulate examples in nature. Click reactions occur in one pot, are not disturbed by water, generate minimal and inoffensive byproducts, and are characterized by a high thermodynamic driving force, driving the reaction quickly and irreversibly towards a high yield of a single reaction product. As a result, over the past 15 years it has become a very useful bio-orthogonal method for the preparation of chemical cross-linked biopolymer-based hydrogel, in the presence of e.g. growth factors and live cells, or in-vivo. Biopolymers are renewable and non-toxic, providing a myriad of potential backbone toolboxes for hydrogel design. The goal of this review is to summarize recent advances in the development of click chemistry-based biopolymeric hydrogels, and their applications in regenerative medicine. In particular, various click chemistry approaches, including copper-catalyzed azide-alkyne cycloaddition reactions, copper-free click reactions (e.g. the Diels-Alder reactions, the strain-promoted azide-alkyne cycloaddition reactions, the radical mediated thiol-ene reactions, and the oxime-forming reactions), and pseudo-click reactions (e.g. the thiol-Michael addition reactions and the Schiff base reactions) are highlighted in the first section. In addition, numerous biopolymers, including proteins (e.g. collagen, gelatin, silk, and mucin), polysaccharides (e.g. hyaluronic acid, alginate, dextran, and chitosan) and polynucleotides (e.g. deoxyribonucleic acid), are discussed. Finally, we discuss biopolymeric hydrogels, cross-linked by click chemistry, intended for the regeneration of skin, bone, spinal cord, cartilage, and cornea. This article provides new insights for readers in terms of the design of regenerative medicine, and the use of biopolymeric hydrogels based on click chemistry reactions.
Collapse
Affiliation(s)
- Ya Li
- College of Biology, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | | | | | |
Collapse
|
85
|
|
86
|
Design and in vivo evaluation of alginate-based pH-sensing electrospun wound dressing containing anthocyanins. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02400-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
87
|
Khan A, Alamry KA, Asiri AM. Multifunctional Biopolymers‐Based Composite Materials for Biomedical Applications: A Systematic Review. ChemistrySelect 2021; 6:154-176. [DOI: 10.1002/slct.202003978] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/26/2020] [Indexed: 01/06/2025]
Abstract
AbstractBiopolymers are considered as a favorable group of substances with a broad array of applications, of which biomedical field stands out. The interesting features of biopolymers such as low‐cost, non‐cytotoxicity, hydrophilicity, biodegradation and biocompatibility make them promising and excellent feedstock to be used in implantable devices. The bounteous reactive functional groups in the backbone structure of polysaccharides and its derivatives could be utilized to develop hydrogels, nano‐composite and 3D scaffolds with appealing structures and desired features, leading to promising research attention towards biomedical fields. The present review describes the foremost properties as well as potential of different biopolymers, and their composites for application in implantable biomedical systems. This work may introduce readers about the comprehension of state‐of‐the‐art advances, real present challenges along with the future anticipation of eco‐friendly and biomimetic techniques for the modification of biopolymeric materials to improve their biomedical applications.
Collapse
Affiliation(s)
- Ajahar Khan
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A. Alamry
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Abdullah M. Asiri
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
- Centre of Excellence for Advanced Materials Research King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
88
|
How does counter-cation substitution influence inter- and intramolecular hydrogen bonding and electrospinnability of alginates. Int J Biol Macromol 2021; 171:234-241. [PMID: 33412203 DOI: 10.1016/j.ijbiomac.2020.12.212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023]
Abstract
Despite numerous applications of nanofibrous alginate (Alg) mat, its facile fabrication via electrospinning is still challenging. The low alginate content compared to the carrier polymer and existence of impurities are the main drawbacks of existing approaches. The purpose of this research is both to study and improve alginate electrospinnability by focusing on the effect of inter- and intramolecular hydrogen bonding. Based on hard and soft acids and bases (HSAB) theory, the Na+ cations (carboxylate counter-cation) were substituted with a harder acid, Li+ cation, to increase the strength of ionic interaction and decrease the density of hydrogen bonding. Viscosity and electrical conductivity measurements as well as FTIR and 1H NMR revealed a lower intramolecular hydrogen bonding density in Li-Alg. SEM images showed improvement of alginate electrospinnability for Li-Alg compared to the salts of Na-Alg and K-Alg. This study sheds more light on underlying reasons hindering alginate electrospinning and introduces a simple method for fabrication of nanofibers with high alginate content.
Collapse
|
89
|
Phan DN, Khan MQ, Nguyen NT, Phan TT, Ullah A, Khatri M, Kien NN, Kim IS. A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes. Carbohydr Polym 2021; 252:117175. [DOI: 10.1016/j.carbpol.2020.117175] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022]
|
90
|
Hosseini SF, Rezaei M, McClements DJ. Bioactive functional ingredients from aquatic origin: a review of recent progress in marine-derived nutraceuticals. Crit Rev Food Sci Nutr 2020; 62:1242-1269. [DOI: 10.1080/10408398.2020.1839855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | | |
Collapse
|
91
|
Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials. Carbohydr Polym 2020; 245:116502. [DOI: 10.1016/j.carbpol.2020.116502] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/19/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2023]
|
92
|
Irani S, Tavakkoli S, Pezeshki‐Modaress M, Taghavifar E, Mohammadali M, Daemi H. Electrospun nanofibrous alginate sulfate scaffolds promote mesenchymal stem cells differentiation to chondrocytes. J Appl Polym Sci 2020. [DOI: 10.1002/app.49868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shiva Irani
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Sajjad Tavakkoli
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | | | - Elham Taghavifar
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Marjan Mohammadali
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Hamed Daemi
- Department of Cell Engineering Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| |
Collapse
|
93
|
Duru Kamaci U, Peksel A. Enhanced Catalytic Activity of Immobilized Phytase into Polyvinyl Alcohol-Sodium Alginate Based Electrospun Nanofibers. Catal Letters 2020. [DOI: 10.1007/s10562-020-03339-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
94
|
Jose Varghese R, Parani S, Remya VR, Maluleke R, Thomas S, Oluwafemi OS. Sodium alginate passivated CuInS 2/ZnS QDs encapsulated in the mesoporous channels of amine modified SBA 15 with excellent photostability and biocompatibility. Int J Biol Macromol 2020; 161:1470-1476. [PMID: 32745549 DOI: 10.1016/j.ijbiomac.2020.07.240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/09/2023]
Abstract
We herein report the synthesis of CuInS2/ZnS (CIS/ZnS) quantum dots (QDs) via a greener method followed by sodium alginate (SA) passivation and encapsulation into mesoporous channels of amine modified silica (SBA15-NH2) for improved photostability and biocompatibility. The as-synthesized CIS/ZnS QDs exhibited near infrared emission even after SA passivation and silica encapsulation. Transmission electron microscopy (TEM) and Small angle X-ray diffraction (XRD) revealed the mesoporous nature of the SBA-15 remained stable after loading with the SA-CIS/ZnS QDs. The effective encapsulation of SA-CIS/ZnS QDs inside the pores of SBA15-NH2 matrix was confirmed by Brunauer-Emmett-Teller (BET) pore volume analysis while the interaction between the QDs and SBA15-NH2 was confirmed using Fourier transform infrared (FTIR) spectroscopy. The photostability of the QDs was greatly enhanced after these modifications. The resultant SA-CIS/ZnS-SBA15-NH2 (QDs-silica) composite possessed remarkable biocompatibility towards lung cancer (A549) and kidney (HEK 293) cell lines making it a versatile material for theranostic applications.
Collapse
Affiliation(s)
- R Jose Varghese
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - Sundararajan Parani
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - V R Remya
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - Rodney Maluleke
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - Sabu Thomas
- International and Inter University Center for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala, India
| | - Oluwatobi S Oluwafemi
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa.
| |
Collapse
|
95
|
Bi H, Feng T, Li B, Han Y. In Vitro and In Vivo Comparison Study of Electrospun PLA and PLA/PVA/SA Fiber Membranes for Wound Healing. Polymers (Basel) 2020; 12:E839. [PMID: 32268612 PMCID: PMC7240532 DOI: 10.3390/polym12040839] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
Wound dressings can accelerate wound healing. The degradable polymer poly(lactic acid) (PLA) shows good mechanical properties and biocompatibility. Sodium alginate (SA) holds good biocompatibility, hemostasis, and high hygroscopicity. Poly(vinyl alcohol) (PVA) has good spinnability as a pharmaceutical excipient. Herein, we carried out a comparison study of electrospun PLA and PLA/PVA/SA fiber membranes for wound healing in vitro and in vivo. In this study, PLA and PLA/PVA/SA nanofiber membranes were fabricated through electrospinning to produce a highly porous and large specific surface area that could promote wound healing. In vitro experiments showed that PLA and PLA/PVA/SA nanofiber membranes could all provide good support for the growth of rat fibroblasts (L929). Moreover, rat fibroblasts displayed slightly better adhesion and proliferation on PLA/PVA/SA than on the PLA fiber membranes. The in vivo potentiality of the PLA and PLA/PVA/SA fiber membranes was assessed in rat models of skin defects in which the PLA and PLA/PVA/SA fiber membranes significantly improved wound healing compared to commercially available gauzes. No significant differences in wound healing were observed between PLA and PLA/PVA/SA fiber membranes in our study. Furthermore, Masson staining and PCR displayed the PLA fiber membrane promoted protein deposition compared to the PLA/PVA/SA fiber membrane. In addition, IHC suggested that PLA/PVA/SA dressing reduced the inflammatory response during early wound healing compared to the PLA fiber membrane. These findings highlight the utility of fiber membranes as novel wound-healing dressings.
Collapse
Affiliation(s)
| | | | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; (H.B.); (T.F.)
| | - Yingchao Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; (H.B.); (T.F.)
| |
Collapse
|
96
|
Mokhena TC, Mochane MJ, Mtibe A, John MJ, Sadiku ER, Sefadi JS. Electrospun Alginate Nanofibers Toward Various Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E934. [PMID: 32093142 PMCID: PMC7078630 DOI: 10.3390/ma13040934] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
Alginate has been a material of choice for a spectrum of applications, ranging from metal adsorption to wound dressing. Electrospinning has added a new dimension to polymeric materials, including alginate, which can be processed to their nanosize levels in order to afford unique nanostructured materials with fascinating properties. The resulting nanostructured materials often feature high porosity, stability, permeability, and a large surface-to-volume ratio. In the present review, recent trends on electrospun alginate nanofibers from over the past 10 years toward advanced applications are discussed. The application of electrospun alginate nanofibers in various fields such as bioremediation, scaffolds for skin tissue engineering, drug delivery, and sensors are also elucidated.
Collapse
Affiliation(s)
- Teboho Clement Mokhena
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa;
- Advanced Polymer Composites, Centre of Nanostructured and Advanced Material, CSIR, Pretoria 0184, South Africa;
| | - Mokgaotsa Jonas Mochane
- Department of Life Sciences, Central University of Technology Free State, Private Bag X20539, Bloemfontein 9301, South Africa;
| | - Asanda Mtibe
- Advanced Polymer Composites, Centre of Nanostructured and Advanced Material, CSIR, Pretoria 0184, South Africa;
| | - Maya Jacob John
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa;
- Advanced Polymer Composites, Centre of Nanostructured and Advanced Material, CSIR, Pretoria 0184, South Africa;
- School of Mechanical, Industrial & Aeronautical Engineering, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Emmanuel Rotimi Sadiku
- Institute of NanoEngineering Research (INER), Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0001, South Africa;
| | - Jeremia Shale Sefadi
- Department of Physical and Earth Sciences (PES), Sol Plaatje University, Kimberley 8301, South Africa
| |
Collapse
|
97
|
Godiya CB, Xiao Y, Lu X. Amine functionalized sodium alginate hydrogel for efficient and rapid removal of methyl blue in water. Int J Biol Macromol 2020; 144:671-681. [DOI: 10.1016/j.ijbiomac.2019.12.139] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 01/08/2023]
|