51
|
Chemical Modification, Characterization, and Activity Changes of Land Plant Polysaccharides: A Review. Polymers (Basel) 2022; 14:polym14194161. [PMID: 36236108 PMCID: PMC9570684 DOI: 10.3390/polym14194161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Plant polysaccharides are widely found in nature and have a variety of biological activities, including immunomodulatory, antioxidative, and antitumoral. Due to their low toxicity and easy absorption, they are widely used in the health food and pharmaceutical industries. However, low activity hinders the wide application. Chemical modification is an important method to improve plant polysaccharides' physical and chemical properties. Through chemical modification, the antioxidant and immunomodulatory abilities of polysaccharides were significantly improved. Some polysaccharides with poor water solubility also significantly improved their water solubility after modification. Chemical modification of plant polysaccharides has become an important research direction. Research on the modification of plant polysaccharides is currently increasing, but a review of the various modification studies is absent. This paper reviews the research progress of chemical modification (sulfation, phosphorylation, acetylation, selenization, and carboxymethylation modification) of land plant polysaccharides (excluding marine plant polysaccharides and fungi plant polysaccharides) during the period of January 2012-June 2022, including the preparation, characterization, and biological activity of modified polysaccharides. This study will provide a basis for the deep application of land plant polysaccharides in food, nutraceuticals, and pharmaceuticals.
Collapse
|
52
|
Xiang X, Jiang Q, Yang H, Zhou X, Chen Y, Chen H, Liu S, Chen L. A review on shellfish polysaccharides: Extraction, characterization and amelioration of metabolic syndrome. Front Nutr 2022; 9:974860. [PMID: 36176638 PMCID: PMC9513460 DOI: 10.3389/fnut.2022.974860] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Shellfish are diverse, widely distributed organisms that are a rich source of biological resources. Polysaccharides are an important components in shellfish, hence a great deal of attention has been directed at isolation and characterization of shellfish polysaccharides because of their numerous health benefits. Differences in shellfish species, habits, and environment result in the diversity of the structure and composition of polysaccharides. Thus, shellfish polysaccharides possess special biological activities. Studies have shown that shellfish polysaccharides exert biological activities, including antioxidant, antitumor, immune-regulation, hypolipidemic, antihypertensive, and antihyperglycemic effects, and are widely used in cosmetics, health products, and medicine. This review spotlights the extraction and purification methods of shellfish polysaccharides and analyses their structures, biological activities and conformational relationships; discusses the regulatory mechanism of shellfish polysaccharides on hyperlipidemia, hypertension, and hyperglycemia caused by lipid metabolism disorders; and summarizes its alleviation of lipid metabolism-related diseases. This review provides a reference for the in-depth development and utilization of shellfish polysaccharides as a functional food to regulate lipid metabolism-related diseases. To achieve high value utilization of marine shellfish resources while actively promoting the development of marine biological industry and health industry.
Collapse
Affiliation(s)
- Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- *Correspondence: Shulai Liu,
| | - Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Lin Chen,
| |
Collapse
|
53
|
Yue L, Song X, Cui X, Zhang Q, Tian X, Yang X, Wu Q, Liu Y, Ruan R, Wang Y. Synthesis, characterization, and evaluation of microwave-assisted fabricated selenylation Astragalus polysaccharides. Int J Biol Macromol 2022; 221:8-15. [PMID: 36075149 DOI: 10.1016/j.ijbiomac.2022.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022]
Abstract
Selenylation Astragalus polysaccharides (Se-APS) was fabricated by an optimized microwave-assisted method. Their physicochemical properties, antioxidant capacities and selenium (Se) release rate under gastrointestinal conditions were determined. Se-APS with the highest Se content (18.8 mg/g) was prepared in 0.4 % nitric acid, under the microwave conditions of 90 min and 80 °C. FTIR and XPS spectra indicated that Se was bound to the polysaccharide chain in the form of O-Se-O and O-H···Se, and most of Se+4 was reduced to Se0. Meanwhile, the micromorphology of Se-APS became clusters, loose and porous, which decreased its hydrodynamic particle size and negative surface charges. Besides, Se-APS displayed strong scavenging capacities towards ABTS and superoxide anion free radicals than Na2SeO3, and showed higher Se release rate (12.52 ± 0.31 %) under intestinal fluid comparing with gastric fluid (3.14 ± 0.38 %) during 8 h in vitro digestion. The results provided efficient preparation method references for selenylation polysaccharides, and broaden the application fields of APS.
Collapse
Affiliation(s)
- Linqing Yue
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiaoxiao Song
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiaojie Tian
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiuhua Yang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qiuhao Wu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
54
|
Zheng Q, Jia RB, Luo D, Lin L, Chen C, Zhao M. The effect of extraction solution pH level on the physicochemical properties and α-glucosidase inhibitory potential of Fucus vesiculosus polysaccharide. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
55
|
Xiao M, Jia X, Wang N, Kang J, Hu X, Goff HD, Cui SW, Ding H, Guo Q. Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Crit Rev Food Sci Nutr 2022; 64:1177-1210. [PMID: 36036965 DOI: 10.1080/10408398.2022.2113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-starch polysaccharides (NSPs) have been reported to exert therapeutic potential on managing type 2 diabetes mellitus (T2DM). Various mechanisms have been proposed; however, several studies have not considered the correlations between the anti-T2DM activity of NSPs and their molecular structure. Moreover, the current understanding of the role of NSPs in T2DM treatment is mainly based on in vitro and in vivo data, and more human clinical trials are required to verify the actual efficacy in treating T2DM. The related anti-T2DM mechanisms of NSPs, including regulating insulin action, promoting glucose metabolism and regulating postprandial blood glucose level, anti-inflammatory and regulating gut microbiota (GM), are reviewed. The structure-function relationships are summarized, and the relationships between NSPs structure and anti-T2DM activity from clinical trials are highlighted. The development of anti-T2DM medication or dietary supplements of NSPs could be promoted with an in-depth understanding of the multiple regulatory effects in the treatment/intervention of T2DM.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | | | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada
| | | | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
56
|
Pei F, Cao X, Wang X, Ren Y, Ge J. Structural characteristics and bioactivities of polysaccharides from blue honeysuckle after probiotic fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
57
|
Zhang W, Li L, Ma Y, Chen X, Lan T, Chen L, Zheng Z. Structural Characterization and Hypoglycemic Activity of a Novel Pumpkin Peel Polysaccharide-Chromium(III) Complex. Foods 2022; 11:1821. [PMID: 35804640 PMCID: PMC9265534 DOI: 10.3390/foods11131821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/21/2022] Open
Abstract
The aim of our study was to synthesize a pumpkin peel polysaccharide (PPP)-Cr(III) complex and investigate its hypoglycemic activity. Firstly, a novel PPP-Cr(III) complex with a Cr content of 23.77 mg/g was synthesized and characterized. Physicochemical characterization indicated that PPP-Cr(III) had some changes in chemical composition, monosaccharide composition, and morphological structure compared with PPP. The molecular weights of PPP-Cr(III) and PPP were 1.398 × 106 g/mol and 3.386 × 106 g/mol, respectively, showing a lower molecular weight after the introduction of Cr(III). Fourier transform infrared spectroscopy showed that a new characteristic absorption peak of Cr-O appeared at 534 cm-1 in PPP-Cr(III), indicating that Cr(III) was successfully complexed with PPP. Secondly, the hypoglycemic activity of PPP-Cr(III) based on α-glucosidase inhibitory and insulin resistance (IR)-HepG2 cells was evaluated. Compared with PPP, PPP-Cr(III) exhibited a more significantly α-glucosidase inhibitory activity. The IR-HepG2 cells confirmed an obvious increase in glucose consumption. Western blot analysis demonstrated that the treated IR-HepG2 cells were able to increase the protein levels of p-AMPK and p-GSK-3β, indicating that IR-HepG2 cells exerted hypoglycemic activity via the AMPK/GSK-3β signaling pathway. These results suggested that PPP-Cr(III) had good hypoglycemic activity, which could provide theoretical support for the development of novel hypoglycemic products.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (W.Z.); (L.L.); (X.C.)
| | - Lingyu Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (W.Z.); (L.L.); (X.C.)
| | - Yue Ma
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China;
| | - Xiaole Chen
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (W.Z.); (L.L.); (X.C.)
| | - Tao Lan
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing 100191, China
| | - Long Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China;
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (W.Z.); (L.L.); (X.C.)
| |
Collapse
|
58
|
Hu K, Chen D, Sun Z. Structures, physicochemical properties, and hypoglycemic activities of soluble dietary fibers from white and black glutinous rice bran: a comparative study. Food Res Int 2022; 159:111423. [DOI: 10.1016/j.foodres.2022.111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
|
59
|
Bai C, Chen R, Tan L, Bai H, Tian L, Lu J, Gao M, Sun H, Chi Y. Effects of multi-frequency ultrasonic on the physicochemical properties and bioactivities of polysaccharides from different parts of ginseng. Int J Biol Macromol 2022; 206:896-910. [PMID: 35318082 DOI: 10.1016/j.ijbiomac.2022.03.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022]
Abstract
The effect of multi-frequency ultrasonic extraction (MUE) on the yields, physicochemical properties, antioxidant and α-glucosidase inhibitory activities of polysaccharides (GPs) from different parts of ginseng were compared. Results demonstrated that yields of polysaccharides from different parts were found to vary significantly differences, in the order of roots (M-GRPs) > flowers (M-GFPs) > leaves (M-GLPs). Compared with heat reflux extraction, MUE not only increased the yield of GPs by up to 9.14%-210.87%, with higher uronic acid content (UAC: increased by 4.99%-53.48%), total phenolics content (TPC: increased by 7.60% to 42.61%), total flavonoids content (TFC: increased by 2.52%-5.45%), and lower molecular weight (Mw: reduced by 6.51%- 33.08%) and protein content (PC: reduced by 5.15%-8.95%), but also improved their functional properties and bioactivities. All six purified polysaccharides extracted by MUE were acidic pyran polysaccharide with different monosaccharide composition, possessed remarkable antioxidant and α-glucosidase inhibitory activities. Especially, M-GFP-1 exhibited the highest bioactivities, illustrated that the activities were highly correlated with UAC and TPC, Mw, and triple helical structure. These results indicate that MUE was an efficient technique for improving yields, physicochemical and functional properties and enhancing biological activities of polysaccharide.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Li Tan
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Juan Lu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ming Gao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yu Chi
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
60
|
Zhao J, Wang Z, Karrar E, Xu D, Sun X. Inhibition Mechanism of Berberine on α‐Amylase and α‐Glucosidase in Vitro. STARCH-STARKE 2022. [DOI: 10.1002/star.202100231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jinjin Zhao
- Synergetic Innovation Center of Food Safety and Nutrition State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Zhangtie Wang
- Synergetic Innovation Center of Food Safety and Nutrition State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Emad Karrar
- Synergetic Innovation Center of Food Safety and Nutrition State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Deping Xu
- Synergetic Innovation Center of Food Safety and Nutrition State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Xiulan Sun
- Synergetic Innovation Center of Food Safety and Nutrition State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| |
Collapse
|
61
|
He M, Zhai Y, Zhang Y, Xu S, Yu S, Wei Y, Xiao H, Song Y. Inhibition of α-glucosidase by trilobatin and its mechanism: kinetics, interaction mechanism and molecular docking. Food Funct 2022; 13:857-866. [PMID: 34989743 DOI: 10.1039/d1fo03636j] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
α-Glucosidase is related to the increase in postprandial blood glucose in vivo. Inhibition of α-glucosidase is supposed to be an effective approach to treat type 2 diabetes mellitus (T2DM). Trilobatin, a member of the dihydrochalcone family, shows anti-oxidant, anti-inflammatory and anti-diabetic activities. In this study, the inhibitory activity and mechanism of trilobatin on α-glucosidase were investigated using multispectroscopic and molecular docking techniques. The kinetic analysis showed that trilobatin reversibly inhibited α-glucosidase in a noncompetitive-type manner and the value of IC50 was 0.24 ± 0.02 mM. The analysis of fluorescence spectra demonstrated that the formation of the trilobatin-α-glucosidase complex was driven mainly by hydrogen bonding and van der Waals forces, resulting in the conformational changes of α-glucosidase. Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) measurements suggested that the interaction could change the micro-environment and conformation of α-glucosidase affected by trilobatin. Molecular docking analysis determined the exact binding sites of trilobatin on α-glucosidase. These results indicated that trilobatin is a strong α-glucosidase inhibitor, thus it could be conducive to ameliorate T2DM.
Collapse
Affiliation(s)
- Ming He
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Yuhan Zhai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Yuqing Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Shuo Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Shaoxuan Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Yingxin Wei
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Haifang Xiao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Yuanda Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| |
Collapse
|
62
|
Optimized Degradation and Inhibition of α-glucosidase Activity by Gracilaria lemaneiformis Polysaccharide and Its Production In Vitro. Mar Drugs 2021; 20:md20010013. [PMID: 35049867 PMCID: PMC8777738 DOI: 10.3390/md20010013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Gracilaria lemaneiformis polysaccharide (GLP) exhibits good physiological activities, and it is more beneficial as it is degraded. After its degradation by hydrogen peroxide combined with vitamin C (H2O2-Vc) and optimized by Box–Behnken Design (BBD), a new product of GLP-HV will be generated. While using GLP as control, two products of GLP-H (H2O2-treated) and GLP-V (Vc-treated) were also produced. These products chemical characteristics (total sugar content, molecular weight, monosaccharide composition, UV spectrum, morphological structure, and hypolipidemic activity in vitro) were assessed. The results showed that the optimal conditions for H2O2-Vc degradation were as follows: H2O2-Vc concentration was 18.7 mM, reaction time was 0.5 h, and reaction temperature was 56 °C. The total sugar content of GLP and its degradation products (GLP-HV, GLP-H and GLP-V) were more than 97%, and their monosaccharides are mainly glucose and galactose. The SEM analysis demonstrated that H2O2-Vc made the structure loose and broken. Moreover, GLP, GLP-HV, GLP-H, and GLP-V had significantly inhibition effect on α-glucosidase, and their IC50 value were 3.957, 0.265, 1.651, and 1.923 mg/mL, respectively. GLP-HV had the best inhibition effect on α-glucosidase in a dose-dependent manner, which was the mixed type of competitive and non-competitive. It had a certain quenching effect on fluorescence of α-glucosidase, which may be dynamic quenching.
Collapse
|
63
|
Dong Z, Dong G, Lai F, Wu H, Zhan Q. Purification and comparative study of bioactivities of a natural selenized polysaccharide from Ganoderma Lucidum mycelia. Int J Biol Macromol 2021; 190:101-112. [PMID: 34478790 DOI: 10.1016/j.ijbiomac.2021.08.189] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023]
Abstract
The development of selenized polysaccharides is a promising strategy for the dietary selenium supplementation. The purpose of this research is to determine the influence of selenium on the structure and bioactivity of a polysaccharide fraction (MPN) isolated from Ganoderma lucidum mycelia. After biological selenium enrichment, the selenium content in the selenized polysaccharide (SeMPN) was 18.91 ± 1.8 μg/g. SeMPN had a slightly lower molecular weight than MPN, but the carbohydrate content and monosaccharide composition remained identical. Additionally, the band at 606 cm-1 in MPN changed to 615 cm-1 in SeMPN as revealed by FT-IR spectra. No significant changes were observed in the types and ratios of glycosidic linkages, as determined by NMR spectroscopy. Extracellular and intracellular antioxidant assays demonstrated that SeMPN was more effective than MPN in scavenging free radicals, inhibiting AAPH-induced erythrocyte hemolysis, and protecting catalase (CAT) and glutathione peroxidase (GSH-Px) activity in H2O2-injured PC12 cells. Additionally, SeMPN had a higher increase effect on RAW 264.7 cells's pinocytic and phagocytic capacity, as well as their production of NO, TNF-α, and IL-6. SeMPN could be as potential functional selenium supplementation.
Collapse
Affiliation(s)
- Zhou Dong
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Gang Dong
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Furao Lai
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Hui Wu
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Qiping Zhan
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
64
|
Deep Eutectic Solvent-Assisted Extraction, Partially Structural Characterization, and Bioactivities of Acidic Polysaccharides from Lotus Leaves. Foods 2021; 10:foods10102330. [PMID: 34681379 PMCID: PMC8534793 DOI: 10.3390/foods10102330] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/12/2023] Open
Abstract
Lotus leaves are often discarded as byproducts in the lotus industry. Polysaccharides are regarded as one of the essentially bioactive components in lotus leaves. Therefore, in order to promote the application of lotus leaves in the functional food industry, the deep eutectic solvent (DES) assisted extraction of polysaccharides from lotus leaves (LLPs) was optimized, and structural and biological properties of LLPs extracted by DES and hot water were further investigated. At the optimal extraction conditions (water content of 61.0% in DES, extraction temperature of 92 °C, liquid-solid ratio of 31.0 mL/g and extraction time of 126 min), the maximum extraction yield (5.38%) was obtained. Furthermore, LLP-D extracted by DES and LLP-W extracted by hot water possessed the same sugar residues, such as 1,4-α-D-GalAp, 1,4-α-D-GalAMep, 1,3,6-β-D-Galp, 1,4-β-D-Galp, 1,5-α-L-Araf, and 1,2-α-L-Rhap, suggesting the presence of homogalacturonan (HG), rhamnogalacturonan I and arabinogalactan in both LLP-W and LLP-D. Notably, LLP-D was much richer in HG fraction than that of LLP-W, suggesting that the DES could assist to specifically extract HG from lotus leaves. Additionally, the lower molecular weight and higher content of uronic acids were observed in LLP-D, which might contribute to its much stronger in vitro antioxidant, hypoglycemic, and immunomodulatory effects. These findings suggest that the optimized DES assisted extraction method can be a potential approach for specific extraction of acidic polysaccharides with good bioactivities from lotus leaves for applications in the functional food industry.
Collapse
|
65
|
Liu CY, Sun YY, Jia YQ, Geng XQ, Pan LC, Jiang W, Xie BY, Zhu ZY. Effect of steam explosion pretreatment on the structure and bioactivity of Ampelopsis grossedentata polysaccharides. Int J Biol Macromol 2021; 185:194-205. [PMID: 34166690 DOI: 10.1016/j.ijbiomac.2021.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 01/03/2023]
Abstract
Steam explosion (SE) was a friendly environmentally pretreatment method. In this study, the effect of steam explosion (SE) pretreatment on structure and α-glucosidase inhibitory activity of Ampelopsis grossedentata polysaccharides was evaluated. Two novel polysaccharides (AGP and AGP-SE) were extracted, isolated, purified and analyzed by NMR, FT-IR and methylation. The results indicated that AGP mainly consisted of Rha, Xyl, Glc, and Ara with a molecular weight of 2.74 × 103 kDa and AGP-SE mainly consisted of Man, Ara, and Gal with a molecular weight of 2.14 × 103 kDa. Furthermore, the backbone of AGP and AGP-SE were mainly composed of 5)-Araf-(1→, -Glcp-(1→, 6)-Glcp-(1→, 6)-Galp-(1→, 3,6)-Manp-(1→, and 2,3,6)-Glcp-(1→. Finally, we demonstrated that all polysaccharides exhibited obviously α-glucosidase inhibition activity and mixed type inhibition. AGP-SE had better α-glucosidase inhibition activity and the binding affinity KD on α-glucosidase by using Surface Plasmon Resonance (SPR) than AGP. Overall, SE pretreatment is an effective method for extracting polysaccharide and provides a new idea into the improvement of biological activity.
Collapse
Affiliation(s)
- Chun-Yu Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yang-Yang Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yun-Qin Jia
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xue-Qing Geng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Li-Chao Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wei Jiang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Bei-Yu Xie
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhen-Yuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|