51
|
Sun TC, Yan BY, Ning XC, Tang ZY, Hui C, Hu MZ, Ramakrishna S, Long YZ, Zhang J. A nanofiber hydrogel derived entirely from ocean biomass for wound healing. NANOSCALE ADVANCES 2022; 5:160-170. [PMID: 36605791 PMCID: PMC9765447 DOI: 10.1039/d2na00535b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Crustaceans and fish scales in the marine food industry are basically thrown away as waste. This not only wastes resources but also causes environmental pollution. While reducing pollution and waste, biological activity and storage of materials are urgent issues to be solved. In this study, by first preparing dry fibers and then making hydrogels, we prepared a fish scale/sodium alginate/chitosan nanofiber hydrogel (FS-P) by cross-linking the nanofibers in situ. From fish and other organisms, fish gelatin (FG), collagen and CaCO3 were extracted. Fish scale (FS)/sodium alginate/chitosan nanofibers were cross-linked with copper sulfide nanoparticles prepared by a one-step green method to obtain FS-P nanofiber hydrogels under mild conditions without catalyst and additional procedures. These fiber hydrogels not only have good tissue adhesion and tensile properties, but also have the antibacterial effect of natural antibacterial and CuS photothermal synergism, which can achieve 51.32% and 49.96% of the antibacterial effect against Staphylococcus aureus and Escherichia coli respectively, avoiding the generation of superbacteria. The nanofiber hydrogels have 87.56% voidage and 52.68% degradability after 14 days. The combined strategy of using marine bio-based fibers to prepare gels promoted angiogenesis and tissue repair.
Collapse
Affiliation(s)
- Tian-Cai Sun
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University Qingdao 266071 P. R. China
| | - Bing-Yu Yan
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University Qingdao 266071 P. R. China
| | - Xu-Chao Ning
- Medical College, Qingdao University Qingdao 266071 P. R. China
| | - Zhi-Yue Tang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University Qingdao 266071 P. R. China
| | - Chao Hui
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University Qingdao 266071 P. R. China
| | - Mao-Zhi Hu
- Equipment Division, Qingyun County People's Hospital Dezhou 253000 P. R. China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore Singapore 117574 Singapore
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University Qingdao 266071 P. R. China
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University Qingdao 266071 P. R. China
| |
Collapse
|
52
|
Duceac IA, Stanciu MC, Nechifor M, Tanasă F, Teacă CA. Insights on Some Polysaccharide Gel Type Materials and Their Structural Peculiarities. Gels 2022; 8:771. [PMID: 36547295 PMCID: PMC9778405 DOI: 10.3390/gels8120771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Global resources have to be used in responsible ways to ensure the world's future need for advanced materials. Ecologically friendly functional materials based on biopolymers can be successfully obtained from renewable resources, and the most prominent example is cellulose, the well-known most abundant polysaccharide which is usually isolated from highly available biomass (wood and wooden waste, annual plants, cotton, etc.). Many other polysaccharides originating from various natural resources (plants, insects, algae, bacteria) proved to be valuable and versatile starting biopolymers for a wide array of materials with tunable properties, able to respond to different societal demands. Polysaccharides properties vary depending on various factors (origin, harvesting, storage and transportation, strategy of further modification), but they can be processed into materials with high added value, as in the case of gels. Modern approaches have been employed to prepare (e.g., the use of ionic liquids as "green solvents") and characterize (NMR and FTIR spectroscopy, X ray diffraction spectrometry, DSC, electronic and atomic force microscopy, optical rotation, circular dichroism, rheological investigations, computer modelling and optimization) polysaccharide gels. In the present paper, some of the most widely used polysaccharide gels will be briefly reviewed with emphasis on their structural peculiarities under various conditions.
Collapse
Affiliation(s)
- Ioana Alexandra Duceac
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Magdalena-Cristina Stanciu
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marioara Nechifor
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Fulga Tanasă
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center for Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
53
|
Removal of cationic and anionic dyes using Ca-alginate and Zn Al layered double hydroxide/metal-organic framework. Carbohydr Polym 2022; 301:120362. [DOI: 10.1016/j.carbpol.2022.120362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
|
54
|
Zhang L, Liao W, Huang Y, Wen Y, Chu Y, Zhao C. Global seaweed farming and processing in the past 20 years. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00103-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractSeaweed has emerged as one of the most promising resources due to its remarkable adaptability, short development period, and resource sustainability. It is an effective breakthrough to alleviate future resource crises. Algal resources have reached a high stage of growth in the past years due to the increased output and demand for seaweed worldwide. Several aspects global seaweed farming production and processing over the last 20 years are reviewed, such as the latest situation and approaches of seaweed farming. Research progress and production trend of various seaweed application are discussed. Besides, the challenges faced by seaweed farming and processing are also analyzed, and the related countermeasures are proposed, which can provide advice for seaweed farming and processing. The primary products, extraction and application, or waste utilization of seaweed would bring greater benefits with the continuous development and improvement of applications in various fields.
Graphical Abstract
Collapse
|
55
|
Zhang X, Li W, Pan L, Yang L, Li H, Ji F, Zhang Y, Tang H, Yang D. Improving the thermostability of alginate lyase FlAlyA with high expression by computer-aided rational design for industrial preparation of alginate oligosaccharides. Front Bioeng Biotechnol 2022; 10:1011273. [PMID: 36159669 PMCID: PMC9490058 DOI: 10.3389/fbioe.2022.1011273] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
FlAlyA, a PL7 alginate lyase with industrial potential, is widely applied in the preparation the alginate oligosaccharide because of its high activity of degradation the alginate. However, heat inactivation still limits the industrial application of FlAlyA. To further enhance its thermostability, a group of mutants were designed, according to evaluating the B-factor value and free energy change via computer-aided calculation. 25 single-point mutants and one double-points mutant were carried out by site-directed mutagenesis. The optimal two single-point mutants H176D and H71K showed 1.20 and 0.3°C increases in the values of T m, while 7.58 and 1.73 min increases in the values of half-life (t 1/2) at 50°C, respectively, compared with that of the wild-type enzyme. Interestingly, H71K exhibits the comprehensive improvement than WT, including expression level, thermal stability and specific activity. In addition, the mechanism of these two mutants is speculated by multiple sequence alignment, structural basis and molecular dynamics simulation, which is likely to be involved in the formation of new hydrogen bonds and decrease the SASA of the mutants. These results indicate that B-factor is an efficient approach to improves the thermostability of alginate lyase composed of β-sheet unit. Furthermore, the highest yield of the mutant reached about 650 mg/L, which was nearly 36 times that of previous studies. The high expression, excellent activity and good thermal stability make FlAlyA a potential candidate for the industrial production of alginate oligosaccharides.
Collapse
Affiliation(s)
- Xiu Zhang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Wei Li
- Viticulture and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Lixia Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Liyan Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Hongliang Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Feng Ji
- Institute of Medicine and Health Research, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Yunkai Zhang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Hongzhen Tang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| |
Collapse
|
56
|
Varaprasad K, Karthikeyan C, Yallapu MM, Sadiku R. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications. Int J Biol Macromol 2022; 212:561-578. [DOI: 10.1016/j.ijbiomac.2022.05.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/09/2022] [Accepted: 05/22/2022] [Indexed: 12/16/2022]
|
57
|
Zhao L, Wang L, Guo Z, Zhang N, Feng Q, Li B. Polysaccharides From Pogostemon cablin (Blanco) Benth.: Characterization and Antioxidant Activities. Front Pharmacol 2022; 13:933669. [PMID: 35784681 PMCID: PMC9244533 DOI: 10.3389/fphar.2022.933669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Two polysaccharide fractions from Pogostemon cablin (Blanco) Benth. (P. cablin) (designated as PCB-1 and PCB2-1) were isolated by water extraction and purified by Sepharose chromatography. The chemical properties of the polysaccharides were characterised, and their antioxidant activities were evaluated. The sugar content of the crude polysaccharide (PCB), PCB-1, and PCB2-1 was 58.74, 90.23 and 88.61%, respectively. The molecular weights of PCB-1 and PCB2-1 were determined to be 97.8 and 12.8 kDa, respectively. Monosaccharide composition analysis showed that all the three polysaccharides consisted of mannose, rhamnose, galacturonic acid, galactose, glucose, and arabinose, but with varying molar ratios. The polysaccharides exhibited significantly high antioxidant activities in vitro based on the scavenging activity against hydroxyl radicals, metal ion-chelating and ferric-reducing abilities. In vivo experiments in an oxidatively damaged mice model showed that PCB-1 increased the levels of antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase, and inhibited malondialdehyde formation in the serum and liver. These findings suggest that PCB-1 has significant potential as an antioxidant in functional foods.
Collapse
Affiliation(s)
- Lei Zhao
- School of Graduation, Changchun University of Chinese Medicine, Changchun, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zimeng Guo
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ning Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Qisheng Feng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Bo Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Bo Li,
| |
Collapse
|
58
|
Barzkar N, Sheng R, Sohail M, Jahromi ST, Babich O, Sukhikh S, Nahavandi R. Alginate Lyases from Marine Bacteria: An Enzyme Ocean for Sustainable Future. Molecules 2022; 27:3375. [PMID: 35684316 PMCID: PMC9181867 DOI: 10.3390/molecules27113375] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
The cell wall of brown algae contains alginate as a major constituent. This anionic polymer is a composite of β-d-mannuronate (M) and α-l-guluronate (G). Alginate can be degraded into oligosaccharides; both the polymer and its products exhibit antioxidative, antimicrobial, and immunomodulatory activities and, hence, find many commercial applications. Alginate is attacked by various enzymes, collectively termed alginate lyases, that degrade glycosidic bonds through β-elimination. Considering the abundance of brown algae in marine ecosystems, alginate is an important source of nutrients for marine organisms, and therefore, alginate lyases play a significant role in marine carbon recycling. Various marine microorganisms, particularly those that thrive in association with brown algae, have been reported as producers of alginate lyases. Conceivably, the marine-derived alginate lyases demonstrate salt tolerance, and many are activated in the presence of salts and, therefore, find applications in the food industry. Therefore, this review summarizes the structural and biochemical features of marine bacterial alginate lyases along with their applications. This comprehensive information can aid in the expansion of future prospects of alginate lyases.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 3995, Iran
| | - Ruilong Sheng
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal;
- Department of Radiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 9145, Iran;
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj 8361, Iran;
| |
Collapse
|
59
|
Lu S, Na K, Wei J, Zhang L, Guo X. Alginate oligosaccharides: The structure-function relationships and the directional preparation for application. Carbohydr Polym 2022; 284:119225. [PMID: 35287920 DOI: 10.1016/j.carbpol.2022.119225] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 01/02/2023]
Abstract
Alginate oligosaccharides (AOS) are degradation products of alginate extracted from brown algae. With low molecular weight, high water solubility, and good biological activity, AOS present anti-inflammatory, antimicrobial, antioxidant, and antitumor properties. They also exert growth-promoting effects in animals and plants. Three types of AOS, mannuronate oligosaccharides (MAOS), guluronate oligosaccharides (GAOS), and heterozygous mannuronate and guluronate oligosaccharides (HAOS), can be produced from alginate by enzymatic hydrolysis. Thus far, most studies on the applications and biological activities of AOS have been based mainly on a hybrid form of HAOS. To improve the directional production of AOS for practical applications, systematic studies on the structures and related biological activities of AOS are needed. This review provides a summary of current understanding of structure-function relationships and advances in the production of AOS. The current challenges and opportunities in the application of AOS is suggested to guide the precise application of AOS in practice.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Kai Na
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Jiani Wei
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Li Zhang
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Xiaohua Guo
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China.
| |
Collapse
|
60
|
Improvement of ovarian insufficiency from alginate oligosaccharide in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
61
|
Wang M, Zhou J, Tavares J, Pinto CA, Saraiva JA, Prieto MA, Cao H, Xiao J, Simal-Gandara J, Barba FJ. Applications of algae to obtain healthier meat products: A critical review on nutrients, acceptability and quality. Crit Rev Food Sci Nutr 2022; 63:8357-8374. [PMID: 35357258 DOI: 10.1080/10408398.2022.2054939] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Meat constitutes one the main protein sources worldwide. However, ethical and health concerns have limited its consumption over the last years. To overcome this negative impact, new ingredients from natural sources are being applied to meat products to obtain healthier proteinaceous meat products. Algae is a good source of unsaturated fatty acids, proteins, essential amino acids, and vitamins, which can nutritionally enrich several foods. On this basis, algae have been applied to meat products as a functional ingredient to obtain healthier meat-based products. This paper mainly reviews the bioactive compounds in algae and their application in meat products. The bioactive ingredients present in algae can give meat products functional properties such as antioxidant, neuroprotective, antigenotoxic, resulting in healthier foods. At the same time, algae addition to foods can also contribute to delay microbial spoilage extending shelf-life. Additionally, other algae-based applications such as for packaging materials for meat products are being explored. However, consumers' acceptance for new products (particularly in Western countries), namely those containing algae, not only depends on their knowledge, but also on their eating habits. Therefore, it is necessary to further explore the nutritional properties of algae-containing meat products to overcome the gap between new meat products and traditional products, so that healthier algae-containing meat can occupy a significant place in the market.
Collapse
Affiliation(s)
- Min Wang
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Jianjun Zhou
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Jéssica Tavares
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
62
|
Silva RD, Carvalho LT, Moraes RM, Medeiros SDF, Lacerda TM. Biomimetic Biomaterials Based on Polysaccharides: Recent Progress and Future Perspectives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rodrigo Duarte Silva
- Nanotechnology National Laboratory for Agriculture (LNNA) Embrapa Instrumentation Rua XV de Novembro 1452 São Carlos SP 13560‐970 Brazil
| | - Layde Teixeira Carvalho
- Department of Chemical Engineering Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Rodolfo Minto Moraes
- Department of Material Engineering Engineering School of Lorena University of São Paulo, (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Simone de Fátima Medeiros
- Department of Chemical Engineering Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Talita Martins Lacerda
- Department of Biotechnology Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| |
Collapse
|
63
|
Zhang R, Yu B, Tian Y, Pang L, Xu T, Cong H, Shen Y. Diversified antibacterial modification and latest applications of polysaccharide-based hydrogels for wound healthcare. APPLIED MATERIALS TODAY 2022; 26:101396. [DOI: 10.1016/j.apmt.2022.101396] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
64
|
Le NTM, Le VV, Shin D, Park SM. Growth-promoting Effect of Alginate Oligosaccharides on Rhodobacter sphaeroides. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
65
|
Lynch RI, Lavelle EC. Immuno-modulatory biomaterials as anti-inflammatory therapeutics. Biochem Pharmacol 2022; 197:114890. [PMID: 34990595 DOI: 10.1016/j.bcp.2021.114890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022]
Abstract
Biocompatible and biodegradable biomaterials are used extensively in regenerative medicine and serve as a tool for tissue replacement, as a platform for regeneration of injured tissue, and as a vehicle for delivery of drugs. One of the key factors that must be addressed in developing successful biomaterial-based therapeutics is inflammation. Whilst inflammation is initially essential for wound healing; bringing about clearance of debris and infection, prolonged inflammation can result in delayed wound healing, rejection of the biomaterial, further tissue damage and increased scarring and fibrosis. In this context, the choice of biomaterial must be considered carefully to minimise further induction of inflammation. Here we address the ability of the biomaterials themselves to modulate inflammatory responses and outline how the physico-chemical properties of the materials impact on their pro and anti-inflammatory properties (Fig. 1).
Collapse
Affiliation(s)
- Roisin I Lynch
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590, Dublin 2, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590, Dublin 2, Ireland.
| |
Collapse
|
66
|
Gao SK, Yin R, Wang XC, Jiang HN, Liu XX, Lv W, Ma Y, Zhou YX. Structure Characteristics, Biochemical Properties, and Pharmaceutical Applications of Alginate Lyases. Mar Drugs 2021; 19:628. [PMID: 34822499 PMCID: PMC8618178 DOI: 10.3390/md19110628] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Alginate, the most abundant polysaccharides of brown algae, consists of various proportions of uronic acid epimers α-L-guluronic acid (G) and β-D-mannuronic acid (M). Alginate oligosaccharides (AOs), the degradation products of alginates, exhibit excellent bioactivities and a great potential for broad applications in pharmaceutical fields. Alginate lyases can degrade alginate to functional AOs with unsaturated bonds or monosaccharides, which can facilitate the biorefinery of brown algae. On account of the increasing applications of AOs and biorefinery of brown algae, there is a scientific need to explore the important aspects of alginate lyase, such as catalytic mechanism, structure, and property. This review covers fundamental aspects and recent developments in basic information, structural characteristics, the structure-substrate specificity or catalytic efficiency relationship, property, molecular modification, and applications. To meet the needs of biorefinery systems of a broad array of biochemical products, alginate lyases with special properties, such as salt-activated, wide pH adaptation range, and cold adaptation are outlined. Withal, various challenges in alginate lyase research are traced out, and future directions, specifically on the molecular biology part of alginate lyases, are delineated to further widen the horizon of these exceptional alginate lyases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai 264209, China; (S.-K.G.); (R.Y.); (X.-C.W.); (H.-N.J.); (X.-X.L.); (W.L.); (Y.M.)
| |
Collapse
|
67
|
Nasrollahzadeh M, Ghasemzadeh M, Gharoubi H, Nezafat Z. Progresses in polysaccharide and lignin-based ionic liquids: Catalytic applications and environmental remediation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|