51
|
Song Z, Shen P, Ma T, Jiang C, Zhao H, Wu B. Isolation and characterization of a gene associated with sulfate assimilation in Sinorhizobium fredii WGF03. World J Microbiol Biotechnol 2014; 30:3027-35. [PMID: 25182128 DOI: 10.1007/s11274-014-1729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/22/2014] [Indexed: 11/30/2022]
Abstract
Sulfur is an essential element for rhizobia, such as sulfated modified Nod factors and nitrogenase. To investigate the role of sulfur metabolism in Rhizobium-Soybean symbiosis, a transponson random insertional mutants' library was constructed and a sulfur assimilation-related gene was isolated and characterized. A mutant strain unable to utilized sulfate was screened from 11,000 random insertional mutants of Sinorhizobium fredii WGF03. Sequencing analysis showed that a sulfate assimilation-related gene (cysDN) was inserted by the Tn transponson. Mutants inactivated in cysD and cysN (SMcysDF and SMcysNF) were constructed by homologous recombination using the suicide plasmid pK18mob. The mutants SMcysDF and SMcysNF could no longer utilize sulfate as sulfur source. Phenotype analysis revealed that mutation of cysDN had multiple effects on S. fredii WGF03. Root hair deformation assay showed that the activity of Nod factors secreted by mutants SMcysDR and SMcysNR elicited minimal hair initiation only. Soybean plant tests indicated that the mutant strains delayed 1-2 days to nodulate and exhibited lower nodulation efficiency and symbiotic efficiency than the wild-type strain. The complementary strain of cysD and cysN (HcysDF and HcysNF) could restore the nodulation efficiency.
Collapse
Affiliation(s)
- Zhangyang Song
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530005, Guangxi, China
| | | | | | | | | | | |
Collapse
|
52
|
Mettert EL, Kiley PJ. Fe-S proteins that regulate gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1284-93. [PMID: 25450978 DOI: 10.1016/j.bbamcr.2014.11.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/24/2014] [Accepted: 11/13/2014] [Indexed: 02/06/2023]
Abstract
Iron-sulfur (Fe-S) cluster containing proteins that regulate gene expression are present in most organisms. The innate chemistry of their Fe-S cofactors makes these regulatory proteins ideal for sensing environmental signals, such as gases (e.g. O2 and NO), levels of Fe and Fe-S clusters, reactive oxygen species, and redox cycling compounds, to subsequently mediate an adaptive response. Here we review the recent findings that have provided invaluable insight into the mechanism and function of these highly significant Fe-S regulatory proteins. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Erin L Mettert
- University of Wisconsin-Madison, Department of Biomolecular Chemistry, 440 Henry Mall, Biochemical Sciences Building, Room 4204C, Madison, WI 53706, USA.
| | - Patricia J Kiley
- University of Wisconsin-Madison, Department of Biomolecular Chemistry, 440 Henry Mall, Biochemical Sciences Building, Room 4204C, Madison, WI 53706, USA.
| |
Collapse
|
53
|
Ghosh S, Gupta SK, Jha G. Identification and functional analysis of AG1-IA specific genes of Rhizoctonia solani. Curr Genet 2014; 60:327-41. [PMID: 25070039 DOI: 10.1007/s00294-014-0438-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/10/2014] [Accepted: 07/10/2014] [Indexed: 11/24/2022]
Abstract
Rhizoctonia solani is an important necrotrophic fungal pathogen which causes disease on diverse plant species. It has been classified into 14 genetically distinct anastomosis groups (AGs), however, very little is known about their genomic diversity. AG1-IA causes sheath blight disease in rice and controlling this disease remains a challenge for sustainable rice cultivation. Recently the draft genome sequences of AG1-IA (rice isolate) and AG1-IB (lettuce isolate) had become publicly available. In this study, using comparative genomics, we report identification of 3,942 R. solani genes that are uniquely present in AG1-IA. Many of these genes encode important biological, molecular functions and exhibit dynamic expression during in-planta growth of the pathogen in rice. Based upon sequence similarity with genes that are required for plant and human/zoonotic diseases, we identified several putative virulence/pathogenicity determinants amongst AG1-IA specific genes. While studying the expression of 19 randomly selected genes, we identified three genes highly up-regulated during in-planta growth. The detailed in silico characterization of these genes and extent of their up-regulation in different rice genotypes, having variable degree of disease susceptibility, suggests their importance in rice-Rhizoctonia interactions. In summary, the present study reports identification, functional characterization of AG1-IA specific genes and predicts important virulence determinants that might enable the pathogen to grow inside hostile plant environment. Further characterization of these genes would shed useful insights about the pathogenicity mechanism of AG1-IA on rice.
Collapse
Affiliation(s)
- Srayan Ghosh
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | |
Collapse
|
54
|
Green J, Rolfe MD, Smith LJ. Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence 2014; 5:794-809. [PMID: 25603427 PMCID: PMC4601167 DOI: 10.4161/viru.27794] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Molecular oxygen (O2) and nitric oxide (NO) are diatomic gases that play major roles in infection. The host innate immune system generates reactive oxygen species and NO as bacteriocidal agents and both require O2 for their production. Furthermore, the ability to adapt to changes in O2 availability is crucial for many bacterial pathogens, as many niches within a host are hypoxic. Pathogenic bacteria have evolved transcriptional regulatory systems that perceive these gases and respond by reprogramming gene expression. Direct sensors possess iron-containing co-factors (iron–sulfur clusters, mononuclear iron, heme) or reactive cysteine thiols that react with O2 and/or NO. Indirect sensors perceive the physiological effects of O2 starvation. Thus, O2 and NO act as environmental cues that trigger the coordinated expression of virulence genes and metabolic adaptations necessary for survival within a host. Here, the mechanisms of signal perception by key O2- and NO-responsive bacterial transcription factors and the effects on virulence gene expression are reviewed, followed by consideration of these aspects of gene regulation in two major pathogens, Staphylococcus aureus and Mycobacterium tuberculosis.
Collapse
Key Words
- AIP, autoinducer peptide
- Arc, Aerobic respiratory control
- FNR
- FNR, fumarate nitrate reduction regulator
- GAF, cGMP-specific phosphodiesterase-adenylyl cyclase-FhlA domain
- Isc, iron–sulfur cluster biosynthesis machinery
- Mycobacterium tuberculosis
- NOX, NADPH oxidase
- PAS, Per-Amt-Sim domain
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- Staphylococcus aureus
- TB, tuberculosis
- WhiB-like proteins
- iNOS, inducible nitric oxide synthase
- iron–sulfur cluster
- nitric oxide sensors
- oxygen sensors
Collapse
Affiliation(s)
- Jeffrey Green
- a Krebs Institute; Molecular Biology & Biotechnology; University of Sheffield ; Western Bank , Sheffield , UK
| | | | | |
Collapse
|
55
|
Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin. Nat Commun 2014; 5:5013. [DOI: 10.1038/ncomms6013] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/19/2014] [Indexed: 12/14/2022] Open
|
56
|
Crack JC, Green J, Thomson AJ, Brun NEL. Iron-sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide. Acc Chem Res 2014; 47:3196-205. [PMID: 25262769 DOI: 10.1021/ar5002507] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Iron-sulfur cluster proteins exhibit a range of physicochemical properties that underpin their functional diversity in biology, which includes roles in electron transfer, catalysis, and gene regulation. Transcriptional regulators that utilize iron-sulfur clusters are a growing group that exploit the redox and coordination properties of the clusters to act as sensors of environmental conditions including O2, oxidative and nitrosative stress, and metabolic nutritional status. To understand the mechanism by which a cluster detects such analytes and then generates modulation of DNA-binding affinity, we have undertaken a combined strategy of in vivo and in vitro studies of a range of regulators. In vitro studies of iron-sulfur cluster proteins are particularly challenging because of the inherent reactivity and fragility of the cluster, often necessitating strict anaerobic conditions for all manipulations. Nevertheless, and as discussed in this Account, significant progress has been made over the past decade in studies of O2-sensing by the fumarate and nitrate reduction (FNR) regulator and, more recently, nitric oxide (NO)-sensing by WhiB-like (Wbl) and FNR proteins. Escherichia coli FNR binds a [4Fe-4S] cluster under anaerobic conditions leading to a DNA-binding dimeric form. Exposure to O2 converts the cluster to a [2Fe-2S] form, leading to protein monomerization and hence loss of DNA binding ability. Spectroscopic and kinetic studies have shown that the conversion proceeds via at least two steps and involves a [3Fe-4S](1+) intermediate. The second step involves the release of two bridging sulfide ions from the cluster that, unusually, are not released into solution but rather undergo oxidation to sulfane (S(0)) subsequently forming cysteine persulfides that then coordinate the [2Fe-2S] cluster. Studies of other [4Fe-4S] cluster proteins that undergo oxidative cluster conversion indicate that persulfide formation and coordination may be more common than previously recognized. This remarkable feature suggested that the original [4Fe-4S] cluster can be restored using persulfide as the source of sulfide ion. We have demonstrated that only iron and a source of electrons are required to promote efficient conversion back from the [2Fe-2S] to the [4Fe-4S] form. We propose this as a novel in vivo repair mechanism that does not require the intervention of an iron-sulfur cluster biogenesis pathway. A number of iron-sulfur regulators have evolved to function as sensors of NO. Although it has long been known that the iron-sulfur clusters of many phylogenetically unrelated proteins are vulnerable to attack by NO, our recent studies of Wbl proteins and FNR have provided new insights into the mechanism of cluster nitrosylation, which overturn the commonly accepted view that the product is solely a mononuclear iron dinitrosyl complex (known as a DNIC). The major reaction is a rapid, multiphase process involving stepwise addition of up to eight NO molecules per [4Fe-4S] cluster. The major iron nitrosyl product is EPR silent and has optical characteristics similar to Roussin's red ester, [Fe2(NO)4(RS)2] (RRE), although a species similar to Roussin's black salt, [Fe4(NO)7(S)3](-) (RBS) cannot be ruled out. A major future challenge will be to clarify the nature of these species.
Collapse
Affiliation(s)
- Jason C. Crack
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Jeffrey Green
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Andrew J. Thomson
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Nick E. Le Brun
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
57
|
Robinson JL, Miller RV, Brynildsen MP. Model-driven identification of dosing regimens that maximize the antimicrobial activity of nitric oxide. Metab Eng Commun 2014; 1:12-18. [PMID: 34150500 PMCID: PMC8193240 DOI: 10.1016/j.meteno.2014.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 12/26/2022] Open
Abstract
The antimicrobial properties of nitric oxide (NO●) have motivated the design of NO●-releasing materials for the treatment and prevention of infection. The biological activity of NO● is dependent on its delivery rate, suggesting that variable antimicrobial effects can result from identical NO● payloads dosed at different rates. Using a kinetic model of the Escherichia coli NO● biochemical network, we investigated the relationship between NO● delivery rate, payload, and cytotoxicity, as indicated by the duration of respiratory inhibition. At low NO● payloads, the model predicted greater toxicity with rapid delivery, while slower delivery was more effective at higher payloads. These predictions were confirmed experimentally, and exhibited quantitative agreement with measured O2 and NO● concentrations, and durations of respiratory inhibition. These results provide important information on key design parameters in the formulation of NO●-based therapeutics, and highlight the utility of a model-based approach for the analysis of dosing regimens. Antimicrobial activity of NO● was predicted to depend strongly on delivery rate. Fast NO● delivery rates were more effective for low NO● payloads. Slow NO● delivery rates were more effective for high NO● payloads. Kinetic modeling of NO● metabolism correctly predicted the observed dependencies.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Richard V Miller
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
58
|
Fitzpatrick J, Kalyvas H, Filipovic MR, Ivanović-Burmazović I, MacDonald JC, Shearer J, Kim E. Transformation of a Mononitrosyl Iron Complex to a [2Fe-2S] Cluster by a Cysteine Analogue. J Am Chem Soc 2014; 136:7229-32. [DOI: 10.1021/ja5024207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jessica Fitzpatrick
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Harris Kalyvas
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Milos R. Filipovic
- Department
of Chemistry and Pharmacy, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | | | - John C. MacDonald
- Department
of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609-2280, United States
| | - Jason Shearer
- Department
of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Eunsuk Kim
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
59
|
Victor E, Lippard SJ. A Tetranitrosyl [4Fe–4S] Cluster Forms En Route to Roussin’s Black Anion: Nitric Oxide Reactivity of [Fe4S4(LS3)L′]2–. Inorg Chem 2014; 53:5311-20. [DOI: 10.1021/ic500586g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eric Victor
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen J. Lippard
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
60
|
Bai H, Rolfe MD, Jia W, Coakley S, Poole RK, Green J, Holcombe M. Agent-based modeling of oxygen-responsive transcription factors in Escherichia coli. PLoS Comput Biol 2014; 10:e1003595. [PMID: 24763195 PMCID: PMC3998891 DOI: 10.1371/journal.pcbi.1003595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 03/14/2014] [Indexed: 11/23/2022] Open
Abstract
In the presence of oxygen (O2) the model bacterium Escherichia coli is able to conserve energy by aerobic respiration. Two major terminal oxidases are involved in this process - Cyo has a relatively low affinity for O2 but is able to pump protons and hence is energetically efficient; Cyd has a high affinity for O2 but does not pump protons. When E. coli encounters environments with different O2 availabilities, the expression of the genes encoding the alternative terminal oxidases, the cydAB and cyoABCDE operons, are regulated by two O2-responsive transcription factors, ArcA (an indirect O2 sensor) and FNR (a direct O2 sensor). It has been suggested that O2-consumption by the terminal oxidases located at the cytoplasmic membrane significantly affects the activities of ArcA and FNR in the bacterial nucleoid. In this study, an agent-based modeling approach has been taken to spatially simulate the uptake and consumption of O2 by E. coli and the consequent modulation of ArcA and FNR activities based on experimental data obtained from highly controlled chemostat cultures. The molecules of O2, transcription factors and terminal oxidases are treated as individual agents and their behaviors and interactions are imitated in a simulated 3-D E. coli cell. The model implies that there are two barriers that dampen the response of FNR to O2, i.e. consumption of O2 at the membrane by the terminal oxidases and reaction of O2 with cytoplasmic FNR. Analysis of FNR variants suggested that the monomer-dimer transition is the key step in FNR-mediated repression of gene expression. The model bacterium Escherichia coli has a modular electron transport chain that allows it to successfully compete in environments with differing oxygen (O2) availabilities. It has two well-characterized terminal oxidases, Cyd and Cyo. Cyd has a very high affinity for O2, whereas Cyo has a lower affinity, but is energetically more efficient. Expression of the genes encoding Cyd and Cyo is controlled by two O2-responsive regulators, ArcBA and FNR. However, it is not clear how O2 molecules enter the E. coli cell and how the locations of the terminal oxidases and the regulators influence the system. An agent-based model is presented that simulates the interactions of O2 with the regulators and the oxidases in an E. coli cell. The model suggests that O2 consumption by the oxidases at the cytoplasmic membrane and by FNR in the cytoplasm protects FNR bound to DNA in the nucleoid from inactivation and that dimerization of FNR in response to O2 depletion is the key step in FNR-mediated repression. Thus, the focus of the agent-based model on spatial events provides information and new insight, allowing the effects of dysregulation of system components to be explored by facile addition or removal of agents.
Collapse
Affiliation(s)
- Hao Bai
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (HB); (JG)
| | - Matthew D. Rolfe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Wenjing Jia
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Simon Coakley
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (HB); (JG)
| | - Mike Holcombe
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
61
|
Chim N, Johnson PM, Goulding CW. Insights into redox sensing metalloproteins in Mycobacterium tuberculosis. J Inorg Biochem 2014; 133:118-26. [PMID: 24314844 PMCID: PMC3959581 DOI: 10.1016/j.jinorgbio.2013.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis, the pathogen that causes tuberculosis, has evolved sophisticated mechanisms for evading assault by the human host. This review focuses on M. tuberculosis regulatory metalloproteins that are sensitive to exogenous stresses attributed to changes in the levels of gaseous molecules (i.e., molecular oxygen, carbon monoxide and nitric oxide) to elicit an intracellular response. In particular, we highlight recent developments on the subfamily of Whi proteins, redox sensing WhiB-like proteins that contain iron-sulfur clusters, sigma factors and their cognate anti-sigma factors of which some are zinc-regulated, and the dormancy survival regulon DosS/DosT-DosR heme sensory system. Mounting experimental evidence suggests that these systems contribute to a highly complex and interrelated regulatory network that controls M. tuberculosis biology. This review concludes with a discussion of strategies that M. tuberculosis has developed to maintain redox homeostasis, including mechanisms to regulate endogenous nitric oxide and carbon monoxide levels.
Collapse
Affiliation(s)
- Nicholas Chim
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
| | - Parker M Johnson
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, UCI, Irvine, CA 92697, USA.
| |
Collapse
|
62
|
Landry AP, Ding H. Redox control of human mitochondrial outer membrane protein MitoNEET [2Fe-2S] clusters by biological thiols and hydrogen peroxide. J Biol Chem 2014; 289:4307-15. [PMID: 24403080 DOI: 10.1074/jbc.m113.542050] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human mitochondrial outer membrane protein mitoNEET is a novel target of the type II diabetes drug pioglitazone. The C-terminal cytosolic domain of mitoNEET hosts a redox-active [2Fe-2S] cluster via an unusual ligand arrangement of three cysteine residues and one histidine residue. Here we report that human mitoNEET [2Fe-2S] clusters are fully reduced when expressed in Escherichia coli cells. In vitro studies show that purified mitoNEET [2Fe-2S] clusters can be partially reduced by monothiols such as reduced glutathione, L-cysteine or N-acetyl-L-cysteine and fully reduced by dithiothreitol or the E. coli thioredoxin/thioredoxin reductase system under anaerobic conditions. Importantly, thiol-reduced mitoNEET [2Fe-2S] clusters can be reversibly oxidized by hydrogen peroxide without disruption of the clusters in vitro and in E. coli cells, indicating that mitoNEET may act as a sensor of oxidative signals to regulate mitochondrial functions via its [2Fe-2S] clusters. Furthermore, the binding of the type II diabetes drug pioglitazone in mitoNEET effectively inhibits the thiol-mediated reduction of [2Fe-2S] clusters, suggesting that pioglitazone may modulate the function of mitoNEET by blocking the thiol-mediated reduction of [2Fe-2S] clusters in the protein.
Collapse
Affiliation(s)
- Aaron P Landry
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | | |
Collapse
|
63
|
Su LW, Chang SH, Li MY, Huang HY, Jane WN, Yang JY. Purification and biochemical characterization of Arabidopsis At-NEET, an ancient iron-sulfur protein, reveals a conserved cleavage motif for subcellular localization. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 213:46-54. [PMID: 24157207 DOI: 10.1016/j.plantsci.2013.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 05/09/2023]
Abstract
CDGSH iron-sulfur domain-containing proteins (CISDs) are newly discovered proteins with electron-accepting and electron-donating moieties. Although the CISDs of plants and animals show high sequence similarity in their CDGSH domain at the C-terminus, their N-terminal peptides have low sequence homology. Here, we show that At-NEET, a recently identified Arabidopsis CISD, contains a cleavable N-terminal peptide for chloroplast targeting, which is different from the uncleavable N-terminal peptide of mammal CISDs for mitochondrial outer membrane localization. Using affinity purification to isolate endogenous At-NEET, we identified a consensus sequence for the chloroplast transit peptide cleavage site of V-[R/K]↓A-E in At-NEET as well as other plant CISDs. Moreover, chloroplast subfractionation and immunogold labeling experiments showed that At-NEET localizes to the stroma of chloroplast. In addition, biochemical characterization revealed that At-NEET contains a conserved Cys(3)-His(1) ligand in the CDGSH domain, which is essential for coordination of 2Fe-2S clusters and protein folding. Our findings suggest that plant and animal CISDs contain an evolutionarily conserved CDGSH domain. However, they show different subcellular localization patterns that may result in distinct physiological functions.
Collapse
Affiliation(s)
- Li-Wen Su
- Institute of Biochemistry, National ChungHsing University, Taichung 40227, Taiwan
| | | | | | | | | | | |
Collapse
|
64
|
Bhubhanil S, Niamyim P, Sukchawalit R, Mongkolsuk S. Cysteine desulphurase-encoding gene sufS2 is required for the repressor function of RirA and oxidative resistance in Agrobacterium tumefaciens. MICROBIOLOGY-SGM 2013; 160:79-90. [PMID: 24194559 DOI: 10.1099/mic.0.068643-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Agrobacterium tumefaciens genome contains a cluster of genes that are predicted to encode Fe-S cluster assembly proteins, and this cluster is known as the sufS2BCDS1XA operon. sufS2 is the first gene in the operon, and it was inactivated to determine its physiological function. The sufS2 mutant exhibited a small colony phenotype, grew slower than the wild-type strain and was more sensitive to various oxidants including peroxide, organic hydroperoxide and superoxide. The sufS2 gene was negatively regulated by iron response regulator (Irr) and rhizobial iron regulator (RirA) under low and high iron conditions, respectively, and was inducible in response to oxidative stress. The oxidant-induced expression of sufS2 was controlled by Irr, RirA and an additional but not yet identified mechanism. sufS2 was required for RirA activity in the repression of a sufS2 promoter-lacZ fusion. RirA may use Fe-S as its cofactor. sufS2 disruption may cause a defect in the Fe-S supply and could thereby affect the RirA activity. The three conserved cysteine residues (C91, C99 and C105) in RirA were predicted to coordinate with the Fe-S cluster and were shown to be essential for RirA repression of the sufS2-lacZ fusion. These results suggested that sufS2 is important for the survival of A. tumefaciens.
Collapse
Affiliation(s)
- Sakkarin Bhubhanil
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.,Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand
| | - Phettree Niamyim
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.,Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand
| | - Rojana Sukchawalit
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.,Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| |
Collapse
|
65
|
Global transcriptome analysis of Lactococcus garvieae strains in response to temperature. PLoS One 2013; 8:e79692. [PMID: 24223997 PMCID: PMC3817100 DOI: 10.1371/journal.pone.0079692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
Lactococcus garvieae is an important fish and an opportunistic human pathogen. The genomic sequences of several L. garvieae strains have been recently published, opening the possibility of global studies on the biology of this pathogen. In this study, a whole genome DNA microarray of two strains of L. garvieae was designed and validated. This DNA microarray was used to investigate the effects of growth temperature (18°C and 37°C) on the transcriptome of two clinical strains of L. garvieae that were isolated from fish (Lg8831) and from a human case of septicemia (Lg21881). The transcriptome profiles evidenced a strain-specific response to temperature, which was more evident at 18°C. Among the most significant findings, Lg8831 was found to up-regulate at 18°C several genes encoding different cold-shock and cold-induced proteins involved in an efficient adaptive response of this strain to low-temperature conditions. Another relevant result was the description, for the first time, of respiratory metabolism in L. garvieae, whose gene expression regulation was temperature-dependent in Lg21881. This study provides new insights about how environmental factors such as temperature can affect L. garvieae gene expression. These data could improve our understanding of the regulatory networks and adaptive biology of this important pathogen.
Collapse
|
66
|
Corynebacterium glutamicum ArnR controls expression of nitrate reductase operon narKGHJI and nitric oxide (NO)-detoxifying enzyme gene hmp in an NO-responsive manner. J Bacteriol 2013; 196:60-9. [PMID: 24142248 DOI: 10.1128/jb.01004-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Corynebacterium glutamicum ArnR is a novel transcriptional regulator that represses expression of the nitrate reductase operon narKGHJI and the nitric oxide (NO)-detoxifying flavohemoglobin gene hmp under aerobic conditions. In a previous study, we showed that ArnR-mediated repression is relieved during anaerobic nitrate respiration, but we could not pinpoint the specific signal that ArnR senses. In this study, we show that in the absence of nitrate, ArnR-mediated repression is maintained under anaerobic conditions. The derepression in response to nitrate is eliminated by disruption of narG, suggesting that ArnR senses nitrate derivatives generated during nitrate respiration. Specifically, the hmp gene is upregulated in the presence of nitrite or nitric oxide (NO) in an ArnR-dependent manner, although the response of narK appears to be greatly affected by ArnR-independent regulation. In vitro binding of ArnR to the narK and hmp promoter regions is more strongly inhibited by NO than by nitrite. We previously showed that the UV-visible spectrum of ArnR is typical of a Fe-S cluster-containing protein. Site-directed mutagenesis of each of three cysteine residues, which are possibly involved in coordination of the cofactor in the ArnR protein, results in loss of the binding of this protein to its target promoters in vitro and eliminates the repression of the target genes in vivo under aerobic conditions. These observations suggest that the cofactor coordinated by these three cysteine residues in the ArnR protein plays a critical role in the NO-responsive expression of the narKGHJI operon and the hmp gene.
Collapse
|
67
|
Nakamura M, Buzas DM, Kato A, Fujita M, Kurata N, Kinoshita T. The role of Arabidopsis thaliana NAR1, a cytosolic iron-sulfur cluster assembly component, in gametophytic gene expression and oxidative stress responses in vegetative tissue. THE NEW PHYTOLOGIST 2013; 199:925-935. [PMID: 23734982 DOI: 10.1111/nph.12350] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
Iron-sulfur proteins have iron-sulfur clusters as a prosthetic group and are responsible for various cellular processes, including general transcriptional regulation, photosynthesis and respiration. The cytosolic iron-sulfur assembly (CIA) pathway of yeast has been shown to be responsible for regulation of iron-sulfur cluster assembly in both the cytosol and the nucleus. However, little is known about the roles of this pathway in multicellular organisms. In a forward genetic screen, we identified an Arabidopsis thaliana mutant with impaired expression of the endosperm-specific gene Flowering Wageningen (FWA). To characterize this mutant, we carried out detailed phenotypic and genetic analyses during reproductive and vegetative development. The mutation affects NAR1, which encodes a homolog of a yeast CIA pathway component. Comparison of embryo development in nar1-3 and other A. thaliana mutants affected in the CIA pathway showed that the embryos aborted at a similar stage, suggesting that this pathway potentially functions in early seed development. Transcriptome analysis of homozygous viable nar1-4 seedlings showed transcriptional repression of a subset of genes involved in 'iron ion transport' and 'response to nitrate'. nar1-4 also exhibited resistance to the herbicide paraquat. Our results indicate that A. thaliana NAR1 has various functions including transcriptional regulation in gametophytes and abiotic stress responses in vegetative tissues.
Collapse
Affiliation(s)
- Miyuki Nakamura
- Plant Reproductive Genetics Group, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Diana Mihaela Buzas
- Plant Reproductive Genetics Group, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Akira Kato
- Department of Biology, Faculty of Science, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| | - Masahiro Fujita
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Nori Kurata
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Tetsu Kinoshita
- Plant Reproductive Genetics Group, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
68
|
Human anamorsin binds [2Fe–2S] clusters with unique electronic properties. J Biol Inorg Chem 2013; 18:883-93. [DOI: 10.1007/s00775-013-1033-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/05/2013] [Indexed: 11/27/2022]
|
69
|
Burian J, Yim G, Hsing M, Axerio-Cilies P, Cherkasov A, Spiegelman GB, Thompson CJ. The mycobacterial antibiotic resistance determinant WhiB7 acts as a transcriptional activator by binding the primary sigma factor SigA (RpoV). Nucleic Acids Res 2013; 41:10062-76. [PMID: 23990327 PMCID: PMC3905903 DOI: 10.1093/nar/gkt751] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tuberculosis therapeutic options are limited by the high intrinsic antibiotic resistance of Mycobacterium tuberculosis. The putative transcriptional regulator WhiB7 is crucial for the activation of systems that provide resistance to diverse antibiotic classes. Here, we used in vitro run-off, two-hybrid assays, as well as mutagenic, complementation and protein pull-down experiments, to characterize WhiB7 as an auto-regulatory, redox-sensitive transcriptional activator in Mycobacterium smegmatis. We provide the first direct biochemical proof that a WhiB protein promotes transcription and also demonstrate that this activity is sensitive to oxidation (diamide). Its partner protein for transcriptional activation was identified as SigA, the primary sigma factor subunit of RNA polymerase. Residues required for the interaction mapped to region 4 of SigA (including R515H) or adjacent domains of WhiB7 (including E63D). WhiB7's ability to provide a specific spectrum of antibiotic-resistance was dependent on these residues as well as its C-terminal AT-hook module that binds to an AT-rich motif immediately upstream of the -35 hexamer recognized by SigA. These experimentally established constrains, combined with protein structure predictions, were used to generate a working model of the WhiB7-SigA-promoter complex. Inhibitors preventing WhiB7 interactions could allow the use of previously ineffective antibiotics for treatment of mycobacterial diseases.
Collapse
Affiliation(s)
- Ján Burian
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada V6T 1Z3, Centre for Tuberculosis Research, University of British Columbia, Vancouver, Canada V6T 1Z3 and Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
70
|
Biogenesis of [Fe–S] cluster in Firmicutes: an unexploited field of investigation. Antonie Van Leeuwenhoek 2013; 104:283-300. [DOI: 10.1007/s10482-013-9966-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
|
71
|
Li Q, Lancaster JR. Chemical foundations of hydrogen sulfide biology. Nitric Oxide 2013; 35:21-34. [PMID: 23850631 DOI: 10.1016/j.niox.2013.07.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/22/2013] [Accepted: 07/02/2013] [Indexed: 12/16/2022]
Abstract
Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, University of Alabama at Birmingham, United States; Center for Free Radical Biology, University of Alabama at Birmingham, United States.
| | | |
Collapse
|
72
|
Rajagopalan S, Teter SJ, Zwart PH, Brennan RG, Phillips KJ, Kiley PJ. Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity. Nat Struct Mol Biol 2013; 20:740-7. [PMID: 23644595 PMCID: PMC3676455 DOI: 10.1038/nsmb.2568] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/11/2013] [Indexed: 11/12/2022]
Abstract
IscR from Escherichia coli is an unusual metalloregulator in that it globally regulates transcription by recognizing two different DNA motifs in a Fe-S dependent manner. Here, we report structural and biochemical studies of IscR, which suggest remodeling of the protein-DNA interface upon Fe-S ligation broadens the DNA binding specificity from binding a type 2 motif to both type 1 and 2 motifs. Analysis of an apo-IscR variant with relaxed target-site discrimination identified a key residue in wild-type apo-IscR that we propose makes unfavorable interactions with a type 1 motif. Upon Fe-S binding, these interactions are apparently removed, thereby allowing holo-IscR to bind both type 1 and 2 motifs. These data suggest a novel mechanism of ligand-mediated DNA site recognition, whereby metallocluster ligation relocates a protein specificity determinant to expand DNA target site selection, allowing a broader transcriptomic response by holo-IscR.
Collapse
Affiliation(s)
- Senapathy Rajagopalan
- Genomic Medicine Program, The Methodist Hospital Research Institute, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
73
|
Bruska MK, Stiebritz MT, Reiher M. Analysis of differences in oxygen sensitivity of Fe-S clusters. Dalton Trans 2013; 42:8729-35. [PMID: 23632881 DOI: 10.1039/c3dt50763g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Many but not all iron-sulphur clusters in metalloproteins are known to be sensitive to molecular oxygen with dramatic consequences for their biological function. We performed a systematic quantum chemical investigation that sheds light on the differences in oxygen sensitivity depending on charge and spin states of these clusters as well as on their spatial fixation by the enzyme's scaffold. We find that significant structural distortions are required to bind O2 exothermically to [Fe2S2] and [Fe3S4] clusters, while only small conformational changes allow for the thermodynamically favorable coordination of molecular oxygen to [Fe4S4] cubanes and [Fe4S3] clusters.
Collapse
Affiliation(s)
- Marta K Bruska
- ETH Zurich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
74
|
X-ray snapshots of possible intermediates in the time course of synthesis and degradation of protein-bound Fe4S4 clusters. Proc Natl Acad Sci U S A 2013; 110:7188-92. [PMID: 23596207 DOI: 10.1073/pnas.1302388110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fe4S4 clusters are very common versatile prosthetic groups in proteins. Their redox property of being sensitive to O2-induced oxidative damage is, for instance, used by the cell to sense oxygen levels and switch between aerobic and anaerobic metabolisms, as exemplified by the fumarate, nitrate reduction regulator (FNR). Using the hydrogenase maturase HydE from Thermotoga maritima as a template, we obtained several unusual forms of FeS clusters, some of which are associated with important structural changes. These structures represent intermediate states relevant to both FeS cluster assembly and degradation. We observe one Fe2S2 cluster bound by two cysteine persulfide residues. This observation lends structural support to a very recent Raman study, which reported that Fe4S4-to-Fe2S2 cluster conversion upon oxygen exposure in FNR resulted in concomitant production of cysteine persulfide as cluster ligands. Similar persulfide ligands have been observed in vitro for several other Fe4S4 cluster-containing proteins. We have also monitored FeS cluster conversion directly in our protein crystals. Our structures indicate that the Fe4S4-to-Fe2S2 change requires large structural modifications, which are most likely responsible for the dimer-monomer transition in FNR.
Collapse
|
75
|
Hoe CH, Raabe CA, Rozhdestvensky TS, Tang TH. Bacterial sRNAs: regulation in stress. Int J Med Microbiol 2013; 303:217-29. [PMID: 23660175 DOI: 10.1016/j.ijmm.2013.04.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/26/2013] [Accepted: 04/07/2013] [Indexed: 11/28/2022] Open
Abstract
Bacteria are often exposed to a hostile environment and have developed a plethora of cellular processes in order to survive. A burgeoning list of small non-coding RNAs (sRNAs) has been identified and reported to orchestrate crucial stress responses in bacteria. Among them, cis-encoded sRNA, trans-encoded sRNA, and 5'-untranslated regions (UTRs) of the protein coding sequence are influential in the bacterial response to environmental cues, such as fluctuation of temperature and pH as well as other stress conditions. This review summarizes the role of bacterial sRNAs in modulating selected stress conditions and highlights the alliance between stress response and clustered regularly interspaced short palindromic repeats (CRISPR) in bacterial defense.
Collapse
Affiliation(s)
- Chee-Hock Hoe
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, 13200 Penang, Malaysia.
| | | | | | | |
Collapse
|
76
|
Landry AP, Cheng Z, Ding H. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis. Dalton Trans 2013; 42:3100-6. [PMID: 23258274 PMCID: PMC3569480 DOI: 10.1039/c2dt32000b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Iron-sulphur cluster biogenesis requires coordinated delivery of iron and sulphur to scaffold proteins, followed by transfer of the assembled clusters from scaffold proteins to target proteins. This complex process is accomplished by a group of dedicated iron-sulphur cluster assembly proteins that are conserved from bacteria to humans. While sulphur in iron-sulphur clusters is provided by L-cysteine via cysteine desulfurase, the iron donor(s) for iron-sulphur cluster assembly remains largely elusive. Here we report that among the primary iron-sulphur cluster assembly proteins, IscA has a unique and strong binding activity for mononuclear iron in vitro and in vivo. Furthermore, the ferric iron centre tightly bound in IscA can be readily extruded by l-cysteine, followed by reduction to ferrous iron for iron-sulphur cluster biogenesis. Substitution of the highly conserved residue tyrosine 40 with phenylalanine (Y40F) in IscA results in a mutant protein that has a diminished iron binding affinity but retains the iron-sulphur cluster binding activity. Genetic complementation studies show that the IscA Y40F mutant is inactive in vivo, suggesting that the iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis.
Collapse
Affiliation(s)
- Aaron P Landry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
77
|
Crack JC, Stapleton MR, Green J, Thomson AJ, Le Brun NE. Mechanism of [4Fe-4S](Cys)4 cluster nitrosylation is conserved among NO-responsive regulators. J Biol Chem 2013; 288:11492-502. [PMID: 23471974 DOI: 10.1074/jbc.m112.439901] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Fumarate nitrate reduction (FNR) regulator from Escherichia coli controls expression of >300 genes in response to O2 through reaction with its [4Fe-4S] cluster cofactor. FNR is the master switch for the transition between anaerobic and aerobic respiration. In response to physiological concentrations of nitric oxide (NO), FNR also regulates genes, including the nitrate reductase (nar) operon, a major source of endogenous cellular NO, and hmp, which encodes an NO-detoxifying enzyme. Here we show that the [4Fe-4S] cluster of FNR reacts rapidly in a multiphasic reaction with eight NO molecules. Oxidation of cluster sulfide ions (S(2-)) to sulfane (S(0)) occurs, some of which remains associated with the protein as Cys persulfide. The nitrosylation products are similar to a pair of dinuclear dinitrosyl iron complexes, [Fe(I)2(NO)4(Cys)2](0), known as Roussin's red ester. A similar reactivity with NO was reported for the Wbl family of [4Fe-4S]-containing proteins found only in actinomycetes, such as Streptomyces and Mycobacteria. These results show that NO reacts via a common mechanism with [4Fe-4S] clusters in phylogenetically unrelated regulatory proteins that, although coordinated by four Cys residues, have different cluster environments. The reactivity of E. coli FNR toward NO, in addition to its sensitivity toward O2, is part of a hierarchal network that monitors, and responds to, NO, both endogenously generated and exogenously derived.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | |
Collapse
|
78
|
Uhrigshardt H, Rouault TA, Missirlis F. Insertion mutants in Drosophila melanogaster Hsc20 halt larval growth and lead to reduced iron-sulfur cluster enzyme activities and impaired iron homeostasis. J Biol Inorg Chem 2013; 18:441-9. [PMID: 23444034 PMCID: PMC3612401 DOI: 10.1007/s00775-013-0988-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/07/2013] [Indexed: 10/31/2022]
Abstract
Despite the prominence of iron-sulfur cluster (ISC) proteins in bioenergetics, intermediary metabolism, and redox regulation of cellular, mitochondrial, and nuclear processes, these proteins have been given scarce attention in Drosophila. Moreover, biosynthesis and delivery of ISCs to target proteins requires a highly regulated molecular network that spans different cellular compartments. The only Drosophila ISC biosynthetic protein studied to date is frataxin, in attempts to model Friedreich's ataxia, a disease arising from reduced expression of the human frataxin homologue. One of several proteins involved in ISC biogenesis is heat shock protein cognate 20 (Hsc20). Here we characterize two piggyBac insertion mutants in Drosophila Hsc20 that display larval growth arrest and deficiencies in aconitase and succinate dehydrogenase activities, but not in isocitrate dehydrogenase activity; phenotypes also observed with ubiquitous frataxin RNA interference. Furthermore, a disruption of iron homeostasis in the mutant flies was evidenced by an apparent reduction in induction of intestinal ferritin with ferric iron accumulating in a subcellular pattern reminiscent of mitochondria. These phenotypes were specific to intestinal cell types that regulate ferritin expression, but were notably absent in the iron cells where ferritin is constitutively expressed and apparently translated independently of iron regulatory protein 1A. Hsc20 mutant flies represent an independent tool to disrupt ISC biogenesis in vivo without using the RNA interference machinery.
Collapse
Affiliation(s)
- Helge Uhrigshardt
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|