51
|
Liang T, Wang Y, Jiao Y, Cong S, Jiang X, Dong L, Zhang G, Xiao D. LncRNA MALAT1 Accelerates Cervical Carcinoma Proliferation by Suppressing miR-124 Expression in Cervical Tumor Cells. JOURNAL OF ONCOLOGY 2021; 2021:8836078. [PMID: 34221014 PMCID: PMC8221887 DOI: 10.1155/2021/8836078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/31/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022]
Abstract
Emerging studies have clarified the critical role of LncRNA MALAT1 in various pathological progressions. Here, we identified its positive relationship with cervical carcinoma proliferation. Cervical carcinoma has been considered as one of the most malignant tumors among female. Thus, our study was designed to investigate the underlying mechanism of LncRNA MALAT1 on cervical tumor cell proliferation. We observed that miR-124 was the potential target of LncRNA MALAT1 in cervical tumor cell lines (Hela, C-33A, Caski, and SiHa), the expression level of which is negatively correlated with LncRNA MALAT1 in cervical tumor cells, tissues of cervical patients, and mice. Gain- or loss-of-function analyses in cervical tumor cells have further verified the regulatory role of MALAT1 on miR-124. Additionally, the proliferation of cervical carcinoma was inhibited by miR-124 overexpression, whereas it was blocked by LV-MALAT1 transfection. In vivo assays, overexpression of miR-124, or knockdown of MALAT1 exhibited beneficial effects on tumor weight, size, and volume, together with elevating the survival rate, tightly related with the progression of cervical cancer. In conclusion, LncRNA MALAT1 disabled the effects of miR-124 as an inhibitory sponge, accelerating the progression of cervical carcinoma.
Collapse
Affiliation(s)
- Tian Liang
- Department of Obstetrics and Gynaecology, The 1st Affiliated Hospital of Harbin Medical University, 150001 Harbin, China
| | - Yuchen Wang
- Department of Psychiatry, Qiqihar Medical University, 161006 Qiqihar, China
| | - Yu Jiao
- Department of Psychiatry, Qiqihar Medical University, 161006 Qiqihar, China
| | - Shanshan Cong
- Department of Obstetrics and Gynaecology, The 1st Affiliated Hospital of Harbin Medical University, 150001 Harbin, China
| | - Xinyan Jiang
- Department of Obstetrics and Gynaecology, The 1st Affiliated Hospital of Harbin Medical University, 150001 Harbin, China
| | - Lina Dong
- Department of Obstetrics and Gynaecology, The 1st Affiliated Hospital of Harbin Medical University, 150001 Harbin, China
| | - Guangmei Zhang
- Department of Obstetrics and Gynaecology, The 1st Affiliated Hospital of Harbin Medical University, 150001 Harbin, China
| | - Dan Xiao
- Department of Psychiatry, Qiqihar Medical University, 161006 Qiqihar, China
| |
Collapse
|
52
|
Tian H, Pan J, Fang S, Zhou C, Tian H, He J, Shen W, Meng X, Jin X, Gong Z. LncRNA DPP10-AS1 promotes malignant processes through epigenetically activating its cognate gene DPP10 and predicts poor prognosis in lung cancer patients. Cancer Biol Med 2021; 18:675-692. [PMID: 34106559 PMCID: PMC8330531 DOI: 10.20892/j.issn.2095-3941.2020.0136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The purpose of this study was to explore the function and gene expression regulation of the newly identified lncRNA DPP10-AS1 in lung cancer, and its potential value as a prognostic biomarker. METHODS qRT-PCR and Western blot were conducted to detect the expression of DDP10-AS1 and DPP10 in lung cancer cell lines and tissues. The effects of DDP10-AS1 on DPP10 expression, cell growth, invasion, apoptosis, and in vivo tumor growth were investigated in lung cancer cells by Western blot, rescue experiments, colony formation, flow cytometry, and xenograft animal experiments. RESULTS The novel antisense lncRNA DPP10-AS1 was found to be highly expressed in cancer tissues (P < 0.0001), and its upregulation predicted poor prognosis in patients with lung cancer (P = 0.0025). Notably, DPP10-AS1 promoted lung cancer cell growth, colony formation, and cell cycle progression, and repressed apoptosis in lung cancer cells by upregulating DPP10 expression. Additionally, DPP10-AS1 facilitated lung tumor growth via upregulation of DPP10 protein in a xenograft mouse model. Importantly, DPP10-AS1 positively regulated DPP10 gene expression, and both were coordinately upregulated in lung cancer tissues. Mechanically, DPP10-AS1 was found to associate with DPP10 mRNA but did not enhance DPP10 mRNA stability. Hypomethylation of DPP10-AS1 and DPP10 contributed to their coordinate upregulation in lung cancer. CONCLUSIONS These findings indicated that the upregulation of the antisense lncRNA DPP10-AS1 promotes lung cancer malignant processes and facilitates tumorigenesis by epigenetically regulating its cognate sense gene DPP10. DPP10-AS1 may serve as a candidate prognostic biomarker and a potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Haihua Tian
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Jinchang Pan
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Shuai Fang
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Chengwei Zhou
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
| | - Hui Tian
- Department of Thoracic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315048, China
| | - Jinxian He
- Department of Thoracic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315048, China
| | - Weiyu Shen
- Department of Thoracic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315048, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Zhaohui Gong
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| |
Collapse
|
53
|
Al Mourgi M, El Askary A, Gharib AF, Alzahrani R, Banjer HJ, Elsawy WH, Al Ghamdi AER, Raafat N. Circulating Long Non-Coding RNA GAS5: A Non-Invasive Molecular Marker for Prognosis, Response to Treatment and Survival in Non-Small Cell Lung Cancer. Cancer Invest 2021; 39:505-513. [PMID: 33969786 DOI: 10.1080/07357907.2021.1928167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Circulating long non-coding RNAs (lncRNA) are dysregulated in several diseases, especially cancers, e.g. non-small-cell lung cancer (NSCLC). Of specific notice in this regard is growth arrest-specific 5 gene (lncRNA GAS5), which is principally recognised as a tumor suppressor gene in numerous cancers. Functionally, GAS5 is involved in arresting cellular growth and induction of apoptosis. We analysed plasma GAS5 expression by qRT-PCR in 100 patients with NSCLC before and after tumour resection surgery. We reported a downregulation of GAS5 expression in NSCLC tissue and plasma, which showed elevation after surgery. Downregulation of GAS5 was associated with poor prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Majed Al Mourgi
- Department of Surgery, Medical College, Taif University, Taif, Saudi Arabia
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Rajab Alzahrani
- Department of Surgery, Medical College, Al Baha University, Al Baha, Saudi Arabia
| | - Hamsa Jameel Banjer
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Wael H Elsawy
- Department of Clinical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Nermin Raafat
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
54
|
Wang M, Liu H, Wu W, Zhao J, Song G, Chen X, Wang R, Shao C, Li J, Wang H, Wang Q, Feng X. Identification of Differentially Expressed Plasma lncRNAs As Potential Biomarkers for Breast Cancer. Clin Breast Cancer 2021; 22:e135-e141. [PMID: 34119428 DOI: 10.1016/j.clbc.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is the most common malignant tumor in women and is not easy to diagnose. Increasing evidence has underscored that long non-coding RNAs (lncRNAs) play important regulatory roles in the occurrence and progression of many cancers, including breast cancer. We aimed to identify lncRNAs in plasma as potential biomarkers for breast cancer. PATIENTS AND METHODS We analyzed the Gene Expression Omnibus (GEO) datasets GSE22820, GSE42568, and GSE65194 to identify the common differential genes between cancer tissues and adjacent tissues. Then 14 lncRNAs were identified among the common differential genes and validated by using real-time quantitative polymerase chain reaction in 92 patients with breast cancer and 100 healthy controls. Receiver operating characteristic (ROC) curves were constructed to evaluate their diagnostic value for breast cancer. RESULTS Integrated analysis of the GEO datasets identified three significantly upregulated and 11 downregulated lncRNAs in breast cancer tissues. Compared with healthy controls, MIAT was significantly upregulated in breast cancer patient plasma, and LINC00968 and LINC01140 were significantly downregulated. ROC curve analysis suggested that these three lncRNAs can discriminate breast cancer from healthy individual with high specificity and sensitivity. CONCLUSION This research identified three differentially expressed lncRNAs in breast cancer patient plasma. Our data suggest that these three lncRNAs can be used as potential diagnostic biomarkers of breast cancer.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Huilin Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenyao Wu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jinxia Zhao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Guanghui Song
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Rong Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Changfeng Shao
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jing Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaodong Feng
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
55
|
Chen Y, Zitello E, Guo R, Deng Y. The function of LncRNAs and their role in the prediction, diagnosis, and prognosis of lung cancer. Clin Transl Med 2021; 11:e367. [PMID: 33931980 PMCID: PMC8021541 DOI: 10.1002/ctm2.367] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains a major threat to human health. Low dose CT scan (LDCT) has become the main method of early screening for lung cancer due to the low sensitivity of chest X-ray. However, LDCT not only has a high false positive rate, but also entails risks of overdiagnosis and cumulative radiation exposure. In addition, cumulative radiation by LDCT screening and subsequent follow-up can increase the risk of lung cancer. Many studies have shown that long noncoding RNAs (lncRNAs) remain stable in blood, and profiling of blood has the advantages of being noninvasive, readily accessible and inexpensive. Serum or plasma assay of lncRNAs in blood can be used as a novel detection method to assist LDCT while improving the accuracy of early lung cancer screening. LncRNAs can participate in the regulation of various biological processes. A large number of researches have reported that lncRNAs are key regulators involved in the progression of human cancers through multiple action models. Especially, some lncRNAs can affect various hallmarks of lung cancer. In addition to their diagnostic value, lncRNAs also possess promising potential in other clinical applications toward lung cancer. LncRNAs can be used as predictive markers for chemosensitivity, radiosensitivity, and sensitivity to epidermal growth factor receptor (EGFR)-targeted therapy, and as well markers of prognosis. Different lncRNAs have been implicated to regulate chemosensitivity, radiosensitivity, and sensitivity to EGFR-targeted therapy through diverse mechanisms. Although many challenges need to be addressed in the future, lncRNAs have bright prospects as an adjunct to radiographic methods in the clinical management of lung cancer.
Collapse
Affiliation(s)
- Yu Chen
- Department of Quantitative Health SciencesJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human ResourcesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Emory Zitello
- Department of Quantitative Health SciencesJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human ResourcesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Rui Guo
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Youping Deng
- Department of Quantitative Health SciencesJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
| |
Collapse
|
56
|
Chang N, Cui Y, Liang X, Han D, Zheng X, Wu A, Qian L. Long Noncoding RNA LINC00857 Promotes Proliferation, Migration, and Invasion of Colorectal Cancer Cell through miR-1306/Vimentin Axis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5525763. [PMID: 33833823 PMCID: PMC8012143 DOI: 10.1155/2021/5525763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
Colorectal cancer is a commonly diagnosed cancer and the leading cause of cancer-related death which still increasing in many countries. The lack of biomarkers for early detection and clinic treatment results in high morbidity and mortality. The novel role of long noncoding RNA LINC00857 on cell proliferation migration and invasion was explored in this article. The expression level of LINC00857 in colorectal cancer tissue samples and cells was determined notably higher than normal tissue samples and cells. Silence LINC00857 can significantly inhibit colorectal cancer cell viability and metastasis in vitro. Moreover, LINC00857 depletion caused cell accumulation in the G0/G1 phase. In addition, we recognized the novel LINC00857-miR-1306-vimentin axis and demonstrated it by dual-luciferase reporter assay. And this signaling axis could be considered as the target for colorectal cancer treatment. In conclusion, LINC00857 can promote colorectal cancer progress by sponging miR-1306 and upregulate vimentin to accelerate the epithelial-mesenchymal transition process.
Collapse
Affiliation(s)
- Na Chang
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (West District, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui 230031, China
| | - Yayun Cui
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (West District, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui 230031, China
| | - Xue Liang
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (West District, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui 230031, China
| | - Dan Han
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (West District, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui 230031, China
| | - Xiaomin Zheng
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (West District, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui 230031, China
| | - Ailin Wu
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (West District, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui 230031, China
| | - Liting Qian
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (West District, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui 230031, China
| |
Collapse
|
57
|
Yu M, Song XG, Zhao YJ, Dong XH, Niu LM, Zhang ZJ, Shang XL, Tang YY, Song XR, Xie L. Circulating Serum Exosomal Long Non-Coding RNAs FOXD2-AS1, NRIR, and XLOC_009459 as Diagnostic Biomarkers for Colorectal Cancer. Front Oncol 2021; 11:618967. [PMID: 33777763 PMCID: PMC7996089 DOI: 10.3389/fonc.2021.618967] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background Exosomes derived from cancer cells encapsulate various kinds of tumor-specific molecules and thus can interact with adjacent or distant cells to mediate information exchange. Long non-coding RNAs (lncRNAs) in exosomes have the potential as diagnostic and prognostic biomarkers in different types of cancers. The current study was aimed to identify circulating exosomal lncRNAs for the diagnosis of colorectal cancer (CRC). Methods Exosomes were isolated from the serum by ultracentrifugation and verified by transmission electron microscope (TEM), qNano, and immunoblotting. Exosomal lncRNAs FOXD2-AS1, NRIR, and XLOC_009459 were selected by lncRNA microarray and validated by qPCR in 203 CRC patients and 201 healthy donors. The receiver operating characteristic curve (ROC) was used to assess the diagnostic efficiency of serum exosomal lncRNAs. Results Exosomal FOXD2-AS1, NRIR, and XLOC_009459 (TCONS_00020073) levels were significantly upregulated in 203 CRC patients and 80 early-stage CRC patients compared to 201 healthy donors, possessing the area under the curve (AUC) of 0.728, 0.660, and 0.682 for CRC, as well as 0.743, 0.660, and 0.689 for early-stage CRC, respectively. Notably, their combination demonstrated the markedly elevated AUC of 0.736 for CRC and 0.758 for early-stage CRC, indicating their potential as diagnostic biomarkers for CRC. Conclusions Our data suggested that exosomal lncRNAs FOXD2-AS1, NRIR, and XLOC_009459 act as the promising biomarkers for the diagnostics of CRC and early-stage CRC.
Collapse
Affiliation(s)
- Miao Yu
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Department of Clinical Laboratory, Jinan Qilu Medical Inspection Co., Ltd., Jinan, China
| | - Xing-Guo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ya-Jing Zhao
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao-Han Dong
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li-Min Niu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhi-Jun Zhang
- Department of Clinical Laboratory, Tai'an City Central Hospital, Tai'an, China
| | - Xiao-Ling Shang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - You-Yong Tang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xian-Rang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
58
|
Liu Z, Pan L, Yan X, Duan X. The long noncoding RNA DLGAP1-AS2 facilitates cholangiocarcinoma progression via miR-505 and GALNT10. FEBS Open Bio 2021; 11:413-422. [PMID: 33301605 PMCID: PMC7876506 DOI: 10.1002/2211-5463.13061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly invasive malignant tumor with high mortality. Most cases of CCA are already advanced when they are detected, resulting in poor prognosis. As such, there is an ongoing need for the identification of effective biomarkers for CCA. The long noncoding RNA DLGAP1-AS2 has been reported to have prognostic value in glioma and Wilms' tumor. Here, we investigated the function of DLGAP1-AS2 in CCA. The differential expression of DLGAP1-AS2 in CCA tissues and normal tissues was first examined using data from the The Cancer Genome Atlas database and then in CCA cell lines by quantitative RT-PCR (qRT-PCR). The target gene was predicted by bioinformatics analysis, and the binding sites were confirmed using luciferase assay. DLGAP1-AS2 is up-regulated in CCA, and high DLGAP1-AS2 expression promotes cell viability and is associated with poor prognosis. Notably, DLGAP1-AS2 acts as a sponge to suppress miR-505 expression, and miR-505 reduces the expression of N-acetylgalactosaminyltransferase 10 (GALNT10) in CCA cells. Biofunctional experiments revealed that a miR-505 inhibitor almost completely removed the inhibitory effect of si-DLGAP1-AS2 on CCA cell malignant progression, whereas the malignant phenotype of cells cotransfected with si-DLGAP1-AS2 and si-GALNT10 was significantly reduced as compared with the control. In summary, the DLGAP1-AS2/miR-505/GALNT10 axis may contribute to regulating the malignant progression of CCA and may have potential as a novel target for CCA therapy.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Hepatobiliary and Pancreatic SurgeryJinan Central HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Lili Pan
- Department of Hepatobiliary and Pancreatic SurgeryJinan Central HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Xiaofang Yan
- Department of Nuclear MedicineCentral Hospital of Shan CountyHezeChina
| | - Xiuna Duan
- Department of Nuclear MedicineCentral Hospital of Shan CountyHezeChina
| |
Collapse
|
59
|
Wu Y, Cong L, Chen W, Wang X, Qiu F. lncRNA LINC00963 downregulation regulates colorectal cancer tumorigenesis and progression via the miR‑10b/FGF13 axis. Mol Med Rep 2021; 23:211. [PMID: 33495804 PMCID: PMC7830939 DOI: 10.3892/mmr.2021.11850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve a key role in different types of cancer, including colorectal cancer (CRC). The exact roles and mechanisms underlying lncRNA00963 [long intergenic non‑protein coding RNA 963 (LINC00963)] in CRC are not completely understood. The present study aimed to identify the effects and mechanisms underlying LINC00963 in CRC. Firstly, the LINC00963 expression was detected using reverse transcription‑quantitative PCR and the results demonstrated that LINC00963 expression levels were significantly increased in CRC tissues and cell lines compared with healthy tissues and HpoEpiC cells, respectively. Online database analysis indicated that high levels of LINC00963 were associated with low survival rates. The results of functional experiments, such as CCK‑8 assay, colony formation assay, wound healing assay and Transwell invasion assay, indicated that LINC00963 knockdown significantly inhibited CRC cell proliferation, colony formation, migration and invasion compared with the small interfering RNA (si)‑negative control (NC) group. Furthermore, the luciferase reporter indicated that LINC00963 competitively regulated microRNA (miR)‑10b by targeting fibroblast growth factor 13 (FGF13). Compared with si‑NC, LINC00963 knockdown decreased the expression levels of FGF13, vimentin and N‑cadherin, and increased the expression of E‑cadherin as detecting by western blotting. miR‑10b inhibitors partly attenuated si‑LINC00963‑induced inhibition of CRC cell proliferation, migration and invasion. Collectively, the results of the present study suggested a potential role of the LINC00963/miR-10b/FGF13 axis in the tumorigenesis and progression of CRC, indicating a novel lncRNA-based diagnostic or therapeutic target for CRC.
Collapse
Affiliation(s)
- Yujin Wu
- Department of Gastroenterology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| | - Longling Cong
- Department of Gastroenterology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| | - Wenjian Chen
- Department of Gastroenterology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| | - Xuechuan Wang
- Department of Gastroenterology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| | - Fanghua Qiu
- Department of Hospital Infection Control, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| |
Collapse
|
60
|
De Novo Profiling of Long Non-Coding RNAs Involved in MC-LR-Induced Liver Injury in Whitefish: Discovery and Perspectives. Int J Mol Sci 2021; 22:ijms22020941. [PMID: 33477898 PMCID: PMC7833382 DOI: 10.3390/ijms22020941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin for which a substantial gap in knowledge persists regarding the underlying molecular mechanisms of liver toxicity and injury. Although long non-coding RNAs (lncRNAs) have been extensively studied in model organisms, our knowledge concerning the role of lncRNAs in liver injury is limited. Given that lncRNAs show low levels of sequence conservation, their role becomes even more unclear in non-model organisms without an annotated genome, like whitefish (Coregonus lavaretus). The objective of this study was to discover and profile aberrantly expressed polyadenylated lncRNAs that are involved in MC-LR-induced liver injury in whitefish. Using RNA sequencing (RNA-Seq) data, we de novo assembled a high-quality whitefish liver transcriptome. This enabled us to find 94 differentially expressed (DE) putative evolutionary conserved lncRNAs, such as MALAT1, HOTTIP, HOTAIR or HULC, and 4429 DE putative novel whitefish lncRNAs, which differed from annotated protein-coding transcripts (PCTs) in terms of minimum free energy, guanine-cytosine (GC) base-pair content and length. Additionally, we identified DE non-coding transcripts that might be 3′ autonomous untranslated regions (3′UTRs) of mRNAs. We found both evolutionary conserved lncRNAs as well as novel whitefish lncRNAs that could serve as biomarkers of liver injury.
Collapse
|
61
|
Zhang C, Gong C, Li J, Tang J. Downregulation of long non-coding RNA LINC-PINT serves as a diagnostic and prognostic biomarker in patients with non-small cell lung cancer. Oncol Lett 2021; 21:210. [PMID: 33552292 PMCID: PMC7836384 DOI: 10.3892/ol.2021.12471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play an important role in gene regulation. Several lncRNAs have been demonstrated to be associated with the diagnosis and prognosis of non-small cell lung cancer (NSCLC). The present study aimed to investigate the role of lncRNA long intragenic non-protein-coding RNA p53-induced transcript (LINC-PINT) in NSCLC to identify a novel non-invasive biomarker for the diagnosis and prognosis of patients with NSCLC. Reverse transcription-quantitative PCR analysis was performed to detect LINC-PINT expression in the tissue and serum samples of patients with NSCLC. The diagnostic and prognostic values of LINC-PINT were assessed via the receiver operating characteristic curve, and Kaplan-Meier and Cox regression analyses, respectively. The results demonstrated that LINC-PINT expression was significantly downregulated in NSCLC serum samples and tissues. In addition, serum LINC-PINT exhibited diagnostic value in patients with NSCLC, and may be used to predict prognosis. Furthermore, aberrant LINC-PINT expression in tumor tissues was significantly associated with lymph node metastasis, tumor size, differentiation and TNM stage. Taken together, the results of the present study suggest that lncRNA LINC-PINT may be an independent diagnostic and prognostic biomarker in NSCLC.
Collapse
Affiliation(s)
- Chunjie Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Cuixue Gong
- Outpatient Dressing Room, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Jianzhao Li
- Department of Pathology, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Jiaying Tang
- Department of Blood Transfusion, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| |
Collapse
|
62
|
Cui F, Luo P, Bai Y, Meng J. Silencing of Long Non-Coding RNA FGD5-AS1 Inhibits the Progression of Non-Small Cell Lung Cancer by Regulating the miR-493-5p/DDX5 Axis. Technol Cancer Res Treat 2021; 20:1533033821990007. [PMID: 33550957 PMCID: PMC7876571 DOI: 10.1177/1533033821990007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/29/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long non-coding RNA FGD5 antisense RNA 1 (FGD5-AS1), identified to be a carcinogenic lncRNA, exhibits a regulatory role in some malignancies including non-small cell lung cancer (NSCLC). The aim of the present research is to decipher the function and underlying mechanism of FGD5-AS1 in progression of NSCLC. METHODS Expression of FGD5-AS1, miR-493-5p and DEAD-box protein 5 (DDX5) in NSCLC tissues and cells was quantified utilizing qRT-PCR. Cell proliferation was assessed by CCK-8 method. Scratch healing test and Transwell assay were used for assaying cell migration and invasion. Expressions of DDX5 and epithelial-mesenchymal transition (EMT)-related proteins were examined by Western blot. Additionally, targeting relationships between FGD5-AS1 and miR-493-5p, miR-493-5p and DDX5 were verified by dual-luciferase reporter gene assay. RESULTS Expression of FGD5-AS1 in NSCLC tissues and cell lines was up-regulated. Expression of FGD5-AS1 was in association with enlarged tumor size and lymph node metastasis of the patients. Knockdown of FGD5-AS1 led to the inhibition of proliferation, migration, invasion and EMT of NSCLC cells. FGD5-AS1 directly targeted miR-493-5p, while DDX5 was the target of miR-493-5p in NSCLC cells. Additionally, FGD5-AS1 could positively regulate the expression of DDX5 via suppressing miR-493-5p. CONCLUSION FGD5-AS1 facilitates the proliferation, migration, invasion and EMT of NSCLC cells by sponging miR-493-5p and up-regulating DDX5.
Collapse
Affiliation(s)
- Fang Cui
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Luo
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiangping Meng
- Assisted Reproductive Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
63
|
Identification of Novel Long Noncoding RNAs and Their Role in Abdominal Aortic Aneurysm. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3502518. [PMID: 33415145 PMCID: PMC7769652 DOI: 10.1155/2020/3502518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/01/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022]
Abstract
Objective Long noncoding RNAs (lncRNAs) have emerged as critical molecular regulators in various diseases. However, the potential regulatory role of lncRNAs in the pathogenesis of abdominal aortic aneurysm (AAA) remains elusive. The aim of this study was to identify crucial lncRNAs associated with human AAA by comparing the lncRNA and mRNA expression profiles of patients with AAA with those of control individuals. Materials and Methods The expression profiles of lncRNAs and mRNAs were analyzed in five dilated aortic samples from AAA patients and three normal aortic samples from control individuals using microarray technology. Functional annotation of the screened lncRNAs based on the differentially expressed genes was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results Microarray results revealed 2046 lncRNAs and 1363 mRNAs. Functional enrichment analysis showed that the mRNAs significantly associated with AAA were enriched in the NOD-like receptor (NLR) and nuclear factor kappa-B (NF-κB) signaling pathways and in cell adhesion molecules (CAMs), which are closely associated with pathophysiological changes in AAA. The lncRNAs identified using microarray analysis were further validated using quantitative real-time polymerase chain reaction (qRT-PCR) analysis with 12 versus 11 aortic samples. Finally, three key lncRNAs (ENST00000566954, ENST00000580897, and T181556) were confirmed using strict validation. A coding-noncoding coexpression (CNC) network and a competing endogenous RNA (ceRNA) network were constructed to determine the interaction among the lncRNAs, microRNAs, and mRNAs based on the confirmed lncRNAs. Conclusions Our microarray profiling analysis and validation of significantly expressed lncRNAs between patients with AAA and control group individuals may provide new diagnostic biomarkers for AAA. The underlying regulatory mechanisms of the confirmed lncRNAs in AAA pathogenesis need to be determined using in vitro and in vivo experiments.
Collapse
|
64
|
Meng F, Zhou Y, Dong B, Dong A, Zhang J. Long non-coding RNA LINC01194 promotes the proliferation, migration and invasion of lung adenocarcinoma cells by targeting miR-641/SETD7 axis. Cancer Cell Int 2020; 20:588. [PMID: 33372601 PMCID: PMC7722326 DOI: 10.1186/s12935-020-01680-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
Background It is increasingly evidenced that long non-coding RNAs (lncRNAs) play an important role in various diseases. LncRNA LINC01194 acts as an oncogene in several cancer types. Nevertheless, the role of LINC01194 in lung adenocarcinoma (LUAD) has not yet been revealed. Methods qRT-PCR was used to detect the expression of LINC01194, miR-641 and SETD7 mRNA, while western blot was exploited to examine SETD7 protein level. Cell proliferation was detected by colony formation and EdU assays. Transwell assays detected cell migration and invasion. TUNEL assay and flow cytometry analysis were used to detect cell apoptosis. RIP, RNA pull down and luciferase reporter assays detected the binding among LINC01194, miR-641 and SETD7. Results LINC01194 was significantly upregulated in LUAD tissues and cell lines. Knockdown of LINC01194 resulted in decreased cell proliferation, migration and invasion, and increased apoptosis. Mechanistic experiments unveiled that LINC01194 augmented SETD7 expression in LUAD cells by competitively interacting with miR-641. Rescue experiments showed that miR-641 inhibition and SETD7 overexpression rescued the repressing impacts on LUAD cell proliferation, migration and invasion caused by LINC01194 knockdown. Conclusion LINC01194 promotes the progression of LUAD by enhancing miR-641-targeted SETD7. The LINC01194/miR-641/SETD7 axis might provide new molecular targets for treating LUAD.
Collapse
Affiliation(s)
- Fanmei Meng
- Outpatient Department, Dongying District People's Hospital, 333 Jinan Road, Dongying, 257085, Shandong, China
| | - Yijing Zhou
- Department of Respiratory Medicine, Dongying District People's Hospital, 333 Jinan Road, Dongying, Shandong, China
| | - Baohua Dong
- Internal Medicine-Neurology, Dongying District People's Hospital, 333 Jinan Road, Dongying, Shandong, China
| | - Aiqin Dong
- Department of Respiratory Medicine, Dongying District People's Hospital, 333 Jinan Road, Dongying, Shandong, China
| | - Jingtao Zhang
- Department of Respiratory Medicine, Dongying District People's Hospital, 333 Jinan Road, Dongying, Shandong, China.
| |
Collapse
|
65
|
Yuan S, Xiang Y, Guo X, Zhang Y, Li C, Xie W, Wu N, Wu L, Cai T, Ma X, Yu Z, Bai L, Li Y. Circulating Long Noncoding RNAs Act as Diagnostic Biomarkers in Non-Small Cell Lung Cancer. Front Oncol 2020; 10:537120. [PMID: 33425713 PMCID: PMC7793881 DOI: 10.3389/fonc.2020.537120] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
Identification of novel effective early diagnostic biomarkers may provide alternative strategies to reduce the mortality for non-small cell lung cancer (NSCLC) patients. Circulating long non-coding RNAs (lncRNAs) have emerged as a new class of promising cancer biomarkers. Our study aimed to identify circulating lncRNAs for diagnosing NSCLC. A total 528 plasma samples were continuously collected and allocated to four progressive phases: discovery, training, verification, and expansion phases. The expression of candidate lung cancer related lncRNAs were detected using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). We identified a 4-lncRNA panel (RMRP, NEAT1, TUG1, and MALAT1) that provided a high diagnostic value in NSCLC (AUC = 0.86 and 0.89 for training and verification phase, respectively). Subgroup analyses showed that the 4-lncRNA panel had a sensitivity of 78.95% [95% confidence interval (CI) = 62.22%-89.86%] in stage I-II patients and 75.00% (95% CI = 52.95%-89.40%) in patients with small tumor size (≤3cm). Notably, the sensitivity of 4-lncRNA panel was significantly higher than that of routine protein panels in adenocarcinoma (CEA, CA125, and CYFRA21-1, 86.30% vs. 73.96%). Adding 4-lncRNA to protein markers significantly improved the diagnostic capacity in both adenocarcinoma (AUC=0.85, 95% CI = 0.78-0.91) and squamous cell carcinoma (AUC=0.93, 95% CI = 0.86-0.97). In conclusion, we identified a plasma 4-lncRNA panel that has considerable clinical value in diagnosing NSCLC. The 4-lncRNA panel could improve the diagnostic values of routine tumor protein markers in diagnosing NSCLC. Circulating lncRNAs could be used as promising candidates for NSCLC diagnosis.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoping Guo
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Epidemiology, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yao Zhang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chengying Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weijia Xie
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Na Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Long Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zubin Yu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Bai
- Department of Respiratory Disease, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
66
|
Tao X, Zhang Y, Li J, Ni Z, Tao Z, You Q, He Z, Huang D, Zheng S. Low expression of long non-coding RNA ARAP1-AS1 can inhibit lung cancer proliferation by inducing G0/G1 cell cycle organization. J Thorac Dis 2020; 12:7326-7336. [PMID: 33447422 PMCID: PMC7797826 DOI: 10.21037/jtd-20-3378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background This paper examines the expression, function, and molecular mechanism of long non-coding ribonucleic acid (lncRNA) ARAP1 antisense RNA 1 (ARAP1-AS1) in lung cancer. Specifically, it aims to clarify the molecular mechanism of lncRNA ARAP1-AS1 that affects the occurrence and development of lung cancer, and provide a theoretical basis and molecular targets for targeted therapy or early diagnosis of lung cancer. Methods Fluorescence quantitative detection of lncRNA ARAP1-AS1 expression in lung cancer tissues and cell lines, and methylthiazolyldiphenyl-tetrazolium (MTT), plate cloning experiment, and flow cytometry were used to detect the effect of knockdown of lncRNA ARAP1-AS1 on cell proliferation, clone formation, and the cell cycle, respectively. Western blotting was used to detect the expression of cell cycle-related proteins as well as the effect of knockdown of lncRNA ARAP1-AS1 on lung cancer. Cell proliferation was assessed by a nude mouse subcutaneous tumor formation experiment. Results LncRNA ARAP1-AS1 is highly expressed in lung cancer tissues and cells. Knockdown of LncRNA ARAP1-AS1 can significantly inhibit the proliferation and clonal formation of lung cancer cells and induce G0/G1 cell cycle arrest. Knockdown of ARAP1-AS1 can markedly inhibit the expression of cell cycle-related protein cyclin D1, but has no significant effect on the expression of cyclin-dependent kinase (CDK)4 and CDK6. Furthermore, knockdown of ARAP1-AS1 can also notably inhibit the growth of lung cancer cells and substantially reduce the expression of Ki-67 in tumor-bearing tissues in nude mice. Conclusions LncRNA ARAP1-AS1 is highly expressed in lung cancer. Knocking down of this gene can significantly inhibit cell proliferation in vitro and in vivo, and can also cause G0/G1 cell cycle arrest by inhibiting the expression of cyclin D1.
Collapse
Affiliation(s)
- Xinlu Tao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Thoracic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yan Zhang
- Department of Thoracic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jiaping Li
- Department of Thoracic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Zhengzheng Ni
- Department of Thoracic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Zheng Tao
- Department of Thoracic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qi You
- Department of Thoracic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Zhijie He
- Department of Thoracic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Dengjun Huang
- Department of Thoracic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Shiying Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
67
|
Jing R, Liu S, Jiang Y, Zong W, Ju S, Cui M. Determination of serum RP11-731F5.2 as a noninvasive biomarker for gastric cancer diagnosis and prognosis. Pathol Res Pract 2020; 216:153261. [DOI: 10.1016/j.prp.2020.153261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
|
68
|
Hou Z, Wang Y, Xia N, Lv T, Yuan X, Song Y. Pseudogene KRT17P3 drives cisplatin resistance of human NSCLC cells by modulating miR-497-5p/mTOR. Cancer Sci 2020; 112:275-286. [PMID: 33179318 PMCID: PMC7780050 DOI: 10.1111/cas.14733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Chemoresistance is a major obstacle in non–small cell lung cancer (NSCLC) treatment. The pseudogene keratin 17 pseudogene 3 (KRT17P3) has been previously shown to be upregulated in lung cancer tissues of patients with cisplatin resistance. In the present study, RT‐qPCR was performed to evaluate KRT17P3 levels in plasma samples collected from 30 cisplatin‐resistant and 32 cisplatin‐sensitive patients. We found that the plasma level of KRT17P3 is upregulated in cisplatin‐resistant patients, and the increased expression of plasma KRT17P3 is associated with poor chemotherapy response. Functional studies demonstrated that KRT17P3 overexpression in cultured NSCLC cells increases cell viability and decreases apoptosis upon cisplatin treatment in vitro and in vivo, while KRT17P3 knockdown has the opposite effect. Mechanistically, bioinformatics analysis, RNA immunoprecipitation, and dual luciferase reporter assay indicated that KRT17P3 acts as a molecular sponge for miR‐497‐5p and relieves the binding of miR‐497‐5p to its target gene mTOR. Rescue experiments validated the functional interaction between KRT17P3, miR‐497‐5p, and mTOR. Taken together, our findings indicate that KRT17P3/miR‐497‐5p/mTOR regulates the chemosensitivity of NSCLC, suggesting a potential therapeutic target for cisplatin‐resistant NSCLC patients. KRT17P3 may be a potential peripheral blood marker of NSCLC patients resistant to cisplatin.
Collapse
Affiliation(s)
- Zhibo Hou
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, China.,Department of Respiratory Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Wang
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Ning Xia
- Department of Respiratory Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Xiaoqin Yuan
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, China
| |
Collapse
|
69
|
Cao Z, Yao F, Lang Y, Feng X. Elevated Circulating LINC-P21 Serves as a Diagnostic Biomarker of Type 2 Diabetes Mellitus and Regulates Pancreatic β-cell Function by Sponging miR-766-3p to Upregulate NR3C2. Exp Clin Endocrinol Diabetes 2020; 130:156-164. [PMID: 33007789 DOI: 10.1055/a-1247-4978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the clinical value and biological function of long non-coding RNA (lncRNA) LINC-P21 in type 2 diabetes mellitus (T2DM), and explore the underlying mechanisms. METHODS The expression of LINC-P21 was estimated using quantitative real-time PCR. The functional role of LINC-P21 was explored by gain- and loss-of-function experiments. INS-1 cell proliferation was analyzed using a cell counting kit-8 (CCK-8)assay, and the glucose-stimulated insulin secretion was measured using an ELISA kit. The miRNAs that might be sponged by LINC-P21 were analyzed, and the subsequent target genes were predicted and assessed in INS-1 cells. RESULTS Serum expression of LINC-P21 was elevated in T2DM patients, which was correlated with fasting blood glucose levels and disease diagnosis. The glucose-stimulated insulin secretion and the proliferation of INS-1 cells were enhanced by LINC-P21 knockdown, but the overexpression of LINC-P21 led to opposite effects. miR-766-3p could be directly inhibited by LINC-P21 in INS-1 cells and reverse the effects of LINC-P21 on β-cell function. Additionally, NR3C2 was determined as a target of miR-766-3p, which could be positively regulated by LINC-P21 and had same effects with LINC-P21 on INS-1 cell proliferation and insulin secretion. CONCLUSION All the data demonstrated that serum elevated LINC-P21 and decreased miR-766-3p serve as candidate diagnostic biomarkers in T2DM patients. LINC-P21 acts as a potential regulator in insulin secretion and proliferation of pancreatic β-cells through targeting miR-766-3p to upregulate NR3C2.
Collapse
Affiliation(s)
- Zhibin Cao
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong
| | - Fuwang Yao
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong
| | - Yuqin Lang
- Department of Endoscopic Outpatient Operating Room, Affiliated Hospital of Weifang Medical University, Weifang, Shandong
| | - Xueqiang Feng
- Vascular Intervention Department, Affiliated Hospital of Weifang Medical University, Weifang, Shandong
| |
Collapse
|
70
|
Zhang Y, Li X, Zhang J, Mao L. E6 hijacks KDM5C/lnc_000231/miR-497-5p/CCNE1 axis to promote cervical cancer progression. J Cell Mol Med 2020; 24:11422-11433. [PMID: 32818316 PMCID: PMC7576292 DOI: 10.1111/jcmm.15746] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence suggests that long non‐coding RNA (lncRNA) plays an important role in disease development, particularly in cancers. Recent studies with genome‐wide sequencing on cervical squamous cell carcinoma and matched adjacent non‐tumour tissues showed that a newly identified lncRNA‐lnc_000231 was highly expressed in cervical cancers. However, the underlying mechanism through which it is activated and its role in cervical cancer progression is still unclear. In this study, first, we confirmed that lnc_000231 is up‐regulated in cervical cancer cells and tumour tissues. Mechanically, we demonstrated that E6 up‐regulates lnc_000231 expression through promoting its promoter region H3K4me3 modification by destabilizing KDM5C. In vitro and in vivo results showed that lnc_000231 promotes cervical cancer cell proliferation and tumour formation by acting as miR‐497‐5p sponge and maintaining cyclin E1 (CCNE1) expression. Thus, our studies identified a new signalling pathway through which E6 promotes cervical cancer progression. E6 hijacked KDM5C/lnc_000231/miR‐497‐5p/CCNE1 signalling pathway is a promising target for cervical cancer treatment in the future.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xing Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Mao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
71
|
Hao T, Huang S, Han F. LINC-PINT suppresses tumour cell proliferation, migration and invasion through targeting miR-374a-5p in ovarian cancer. Cell Biochem Funct 2020; 38:1089-1099. [PMID: 32638404 DOI: 10.1002/cbf.3565] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/18/2020] [Accepted: 05/17/2020] [Indexed: 12/15/2022]
Abstract
LncRNA LINC-PINT acts as an important regulator in the development of many cancers. The current study aimed to explore the role of LINC-PINT in the progression of ovarian cancer (OC). LINC-PINT expression level in different FIGO stages of OC and its adjacent tissues, normal HOSE and OC cell lines (A2780, SKOV3, OVCAR3 and HO-8910) was determined by qRT-PCR. Survival analysis on LINC-PINT and OC patients was conducted by Kaplan-Meier. CCK-8, flow cytometry, wound-healing, Transwell assays and western blot were performed to detect the effects of LINC-PINT on proliferation, apoptosis, migration, invasion and EMT process in OC cells. Target gene of LINC-PINT was predicted by Starbase and verified by dual-luciferase reporter assay. The expression of miR-374a-5p in normal and OC tissues, LINC-PINT- or siLINC-PINT-modified OC cells was determined. Moreover, rescue assay was carried out to confirm whether LINC-PINT contributes to the development of OC cells through targeting miR-374a-5p. Low expression of LINC-PINT was observed in OC tissues and cells, noticeably, LINC-PINT expression was even lower in OC tissues with higher FIGO stage. Increased LINC-PINT expression significantly inhibited cell proliferation, promoted apoptosis and suppressed migration, invasion and EMT process, while silencing of LINC-PINT caused the opposite results. Moreover, LINC-PINT sponged miR-374a-5p and overexpressed miR-374a-5p attenuated the effect of up-regulated LINC-PINT on cell viability, migration, invasion and apoptosis. LINC-PINT acts as a tumour suppressor, as it could inhibit cell proliferation, migration, invasion and EMT process, and promote cell apoptosis through down-regulating miR-374a-5p. SIGNIFICANCE OF THE STUDY: Ovarian cancer (OC), which is a frequently diagnosed tumour in female reproductive organs, has a high incidence rate behind cervical cancer and endometrial cancer. LncRNA LINC-PINT acts as an important regulator in the development of many cancers. The current study aimed to explore the role of LINC-PINT in the progression of ovarian cancer (OC) and found that LINC-PINT inhibited cell proliferation, migration invasion and EMT process of OC cell via regulating miR-374a-5p; it might be a potential target for OC treatment.
Collapse
Affiliation(s)
- Ting Hao
- Department of Pathology, Heze Municipal Hospital, Heze, China
| | - Shu Huang
- Department of Oncology, Heze Municipal Hospital, Heze, China
| | - Fangzheng Han
- Department of Pathology, Heze Municipal Hospital, Heze, China
| |
Collapse
|
72
|
de Oliveira WF, dos Santos Silva PM, Coelho LCBB, dos Santos Correia MT. Biomarkers, Biosensors and Biomedicine. Curr Med Chem 2020; 27:3519-3533. [DOI: 10.2174/0929867326666190124103125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/31/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
Abstract
The discovery of new biomarkers associated with cancer, neurological and cardiovascular
diseases is necessary, since these are common, recurrent diseases considered as leading causes of
death in the human population. Molecular signatures of these disorders that can be identified at the
outset of their pathogenesis leading to prompt and targeted treatment may increase patient survival.
Cancer is a heterogeneous disease that can be expressed differently among individuals; in addition,
treatments may have a differentiated approach according to the type of malignant neoplasm. Thus,
these neoplastic cells can synthesize and release specific molecules depending on the site where
carcinogenesis begins. Moreover, life expectancy is increasing especially in developed countries,
however, cases of neurodegenerative diseases have grown in the older members of the population.
Commonly, some neurological disorders, which can occur physiologically by the process of senescence,
are confused with Alzheimer's Disease (AD). In addition, cardiovascular diseases are the
main cause of death in the world; studies capable of identifying, through molecular probes, the beginning
of development of an atherosclerotic process can lead to early treatment to avoid an acute
myocardial infarction. Accuracy in the detection of these biomarkers can be obtained through biosensors
whose design has been increasingly studied to elaborate inexpensive sensory platforms capable
of precise detection, even at low concentrations, of the molecule to be measured. The aim of
this review is to address biomarkers to be used in diagnoses instead of invasive exams; biosensors
for the specific and sensitive detection of these biological markers are also investigated.
Collapse
Affiliation(s)
- Weslley Felix de Oliveira
- Departamento de Bioquimica, Centro de Biociencias, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | |
Collapse
|
73
|
Javed Z, Shah FA, Rajabi S, Raza Q, Iqbal Z, Ullah M, Ahmad T, Salehi B, Sharifi-Rad M, Pezzani R, Yaqoob F, Sadia H, Iriti M, Sharifi-Rad J, Cho WC. LncRNAs as Potential Therapeutic Targets in Thyroid Cancer. Asian Pac J Cancer Prev 2020; 21:281-287. [PMID: 32102500 PMCID: PMC7332117 DOI: 10.31557/apjcp.2020.21.2.281] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Thyroid cancer (TC) is the most common cancer of endocrine system. TC can be subdivided into 4 different entities, papillary, follicular, medullary and anaplastic thyroid cancer. Among them, anaplastic thyroid cancer has the poorest prognosis. Exploring new therapeutic approach may entail favorable prediction as well as increasing overall survival rate of patients. Long non-coding RNAs (lncRNAs), have vast implications in different cancer types. Although they are not transcribed into proteins, they can act as a harness in regulating a plethora of biological functions. They have been implicated in a decisive role in gene expression via modulation of both coding and non-coding RNAs. This article discuss the multi-facet role of lncRNA in thyroid cancer biology. .
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization Lahore Garrison University,
| | - Faiez Ahmed Shah
- Institute of Biochemistry and Biotechnology,University of Veterinary and Animal Sciences,
| | - Sadegh Rajabi
- Center for Excellence in Molecular Biology, University of the Punjab Lahore, Lahore,
| | - Qamar Raza
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan,
| | - Zaheer Iqbal
- Department of Clinical Biochemistry, School of Medicine,
| | - Mukhtar Ullah
- Office for Research Innovation and Commercialization Lahore Garrison University,
| | - Touqeer Ahmad
- Institute of Biochemistry and Biotechnology,University of Veterinary and Animal Sciences,
| | - Bahare Salehi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran,
| | - Mehdi Sharifi-Rad
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam,
| | - Raffaele Pezzani
- Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman, Iran,
- 8OU Endocrinology, Dept. Medicine (DIMED), University of Padova, via Ospedale 105, 35128,
| | - Farooq Yaqoob
- Department of Clinical Biochemistry, School of Medicine,
| | - Haleema Sadia
- Office for Research Innovation and Commercialization Lahore Garrison University,
| | - Marcello Iriti
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base Padova,
| | - Javad Sharifi-Rad
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy,
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China.
| |
Collapse
|
74
|
Huang N, Dai W, Li Y, Sun J, Ma C, Li W. LncRNA PCAT-1 upregulates RAP1A through modulating miR-324-5p and promotes survival in lung cancer. Arch Med Sci 2020; 16:1196-1206. [PMID: 32864009 PMCID: PMC7444700 DOI: 10.5114/aoms.2019.84235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Lung cancer is the malignant tumor with the fastest increase in morbidity and mortality and the greatest threat to human health and life. Long non-coding RNA (lncRNA) is emerging as an important regulator in many cancers. Recently, it was found that lncRNA prostate cancer associated transcript 1 (PCAT-1) was up-regulated in lung cancer, playing oncogenic roles. However, the underlying regulatory mechanism of PCAT-1 remains unknown. MATERIAL AND METHODS The expression levels of PCAT-1 and miR-324-5p were analyzed by real-time PCR, and RAP1A expression was determined by western blotting. RNA pull-down, luciferase and western blotting assays were used to examine the target relationship between PCAT-1 and miR-324-5p or that between miR-324-5p and RAP1A. The functional effects of PCAT-1 and miR-324-5p were examined using cell viability and cell apoptosis assays. RESULTS PCAT-1 overexpression remarkably promoted cell proliferation and suppressed cell apoptosis. Mechanistic investigations demonstrated that PCAT-1 can interact with miR-324-5p and repress its expression, thereby increasing the expression of its target RAP1A. Additionally, rescue experiments revealed that PCAT-1 served as an oncogene partly through sponging miR-324-5p and upregulating RAP1A in lung cancer cells. CONCLUSIONS Our findings demonstrate that on account of the dual function of pro-proliferation and anti-apoptosis, PCAT-1/miR-324-5p/RAP1A may be novel candidates for application in the diagnosis, prognosis and therapy of lung cancer.
Collapse
Affiliation(s)
- Na Huang
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medicine University, Chengdu, Sichuan, China
| | - Wenjing Dai
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medicine University, Chengdu, Sichuan, China
| | - Yunhui Li
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medicine University, Chengdu, Sichuan, China
| | - Jian Sun
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medicine University, Chengdu, Sichuan, China
| | - Chunlan Ma
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medicine University, Chengdu, Sichuan, China
| | - Wancheng Li
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medicine University, Chengdu, Sichuan, China
| |
Collapse
|
75
|
Wang SJ, Li YJ, Gao B, Li XL, Li YT, He HY. Long non-coding RNA 00152 slicing represses the growth and aggressiveness of hemangioma cell by modulating miR-139-5p. Biomed Pharmacother 2019; 120:109385. [DOI: 10.1016/j.biopha.2019.109385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
|
76
|
Chen Z, Lei T, Chen X, Gu J, Huang J, Lu B, Wang Z. Long non-coding RNA in lung cancer. Clin Chim Acta 2019; 504:190-200. [PMID: 31790697 DOI: 10.1016/j.cca.2019.11.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Owing to the difficulty in early diagnosis and the lack of effective treatment strategies, the 5-year survival rates for lung cancer remain very low. With the development of whole genome and transcriptome sequencing technology, long non-coding RNA (lncRNA) has attracted increasing attention. LncRNAs regulate gene expression at the epigenetic, transcriptional and post-transcriptional levels and are widely involved in a variety of diseases, including tumorigenesis. In lung cancer studies, multiple differentially expressed lncRNAs have been identified; several lncRNAs were identified as oncogenic lncRNAs with tumor-driving effects, while other lncRNAs play a role in tumor inhibition and are called tumor-suppressive lncRNAs. These tumor-suppressive lncRNAs are involved in multiple physiological processes such as cell proliferation, apoptosis, and metastasis and thus participate in tumor progression. In this review, we discussed the oncogenic and tumor-suppressive lncRNAs in lung cancer, as well as their biological functions and regulatory mechanisms. Furthermore, we found the potential significance of lncRNAs in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Zhenyao Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China
| | - Tianyao Lei
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China
| | - Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China
| | - Jiali Huang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China
| | - Binbin Lu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| |
Collapse
|
77
|
Zhang H, Zhao J, Shao P. Long noncoding RNA MIAT2 alleviates lipopolysaccharide-induced inflammatory damage in WI-38 cells by sponging microRNA-15. J Cell Physiol 2019; 235:3690-3697. [PMID: 31566734 DOI: 10.1002/jcp.29263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
Neonatal pneumonia is a high neonatal mortality disease. We studied the function and mechanism of long noncoding RNA myocardial infarction-associated transcript 2 (lncRNA MIAT2) on lipopolysaccharide (LPS)-induced inflammation in WI-38 cells. Cell Counting Kit-8 and apoptosis assay were respectively used to detect the functions of LPS, MIAT2, and microRNA-15 (miR-15) on viability and apoptosis. MIAT2 and miR-15 expressions were changed by cell transfection. Moreover, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot, and enzyme-linked immunosorbent assay were used to detect the expressions of interleukin (IL)-6 and monocyte chemoattractant protein-1 (MCP-1). The levels of Bax, cleaved-caspase-3, and cell pathways-related proteins were tested by western blot. Besides, the levels of miR-15 and MIAT2 were tested by RT-qPCR. We found that LPS declined cell viability and heightened apoptosis and levels of Bax, cleaved-caspase-3, IL-6, and MCP-1. MIAT2 was negatively regulated by LPS and it alleviated LPS-induced damage. Furthermore, MIAT2 reversely regulated miR-15 and miR-15 mimic could reverse the effects of MIAT2. Finally, MIAT2 restrained the p38MAPK and NF-κB pathways by downregulating miR-15. In conclusion, MIAT2 alleviated LPS-induced inflammation damage in WI-38 cells by sponging miR-15 via p38MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Jing Zhao
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Peng Shao
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
78
|
Pardini B, Sabo AA, Birolo G, Calin GA. Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Cancers (Basel) 2019; 11:E1170. [PMID: 31416190 PMCID: PMC6721601 DOI: 10.3390/cancers11081170] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/04/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
The last two decades of cancer research have been devoted in two directions: (1) understanding the mechanism of carcinogenesis for an effective treatment, and (2) improving cancer prevention and screening for early detection of the disease. This last aspect has been developed, especially for certain types of cancers, thanks also to the introduction of new concepts such as liquid biopsies and precision medicine. In this context, there is a growing interest in the application of alternative and noninvasive methodologies to search for cancer biomarkers. The new frontiers of the research lead to a search for RNA molecules circulating in body fluids. Searching for biomarkers in extracellular body fluids represents a better option for patients because they are easier to access, less painful, and potentially more economical. Moreover, the possibility for these types of samples to be taken repeatedly, allows a better monitoring of the disease progression or treatment efficacy for a better intervention and dynamic treatment of the patient, which is the fundamental basis of personalized medicine. RNA molecules, freely circulating in body fluids or packed in microvesicles, have all the characteristics of the ideal biomarkers owing to their high stability under storage and handling conditions and being able to be sampled several times for monitoring. Moreover, as demonstrated for many cancers, their plasma/serum levels mirror those in the primary tumor. There are a large variety of RNA species noncoding for proteins that could be used as cancer biomarkers in liquid biopsies. Among them, the most studied are microRNAs, but recently the attention of the researcher has been also directed towards Piwi-interacting RNAs, circular RNAs, and other small noncoding RNAs. Another class of RNA species, the long noncoding RNAs, is larger than microRNAs and represents a very versatile and promising group of molecules which, apart from their use as biomarkers, have also a possible therapeutic role. In this review, we will give an overview of the most common noncoding RNA species detectable in extracellular fluids and will provide an update concerning the situation of the research on these molecules as cancer biomarkers.
Collapse
Affiliation(s)
- Barbara Pardini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy.
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy.
| | - Alexandru Anton Sabo
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, 077120 Bucharest, Romania
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
79
|
Jiang N, Pan J, Fang S, Zhou C, Han Y, Chen J, Meng X, Jin X, Gong Z. Liquid biopsy: Circulating exosomal long noncoding RNAs in cancer. Clin Chim Acta 2019; 495:331-337. [PMID: 31054913 DOI: 10.1016/j.cca.2019.04.082] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022]
Abstract
Despite many advances in diagnostics and multimodal treatment (surgery, radiotherapy, chemotherapy), cancer still remains one of the most important public health challenges worldwide because of the associated morbidity and mortality. Liquid biopsy has been developed to detect cancer at an early stage based on minimally invasive and serial body fluid tests with the advantage of following tumor evolution in real time. Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating cell-free noncoding RNAs (cfRNAs) and circulating exosomes represent the major components of liquid biopsy analysis. Liquid biopsy already has been implemented in cancer management, and most studies thus far are mainly focused on CTCs and ctDNA. In fact, the circulating long noncoding RNAs (lncRNAs) in exosomes have been discovered and confirmed to be closely related to tumorigenesis, metastasis and therapy. Thus this review is mainly focused on the clinical potential of circulating exosomal lncRNAs as a source of liquid biopsy biomarkers in cancer diagnosis, prognosis, and response to treatment, offering novel insights into the precision medicine of oncology.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Jinchang Pan
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Shuai Fang
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Chengwei Zhou
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo 315211, China; Department of Thoracic Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Ying Han
- Department of Radiation Oncology, The Affiliated Yinzhou Renmin Hospital of Medical School of Ningbo University, Ningbo 315040, China
| | - Jun Chen
- Department of Radiation Oncology, The Affiliated Yinzhou Renmin Hospital of Medical School of Ningbo University, Ningbo 315040, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Zhaohui Gong
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China.
| |
Collapse
|
80
|
Fotuhi SN, Khalaj-Kondori M, Hoseinpour Feizi MA, Talebi M. Long Non-coding RNA BACE1-AS May Serve as an Alzheimer's Disease Blood-Based Biomarker. J Mol Neurosci 2019; 69:351-359. [PMID: 31264051 DOI: 10.1007/s12031-019-01364-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
Circulating long noncoding RNAs (lncRNAs) might serve as biomarkers for different pathological conditions. BACE1-AS lncRNA upregulates in the brain of people with Alzheimer's disease (AD) and might be detected in the bloodstream. To reveal if lncRNA BACE1-AS may serve as a blood-based biomarker for AD, we compared its levels in plasma and plasma-derived exosomes between AD (n = 45) and healthy people (n = 36). Exosomes were purified from plasma by Invitrogen™ Total Exosome Isolation Kit and characterized by scanning electron microscopy (SEM) and dynamic light scattering (DLS). Total RNA was extracted from whole plasma, and plasma-derived exosomes using TRIzol® LS or TRIzol® Reagents respectively were then reverse transcribed to the cDNA using PrimeScript II cDNA synthesis kit. The BACE1-AS levels were quantified by real-time PCR, and their biomarker potencies were evaluated using ROC curve analysis. Results obtained verified the presence of BACE1-AS in the plasma samples of both AD and healthy controls. We did not observe any significant differences between the levels of BACE1-AS in the plasma or plasma-derived exosomes of AD and control people. However, there were significant differences between AD subgroups and control in the whole plasma samples. The BACE1-AS level was low in pre-AD subgroup but it was high in full-AD people compared to the healthy controls. Moreover, ROC curve analysis revealed that lncRNA BACE1-AS may discriminate pre-AD and healthy control (75% sensitivity and 100% specificity), full-AD and healthy control (68% sensitivity and 100% specificity), and pre-AD and full-AD subgroups (78% sensitivity and 100% specificity), highlighting its potential as a biomarker for AD development. In conclusion, plasma BACE1-AS level may serve as a potent blood-based biomarker for Alzheimer's disease.
Collapse
Affiliation(s)
- Seyedeh Nahid Fotuhi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | | | - Mahnaz Talebi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
81
|
Fan X, Wang Y, Tang XQ. Extracting predictors for lung adenocarcinoma based on Granger causality test and stepwise character selection. BMC Bioinformatics 2019; 20:197. [PMID: 31074380 PMCID: PMC6509866 DOI: 10.1186/s12859-019-2739-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Lung adenocarcinoma is the most common type of lung cancer, with high mortality worldwide. Its occurrence and development were thoroughly studied by high-throughput expression microarray, which produced abundant data on gene expression, DNA methylation, and miRNA quantification. However, the hub genes, which can be served as bio-markers for discriminating cancer and healthy individuals, are not well screened. Result Here we present a new method for extracting gene predictors, aiming to obtain the least predictors without losing the efficiency. We firstly analyzed three different expression microarrays and constructed multi-interaction network, since the individual expression dataset is not enough for describing biological behaviors dynamically and systematically. Then, we transformed the undirected interaction network to directed network by employing Granger causality test, followed by the predictors screened with the use of the stepwise character selection algorithm. Six predictors, including TOP2A, GRK5, SIRT7, MCM7, EGFR, and COL1A2, were ultimately identified. All the predictors are the cancer-related, and the number is very small fascinating diagnosis. Finally, the validation of this approach was verified by robustness analyses applied to six independent datasets; the precision is up to 95.3% ∼ 100%. Conclusion Although there are complicated differences between cancer and normal cells in gene functions, cancer cells could be differentiated in case that a group of special genes expresses abnormally. Here we presented a new, robust, and effective method for extracting gene predictors. We identified as low as 6 genes which can be taken as predictors for diagnosing lung adenocarcinoma.
Collapse
Affiliation(s)
- Xuemeng Fan
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Yaolai Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Xu-Qing Tang
- School of Science, Jiangnan University, Wuxi, 214122, China. .,Wuxi Engineering Research Center for Biocomputing, Wuxi, 214122, China.
| |
Collapse
|
82
|
Xu D, Chen Y, Yuan C, Zhang S, Peng W. Long non-coding RNA LINC00662 promotes proliferation and migration in oral squamous cell carcinoma. Onco Targets Ther 2019; 12:647-656. [PMID: 30705593 PMCID: PMC6343512 DOI: 10.2147/ott.s188691] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Although increasing evidence has demonstrated important roles for long non-coding RNAs (lncRNAs) in cancer development, their functions in oral squamous cell carcinoma (OSCC) growth remain largely unknown. Therefore, we aimed to investigate the role of LINC00662 in OSCC. Methods The expression of LINC00662 in 61 OSCC tissues and four OSCC cell lines were detected by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Cell proliferation was detected using Cell Counting Kit-8 (CCK-8) and EdU staining methods. Migration and invasion abilities were analyzed using transwell and wound healing assay. Cell cycle distribution and apoptosis rate were evaluated by flow cytometry. Western blot method was performed to detect protein expression. Results We found that the expression of LINC00662 was significantly increased in OSCC tissues, and a higher expression of LINC00662 was detected in larger tumor size, higher stage tumors and with lymph node metastasis. Moreover, overexpression of LINC00662 induced OSCC cell proliferation, increased migration and invasion abilities, and suppressed cell apoptosis. Knockdown of LINC00662 decreased the proliferation, migration, and invasion abilities of OSCC cell, and induced apoptosis. Furthermore, LINC00662 regulated the Wnt/β-catenin pathway. Conclusion Our data indicate that LINC00662 may represent a novel indicator of OSCC and may be a potential therapeutic target for diagnosis and therapy.
Collapse
Affiliation(s)
- Debin Xu
- Department of Thyroid and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yunmei Chen
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,
| | - Chunlei Yuan
- Department of Breast Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shuyong Zhang
- Department of Thyroid and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wei Peng
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,
| |
Collapse
|