51
|
Lu W, Aihaiti A, Abudukeranmu P, Liu Y, Gao H. Unravelling the role of intratumoral bacteria in digestive system cancers: current insights and future perspectives. J Transl Med 2024; 22:545. [PMID: 38849871 PMCID: PMC11157735 DOI: 10.1186/s12967-024-05320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/18/2024] [Indexed: 06/09/2024] Open
Abstract
Recently, research on the human microbiome, especially concerning the bacteria within the digestive system, has substantially advanced. This exploration has unveiled a complex interplay between microbiota and health, particularly in the context of disease. Evidence suggests that the gut microbiome plays vital roles in digestion, immunity and the synthesis of vitamins and neurotransmitters, highlighting its significance in maintaining overall health. Conversely, disruptions in these microbial communities, termed dysbiosis, have been linked to the pathogenesis of various diseases, including digestive system cancers. These bacteria can influence cancer progression through mechanisms such as DNA damage, modulation of the tumour microenvironment, and effects on the host's immune response. Changes in the composition and function within the tumours can also impact inflammation, immune response and cancer therapy effectiveness. These findings offer promising avenues for the clinical application of intratumoral bacteria for digestive system cancer treatment, including the potential use of microbial markers for early cancer detection, prognostication and the development of microbiome-targeted therapies to enhance treatment outcomes. This review aims to provide a comprehensive overview of the pivotal roles played by gut microbiome bacteria in the development of digestive system cancers. Additionally, we delve into the specific contributions of intratumoral bacteria to digestive system cancer development, elucidating potential mechanisms and clinical implications. Ultimately, this review underscores the intricate interplay between intratumoral bacteria and digestive system cancers, underscoring the pivotal role of microbiome research in transforming diagnostic, prognostic and therapeutic paradigms for digestive system cancers.
Collapse
Affiliation(s)
- Weiqin Lu
- General Surgery, Cancer Center, Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | | | - Yajun Liu
- Aksu First People's Hospital, Xinjiang, China
| | - Huihui Gao
- Cancer Center, Department of Hospital Infection Management and Preventive Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
52
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
53
|
Meng H, Zhang T, Wang Z, Zhu Y, Yu Y, Chen H, Chen J, Wang F, Yu Y, Hua X, Wang Y. High-Throughput Host-Microbe Single-Cell RNA Sequencing Reveals Ferroptosis-Associated Heterogeneity during Acinetobacter baumannii Infection. Angew Chem Int Ed Engl 2024; 63:e202400538. [PMID: 38419141 DOI: 10.1002/anie.202400538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Interactions between host and bacterial cells are integral to human physiology. The complexity of host-microbe interactions extends to different cell types, spatial aspects, and phenotypic heterogeneity, requiring high-resolution approaches to capture their full complexity. The latest breakthroughs in single-cell RNA sequencing (scRNA-seq) have opened up a new era of studies in host-pathogen interactions. Here, we first report a high-throughput cross-species dual scRNA-seq technology by using random primers to simultaneously capture both eukaryotic and bacterial RNAs (scRandom-seq). Using reference cells, scRandom-seq can detect individual eukaryotic and bacterial cells with high throughput and high specificity. Acinetobacter baumannii (A.b) is a highly opportunistic and nosocomial pathogen that displays resistance to many antibiotics, posing a significant threat to human health, calling for discoveries and treatment. In the A.b infection model, scRandom-seq witnessed polarization of THP-1 derived-macrophages and the intracellular A.b-induced ferroptosis-stress in host cells. The inhibition of ferroptosis by Ferrostatin-1 (Fer-1) resulted in the improvement of cell vitality and resistance to A.b infection, indicating the potential to resist related infections. scRandom-seq provides a high-throughput cross-species dual single-cell RNA profiling tool that will facilitate future discoveries in unraveling the complex interactions of host-microbe interactions in infection systems and tumor micro-environments.
Collapse
Affiliation(s)
- Hongen Meng
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310030, China
| | - Tianyu Zhang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310030, China
| | - Zhang Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People's Republic of China
| | - Yuyi Zhu
- M20 Genomics, Hangzhou, 311121, China
| | - Yingying Yu
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Hangfei Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People's Republic of China
| | - Jiaye Chen
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310030, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yongcheng Wang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310030, China
| |
Collapse
|
54
|
Fu Y, Li J, Cai W, Huang Y, Liu X, Ma Z, Tang Z, Bian X, Zheng J, Jiang J, Li C. The emerging tumor microbe microenvironment: From delineation to multidisciplinary approach-based interventions. Acta Pharm Sin B 2024; 14:1560-1591. [PMID: 38572104 PMCID: PMC10985043 DOI: 10.1016/j.apsb.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Intratumoral microbiota has become research hotspots, and emerges as a non-negligent new component of tumor microenvironments (TME), due to its powerful influence on tumor initiation, metastasis, immunosurveillance and prognosis despite in low-biomass. The accumulations of microbes, and their related components and metabolites within tumor tissues, endow TME with additional pluralistic features which are distinct from the conventional one. Therefore, it's definitely necessary to comprehensively delineate the sophisticated landscapes of tumor microbe microenvironment, as well as their functions and related underlying mechanisms. Herein, in this review, we focused on the fields of tumor microbe microenvironment, including the heterogeneity of intratumor microbiota in different types of tumors, the controversial roles of intratumoral microbiota, the basic features of tumor microbe microenvironment (i.e., pathogen-associated molecular patterns (PAMPs), typical microbial metabolites, autophagy, inflammation, multi-faceted immunomodulation and chemoresistance), as well as the multidisciplinary approach-based intervention of tumor microbiome for cancer therapy by applying wild-type or engineered live microbes, microbiota metabolites, antibiotics, synthetic biology and rationally designed biomaterials. We hope our work will provide valuable insight to deeply understand the interplay of cancer-immune-microbial, and facilitate the development of microbes-based tumor-specific treatments.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
55
|
Zhou L, Zhang W, Fan S, Wang D, Tang D. The value of intratumoral microbiota in the diagnosis and prognosis of tumors. Cell Biochem Funct 2024; 42:e3999. [PMID: 38571320 DOI: 10.1002/cbf.3999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Intratumoral microbiota (ITM) are microorganisms present in tumor cells. ITM participate in tumor development by affecting tumor cells directly and the tumor microenvironment (TME), indirectly. Alterations in ITM instigate changes in tumor DNA, activate oncogenic pathways, induce tumor inflammatory responses, disrupt normal immune activity, and facilitate the secretion of effectors leading to tumor progression, metastasis, or diminished therapeutic effects. ITM varies significantly in different types of cancer cells and disease states. The presence of certain ITM serves as a predictor of various disease states. Thus, ITM predicts tumorigenesis, tumor grade, treatment efficacy, and prognosis, making it a potential tumor biomarker. The present study aimed to determine the mechanisms by which ITM affects tumor development, especially through the TME; highlight the significant potential of ITM in enhancing tumor diagnosis and prognosis; and outline future directions for ITM research, with a focus on the development of innovative tumor markers.
Collapse
Affiliation(s)
- Lujia Zhou
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing, China
| | - Shiying Fan
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
56
|
Mei J, Liu X, Tian H, Chen Y, Cao Y, Zeng J, Liu Y, Chen Y, Gao Y, Yin J, Wang P. Tumour organoids and assembloids: Patient-derived cancer avatars for immunotherapy. Clin Transl Med 2024; 14:e1656. [PMID: 38664597 PMCID: PMC11045561 DOI: 10.1002/ctm2.1656] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Organoid technology is an emerging and rapidly growing field that shows promise in studying organ development and screening therapeutic regimens. Although organoids have been proposed for a decade, concerns exist, including batch-to-batch variations, lack of the native microenvironment and clinical applicability. MAIN BODY The concept of organoids has derived patient-derived tumour organoids (PDTOs) for personalized drug screening and new drug discovery, mitigating the risks of medication misuse. The greater the similarity between the PDTOs and the primary tumours, the more influential the model will be. Recently, 'tumour assembloids' inspired by cell-coculture technology have attracted attention to complement the current PDTO technology. High-quality PDTOs must reassemble critical components, including multiple cell types, tumour matrix, paracrine factors, angiogenesis and microorganisms. This review begins with a brief overview of the history of organoids and PDTOs, followed by the current approaches for generating PDTOs and tumour assembloids. Personalized drug screening has been practised; however, it remains unclear whether PDTOs can predict immunotherapies, including immune drugs (e.g. immune checkpoint inhibitors) and immune cells (e.g. tumour-infiltrating lymphocyte, T cell receptor-engineered T cell and chimeric antigen receptor-T cell). PDTOs, as cancer avatars of the patients, can be expanded and stored to form a biobank. CONCLUSION Fundamental research and clinical trials are ongoing, and the intention is to use these models to replace animals. Pre-clinical immunotherapy screening using PDTOs will be beneficial to cancer patients. KEY POINTS The current PDTO models have not yet constructed key cellular and non-cellular components. PDTOs should be expandable and editable. PDTOs are promising preclinical models for immunotherapy unless mature PDTOs can be established. PDTO biobanks with consensual standards are urgently needed.
Collapse
Affiliation(s)
- Jie Mei
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Hui‐Xiang Tian
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
| | - Yixuan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Cao
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Jun Zeng
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Yung‐Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yaping Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Gao
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Xiangya Lung Cancer Center, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Ji‐Ye Yin
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Peng‐Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| |
Collapse
|
57
|
Zhang Y, Zhang H, Liu B, Ning K. Highly accurate diagnosis of pancreatic cancer by integrative modeling using gut microbiome and exposome data. iScience 2024; 27:109294. [PMID: 38450156 PMCID: PMC10915599 DOI: 10.1016/j.isci.2024.109294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/07/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
The noninvasive detection of pancreatic ductal adenocarcinoma (PDAC) remains an immense challenge. In this study, we proposed a robust, accurate, and noninvasive classifier, namely Multi-Omics Co-training Graph Convolutional Networks (MOCO-GCN). It achieved high accuracy (0.9 ± 0.06), F1 score (0.9± 0.07), and AUROC (0.89± 0.08), surpassing contemporary approaches. The performance of model was validated on an external cohort of German PDAC patients. Additionally, we discovered that the exposome may impact PDAC development through its complex interplay with gut microbiome by mediation analysis. For example, Fusobacterium hwasookii nucleatum, known for its ability to induce inflammatory responses, may serve as a mediator for the impact of rheumatoid arthritis on PDAC. Overall, our study sheds light on how exposome and microbiome in concert could contribute to PDAC development, and enable PDAC diagnosis with high fidelity and interpretability.
Collapse
Affiliation(s)
- Yuli Zhang
- School of Mathematics, Shandong University, Jinan 250200, Shandong, China
| | - Haohong Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan 250200, Shandong, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
58
|
Chung IY, Kim J, Koh A. The Microbiome Matters: Its Impact on Cancer Development and Therapeutic Responses. J Microbiol 2024; 62:137-152. [PMID: 38587593 DOI: 10.1007/s12275-024-00110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 04/09/2024]
Abstract
In the evolving landscape of cancer research, the human microbiome emerges as a pivotal determinant reshaping our understanding of tumorigenesis and therapeutic responses. Advanced sequencing technologies have uncovered a vibrant microbial community not confined to the gut but thriving within tumor tissues. Comprising bacteria, viruses, and fungi, this diverse microbiota displays distinct signatures across various cancers, with most research primarily focusing on bacteria. The correlations between specific microbial taxa within different cancer types underscore their pivotal roles in driving tumorigenesis and influencing therapeutic responses, particularly in chemotherapy and immunotherapy. This review amalgamates recent discoveries, emphasizing the translocation of the oral microbiome to the gut as a potential marker for microbiome dysbiosis across diverse cancer types and delves into potential mechanisms contributing to cancer promotion. Furthermore, it highlights the adverse effects of the microbiome on cancer development while exploring its potential in fortifying strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- In-Young Chung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Jihyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
59
|
Li Y, Chang RB, Stone ML, Delman D, Markowitz K, Xue Y, Coho H, Herrera VM, Li JH, Zhang L, Choi-Bose S, Giannone M, Shin SM, Coyne EM, Hernandez A, Gross NE, Charmsaz S, Ho WJ, Lee JW, Beatty GL. Multimodal immune phenotyping reveals microbial-T cell interactions that shape pancreatic cancer. Cell Rep Med 2024; 5:101397. [PMID: 38307029 PMCID: PMC10897543 DOI: 10.1016/j.xcrm.2024.101397] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
Microbes are an integral component of the tumor microenvironment. However, determinants of microbial presence remain ill-defined. Here, using spatial-profiling technologies, we show that bacterial and immune cell heterogeneity are spatially coupled. Mouse models of pancreatic cancer recapitulate the immune-microbial spatial coupling seen in humans. Distinct intra-tumoral niches are defined by T cells, with T cell-enriched and T cell-poor regions displaying unique bacterial communities that are associated with immunologically active and quiescent phenotypes, respectively, but are independent of the gut microbiome. Depletion of intra-tumoral bacteria slows tumor growth in T cell-poor tumors and alters the phenotype and presence of myeloid and B cells in T cell-enriched tumors but does not affect T cell infiltration. In contrast, T cell depletion disrupts the immunological state of tumors and reduces intra-tumoral bacteria. Our results establish a coupling between microbes and T cells in cancer wherein spatially defined immune-microbial communities differentially influence tumor biology.
Collapse
Affiliation(s)
- Yan Li
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renee B Chang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meredith L Stone
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Devora Delman
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Markowitz
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuqing Xue
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather Coho
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veronica M Herrera
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joey H Li
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liti Zhang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shaanti Choi-Bose
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Giannone
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah M Shin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Erin M Coyne
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Alexei Hernandez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole E Gross
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Soren Charmsaz
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Mass Cytometry Facility, Johns Hopkins University, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jae W Lee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
60
|
Guo X, Wang P, Li Y, Chang Y, Wang X. Microbiomes in pancreatic cancer can be an accomplice or a weapon. Crit Rev Oncol Hematol 2024; 194:104262. [PMID: 38199428 DOI: 10.1016/j.critrevonc.2024.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Recently, several investigations have linked the microbiome to pancreatic cancer progression. It is critical to reveal the role of different microbiomes in the occurrence, development, and treatment of pancreatic cancer. The current review summarizes the various microbiota types in pancreatic cancer while updating and supplementing the mechanisms of the representative gut, pancreatic, and oral microbiota, and their metabolites during its pathogenesis and therapeutic intervention. Several novel strategies have been introduced based on the tumor-associated microbiome to optimize the early diagnosis and prognosis of pancreatic cancer. The pros and cons involving different microbiomes in treating pancreatic cancer are discussed. The microbiome-related clinical trials for pancreatic cancer theranostics are outlined. This convergence of cutting-edge knowledge will provide feasible ideas for developing innovative therapies against pancreatic cancer.
Collapse
Affiliation(s)
- Xiaoyu Guo
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Pan Wang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuan Li
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yawei Chang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaobing Wang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
61
|
Cao L, Wei S, Yin Z, Chen F, Ba Y, Weng Q, Zhang J, Zhang H. Identifying important microbial biomarkers for the diagnosis of colon cancer using a random forest approach. Heliyon 2024; 10:e24713. [PMID: 38298638 PMCID: PMC10828680 DOI: 10.1016/j.heliyon.2024.e24713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Colon cancer is one of the most common cancers, with 30-50 % of patients returning or metastasizing within 5 years of treatment. Increasingly, researchers have highlighted the influence of microbes on cancer malignant activity, while no studies have explored the relationship between colon cancer and the microbes in tumors. Here, we used tissue and blood samples from 67 colon cancer patients to identify pathogenic microorganisms associated with the diagnosis and prediction of colon cancer and evaluate the predictive performance of each pathogenic marker and its combination based on the next-generation sequencing data by using random forest algorithms. The results showed that we constructed a database of 13,187 pathogenic microorganisms associated with human disease and identified 2 pathogenic microorganisms (Synthetic.construct_32630 and Dicrocoelium.dendriticum_57078) associated with colon cancer diagnosis, and the constructed diagnostic prediction model performed well for tumor tissue samples and blood samples. In summary, for the first time, we provide new molecular markers for the diagnosis of colon cancer based on the expression of pathogenic microorganisms in order to provide a reference for improving the effective screening rate of colon cancer in clinical practice and ameliorating the personalized treatment of colon cancer patients.
Collapse
Affiliation(s)
- Lichao Cao
- School of Life Sciences, Northwest University, 710127, Xi'an, Shaanxi Province, China
| | - Shangqing Wei
- School of Life Sciences, Northwest University, 710127, Xi'an, Shaanxi Province, China
| | - Zongyi Yin
- Shenzhen University General Hospital, 518071, Shenzhen, Guangdong Province, China
| | - Fang Chen
- Shenzhen Nucleus Gene Technology Co., Ltd., 518071, Shenzhen, Guangdong Province, China
| | - Ying Ba
- Shenzhen Nucleus Gene Technology Co., Ltd., 518071, Shenzhen, Guangdong Province, China
| | - Qi Weng
- Shenzhen Nucleus Gene Technology Co., Ltd., 518071, Shenzhen, Guangdong Province, China
| | - Jiahao Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., 518071, Shenzhen, Guangdong Province, China
| | - Hezi Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., 518071, Shenzhen, Guangdong Province, China
| |
Collapse
|
62
|
León-Letelier RA, Dou R, Vykoukal J, Yip-Schneider MT, Maitra A, Irajizad E, Wu R, Dennison JB, Do KA, Zhang J, Schmidt CM, Hanash S, Fahrmann JF. Contributions of the Microbiome-Derived Metabolome for Risk Assessment and Prognostication of Pancreatic Cancer. Clin Chem 2024; 70:102-115. [PMID: 38175578 PMCID: PMC11836914 DOI: 10.1093/clinchem/hvad186] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Increasing evidence implicates microbiome involvement in the development and progression of pancreatic ductal adenocarcinoma (PDAC). Studies suggest that reflux of gut or oral microbiota can lead to colonization in the pancreas, resulting in dysbiosis that culminates in release of microbial toxins and metabolites that potentiate an inflammatory response and increase susceptibility to PDAC. Moreover, microbe-derived metabolites can exert direct effector functions on precursors and cancer cells, as well as other cell types, to either promote or attenuate tumor development and modulate treatment response. CONTENT The occurrence of microbial metabolites in biofluids thereby enables risk assessment and prognostication of PDAC, as well as having potential for design of interception strategies. In this review, we first highlight the relevance of the microbiome for progression of precancerous lesions in the pancreas and, using liquid chromatography-mass spectrometry, provide supporting evidence that microbe-derived metabolites manifest in pancreatic cystic fluid and are associated with malignant progression of intraductal papillary mucinous neoplasm(s). We secondly summarize the biomarker potential of microbe-derived metabolite signatures for (a) identifying individuals at high risk of developing or harboring PDAC and (b) predicting response to treatment and disease outcomes. SUMMARY The microbiome-derived metabolome holds considerable promise for risk assessment and prognostication of PDAC.
Collapse
Affiliation(s)
- Ricardo A. León-Letelier
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Rongzhang Dou
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | | | - Anirban Maitra
- Department of Translational Molecular Pathology and Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Ehsan Irajizad
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Kim-An Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Jianjun Zhang
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA
| | - C Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| |
Collapse
|
63
|
Zhang C, Li G, Lu T, Liu L, Sui Y, Bai R, Li L, Sun B. The Interaction of Microbiome and Pancreas in Acute Pancreatitis. Biomolecules 2023; 14:59. [PMID: 38254659 PMCID: PMC10813032 DOI: 10.3390/biom14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Acute pancreatitis (AP) is a common acute abdomen disease characterized by the pathological activation of digestive enzymes and the self-digestion of pancreatic acinar cells. Secondary infection and sepsis are independent prognosticators for AP progression and increased mortality. Accumulating anatomical and epidemiological evidence suggests that the dysbiosis of gut microbiota affects the etiology and severity of AP through intestinal barrier disruption, local or systemic inflammatory response, bacterial translocation, and the regulatory role of microbial metabolites in AP patients and animal models. Recent studies discussing the interactions between gut microbiota and the pancreas have opened new scopes for AP, and new therapeutic interventions that target the bacteria community have received substantial attention. This review concentrates on the alterations of gut microbiota and its roles in modulating gut-pancreas axis in AP. The potential therapies of targeting microbes as well as the major challenges of applying those interventions are explored. We expect to understand the roles of microbes in AP diagnosis and treatment.
Collapse
Affiliation(s)
- Can Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Tianqi Lu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Liwei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Yuhang Sui
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Rui Bai
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| |
Collapse
|
64
|
Song Y, Xu T. Letter to the editor for the article "Does the urinary microbiome profile change after treatment of bladder cancer?". World J Urol 2023; 42:2. [PMID: 38127134 DOI: 10.1007/s00345-023-04754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Yuxuan Song
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China.
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
65
|
Thomas SC, Miller G, Li X, Saxena D. Getting off tract: contributions of intraorgan microbiota to cancer in extraintestinal organs. Gut 2023; 73:175-185. [PMID: 37918889 PMCID: PMC10842768 DOI: 10.1136/gutjnl-2022-328834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
The gastrointestinal ecosystem has received the most attention when examining the contributions of the human microbiome to health and disease. This concentration of effort is logical due to the overwhelming abundance of microbes in the gut coupled with the relative ease of sampling compared with other organs. However, the intestines are intimately connected to multiple extraintestinal organs, providing an opportunity for homeostatic microbial colonisation and pathogenesis in organs traditionally thought to be sterile or only transiently harbouring microbiota. These habitats are challenging to sample, and their low microbial biomass among large amounts of host tissue can make study challenging. Nevertheless, recent findings have shown that many extraintestinal organs that are intimately linked to the gut harbour stable microbiomes, which are colonised from the gut in selective manners and have highlighted not just the influence of the bacteriome but that of the mycobiome and virome on oncogenesis and health.
Collapse
Affiliation(s)
- Scott C Thomas
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - George Miller
- Cancer Center, Holy Name Medical Center, Teaneck, NJ, USA
| | - Xin Li
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
- Perlmutter Cancer Institute, New York University Langone Medical Center, New York, NY, USA
- Department of Urology, New York University Grossman School of Medicine, New York, NY, USA
| | - Deepak Saxena
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
- Perlmutter Cancer Institute, New York University Langone Medical Center, New York, NY, USA
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
66
|
Rogers S, Charles A, Thomas RM. The Prospect of Harnessing the Microbiome to Improve Immunotherapeutic Response in Pancreatic Cancer. Cancers (Basel) 2023; 15:5708. [PMID: 38136254 PMCID: PMC10741649 DOI: 10.3390/cancers15245708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is projected to become the second leading cause of cancer-related death in the United States by 2030. Patients are often diagnosed with advanced disease, which explains the dismal 5-year median overall survival rate of ~12%. Immunotherapy has been successful in improving outcomes in the past decade for a variety of malignancies, including gastrointestinal cancers. However, PDAC is historically an immunologically "cold" tumor, one with an immunosuppressive environment and with restricted entry of immune cells that have limited the success of immunotherapy in these tumors. The microbiome, the intricate community of microorganisms present on and within humans, has been shown to contribute to many cancers, including PDAC. Recently, its role in tumor immunology and response to immunotherapy has generated much interest. Herein, the current state of the interaction of the microbiome and immunotherapy in PDAC is discussed with a focus on needed areas of study in order to harness the immune system to combat pancreatic cancer.
Collapse
Affiliation(s)
- Sherise Rogers
- Department of Medicine, Division of Hematology and Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Angel Charles
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32603, USA
| |
Collapse
|
67
|
Mima K, Hamada T, Inamura K, Baba H, Ugai T, Ogino S. The microbiome and rise of early-onset cancers: knowledge gaps and research opportunities. Gut Microbes 2023; 15:2269623. [PMID: 37902043 PMCID: PMC10730181 DOI: 10.1080/19490976.2023.2269623] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
Accumulating evidence indicates an alarming increase in the incidence of early-onset cancers, which are diagnosed among adults under 50 years of age, in the colorectum, esophagus, extrahepatic bile duct, gallbladder, liver, stomach, pancreas, as well as the bone marrow (multiple myeloma), breast, head and neck, kidney, prostate, thyroid, and uterine corpus (endometrium). While the early-onset cancer studies have encompassed research on the wide variety of organs, this article focuses on research on digestive system cancers. While a minority of early-onset cancers in the digestive system are associated with cancer-predisposing high penetrance germline genetic variants, the majority of those cancers are sporadic and multifactorial. Although potential etiological roles of diets, lifestyle, environment, and the microbiome from early life to adulthood (i.e. in one's life course) have been hypothesized, exact contribution of each of these factors remains uncertain. Diets, lifestyle patterns, and environmental exposures have been shown to alter the oral and intestinal microbiome. To address the rising trend of early-onset cancers, transdisciplinary research approaches including lifecourse epidemiology and molecular pathological epidemiology frameworks, nutritional and environmental sciences, multi-omics technologies, etc. are needed. We review current evidence and discuss emerging research opportunities, which can improve our understanding of their etiologies and help us design better strategies for prevention and treatment to reduce the cancer burden in populations.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
68
|
Colbert LE, El Alam MB, Wang R, Karpinets T, Lo D, Lynn EJ, Harris TA, Elnaggar JH, Yoshida-Court K, Tomasic K, Bronk JK, Sammouri J, Yanamandra AV, Olvera AV, Carlin LG, Sims T, Delgado Medrano AY, Napravnik TC, O'Hara M, Lin D, Abana CO, Li HX, Eifel PJ, Jhingran A, Joyner M, Lin L, Ramondetta LM, Futreal AM, Schmeler KM, Mathew G, Dorta-Estremera S, Zhang J, Wu X, Ajami NJ, Wong M, Taniguchi C, Petrosino JF, Sastry KJ, Okhuysen PC, Martinez SA, Tan L, Mahmud I, Lorenzi PL, Wargo JA, Klopp AH. Tumor-resident Lactobacillus iners confer chemoradiation resistance through lactate-induced metabolic rewiring. Cancer Cell 2023; 41:1945-1962.e11. [PMID: 37863066 PMCID: PMC10841640 DOI: 10.1016/j.ccell.2023.09.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023]
Abstract
Tumor microbiota can produce active metabolites that affect cancer and immune cell signaling, metabolism, and proliferation. Here, we explore tumor and gut microbiome features that affect chemoradiation response in patients with cervical cancer using a combined approach of deep microbiome sequencing, targeted bacterial culture, and in vitro assays. We identify that an obligate L-lactate-producing lactic acid bacterium found in tumors, Lactobacillus iners, is associated with decreased survival in patients, induces chemotherapy and radiation resistance in cervical cancer cells, and leads to metabolic rewiring, or alterations in multiple metabolic pathways, in tumors. Genomically similar L-lactate-producing lactic acid bacteria commensal to other body sites are also significantly associated with survival in colorectal, lung, head and neck, and skin cancers. Our findings demonstrate that lactic acid bacteria in the tumor microenvironment can alter tumor metabolism and lactate signaling pathways, causing therapeutic resistance. Lactic acid bacteria could be promising therapeutic targets across cancer types.
Collapse
Affiliation(s)
- Lauren E Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Molly B El Alam
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rui Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tatiana Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Lo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erica J Lynn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy A Harris
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacob H Elnaggar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; LSU School of Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kyoko Yoshida-Court
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katarina Tomasic
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julianna K Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julie Sammouri
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ananta V Yanamandra
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Adilene V Olvera
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lily G Carlin
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Travis Sims
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrea Y Delgado Medrano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tatiana Cisneros Napravnik
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Madison O'Hara
- Department of Thoracic Head and Neck Medical Oncology at The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chike O Abana
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hannah X Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patricia J Eifel
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anuja Jhingran
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa Joyner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lilie Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lois M Ramondetta
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew M Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kathleen M Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Geena Mathew
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nadim J Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew Wong
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cullen Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, The Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - K Jagannadha Sastry
- Department of Thoracic Head and Neck Medical Oncology at The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pablo C Okhuysen
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sara A Martinez
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; LSU School of Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ann H Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
69
|
Galeano Niño JL, Wu H, LaCourse KD, Srinivasan H, Fitzgibbon M, Minot SS, Sather C, Johnston CD, Bullman S. INVADEseq to identify cell-adherent or invasive bacteria and the associated host transcriptome at single-cell-level resolution. Nat Protoc 2023; 18:3355-3389. [PMID: 37789194 PMCID: PMC10790651 DOI: 10.1038/s41596-023-00888-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/11/2023] [Indexed: 10/05/2023]
Abstract
Single-cell RNA sequencing (scRNAseq) technologies have been beneficial in revealing and describing cellular heterogeneity within mammalian tissues, including solid tumors. However, many of these techniques apply poly(A) selection of RNA, and thus have primarily focused on determining the gene signatures of eukaryotic cellular components of the tumor microenvironment. Microbiome analysis has revealed the presence of microbial ecosystems, including bacteria and fungi, within human tumor tissues from major cancer types. Imaging data have revealed that intratumoral bacteria may be located within epithelial and immune cell types. However, as bacterial RNA typically lacks a poly(A) tail, standard scRNAseq approaches have limited ability to capture this microbial component of the tumor microenvironment. To overcome this, we describe the invasion-adhesion-directed expression sequencing (INVADEseq) approach, whereby we adapt 10x Genomics 5' scRNAseq protocol by introducing a primer that targets a conserved region of the bacterial 16S ribosomal RNA gene in addition to the standard primer for eukaryotic poly(A) RNA selection. This 'add-on' approach enables the generation of eukaryotic and bacterial DNA libraries at eukaryotic single-cell level resolution, utilizing the 10x barcode to identify single cells with intracellular bacteria. The INVADEseq method takes 30 h to complete, including tissue processing, sequencing and computational analysis. As an output, INVADEseq has shown to be a reliable tool in human cancer cell lines and patient tumor specimens by detecting the proportion of human cells that harbor bacteria and the identities of human cells and intracellular bacteria, along with identifying host transcriptional programs that are modulated on the basis of associated bacteria.
Collapse
Affiliation(s)
| | - Hanrui Wu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Harini Srinivasan
- Bioinformatics Shared Resources, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Matthew Fitzgibbon
- Bioinformatics Shared Resources, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Samuel S Minot
- Data Core, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cassie Sather
- Shared Resources Administration, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Christopher D Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
70
|
Puurand M, Tepp K, Kaambre T. Diving into cancer OXPHOS - The application of metabolic control analysis to cell and tissue research. Biosystems 2023; 233:105032. [PMID: 37739307 DOI: 10.1016/j.biosystems.2023.105032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Knowing how the oxidative phosphorylation (OXPHOS) system in cancer cells operates differently from that of normal cells would help find compounds that specifically paralyze the energy metabolism of cancer cells. The first experiments in the study of mitochondrial respiration using the metabolic control analysis (MCA) method were done with isolated liver mitochondria in the early 80s of the last century. Subsequent studies have shown that the regulation of mitochondrial respiration by ADP in isolated mitochondria differs significantly from a model of mitochondria in situ, where the contacts with components in the cytoplasm are largely preserved. The method of selective permeabilization of the outer membrane of the cells allows the application of MCA to evaluate the contribution of different components of the OXPHOS system to its functioning while mitochondria are in a natural state. In this review, we summarize the use of MCA to study OXPHOS in cancer using permeabilized cells and tissues. In addition, we give examples of how this data fits into cancer research with a completely different approach and methodology.
Collapse
Affiliation(s)
- Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
71
|
Qi J, Meng M, Liu J, Song X, Chen Y, Liu Y, Li X, Zhou Z, Huang X, Wang X, Zhou Q, Zhao Z. Lycorine inhibits pancreatic cancer cell growth and neovascularization by inducing Notch1 degradation and downregulating key vasculogenic genes. Biochem Pharmacol 2023; 217:115833. [PMID: 37769714 DOI: 10.1016/j.bcp.2023.115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Pancreatic cancer is highly metastatic and lethal with an increasing incidence globally and a 5-year survival rate of only 8%. One of the factors contributing to the high mortality is the lack of effective drugs in the clinical setting. We speculated that effective compounds against pancreatic cancer exist in natural herbs and explored active small molecules among traditional Chinese medicinal herbs. The small molecule lycorine (MW: 323.77) derived from the herb Lycoris radiata inhibited pancreatic cancer cell growth with an IC50 value of 1 μM in a concentration-dependent manner. Lycorine markedly reduced pancreatic cancer cell viability, migration, invasion, neovascularization, and gemcitabine resistance. Additionally, lycorine effectively suppressed tumor growth in mouse xenograft models without obvious toxicity. Pharmacological studies revealed that the levels and half-life of Notch1 oncoprotein in the pancreatic cancer cells Panc-1 and Patu8988 were notably reduced. Moreover, the expression of the key vasculogenic genes Semaphorin 4D (Sema4D) and angiopoietin-2 (Ang-2) were also significantly inhibited by lycorine. Mechanistically, lycorine strongly triggered the degradation of Notch1 oncoprotein through the ubiquitin-proteasome system. In conclusion, lycorine effectively inhibits pancreatic cancer cell growth, migration, invasion, neovascularization, and gemcitabine resistance by inducing degradation of Notch1 oncoprotein and downregulating the key vasculogenic genes Sema4D and Ang-2. Our findings provide a new therapeutic candidate and treatment strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Jindan Qi
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China; School of Nursing, Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Juntao Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Xiaoxiao Song
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Yu Chen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Yuxi Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Xu Li
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Zhou Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Xiang Huang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Xiaohua Wang
- School of Nursing, Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Jiangsu 215123, PR China; National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, PR China; Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu 215123, PR China; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu 215123, PR China.
| |
Collapse
|
72
|
Meng YF, Fan ZY, Zhou B, Zhan HX. Role of the intratumoral microbiome in tumor progression and therapeutics implications. Biochim Biophys Acta Rev Cancer 2023; 1878:189014. [PMID: 37918451 DOI: 10.1016/j.bbcan.2023.189014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Microbes are widely present in various organs of the human body and play important roles in numerous physiological and pathological processes. Nevertheless, owing to multiple limiting factors, such as contamination and low biomass, the current understanding of the intratumoral microbiome is limited. The intratumoral microbiome exerts tumor-promoting or tumor-suppressive effects by engaging in metabolic reactions within the body, regulating signaling cancer-related pathways, and impacting both host cells function and immune system. It is important to emphasize that intratumoral microbes exhibit substantial heterogeneity in terms of composition and abundance across various tumor types, thereby potentially influencing diverse aspects of tumorigenesis, progression, and metastasis. These findings suggest that intratumoral microbiome have great potential as diagnostic and prognostic biomarkers. By manipulating the intratumoral microbes to employ cancer therapy, the efficacy of chemotherapy or immunotherapy can be enhanced while minimizing adverse effects. In this review, we comprehensively describe the composition and function of the intratumoral microbiome in various human solid tumors. Combining recent advancements in research, we discuss the origins, mechanisms, and prospects of the clinical applications of intratumoral microbiome.
Collapse
Affiliation(s)
- Yu-Fan Meng
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Zhi-Yao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Han-Xiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
73
|
Guillot N, Roméo B, Manesh SS, Milano G, Brest P, Zitvogel L, Hofman P, Mograbi B. Manipulating the gut and tumor microbiota for immune checkpoint inhibitor therapy: from dream to reality. Trends Mol Med 2023; 29:897-911. [PMID: 37704493 DOI: 10.1016/j.molmed.2023.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
The past decade has witnessed a revolution in cancer treatment by shifting from conventional therapies to immune checkpoint inhibitors (ICIs). These immunotherapies unleash the host immune system against the tumor and have achieved unprecedented durable remission. However, 80% of patients do not respond. This review discusses how bacteria are unexpected drivers that reprogram tumor immunity. Manipulating the microbiota impacts on tumor development and reprograms the tumor microenvironment (TME) of mice on immunotherapy. We anticipate that harnessing commensals and the tumor microbiome holds promise to identify patients who will benefit from immunotherapy and guide the choice of new ICI combinations to advance treatment efficacy.
Collapse
Affiliation(s)
- Nicolas Guillot
- Université Côte d'Azur, CNRS, INSERM, IRCAN, IHU RespirERA, FHU OncoAge, Centre Antoine Lacassagne, Nice, France
| | - Barnabé Roméo
- Université Côte d'Azur, CNRS, INSERM, IRCAN, IHU RespirERA, FHU OncoAge, Centre Antoine Lacassagne, Nice, France
| | - Shima Sepehri Manesh
- Université Côte d'Azur, CNRS, INSERM, IRCAN, IHU RespirERA, FHU OncoAge, Centre Antoine Lacassagne, Nice, France
| | - Gerard Milano
- Centre Antoine Lacassagne, Service de Valorisation Scientifique, Nice, France
| | - Patrick Brest
- Université Côte d'Azur, CNRS, INSERM, IRCAN, IHU RespirERA, FHU OncoAge, Centre Antoine Lacassagne, Nice, France
| | - Laurence Zitvogel
- Gustave Roussy, Villejuif, France; Equipe Labellisée par la Ligue Contre le Cancer, INSERM Unité 1015, Villejuif, France; Université Paris Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
| | - Paul Hofman
- Université Côte d'Azur, CNRS, INSERM, IRCAN, IHU RespirERA, FHU OncoAge, Centre Antoine Lacassagne, Nice, France; University Côte d'Azur, IHU RespirERA, FHU OncoAge, CHU of Nice, Laboratory of Clinical and Experimental Pathology (LPCE), Biobank (BB-0033-00025), Nice, France
| | - Baharia Mograbi
- Université Côte d'Azur, CNRS, INSERM, IRCAN, IHU RespirERA, FHU OncoAge, Centre Antoine Lacassagne, Nice, France.
| |
Collapse
|
74
|
Schorr L, Mathies M, Elinav E, Puschhof J. Intracellular bacteria in cancer-prospects and debates. NPJ Biofilms Microbiomes 2023; 9:76. [PMID: 37813921 PMCID: PMC10562400 DOI: 10.1038/s41522-023-00446-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Recent evidence suggests that some human cancers may harbor low-biomass microbial ecosystems, spanning bacteria, viruses, and fungi. Bacteria, the most-studied kingdom in this context, are suggested by these studies to localize within cancer cells, immune cells and other tumor microenvironment cell types, where they are postulated to impact multiple cancer-related functions. Herein, we provide an overview of intratumoral bacteria, while focusing on intracellular bacteria, their suggested molecular activities, communication networks, host invasion and evasion strategies, and long-term colonization capacity. We highlight how the integration of sequencing-based and spatial techniques may enable the recognition of bacterial tumor niches. We discuss pitfalls, debates and challenges in decisively proving the existence and function of intratumoral microbes, while reaching a mechanistic elucidation of their impacts on tumor behavior and treatment responses. Together, a causative understanding of possible roles played by intracellular bacteria in cancer may enable their future utilization in diagnosis, patient stratification, and treatment.
Collapse
Affiliation(s)
- Lena Schorr
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marius Mathies
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany.
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Jens Puschhof
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
75
|
Ghaddar B, Blaser MJ, De S. Denoising sparse microbial signals from single-cell sequencing of mammalian host tissues. NATURE COMPUTATIONAL SCIENCE 2023; 3:741-747. [PMID: 37946872 PMCID: PMC10634611 DOI: 10.1038/s43588-023-00507-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 08/07/2023] [Indexed: 11/12/2023]
Abstract
Existing genomic sequencing data can be used to study host-microbiome ecosystems, however distinguishing signals originating from truly present microbes versus contaminating species and artifacts is a substantial and often prohibitive challenge. Here we show that emerging sequencing technologies definitely capture reads from present microbes. We developed SAHMI, a computational resource to identify truly present microbial nucleic acids and filter contaminants and spurious false-positive taxonomic assignments from standard transcriptomic sequencing of mammalian tissues. In benchmark studies, SAHMI correctly identifies known microbial infections present in diverse tissues, and we validate SAHMI's enrichment for correctly classified, truly present species using multiple orthogonal computational experiments. The application of SAHMI to single-cell and spatial genomic data thus enables co-detection of somatic cells and microorganisms and joint analysis of host-microbiome ecosystems.
Collapse
Affiliation(s)
- Bassel Ghaddar
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University; 195 Albany St., New Brunswick, New Jersey 08901
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University; 679 Hoes Lane West, Piscataway, New Jersey 08854
| | - Subhajyoti De
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University; 195 Albany St., New Brunswick, New Jersey 08901
| |
Collapse
|
76
|
Li J, Guo Y, Liu J, Guo F, Du L, Yang Y, Li X, Ma Y. Depicting the landscape of gut microbial-metabolic interaction and microbial-host immune heterogeneity in deficient and proficient DNA mismatch repair colorectal cancers. J Immunother Cancer 2023; 11:e007420. [PMID: 37597851 PMCID: PMC10441105 DOI: 10.1136/jitc-2023-007420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Accumulating evidence has indicated the role of gut microbiota in remodeling host immune signatures, but various interplays underlying colorectal cancers (CRC) with deficient DNA mismatch repair (dMMR) and proficient DNA mismatch repair (pMMR) remain poorly understood. This study aims to decipher the gut microbiome-host immune interactions between dMMR and pMMR CRC. METHOD We performed metagenomic sequencing and metabolomic analysis of fecal samples from a cohort encompassing 455 participants, including 21 dMMR CRC, 207 pMMR CRC, and 227 healthy controls. Among them, 50 tumor samples collected from 5 dMMR CRC and 45 pMMR CRC were conducted bulk RNA sequencing. RESULTS Pronounced microbiota and metabolic heterogeneity were identified with 211 dMMR-enriched species, such as Fusobacterium nucleatum and Akkermansia muciniphila, 2 dMMR-depleted species, such as Flavonifractor plautii, 13 dMMR-enriched metabolites, such as retinoic acid, and 77 dMMR-depleted metabolites, such as lactic acid, succinic acid, and 2,3-dihydroxyvaleric acid. F. plautii was enriched in pMMR CRC and it was positively associated with fatty acid degradation, which might account for the accumulation of dMMR-depleted metabolites classified as short chain organic acid (lactic acid, succinic acid, and 2,3-dihydroxyvaleric acid) in pMMR CRC. The microbial-metabolic association analysis revealed the characterization of pMMR CRC as the accumulation of lactate induced by the depletion of specific gut microbiota which was negatively associated with antitumor immune, whereas the nucleotide metabolism and peptide degradation mediated by dMMR-enriched species characterized dMMR CRC. MMR-specific metabolic landscapes were related to distinctive immune features, such as CD8+ T cells, dendritic cells and M2-like macrophages. CONCLUSIONS Our mutiomics results delineate a heterogeneous landscape of microbiome-host immune interactions within dMMR and pMMR CRC from aspects of bacterial communities, metabolic features, and correlation with immunocyte compartment, which infers the underlying mechanism of heterogeneous immune responses.
Collapse
Affiliation(s)
- Jinming Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yangyang Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianqiang Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Fanying Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong province, China
| | - Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
77
|
Xu F, Saxena D, Pushalkar S, Miller G. Reply to: Revisiting the intrinsic mycobiome in pancreatic cancer. Nature 2023; 620:E7-E9. [PMID: 37532815 DOI: 10.1038/s41586-023-06293-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Affiliation(s)
- Fangxi Xu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - Deepak Saxena
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
78
|
Gautam SK, Batra SK, Jain M. Molecular and metabolic regulation of immunosuppression in metastatic pancreatic ductal adenocarcinoma. Mol Cancer 2023; 22:118. [PMID: 37488598 PMCID: PMC10367391 DOI: 10.1186/s12943-023-01813-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Immunosuppression is a hallmark of pancreatic ductal adenocarcinoma (PDAC), contributing to early metastasis and poor patient survival. Compared to the localized tumors, current standard-of-care therapies have failed to improve the survival of patients with metastatic PDAC, that necessecitates exploration of novel therapeutic approaches. While immunotherapies such as immune checkpoint blockade (ICB) and therapeutic vaccines have emerged as promising treatment modalities in certain cancers, limited responses have been achieved in PDAC. Therefore, specific mechanisms regulating the poor response to immunotherapy must be explored. The immunosuppressive microenvironment driven by oncogenic mutations, tumor secretome, non-coding RNAs, and tumor microbiome persists throughout PDAC progression, allowing neoplastic cells to grow locally and metastasize distantly. The metastatic cells escaping the host immune surveillance are unique in molecular, immunological, and metabolic characteristics. Following chemokine and exosomal guidance, these cells metastasize to the organ-specific pre-metastatic niches (PMNs) constituted by local resident cells, stromal fibroblasts, and suppressive immune cells, such as the metastasis-associated macrophages, neutrophils, and myeloid-derived suppressor cells. The metastatic immune microenvironment differs from primary tumors in stromal and immune cell composition, functionality, and metabolism. Thus far, multiple molecular and metabolic pathways, distinct from primary tumors, have been identified that dampen immune effector functions, confounding the immunotherapy response in metastatic PDAC. This review describes major immunoregulatory pathways that contribute to the metastatic progression and limit immunotherapy outcomes in PDAC. Overall, we highlight the therapeutic vulnerabilities attributable to immunosuppressive factors and discuss whether targeting these molecular and immunological "hot spots" could improve the outcomes of PDAC immunotherapies.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
79
|
Wang Q, Liu Z, Ma A, Li Z, Liu B, Ma Q. Computational methods and challenges in analyzing intratumoral microbiome data. Trends Microbiol 2023; 31:707-722. [PMID: 36841736 PMCID: PMC10272078 DOI: 10.1016/j.tim.2023.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
The human microbiome is intimately related to cancer biology and plays a vital role in the efficacy of cancer treatments, including immunotherapy. Extraordinary evidence has revealed that several microbes influence tumor development through interaction with the host immune system, that is, immuno-oncology-microbiome (IOM). This review focuses on the intratumoral microbiome in IOM and describes the available data and computational methods for discovering biological insights of microbial profiling from host bulk, single-cell, and spatial sequencing data. Critical challenges in data analysis and integration are discussed. Specifically, the microorganisms associated with cancer and cancer treatment in the context of IOM are collected and integrated from the literature. Lastly, we provide our perspectives for future directions in IOM research.
Collapse
Affiliation(s)
- Qi Wang
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Zhaoqian Liu
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Anjun Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA; Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China; Shandong National Center for Applied Mathematics, Jinan, Shandong, 250100, China.
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA; Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
80
|
Wei W, Zhang W, Wu S, Duan W, Wang Z. Advances in tuft cells, a chemosensory cell in sequential diseases of the pancreas. Biochim Biophys Acta Rev Cancer 2023; 1878:188911. [PMID: 37182665 DOI: 10.1016/j.bbcan.2023.188911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Tuft cells are solitary chemosensory cells distributed mainly in hollow organs and detected in human and mouse pancreas precursor lesions of pancreatic cancer. Induced by inflammation and KRAS mutation, pancreatic acinar cell-derived tuft cells play a protective role in epithelium injury. The tumour suppression of tuft cells has been indicated in some studies. However, the function of tuft cells in pancreatic cancer remains unclear. In this review, we first introduce the definition of tuft cells and then review the relationship between tuft cells and pancreatic inflammation. In addition, we emphasized the role of tuft cells in the genesis and development of pancreatic cancers, especially the part of markers for tuft cell's doublecortin-like kinase 1 (DCLK1). Finally, we turn to the microscopic perspective and review the interactions between tuft cells and the microbiome in the pancreatic microenvironment. Overall, we describe the role of tuft cells in response to tissue damage and tumour progression in the pancreas. Nevertheless, the specific formation principle and the more detailed mechanism of action of tuft cells in the pancreas remain to be further explored.
Collapse
Affiliation(s)
- Wanzhen Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Weifan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Shuai Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| |
Collapse
|
81
|
Piper M, Kluger H, Ruppin E, Hu-Lieskovan S. Immune Resistance Mechanisms and the Road to Personalized Immunotherapy. Am Soc Clin Oncol Educ Book 2023; 43:e390290. [PMID: 37459578 DOI: 10.1200/edbk_390290] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
What does the future of cancer immunotherapy look like and how do we get there? Find out where we've been and where we're headed in A Report on Resistance: The Road to personalized immunotherapy.
Collapse
Affiliation(s)
- Miles Piper
- School of Medicine, University of Utah, Salt Lake City, UT
| | | | - Eytan Ruppin
- Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Siwen Hu-Lieskovan
- School of Medicine, University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
82
|
Shu LZ, Ding YD, Xue QM, Cai W, Deng H. Direct and indirect effects of pathogenic bacteria on the integrity of intestinal barrier. Therap Adv Gastroenterol 2023; 16:17562848231176427. [PMID: 37274298 PMCID: PMC10233627 DOI: 10.1177/17562848231176427] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/01/2023] [Indexed: 06/06/2023] Open
Abstract
Bacterial translocation is a pathological process involving migration of pathogenic bacteria across the intestinal barrier to enter the systemic circulation and gain access to distant organs. This phenomenon has been linked to a diverse range of diseases including inflammatory bowel disease, pancreatitis, and cancer. The intestinal barrier is an innate structure that maintains intestinal homeostasis. Pathogenic infections and dysbiosis can disrupt the integrity of the intestinal barrier, increasing its permeability, and thereby facilitating pathogen translocation. As translocation represents an essential step in pathogenesis, a clear understanding of how barrier integrity is disrupted and how this disruption facilitates bacterial translocation could identify new routes to effective prophylaxis and therapy. In this comprehensive review, we provide an in-depth analysis of bacterial translocation and intestinal barrier function. We discuss currently understood mechanisms of bacterial-enterocyte interactions, with a focus on tight junctions and endocytosis. We also discuss the emerging concept of bidirectional communication between the intestinal microbiota and other body systems. The intestinal tract has established 'axes' with various organs. Among our regulatory systems, the nervous, immune, and endocrine systems have been shown to play pivotal roles in barrier regulation. A mechanistic understanding of intestinal barrier regulation is crucial for the development of personalized management strategies for patients with bacterial translocation-related disorders. Advancing our knowledge of barrier regulation will pave the way for future research in this field and novel clinical intervention strategies.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Yi-Dan Ding
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Qing-Ming Xue
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Wei Cai
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
- Department of Pathology, the Fourth Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated
Hospital of Nanchang University, No. 133 South Guangchang Road, Nanchang
330003, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang
University, Nanchang, China
| |
Collapse
|
83
|
Goubet AG. Could the tumor-associated microbiota be the new multi-faceted player in the tumor microenvironment? Front Oncol 2023; 13:1185163. [PMID: 37287916 PMCID: PMC10242102 DOI: 10.3389/fonc.2023.1185163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
Microorganisms have been identified in tumor specimens for over a century. It is only in recent years that tumor-associated microbiota has become a rapidly expanding field. Assessment techniques encompass methods at the frontiers of molecular biology, microbiology, and histology, requiring a transdisciplinary process to carefully decipher this new component of the tumor microenvironment. Due to the low biomass, the study of tumor-associated microbiota poses technical, analytical, biological, and clinical challenges and must be approached as a whole. To date, several studies have begun to shed light on the composition, functions, and clinical relevance of the tumor-associated microbiota. This new piece of the tumor microenvironment puzzle could potentially change the way we think about and treat patients with cancer.
Collapse
Affiliation(s)
- Anne-Gaëlle Goubet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| |
Collapse
|
84
|
Lin Q, Guan SW, Yu HB. Immuno-oncology-microbiome axis of gastrointestinal malignancy. World J Gastrointest Oncol 2023; 15:757-775. [PMID: 37275452 PMCID: PMC10237027 DOI: 10.4251/wjgo.v15.i5.757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/15/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023] Open
Abstract
Research on the relationship between the microbiome and cancer has been controversial for centuries. Recent works have discovered that the intratumor microbiome is an important component of the tumor microenvironment (TME). Intratumor bacteria, the most studied intratumor microbiome, are mainly localized in tumor cells and immune cells. As the largest bacterial reservoir in human body, the gut microbiome may be one of the sources of the intratumor microbiome in gastrointestinal malignancies. An increasing number of studies have shown that the gut and intratumor microbiome play an important role in regulating the immune tone of tumors. Moreover, it has been recently proposed that the gut and intratumor microbiome can influence tumor progression by modulating host metabolism and the immune and immune tone of the TME, which is defined as the immuno-oncology-microbiome (IOM) axis. The proposal of the IOM axis provides a new target for the tumor microbiome and tumor immunity. This review aims to reveal the mechanism and progress of the gut and intratumor microbiome in gastrointestinal malignancies such as esophageal cancer, gastric cancer, liver cancer, colorectal cancer and pancreatic cancer by exploring the IOM axis. Providing new insights into the research related to gastrointestinal malignancies.
Collapse
Affiliation(s)
- Quan Lin
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Shi-Wei Guan
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hai-Bo Yu
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
85
|
Liang Y, Li Q, Liu Y, Guo Y, Li Q. Awareness of intratumoral bacteria and their potential application in cancer treatment. Discov Oncol 2023; 14:57. [PMID: 37148441 PMCID: PMC10164222 DOI: 10.1007/s12672-023-00670-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023] Open
Abstract
Hitherto, the recognition of the microbiota role in tumorigenesis and clinical studies mostly focused on the intestinal flora. In contrast to the gut microbiome, microorganisms resident in tumor tissue are in close contact with cancer cells and therefore have the potential to have similar or even different functional patterns to the gut flora. Some investigations have shown intratumoral bacteria, which might come from commensal microbiota in mucosal areas including the gastrointestinal tract and oral cavity, or from nearby normal tissues. The existence, origin, and interactions of intratumoral bacteria with the tumor microenvironment all contribute to intratumoral microorganism heterogeneity. Intratumoral bacteria have a significant role in tumor formation. They can contribute to cancer at the genetic level by secreting poisons that directly damage DNA and also intimately related to immune system response at the systemic level. Intratumoral bacteria have an impact on chemotherapy and immunotherapy in cancer. Importantly, various properties of bacteria such as targeting and ease of modification make them powerful candidates for precision therapy, and combining microbial therapies with other therapies is expected to improve the effectiveness of cancer treatment. In this review, we mainly described the heterogeneity and potential sources of intratumoral bacteria, overviewed the important mechanisms by which they were involved in tumor progression, and summarized their potential value in oncology therapy. At last, we highlight the problems of research in this field, and look forward to a new wave of studies using the various applications of intratumoral microorganisms in cancer therapy.
Collapse
Affiliation(s)
- Yin Liang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Qiyan Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yulin Liu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yajie Guo
- Department of Emergency, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| | - Qingjiao Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| |
Collapse
|
86
|
Bastos AR, Pereira-Marques J, Ferreira RM, Figueiredo C. Harnessing the Microbiome to Reduce Pancreatic Cancer Burden. Cancers (Basel) 2023; 15:cancers15092629. [PMID: 37174095 PMCID: PMC10177253 DOI: 10.3390/cancers15092629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer mortality is expected to rise in the next decades. This aggressive malignancy has a dismal prognosis due to late diagnosis and resistance to treatment. Increasing evidence indicates that host-microbiome interactions play an integral role in pancreatic cancer development, suggesting that harnessing the microbiome might offer promising opportunities for diagnostic and therapeutic interventions. Herein, we review the associations between pancreatic cancer and the intratumoral, gut and oral microbiomes. We also explore the mechanisms with which microbes influence cancer development and the response to treatment. We further discuss the potentials and limitations of using the microbiome as a target for therapeutic interventions, in order to improve pancreatic cancer patient outcomes.
Collapse
Affiliation(s)
- Ana Raquel Bastos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Joana Pereira-Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Rui Manuel Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Ceu Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|
87
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
88
|
Yang K, Zhao Y, Sun G, Zhang X, Cao J, Shao M, Liang X, Wang L. Clinical application and prospect of immune checkpoint inhibitors for CAR-NK cell in tumor immunotherapy. Front Immunol 2023; 13:1081546. [PMID: 36741400 PMCID: PMC9892943 DOI: 10.3389/fimmu.2022.1081546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells is an attractive research field in tumor immunotherapy. While CAR is genetically engineered to express certain molecules, it retains the intrinsic ability to recognize tumor cells through its own receptors. Additionally, NK cells do not depend on T cell receptors for cytotoxic killing. CAR-NK cells exhibit some differences to CAR-T cells in terms of more precise killing, numerous cell sources, and increased effectiveness in solid tumors. However, some problems still exist with CAR-NK cell therapy, such as cytotoxicity, low transfection efficiency, and storage issues. Immune checkpoints inhibit immune cells from performing their normal killing function, and the clinical application of immune checkpoint inhibitors for cancer treatment has become a key therapeutic strategy. The application of CAR-T cells and immune checkpoint inhibitors is being evaluated in numerous ongoing basic research and clinical studies. Immune checkpoints may affect the function of CAR-NK cell therapy. In this review, we describe the combination of existing CAR-NK cell technology with immune checkpoint therapy and discuss the research of CAR-NK cell technology and future clinical treatments. We also summarize the progress of clinical trials of CAR-NK cells and immune checkpoint therapy.
Collapse
Affiliation(s)
- Kangdi Yang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuze Zhao
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Guanqun Sun
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Xu Zhang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinjin Cao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Mingcong Shao
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xijun Liang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China,*Correspondence: Xijun Liang, ; Lina Wang,
| | - Lina Wang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Xijun Liang, ; Lina Wang,
| |
Collapse
|