51
|
Bin Saeedan M, Faheem Mohammed S, Mohammed TLH. Hermansky-Pudlak syndrome: high-resolution computed tomography findings and literature review. Curr Probl Diagn Radiol 2015; 44:383-5. [PMID: 25728501 DOI: 10.1067/j.cpradiol.2015.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 01/25/2015] [Indexed: 11/22/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder characterized by platelet dysfunction, oculocutaneous albinism, and life-threatening pulmonary fibrosis. There are 7 HPS genotypes, with type 1 being the most severe. Pulmonary involvement usually begins during the third or fourth decades of life, with fibrosis being the most common cause of death. We present imaging and histopathologic findings of a 16-year-old Saudi adolescent girl with HPS-related pulmonary fibrosis, emphasizing on the role of imaging in assessment of disease severity and prognosis.
Collapse
Affiliation(s)
- Mnahi Bin Saeedan
- Department of Radiology, King Faisal Specialty Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia; Department of Pathology, King Faisal Specialty Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Shamayel Faheem Mohammed
- Department of Radiology, King Faisal Specialty Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia; Department of Pathology, King Faisal Specialty Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Tan-Lucien H Mohammed
- Department of Pathology, King Faisal Specialty Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia; Department of Radiology, University of Florida College of Medicine, Gainesville, FL.
| |
Collapse
|
52
|
Bultema JJ, Boyle JA, Malenke PB, Martin FE, Dell'Angelica EC, Cheney RE, Di Pietro SM. Myosin vc interacts with Rab32 and Rab38 proteins and works in the biogenesis and secretion of melanosomes. J Biol Chem 2014; 289:33513-28. [PMID: 25324551 DOI: 10.1074/jbc.m114.578948] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class V myosins are actin-based motors with conserved functions in vesicle and organelle trafficking. Herein we report the discovery of a function for Myosin Vc in melanosome biogenesis as an effector of melanosome-associated Rab GTPases. We isolated Myosin Vc in a yeast two-hybrid screening for proteins that interact with Rab38, a Rab protein involved in the biogenesis of melanosomes and other lysosome-related organelles. Rab38 and its close homolog Rab32 bind to Myosin Vc but not to Myosin Va or Myosin Vb. Binding depends on residues in the switch II region of Rab32 and Rab38 and regions of the Myosin Vc coiled-coil tail domain. Myosin Vc also interacts with Rab7a and Rab8a but not with Rab11, Rab17, and Rab27. Although Myosin Vc is not particularly abundant on pigmented melanosomes, its knockdown in MNT-1 melanocytes caused defects in the trafficking of integral membrane proteins to melanosomes with substantially increased surface expression of Tyrp1, nearly complete loss of Tyrp2, and significant Vamp7 mislocalization. Knockdown of Myosin Vc in MNT-1 cells more than doubled the abundance of pigmented melanosomes but did not change the number of unpigmented melanosomes. Together the data demonstrate a novel role for Myosin Vc in melanosome biogenesis and secretion.
Collapse
Affiliation(s)
- Jarred J Bultema
- From the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, the Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, Colorado Springs, Colorado 80918
| | - Judith A Boyle
- From the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Parker B Malenke
- From the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Faye E Martin
- From the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Esteban C Dell'Angelica
- the Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, and
| | - Richard E Cheney
- the Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Santiago M Di Pietro
- From the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523,
| |
Collapse
|
53
|
Melanocytic galectin-3 is associated with tyrosinase-related protein-1 and pigment biosynthesis. J Invest Dermatol 2014; 135:202-211. [PMID: 25054620 PMCID: PMC4268419 DOI: 10.1038/jid.2014.315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 03/13/2014] [Accepted: 04/08/2014] [Indexed: 02/04/2023]
Abstract
Galectin-3 is a family member of the carbohydrate-binding proteins widely expressed by many cell types and exhibits multiple cellular functions. We demonstrate that melanocytes express galectin-3, which is predominantly localized to the cell body peripherally along the Golgi zone. Downregulation of galectin-3 in human melanocytes using short hairpin RNA technology resulted in the reduction of both melanin synthesis and expression/activity of tyrosinase-related protein-1 (Tyrp-1). In the cell body, galectin-3 colocalizes with melanosome-destined cargo, specifically tyrosinase and Tyrp-1. We studied melanocytes cultured from patients with forms of Hermansky-Pudlak syndrome (HPS) containing defects in trafficking steps governed by biogenesis of lysosome-related organelle complex-2 (BLOC-2) (HPS-5), BLOC-3 (HPS-1), and adaptin-3 (HPS-2). We found that galectin-3 expression mimicked the defective expression of the tyrosinase cargo in dendrites of HPS-5 melanocytes, but it was not altered in HPS-1 or HPS-2 melanocytes. In addition, galectin-3 colocalized predominantly with the HPS-5 component of BLOC-2 in normal human melanocytes. These data indicate that galectin-3 is a regulatory component in melanin synthesis affecting the expression of Tyrp-1.
Collapse
|
54
|
Brunet S, Sacher M. In Sickness and in Health: The Role of TRAPP and Associated Proteins in Disease. Traffic 2014; 15:803-18. [PMID: 24917561 DOI: 10.1111/tra.12183] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Stephanie Brunet
- Department of Biology; Concordia University; 7141 Sherbrooke Street West, SP-457.01 Montreal QC H4B 1R6 Canada
| | - Michael Sacher
- Department of Biology; Concordia University; 7141 Sherbrooke Street West, SP-457.01 Montreal QC H4B 1R6 Canada
- Department of Anatomy and Cell Biology; McGill University; 845 Sherbrooke Street West Montreal QC H3A 0G4 Canada
| |
Collapse
|
55
|
Wei AH, He X, Li W. Hypopigmentation in Hermansky-Pudlak syndrome. J Dermatol 2014; 40:325-9. [PMID: 23668540 DOI: 10.1111/1346-8138.12025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 09/20/2012] [Indexed: 11/28/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is characterized by oculocutaneous albinism, bleeding tendency, and ceroid deposition which often leads to death in midlife. Currently, nine genes have been identified as causative for HPS in humans. Hypopigmentation is the prominent feature of HPS, attributable to the disrupted biogenesis of melanosome, a member of the lysosome-related organelle (LRO) family. Current understanding of the cargo transporting mechanisms into the melanosomes expands our knowledge of the pathogenesis of hypopigmentation in HPS patients.
Collapse
Affiliation(s)
- Ai-Hua Wei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
56
|
Abstract
Hermansky-Pudlak Syndrome (HPS) is a set of genetically heterogeneous diseases caused by mutations in one of nine known HPS genes. HPS patients display oculocutaneous hypopigmentation and bleeding diathesis and, depending on the disease subtype, pulmonary fibrosis, congenital nystagmus, reduced visual acuity, and platelet aggregation deficiency. Mouse models for all known HPS subtypes have contributed greatly to our understanding of the disease, but many of the molecular and cellular mechanisms underlying HPS remain unknown. Here, we characterize ocular defects in the zebrafish (Danio rerio) mutant snow white (snw), which possesses a recessive, missense mutation in hps5 (hps5I76N). Melanosome biogenesis is disrupted in snw/hps5 mutants, resulting in hypopigmentation, a significant decrease in the number, size, and maturity of melanosomes, and the presence of ectopic multi-melanosome clusters throughout the mutant retina and choroid. snw/hps5I76N is the first Hps5 mutation identified within the N-terminal WD40 repeat protein-protein binding domain. Through in vitro coexpression assays, we demonstrate that Hps5I76N retains the ability to bind its protein complex partners, Hps3 and Hps6. Furthermore, while Hps5 and Hps6 stabilize each other's expression, this stabilization is disrupted by Hps5I76N. The snw/hps5I76N mutant provides a valuable resource for structure-function analyses of Hps5 and enables further elucidation of the molecular and cellular mechanisms underlying HPS.
Collapse
|
57
|
Primary immunodeficiencies: a rapidly evolving story. J Allergy Clin Immunol 2013; 131:314-23. [PMID: 23374262 DOI: 10.1016/j.jaci.2012.11.051] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/06/2012] [Accepted: 11/29/2012] [Indexed: 12/28/2022]
Abstract
The characterization of primary immunodeficiencies (PIDs) in human subjects is crucial for a better understanding of the biology of the immune response. New achievements in this field have been possible in light of collaborative studies; attention paid to new phenotypes, infectious and otherwise; improved immunologic techniques; and use of exome sequencing technology. The International Union of Immunological Societies Expert Committee on PIDs recently reported on the updated classification of PIDs. However, new PIDs are being discovered at an ever-increasing rate. A series of 19 novel primary defects of immunity that have been discovered after release of the International Union of Immunological Societies report are discussed here. These new findings highlight the molecular pathways that are associated with clinical phenotypes and suggest potential therapies for affected patients.
Collapse
|
58
|
John Peter AT, Lachmann J, Rana M, Bunge M, Cabrera M, Ungermann C. The BLOC-1 complex promotes endosomal maturation by recruiting the Rab5 GTPase-activating protein Msb3. ACTA ACUST UNITED AC 2013; 201:97-111. [PMID: 23547030 PMCID: PMC3613695 DOI: 10.1083/jcb.201210038] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Yeast BLOC-1 acts as both a Rab5–Vps21 effector and an adapter for the Rab-GAP Msb3 to promote endosomal maturation. Membrane microcompartments of the early endosomes serve as a sorting and signaling platform, where receptors are either recycled back to the plasma membrane or forwarded to the lysosome for destruction. In metazoan cells, three complexes, termed BLOC-1 to -3, mediate protein sorting from the early endosome to lysosomes and lysosome-related organelles. We now demonstrate that BLOC-1 is an endosomal Rab-GAP (GTPase-activating protein) adapter complex in yeast. The yeast BLOC-1 consisted of six subunits, which localized interdependently to the endosomes in a Rab5/Vps21-dependent manner. In the absence of BLOC-1 subunits, the balance between recycling and degradation of selected cargoes was impaired. Additionally, our data show that BLOC-1 is both a Vps21 effector and an adapter for its GAP Msb3. BLOC-1 and Msb3 interacted in vivo, and both mutants resulted in a redistribution of active Vps21 to the vacuole surface. We thus conclude that BLOC-1 controls the lifetime of active Rab5/Vps21 and thus endosomal maturation along the endocytic pathway.
Collapse
Affiliation(s)
- Arun T John Peter
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, 49076 Osnabrück, Germany
| | | | | | | | | | | |
Collapse
|
59
|
Syntaxin-3 is required for melanosomal localization of Tyrp1 in melanocytes. J Invest Dermatol 2013; 133:2237-46. [PMID: 23549422 DOI: 10.1038/jid.2013.156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/28/2013] [Accepted: 03/11/2013] [Indexed: 11/08/2022]
Abstract
Melanogenic enzymes are transported by vesicular/membrane trafficking to immature melanosomes in melanocytes where they catalyze the synthesis of melanin pigments. Although several factors involved in melanogenic enzyme trafficking have been identified in the past decade, involvement of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which generally mediate membrane fusion, on melanosomes in the process of melanogenic enzyme trafficking has never been investigated. In this study we identified syntaxin-3, which was originally described as a target SNARE protein at the plasma membrane, as a melanosome-resident protein and investigated whether syntaxin-3 is involved in the trafficking of the melanogenic enzyme Tyrp1 (tyrosinase-related protein 1) in mouse melanocytes. The results showed that knockdown of endogenous syntaxin-3 protein in melanocytes caused a dramatic reduction in Tyrp1 signals, especially from peripheral melanosomes, presumably as a result of lysosomal degradation of Tyrp1. They also showed that syntaxin-3 interacts with another target SNARE SNAP23 (synaptosome-associated protein of 23 kDa) and with vesicle SNARE VAMP7 (vesicle-associated membrane protein 7), which has been shown to be localized at Tyrp1-containing vesicles/organelles. These findings suggested that the SNARE machinery composed of VAMP7 on Tyrp1-containing vesicles and syntaxin-3 and SNAP23 on melanosomes regulates Tyrp1 trafficking to the melanosome in melanocytes.
Collapse
|
60
|
Chauhan S, Goodwin JG, Chauhan S, Manyam G, Wang J, Kamat AM, Boyd DD. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol Cell 2013; 50:16-28. [PMID: 23434374 DOI: 10.1016/j.molcel.2013.01.024] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 12/05/2012] [Accepted: 01/18/2013] [Indexed: 12/31/2022]
Abstract
Autophagy constitutes a major cell-protective mechanism that eliminates damaged components and maintains energy homeostasis via recycling nutrients under normal/stressed conditions. Although the core components of autophagy have been well studied, regulation of autophagy at the transcriptional level is poorly understood. Herein, we establish ZKSCAN3, a zinc finger family DNA-binding protein, as a transcriptional repressor of autophagy. Silencing of ZKSCAN3 induced autophagy and increased lysosome biogenesis. Importantly, we show that ZKSCAN3 represses transcription of a large gene set (>60) integral to, or regulatory for, autophagy and lysosome biogenesis/function and that a subset of these genes, including Map1lC3b and Wipi2, represent direct targets. Interestingly, ZKSCAN3 and TFEB are oppositely regulated by starvation and in turn oppositely regulate lysosomal biogenesis and autophagy, suggesting that they act in conjunction. Altogether, our study uncovers an autophagy master switch regulating the expression of a transcriptional network of genes integral to autophagy and lysosome biogenesis/function.
Collapse
Affiliation(s)
- Santosh Chauhan
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Wang L, Kiuchi T, Fujii T, Daimon T, Li M, Banno Y, Katsuma S, Shimada T. Reduced expression of the dysbindin-like gene in the Bombyx mori ov mutant exhibiting mottled translucency of the larval skin. Genome 2013; 56:101-8. [DOI: 10.1139/gen-2012-0127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ov (mottled translucent of Var) mutant, an oily mutant of Bombyx mori, exhibits mottled translucent skin with a varying degree of transparency among individuals. By linkage analysis of 2112 backcross individuals using polymorphic DNA markers, we successfully mapped a 179-kb region of chromosome 20 responsible for the ov phenotype. This region contains nine predicted genes. We compared the mRNA expression of these nine genes between the wild type and mutants and found that the expression of one of them, Bmdysb, was strikingly decreased in the epidermis of ov as well as its allelomorph, ovp. Moreover, its expression level was well correlated with the degree of transparency among individuals. Bmdysb was homologous to DTNBP1 encoding human dysbindin, a subunit of the biogenesis of lysosome-related organelles complex-1. Our results suggest that the translucent skin may be due to repression of Bmdysb in the ov mutants and that Bmdysb plays an important role in the formation and accumulation of urate granules in the silkworm epidermis.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Tsuguru Fujii
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Takaaki Daimon
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Muwang Li
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Yutaka Banno
- Institute of Genetic Resources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, Japan
| |
Collapse
|
62
|
Lowe GC, Sánchez Guiu I, Chapman O, Rivera J, Lordkipanidzé M, Dovlatova N, Wilde J, Watson SP, Morgan NV. Microsatellite markers as a rapid approach for autozygosity mapping in Hermansky-Pudlak syndrome: identification of the second HPS7 mutation in a patient presenting late in life. Thromb Haemost 2013; 109:766-8. [PMID: 23364359 DOI: 10.1160/th12-11-0876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/17/2013] [Indexed: 11/05/2022]
|
63
|
Zhang Q, Li Y, Zhang L, Yang N, Meng J, Zuo P, Zhang Y, Chen J, Wang L, Gao X, Zhu D. E3 ubiquitin ligase RNF13 involves spatial learning and assembly of the SNARE complex. Cell Mol Life Sci 2013; 70:153-65. [PMID: 22890573 PMCID: PMC11113611 DOI: 10.1007/s00018-012-1103-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 07/01/2012] [Accepted: 07/19/2012] [Indexed: 11/26/2022]
Abstract
Changes in the structure and number of synapses modulate learning, memory and cognitive disorders. Ubiquitin-mediated protein modification is a key mechanism for regulating synaptic activity, though the precise control of this process remains poorly understood. RING finger protein 13 (RNF13) is a recently identified E3 ubiquitin ligase, and its in vivo function remains completely unknown. We show here that genetic deletion of RNF13 in mice leads to a significant deficit in spatial learning as determined by the Morris water maze test and Y-maze learning test. At the ultrastructral level, the synaptic vesicle density was decreased and the area of the active zone was increased at hippocampal synapses of RNF13-null mice compared with those of wild-type littermates. We found no change in the levels of SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) complex proteins in the hippocampus of RNF13-null mice, but impaired SNARE complex assembly. RNF13 directly interacted with snapin, a SNAP-25-interacting protein. Interestingly, snapin was ubiquitinated by RNF13 via the lysine-29 conjugated polyubiquitin chain, which in turn promoted the association of snapin with SNAP-25. Consistently, we found an attenuated interaction between snapin and SNAP-25 in the RNF13-null mice. Therefore, these results suggest that RNF13 is involved in the regulation of the SNARE complex, which thereby controls synaptic function.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| | - Yanfeng Li
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| | - Lei Zhang
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| | - Jiao Meng
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| | - Pingping Zuo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| | - Yong Zhang
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, 100730 China
| | - Li Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| | - Xiang Gao
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Research, Nanjing University, Nanjing, 210061 China
| | - Dahai Zhu
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| |
Collapse
|
64
|
Wei AH, Li W. Hermansky-Pudlak syndrome: pigmentary and non-pigmentary defects and their pathogenesis. Pigment Cell Melanoma Res 2012; 26:176-92. [DOI: 10.1111/pcmr.12051] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
Affiliation(s)
| | - Wei Li
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics & Developmental Biology; Chinese Academy of Sciences; Beijing; China
| |
Collapse
|
65
|
Fujii T, Banno Y, Abe H, Katsuma S, Shimada T. A homolog of the human Hermansky–Pudluck syndrome-5 (HPS5) gene is responsible for the oa larval translucent mutants in the silkworm, Bombyx mori. Genetica 2012; 140:463-8. [DOI: 10.1007/s10709-012-9694-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
|
66
|
Bultema JJ, Di Pietro SM. Cell type-specific Rab32 and Rab38 cooperate with the ubiquitous lysosome biogenesis machinery to synthesize specialized lysosome-related organelles. Small GTPases 2012; 4:16-21. [PMID: 23247405 PMCID: PMC3620096 DOI: 10.4161/sgtp.22349] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lysosome-related organelles (LROs) exist in specialized cells to serve specific functions and typically co-exist with conventional lysosomes. The biogenesis of LROs is known to utilize much of the common protein machinery used in the transport of integral membrane proteins to lysosomes. Consequently, an outstanding question in the field has been how specific cargoes are trafficked to LROs instead of lysosomes, particularly in cells that simultaneously produce both organelles. One LRO, the melanosome, is responsible for the production of the pigment melanin and has long been used as a model system to study the formation of specialized LROs. Importantly, melanocytes, where melanosomes are synthesized, are a cell type that also produces lysosomes and must therefore segregate traffic to each organelle. Two small GTPases, Rab32 and Rab38, are key proteins in the biogenesis of melanosomes and were recently shown to redirect the ubiquitous machinery—BLOC-2, AP-1 and AP-3—to traffic specialized cargoes to melanosomes in melanocytes. In addition, the study revealed Rab32 and Rab38 have both redundant and unique roles in the trafficking of melanin-producing enzymes and overall melanosome biogenesis. Here we review these findings, integrate them with previous knowledge on melanosome biogenesis and discuss their implications for biogenesis of other LROs.
Collapse
Affiliation(s)
- Jarred J Bultema
- Department of Biochemistry and Molecular Biology; Colorado State University; Fort Collins, CO USA
| | | |
Collapse
|
67
|
Spanò S, Galán JE. A Rab32-dependent pathway contributes to Salmonella typhi host restriction. Science 2012; 338:960-3. [PMID: 23162001 DOI: 10.1126/science.1229224] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Unlike other Salmonellae, the intracellular bacterial human pathogen Salmonella Typhi exhibits strict host specificity. The molecular bases for this restriction are unknown. Here we found that the expression of a single type III secretion system effector protein from broad-host Salmonella Typhimurium allowed Salmonella Typhi to survive and replicate within macrophages and tissues from mice, a nonpermissive host. This effector proteolytically targeted Rab32, which controls traffic to lysosome-related organelles in conjunction with components of the biogenesis of lysosome-related organelle complexes (BLOCs). RNA interference-mediated depletion of Rab32 or of an essential component of a BLOC complex was sufficient to allow S. Typhi to survive within mouse macrophages. Furthermore, S. Typhi was able to survive in macrophages from mice defective in BLOC components.
Collapse
Affiliation(s)
- Stefania Spanò
- Department of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | |
Collapse
|
68
|
Hermann GJ, Scavarda E, Weis AM, Saxton DS, Thomas LL, Salesky R, Somhegyi H, Curtin TP, Barrett A, Foster OK, Vine A, Erlich K, Kwan E, Rabbitts BM, Warren K. C. elegans BLOC-1 functions in trafficking to lysosome-related gut granules. PLoS One 2012; 7:e43043. [PMID: 22916203 PMCID: PMC3419718 DOI: 10.1371/journal.pone.0043043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/16/2012] [Indexed: 12/18/2022] Open
Abstract
The human disease Hermansky-Pudlak syndrome results from defective biogenesis of lysosome-related organelles (LROs) and can be caused by mutations in subunits of the BLOC-1 complex. Here we show that C. elegans glo-2 and snpn-1, despite relatively low levels of amino acid identity, encode Pallidin and Snapin BLOC-1 subunit homologues, respectively. BLOC-1 subunit interactions involving Pallidin and Snapin were conserved for GLO-2 and SNPN-1. Mutations in glo-2 and snpn-1,or RNAi targeting 5 other BLOC-1 subunit homologues in a genetic background sensitized for glo-2 function, led to defects in the biogenesis of lysosome-related gut granules. These results indicate that the BLOC-1 complex is conserved in C. elegans. To address the function of C. elegans BLOC-1, we assessed the intracellular sorting of CDF-2::GFP, LMP-1, and PGP-2 to gut granules. We validated their utility by analyzing their mislocalization in intestinal cells lacking the function of AP-3, which participates in an evolutionarily conserved sorting pathway to LROs. BLOC-1(−) intestinal cells missorted gut granule cargo to the plasma membrane and conventional lysosomes and did not have obviously altered function or morphology of organelles composing the conventional lysosome protein sorting pathway. Double mutant analysis and comparison of AP-3(−) and BLOC-1(−) phenotypes revealed that BLOC-1 has some functions independent of the AP-3 adaptor complex in trafficking to gut granules. We discuss similarities and differences of BLOC-1 activity in the biogenesis of gut granules as compared to mammalian melanosomes, where BLOC-1 has been most extensively studied for its role in sorting to LROs. Our work opens up the opportunity to address the function of this poorly understood complex in cell and organismal physiology using the genetic approaches available in C. elegans.
Collapse
Affiliation(s)
- Greg J Hermann
- Department of Biology, Lewis and Clark College, Portland, Oregon, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Sitaram A, Marks MS. Mechanisms of protein delivery to melanosomes in pigment cells. Physiology (Bethesda) 2012; 27:85-99. [PMID: 22505665 DOI: 10.1152/physiol.00043.2011] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vertebrate pigment cells in the eye and skin are useful models for cell types that use specialized endosomal trafficking pathways to partition cargo proteins to unique lysosome-related organelles such as melanosomes. This review describes current models of protein trafficking required for melanosome biogenesis in mammalian melanocytes.
Collapse
Affiliation(s)
- Anand Sitaram
- Cell and Molecular Biology Graduate Group, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
70
|
Bultema JJ, Ambrosio AL, Burek CL, Di Pietro SM. BLOC-2, AP-3, and AP-1 proteins function in concert with Rab38 and Rab32 proteins to mediate protein trafficking to lysosome-related organelles. J Biol Chem 2012; 287:19550-63. [PMID: 22511774 DOI: 10.1074/jbc.m112.351908] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysosome-related organelles (LROs) are synthesized in specialized cell types where they largely coexist with conventional lysosomes. Most of the known cellular transport machinery involved in biogenesis are ubiquitously expressed and shared between lysosomes and LROs. Examples of common components are the adaptor protein complex-3 (AP-3) and biogenesis of lysosome-related organelle complex (BLOC)-2. These protein complexes control sorting and transport of newly synthesized integral membrane proteins from early endosomes to both lysosomes and LROs such as the melanosome. However, it is unknown what factors cooperate with the ubiquitous transport machinery to mediate transport to LROs in specialized cells. Focusing on the melanosome, we show that the ubiquitous machinery interacts with cell type-specific Rab proteins, Rab38 and Rab32, to facilitate transport to the maturing organelle. BLOC-2, AP-3, and AP-1 coimmunoprecipitated with Rab38 and Rab32 from MNT-1 melanocytic cell extracts. BLOC-2, AP-3, AP-1, and clathrin partially colocalized with Rab38 and Rab32 by confocal immunofluorescence microscopy in MNT-1 cells. Rab38- and Rab32-deficient MNT-1 cells displayed abnormal trafficking and steady state levels of known cargoes of the BLOC-2, AP-3, and AP-1 pathways, the melanin-synthesizing enzymes tyrosinase and tyrosinase-related protein-1. These observations support the idea that Rab38 and Rab32 are the specific factors that direct the ubiquitous machinery to mediate transport from early endosomes to maturing LROs. Additionally, analysis of tyrosinase-related protein-2 and total melanin production indicates that Rab32 has unique functions that cannot be carried out by Rab38 in melanosome biogenesis.
Collapse
Affiliation(s)
- Jarred J Bultema
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
71
|
Ohbayashi N, Fukuda M. Role of Rab family GTPases and their effectors in melanosomal logistics. J Biochem 2012; 151:343-51. [DOI: 10.1093/jb/mvs009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
72
|
Lee HH, Nemecek D, Schindler C, Smith WJ, Ghirlando R, Steven AC, Bonifacino JS, Hurley JH. Assembly and architecture of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J Biol Chem 2011; 287:5882-90. [PMID: 22203680 DOI: 10.1074/jbc.m111.325746] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BLOC-1 (biogenesis of lysosome-related organelles complex-1) is critical for melanosome biogenesis and has also been implicated in neurological function and disease. We show that BLOC-1 is an elongated complex that contains one copy each of the eight subunits pallidin, Cappuccino, dysbindin, Snapin, Muted, BLOS1, BLOS2, and BLOS3. The complex appears as a linear chain of eight globular domains, ∼300 Å long and ∼30 Å in diameter. The individual domains are flexibly connected such that the linear chain undergoes bending by as much as 45°. Two stable subcomplexes were defined, pallidin-Cappuccino-BLOS1 and dysbindin-Snapin-BLOS2. Both subcomplexes are 1:1:1 heterotrimers that form extended structures as indicated by their hydrodynamic properties. The two subcomplexes appear to constitute flexible units within the larger BLOC-1 chain, an arrangement conducive to simultaneous interactions with multiple BLOC-1 partners in the course of tubular endosome biogenesis and sorting.
Collapse
Affiliation(s)
- Hyung Ho Lee
- Department of Bio and Nano Chemistry, Kookmin University, Seoul 136-702, Korea
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Theofilopoulos AN, Kono DH, Beutler B, Baccala R. Intracellular nucleic acid sensors and autoimmunity. J Interferon Cytokine Res 2011; 31:867-86. [PMID: 22029446 DOI: 10.1089/jir.2011.0092] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A collection of molecular sensors has been defined by studies in the last decade that can recognize a diverse array of pathogens and initiate protective immune and inflammatory responses. However, if the molecular signatures recognized are shared by both foreign and self-molecules, as is the case of nucleic acids, then the responses initiated by these sensors may have deleterious consequences. Notably, this adverse occurrence may be of primary importance in autoimmune disease pathogenesis. In this case, microbe-induced damage or mishandled physiologic processes could lead to the generation of microparticles containing self-nucleic acids. These particles may inappropriately gain access to the cytosol or endolysosomes and, hence, engage resident RNA and DNA sensors. Evidence, as reviewed here, strongly indicates that these sensors are primary contributors to autoimmune disease pathogenesis, spearheading efforts toward development of novel therapeutics for these disorders.
Collapse
Affiliation(s)
- Argyrios N Theofilopoulos
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92137, USA.
| | | | | | | |
Collapse
|
74
|
Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K, Brummelkamp TR. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 2011; 477:340-3. [PMID: 21866103 PMCID: PMC3175325 DOI: 10.1038/nature10348] [Citation(s) in RCA: 1011] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 06/30/2011] [Indexed: 12/18/2022]
Affiliation(s)
- Jan E Carette
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Clinical, molecular, and cellular features of non-Puerto Rican Hermansky-Pudlak syndrome patients of Hispanic descent. J Invest Dermatol 2011; 131:2394-400. [PMID: 21833017 PMCID: PMC3213276 DOI: 10.1038/jid.2011.228] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hermansky-Pudlak syndrome is an autosomal recessive condition characterized by a bleeding diathesis and hypopigmentation of the skin, hair and eyes. Some HPS patients develop other complications such as granulomatous colitis and/or a fatal pulmonary fibrosis. Eight genes have been associated with the condition, resulting in subtypes HPS-1 through HPS-8. The HPS gene products are involved in the biogenesis of specialized lysosome-related organelles such as melanosomes, platelet delta granules and others. HPS1 and HPS4 form a stable complex named BLOC-3, and patients with BLOC-3 or AP-3 deficiency develop pulmonary fibrosis. Therefore, it is important to subtype each HPS patient. HPS type 1 (HPS-1) occurs frequently on the island Puerto Rico due to a founder mutation. Here, we describe seven mutations, six of which are previously unreported, in the HPS1, HPS4 and HPS5 genes among patients of Mexican, Uruguayan, Honduran, Cuban, Venezuelan and Salvadoran ancestries. Our findings demonstrate that the diagnosis of HPS should be considered in Hispanic patients with oculocutaneous albinism and bleeding symptoms. Moreover, such patients should not be assumed to have the HPS-1 subtype typical of northwest Puerto Rican patients. We recommend molecular HPS subtyping in such cases, since it may have significant implications for prognosis and intervention.
Collapse
|
76
|
Zhang L, Yu K, Robert KW, DeBolt KM, Hong N, Tao JQ, Fukuda M, Fisher AB, Huang S. Rab38 targets to lamellar bodies and normalizes their sizes in lung alveolar type II epithelial cells. Am J Physiol Lung Cell Mol Physiol 2011; 301:L461-77. [PMID: 21764986 DOI: 10.1152/ajplung.00056.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rab38 is a rat Hermansky-Pudlak syndrome gene that plays an important role in surfactant homeostasis in alveolar type II (ATII) pneumocytes. We examined Rab38 function in regulating lamellar body (LB) morphology in ATII cells. Quantitative electron microscopy revealed that LBs in ATII cells were ∼77% larger in Rab38-null fawn-hooded hypertension (FHH) than control Sprague-Dawley (SD) rats. Rab38 protein expression was restricted in lung epithelial cells but was not found in primary endothelial cells. In SD ATII cells, Rab38 protein level gradually declined during 5 days in culture. Importantly, endogenous Rab38 was present in LB fractions purified from SD rat lungs, and transiently expressed enhanced green fluorescent protein (EGFP)-tagged Rab38 labeled only the limiting membranes of a subpopulation (∼30%) of LBs in cultured ATII cells. This selective targeting was abolished by point mutations to EGFP-Rab38 and was not shared by Rab7 and Rab4b, which also function in the ATII cells. Using confocal microscopy, we established a method for quantitative evaluation of the enlarged LB phenotype temporally preserved in cultured FHH ATII cells. A direct causal relationship was established when the enlarged LB phenotype was reserved and then rescued by transiently reexpressed EGFP-Rab38 in cultured FHH ATII cells. This rescuing effect was associated with dynamic EGFP-Rab38 targeting to and on LB limiting membranes. We conclude that Rab38 plays an indispensible role in maintaining LB morphology and surfactant homeostasis in ATII pneumocytes.
Collapse
Affiliation(s)
- Linghui Zhang
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104-6068, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Hayes MJ, Bryon K, Satkurunathan J, Levine TP. Yeast homologues of three BLOC-1 subunits highlight KxDL proteins as conserved interactors of BLOC-1. Traffic 2011; 12:260-8. [PMID: 21159114 DOI: 10.1111/j.1600-0854.2010.01151.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Biogenesis of lysosome-related organelle complex-1 (BLOC-1) is one of the four multi-subunit complexes implicated in sorting cargo to lysosome-related organelles, as loss of function of any of these complexes causes Hermansky-Pudlak syndrome. Eight subunits of BLOC-1 interact with each other and with many other proteins. Identifying new interactors of BLOC-1 will increase understanding of its mechanism of action, and studies in model organisms are useful for finding such interactors. PSI-BLAST searches identify homologues in diverse model organisms, but there are significant gaps for BLOC-1, with none of its eight subunits found in Saccharomyces cerevisiae. Here we use more sensitive searches to identify distant homologues for three BLOC-1 subunits in S. cerevisiae: Blos1, snapin and cappuccino (cno). Published data on protein interactions show that in yeast these are likely to form a complex with three other proteins. One of these is the yeast homologue of the previously uncharacterized KxDL protein, which also interacts with Blos1 and cno in higher eukaryotes, suggesting that KxDL proteins are key interactors with BLOC-1.
Collapse
Affiliation(s)
- Matthew J Hayes
- Department of Cell Biology, UCL Institute of Ophthalmology, Bath Street, London EC1V9EL, UK
| | | | | | | |
Collapse
|
78
|
Hislop JN, von Zastrow M. Role of ubiquitination in endocytic trafficking of G-protein-coupled receptors. Traffic 2010; 12:137-48. [PMID: 20854416 DOI: 10.1111/j.1600-0854.2010.01121.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lysyl ubiquitination has long been known to target cytoplasmic proteins for proteasomal degradation, and there is now extensive evidence that ubiquitination functions in vacuolar/lysosomal targeting of membrane proteins from both the biosynthetic and endocytic pathways. G-protein-coupled receptors (GPCRs) represent the largest and most diverse family of membrane proteins, whose function is of fundamental importance both physiologically and therapeutically. In this review, we discuss the role of ubiquitination in the vacuolar/lysosomal downregulation of GPCRs through the endocytic pathway, with a primary focus on lysosomal trafficking in mammalian cells. We will summarize evidence indicating that mammalian GPCRs are regulated by ubiquitin-dependent mechanisms conserved in budding yeast, and then consider evidence for additional ubiquitin-dependent and -independent regulation that may be specific to animal cells.
Collapse
Affiliation(s)
- James N Hislop
- Department of Psychiatry, Department of Cellular and Molecular Pharmacology, UCSF School of Medicine, San Francisco, CA 94158-2140, USA
| | | |
Collapse
|
79
|
Monfregola J, Napolitano G, D'Urso M, Lappalainen P, Ursini MV. Functional characterization of Wiskott-Aldrich syndrome protein and scar homolog (WASH), a bi-modular nucleation-promoting factor able to interact with biogenesis of lysosome-related organelle subunit 2 (BLOS2) and gamma-tubulin. J Biol Chem 2010; 285:16951-7. [PMID: 20308062 PMCID: PMC2878011 DOI: 10.1074/jbc.m109.078501] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 03/17/2010] [Indexed: 11/06/2022] Open
Abstract
The Arp2/3 complex is essential for actin filament nucleation in a variety of cellular processes. The activation of the Arp2/3 complex is mediated by nucleation-promoting factors, such as the Wiskott-Aldrich syndrome family proteins, which share a WCA (WH2 domain, central region, acidic region) catalytic module at the C-terminal region, required for Arp2/3 activation, but diverge at the N-terminal region, required for binding to specific activators. Here, we report the characterization of WASH, a new member of the WAS family that has nucleation-promoting factor activity and recently has been demonstrated to play a role in endosomal sorting. We found that overexpression of the WASH-WCA domain induced disruption of the actin cytoskeleton, whereas overexpression of full-length WASH in mammalian cells did not affect stress fiber organization. Furthermore, our analysis has revealed that nerve growth factor treatment of PC12 cells overexpressing full-length WASH leads to disruption of the actin cytoskeleton. We have also found that WASH interacts through its N-terminal region with BLOS2, a centrosomal protein belonging to the BLOC-1 complex that functions as a scaffolding factor in the biogenesis of lysosome-related organelles. In addition to BLOS2, WASH also interacts with centrosomal gamma-tubulin and with pallidin, an additional component of the BLOC-1 complex. Collectively, our data propose that WASH is a bimodular protein in which the C terminus is involved in Arp2/3-mediated actin nucleation, whereas the N-terminal portion is required for its regulation and localization in the cells. Moreover, our data suggest that WASH is also a component of the BLOC-1 complex that is associated with the centrosomes.
Collapse
Affiliation(s)
- Jlenia Monfregola
- From the Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, 80131 Naples, Italy and
| | - Gennaro Napolitano
- From the Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, 80131 Naples, Italy and
| | - Michele D'Urso
- From the Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, 80131 Naples, Italy and
| | - Pekka Lappalainen
- the Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
| | - Matilde Valeria Ursini
- From the Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, 80131 Naples, Italy and
| |
Collapse
|
80
|
Mahavadi P, Korfei M, Henneke I, Liebisch G, Schmitz G, Gochuico BR, Markart P, Bellusci S, Seeger W, Ruppert C, Guenther A. Epithelial stress and apoptosis underlie Hermansky-Pudlak syndrome-associated interstitial pneumonia. Am J Respir Crit Care Med 2010; 182:207-19. [PMID: 20378731 DOI: 10.1164/rccm.200909-1414oc] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The molecular mechanisms underlying Hermansky-Pudlak syndrome-associated interstitial pneumonia (HPSIP) are poorly understood but, as in idiopathic pulmonary fibrosis, may be linked to chronic alveolar epithelial type II cell (AECII) injury. OBJECTIVES We studied the development of fibrosis and the role of AECII injury in various murine models of HPS. METHODS HPS1, HPS2, and HPS6 monomutant mice, and HPS1/2 and HPS1/6 double-mutant and genetic background mice, were killed at 3 and 9 months of age. Quantitative morphometry was undertaken in lung sections stained with hemalaun-eosin. The extent of lung fibrosis was assessed by trichrome staining and hydroxyproline measurement. Surfactant lipids were analyzed by electrospray ionization mass spectrometry. Surfactant proteins, apoptosis, and lysosomal and endoplasmic reticulum stress markers were studied by Western blotting and immunohistochemistry. Cell proliferation was measured by water-soluble tetrazolium salt-1 and bromodeoxyuridine assays. MEASUREMENTS AND MAIN RESULTS Spontaneous and slowly progressive HPSIP was observed in HPS1/2 double mutants, but not in other HPS mutants, with subpleural onset at 3 months and full-blown fibrosis at 9 months. In these mice, extensive surfactant abnormalities were encountered in AECII and were paralleled by early lysosomal stress (cathepsin D induction), late endoplasmic reticulum stress (activating transcription factor-4 [ATF4], C/EBP homologous protein [CHOP] induction), and marked apoptosis. These findings were fully corroborated in human HPSIP. In addition, cathepsin D overexpression resulted in apoptosis of MLE-12 cells and increased proliferation of NIH 3T3 fibroblasts incubated with conditioned medium of the transfected cells. CONCLUSIONS Extensively impaired surfactant trafficking and secretion underlie lysosomal and endoplasmic reticulum stress with apoptosis of AECII in HPSIP, thereby causing the development of HPSIP.
Collapse
Affiliation(s)
- Poornima Mahavadi
- Department of Internal Medicine II, University of Giessen Lung Center (UGLC), Klinikstrasse 36, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Bergen SE, Fanous AH, Kuo PH, Wormley BK, O’Neill FA, Walsh D, Riley BP, Kendler KS. No association of dysbindin with symptom factors of schizophrenia in an Irish case-control sample. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:700-705. [PMID: 19760674 PMCID: PMC2859300 DOI: 10.1002/ajmg.b.31029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Robust associations between the dysbindin gene (DTNBP1) and schizophrenia have been demonstrated in many but not all samples, and evidence that this gene particularly predisposes to negative symptoms in this illness has been presented. The current study sought to replicate the previously reported negative symptom associations in an Irish case-control sample. Association between dysbindin and schizophrenia has been established in this cohort, and a factor analysis of the assessed symptoms yielded three factors, Positive, Negative, and Schneiderian. The sequential addition method was applied using UNPHASED to assess the relationship between these symptom factors and the high-risk haplotype. No associations were detected for any of the symptom factors indicating that the dysbindin risk haplotype does not predispose to a particular group of symptoms in this sample. Several possibilities, such as differing risk haplotypes, may explain this finding.
Collapse
Affiliation(s)
- Sarah E. Bergen
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia,Correspondence to: Sarah E. Bergen, Department of Human Genetics, Medical College of Virginia, Virginia Commonwealth University, Box 980126, Richmond, VA 23219.
| | - Ayman H. Fanous
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia,Washington VA Medical Center, Washington, District of Columbia,Department of Psychiatry, Georgetown University Medical Center, Washington, District of Columbia
| | - Po-Hsiu Kuo
- Department of Public Health, National Taiwan University, Taipei, Taiwan
| | - Brandon K. Wormley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | | | | | - Brien P. Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - Kenneth S. Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
82
|
Kloer DP, Rojas R, Ivan V, Moriyama K, van Vlijmen T, Murthy N, Ghirlando R, van der Sluijs P, Hurley JH, Bonifacino JS. Assembly of the biogenesis of lysosome-related organelles complex-3 (BLOC-3) and its interaction with Rab9. J Biol Chem 2010; 285:7794-7804. [PMID: 20048159 PMCID: PMC2844223 DOI: 10.1074/jbc.m109.069088] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/24/2009] [Indexed: 12/30/2022] Open
Abstract
The Hermansky-Pudlak syndrome (HPS) is a genetic hypopigmentation and bleeding disorder caused by defective biogenesis of lysosome-related organelles (LROs) such as melanosomes and platelet dense bodies. HPS arises from mutations in any of 8 genes in humans and 16 genes in mice. Two of these genes, HPS1 and HPS4, encode components of the biogenesis of lysosome-related organelles complex-3 (BLOC-3). Herein we show that recombinant HPS1-HPS4 produced in insect cells can be efficiently isolated as a 1:1 heterodimer. Analytical ultracentrifugation reveals that this complex has a molecular mass of 146 kDa, equivalent to that of the native complex and to the sum of the predicted molecular masses of HPS1 and HPS4. This indicates that HPS1 and HPS4 interact directly in the absence of any other protein as part of BLOC-3. Limited proteolysis and deletion analyses show that both subunits interact with one another throughout most of their lengths with the sole exception of a long, unstructured loop in the central part of HPS4. An interaction screen reveals a specific and strong interaction of BLOC-3 with the GTP-bound form of the endosomal GTPase, Rab9. This interaction is mediated by HPS4 and the switch I and II regions of Rab9. These characteristics indicate that BLOC-3 might function as a Rab9 effector in the biogenesis of LROs.
Collapse
Affiliation(s)
| | - Raul Rojas
- the Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Viorica Ivan
- the Department of Cell Biology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Kengo Moriyama
- the Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Thijs van Vlijmen
- the Department of Cell Biology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Namita Murthy
- the Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | | | - Peter van der Sluijs
- the Department of Cell Biology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - Juan S. Bonifacino
- the Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
83
|
Vachtenheim J, Borovanský J. “Transcription physiology” of pigment formation in melanocytes: central role of MITF. Exp Dermatol 2010; 19:617-27. [PMID: 20201954 DOI: 10.1111/j.1600-0625.2009.01053.x] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
84
|
Cheli VT, Daniels RW, Godoy R, Hoyle DJ, Kandachar V, Starcevic M, Martinez-Agosto JA, Poole S, DiAntonio A, Lloyd VK, Chang HC, Krantz DE, Dell'Angelica EC. Genetic modifiers of abnormal organelle biogenesis in a Drosophila model of BLOC-1 deficiency. Hum Mol Genet 2009; 19:861-78. [PMID: 20015953 DOI: 10.1093/hmg/ddp555] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biogenesis of lysosome-related organelles complex 1 (BLOC-1) is a protein complex formed by the products of eight distinct genes. Loss-of-function mutations in two of these genes, DTNBP1 and BLOC1S3, cause Hermansky-Pudlak syndrome, a human disorder characterized by defective biogenesis of lysosome-related organelles. In addition, haplotype variants within the same two genes have been postulated to increase the risk of developing schizophrenia. However, the molecular function of BLOC-1 remains unknown. Here, we have generated a fly model of BLOC-1 deficiency. Mutant flies lacking the conserved Blos1 subunit displayed eye pigmentation defects due to abnormal pigment granules, which are lysosome-related organelles, as well as abnormal glutamatergic transmission and behavior. Epistatic analyses revealed that BLOC-1 function in pigment granule biogenesis requires the activities of BLOC-2 and a putative Rab guanine-nucleotide-exchange factor named Claret. The eye pigmentation phenotype was modified by misexpression of proteins involved in intracellular protein trafficking; in particular, the phenotype was partially ameliorated by Rab11 and strongly enhanced by the clathrin-disassembly factor, Auxilin. These observations validate Drosophila melanogaster as a powerful model for the study of BLOC-1 function and its interactions with modifier genes.
Collapse
Affiliation(s)
- Verónica T Cheli
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Delevoye C, Hurbain I, Tenza D, Sibarita JB, Uzan-Gafsou S, Ohno H, Geerts WJC, Verkleij AJ, Salamero J, Marks MS, Raposo G. AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis. ACTA ACUST UNITED AC 2009; 187:247-64. [PMID: 19841138 PMCID: PMC2768840 DOI: 10.1083/jcb.200907122] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Specialized cell types exploit endosomal trafficking to deliver protein cargoes to cell type-specific lysosome-related organelles (LROs), but how endosomes are specified for this function is not known. In this study, we show that the clathrin adaptor AP-1 and the kinesin motor KIF13A together create peripheral recycling endosomal subdomains in melanocytes required for cargo delivery to maturing melanosomes. In cells depleted of AP-1 or KIF13A, a subpopulation of recycling endosomes redistributes to pericentriolar clusters, resulting in sequestration of melanosomal enzymes like Tyrp1 in vacuolar endosomes and consequent inhibition of melanin synthesis and melanosome maturation. Immunocytochemistry, live cell imaging, and electron tomography reveal AP-1- and KIF13A-dependent dynamic close appositions and continuities between peripheral endosomal tubules and melanosomes. Our results reveal that LRO protein sorting is coupled to cell type-specific positioning of endosomes that facilitate endosome-LRO contacts and are required for organelle maturation.
Collapse
Affiliation(s)
- Cédric Delevoye
- Structure and Membrane Compartments, Centre Nationale de la Recherche Scientifique, UMR 144 Institut Curie, Centre de Recherche, Paris F-75248, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Snapin associates with late endocytic compartments and interacts with late endosomal SNAREs. Biosci Rep 2009; 29:261-9. [PMID: 19335339 DOI: 10.1042/bsr20090043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Late endocytic membrane trafficking delivers target materials and newly synthesized hydrolases into lysosomes and is critical for maintaining an efficient degradation process and cellular homoeostasis. Although some features of late endosome-lysosome trafficking have been described, the mechanisms underlying regulation of this event remain to be elucidated. Our previous studies showed that Snapin, as a SNAP25 (25 kDa synaptosome-associated protein)-binding protein, plays a critical role in priming synaptic vesicles for synchronized fusion in neurons. In the present study, we report that Snapin also associates with late endocytic membranous organelles and interacts with the late endosome-targeted SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) complex. Using a genetic mouse model, we further discovered that Snapin is required to maintain a proper balance of the late endocytic protein LAMP-1 (lysosome-associated membrane protein-1) and late endosomal SNARE proteins syntaxin 8 and Vti1b (vesicle transport through interaction with target SNAREs homologue 1b). Deleting the snapin gene in mice selectively led to the accumulation of these proteins in late endocytic organelles. Thus our present study suggests that Snapin serves as an important regulator of the late endocytic fusion machinery, in addition to its established role in regulating synaptic vesicle fusion.
Collapse
|
87
|
Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 2009; 10:623-35. [PMID: 19672277 DOI: 10.1038/nrm2745] [Citation(s) in RCA: 1221] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lysosomes are the primary catabolic compartments of eukaryotic cells. They degrade extracellular material that has been internalized by endocytosis and intracellular components that have been sequestered by autophagy. In addition, specialized cells contain lysosome-related organelles that store and secrete proteins for cell-type-specific functions. The functioning of a healthy cell is dependent on the proper targeting of newly synthesized lysosomal proteins. Accumulating evidence suggests that there are multiple lysosomal delivery pathways that together allow the regulated and sequential deposition of lysosomal components. The importance of lysosomal trafficking pathways is emphasized by recent findings that reveal new roles for lysosomal membrane proteins in cellular physiology and in an increasing number of diseases that are characterized by defects in lysosome biogenesis.
Collapse
Affiliation(s)
- Paul Saftig
- Department of Biochemistry, Christian-Albrechts University, Kiel, Germany.
| | | |
Collapse
|
88
|
Hikita T, Taya S, Fujino Y, Taneichi-Kuroda S, Ohta K, Tsuboi D, Shinoda T, Kuroda K, Funahashi Y, Uraguchi-Asaki J, Hashimoto R, Kaibuchi K. Proteomic analysis reveals novel binding partners of dysbindin, a schizophrenia-related protein. J Neurochem 2009; 110:1567-74. [PMID: 19573021 DOI: 10.1111/j.1471-4159.2009.06257.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Schizophrenia is a complex mental disorder with fairly high level of heritability. Dystrobrevin binding protein 1, a gene encoding dysbindin protein, is a susceptibility gene for schizophrenia that was identified by family-based association analysis. Recent studies revealed that dysbindin is involved in the exocytosis and/or formation of synaptic vesicles. However, the molecular function of dysbindin in synaptic transmission is largely unknown. To investigate the signaling pathway in which dysbindin is involved, we isolated dysbindin-interacting molecules from rat brain lysate by combining ammonium sulfate precipitation and dysbindin-affinity column chromatography, and identified dysbindin-interacting proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Proteins involved in protein localization process, including Munc18-1, were identified as dysbindin-interacting proteins. Munc18-1 was co-immunoprecipitated with dysbindin from rat brain lysate, and directly interacted with dysbindin in vitro. In primary cultured rat hippocampal neurons, a part of dysbindin was co-localized with Munc18-1 at pre-synaptic terminals. Our result suggests a role for dysbindin in synaptic vesicle exocytosis via interaction with Munc18-1.
Collapse
Affiliation(s)
- Takao Hikita
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Li W, Feng Y, Hao C, Guo X, Cui Y, He M, He X. The BLOC interactomes form a network in endosomal transport. J Genet Genomics 2009; 34:669-82. [PMID: 17707211 DOI: 10.1016/s1673-8527(07)60076-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 01/20/2023]
Abstract
With the identification of more than a dozen novel Hermansky-Pudlak Syndrome (HPS) proteins in vesicle trafficking in higher eukaryotes, a new class of trafficking pathways has been described. It mainly consists of three newly-defined protein complexes, BLOC-1, -2, and -3. Compelling evidence indicates that these complexes together with two other well-known complexes, AP3 and HOPS, play important roles in endosomal transport. The interactions between these complexes form a network in protein trafficking via endosomes and cytoskeleton. Each node of this network has intra-complex and extra-complex interactions. These complexes are connected by direct interactions between the subunits from different complexes or by indirect interactions through coupling nodes that interact with two or more subunits from different complexes. The dissection of this network facilitates the understanding of a dynamic but elaborate transport machinery in protein/membrane trafficking. The disruption of this network may lead to abnormal trafficking or defective organellar development as described in patients with Hermansky-Pudlak syndrome.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | |
Collapse
|
90
|
Pryor PR, Luzio JP. Delivery of endocytosed membrane proteins to the lysosome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:615-24. [DOI: 10.1016/j.bbamcr.2008.12.022] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/01/2008] [Accepted: 12/12/2008] [Indexed: 01/21/2023]
|
91
|
Navarro RE, Ramos-Balderas JL, Guerrero I, Pelcastre V, Maldonado E. Pigment dilution mutants from fish models with connection to lysosome-related organelles and vesicular traffic genes. Zebrafish 2009; 5:309-18. [PMID: 19133829 DOI: 10.1089/zeb.2008.0549] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An interesting question in developmental biology is why mutations in genes with functions essential for the majority of cells produce diseases affecting only specific tissues. For example, pigment dilution disorders are often the consequence of mutations in conserved vesicular traffic genes. In Hermansky-Pudlak, Griscelli, and Chediak-Higashi pigment dilution syndromes, vesicular traffic mutations affect several organs with one characteristic in common: to carry out their functions they depend to a great extent on lysosome-related organelles (LROs), such as the melanosomes in melanocytes. Conserved multimeric complexes, present in most cell types, target proteins to lysosomes or selected LROs using transport vesicles. By studying these diseases or the model organisms that are defective in these processes, we have learned that every cell type possesses a unique way to regulate its vesicular traffic machinery and to assemble its multimeric complexes. This is accomplished by subunits from these multimeric complexes acting in a cell-specific manner. Here, we review several fish pigment dilution mutants that represent models for human vesicular traffic diseases.
Collapse
Affiliation(s)
- Rosa E Navarro
- Departamento de Biología Celular, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, UNAM, México City, México
| | | | | | | | | |
Collapse
|
92
|
Damek-Poprawa M, Diemer T, Lopes VS, Lillo C, Harper DC, Marks MS, Wu Y, Sparrow JR, Rachel RA, Williams DS, Boesze-Battaglia K. Melanoregulin (MREG) modulates lysosome function in pigment epithelial cells. J Biol Chem 2009; 284:10877-89. [PMID: 19240024 DOI: 10.1074/jbc.m808857200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melanoregulin (MREG), the product of the Mreg(dsu) gene, is a small highly charged protein, hypothesized to play a role in organelle biogenesis due to its effect on pigmentation in dilute, ashen, and leaden mutant mice. Here we provide evidence that MREG is required in lysosome-dependent phagosome degradation. In the Mreg(-/-) mouse, we show that loss of MREG function results in phagosome accumulation due to delayed degradation of engulfed material. Over time, the Mreg(-/-) mouse retinal pigment epithelial cells accumulate the lipofuscin component, A2E. MREG-deficient human and mouse retinal pigment epithelial cells exhibit diminished activity of the lysosomal hydrolase, cathepsin D, due to defective processing. Moreover, MREG localizes to small intracellular vesicles and associates with the endosomal phosphoinositide, phosphatidylinositol 3,5-biphosphate. Collectively, these studies suggest that MREG is required for lysosome maturation and support a role for MREG in intracellular trafficking.
Collapse
Affiliation(s)
- Monika Damek-Poprawa
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Zhu GD, Salazar G, Zlatic SA, Fiza B, Doucette MM, Heilman CJ, Levey AI, Faundez V, L'Hernault SW. SPE-39 family proteins interact with the HOPS complex and function in lysosomal delivery. Mol Biol Cell 2009; 20:1223-40. [PMID: 19109425 PMCID: PMC2642739 DOI: 10.1091/mbc.e08-07-0728] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/02/2008] [Accepted: 12/05/2008] [Indexed: 01/19/2023] Open
Abstract
Yeast and animal homotypic fusion and vacuole protein sorting (HOPS) complexes contain conserved subunits, but HOPS-mediated traffic in animals might require additional proteins. Here, we demonstrate that SPE-39 homologues, which are found only in animals, are present in RAB5-, RAB7-, and RAB11-positive endosomes where they play a conserved role in lysosomal delivery and probably function via their interaction with the core HOPS complex. Although Caenorhabditis elegans spe-39 mutants were initially identified as having abnormal vesicular biogenesis during spermatogenesis, we show that these mutants also have disrupted processing of endocytosed proteins in oocytes and coelomocytes. C. elegans SPE-39 interacts in vitro with both VPS33A and VPS33B, whereas RNA interference of VPS33B causes spe-39-like spermatogenesis defects. The human SPE-39 orthologue C14orf133 also interacts with VPS33 homologues and both coimmunoprecipitates and cosediments with other HOPS subunits. SPE-39 knockdown in cultured human cells altered the morphology of syntaxin 7-, syntaxin 8-, and syntaxin 13-positive endosomes. These effects occurred concomitantly with delayed mannose 6-phosphate receptor-mediated cathepsin D delivery and degradation of internalized epidermal growth factor receptors. Our findings establish that SPE-39 proteins are a previously unrecognized regulator of lysosomal delivery and that C. elegans spermatogenesis is an experimental system useful for identifying conserved regulators of metazoan lysosomal biogenesis.
Collapse
Affiliation(s)
| | | | - Stephanie A. Zlatic
- Graduate Program in Biochemistry, Cell, and Developmental Biology
- Cell Biology, and
| | | | | | - Craig J. Heilman
- Department of Neurology
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322
| | - Allan I. Levey
- Department of Neurology
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322
| | - Victor Faundez
- Graduate Program in Biochemistry, Cell, and Developmental Biology
- Cell Biology, and
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322
| | - Steven W. L'Hernault
- Graduate Program in Biochemistry, Cell, and Developmental Biology
- Departments of *Biology and
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322
| |
Collapse
|
94
|
Sarparanta J. Biology of myospryn: what's known? J Muscle Res Cell Motil 2009; 29:177-80. [PMID: 19140017 DOI: 10.1007/s10974-008-9165-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 12/20/2008] [Indexed: 02/07/2023]
Abstract
Myospryn (CMYA5, cardiomyopathy-associated 5) is a muscle-specific member of the TRIM superfamily, discovered a few years ago. Properties and functions of the little-studied protein remain largely enigmatic, but identified interactions have suggested that myospryn is involved in two seemingly distinct processes, protein kinase A signalling and vesicular trafficking. Recent findings have implicated myospryn in Duchenne muscular dystrophy and cardiac disease, making it an exciting new player in the field of muscle biology and pathology.
Collapse
Affiliation(s)
- Jaakko Sarparanta
- Folkhälsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
95
|
Talbot K. The sandy (sdy) mouse: a dysbindin-1 mutant relevant to schizophrenia research. PROGRESS IN BRAIN RESEARCH 2009; 179:87-94. [DOI: 10.1016/s0079-6123(09)17910-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
96
|
Affiliation(s)
- Christina Wasmeier
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Alistair N. Hume
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Giulia Bolasco
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Miguel C. Seabra
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
97
|
Heymann JAW, Shi D, Kim S, Bliss D, Milne JLS, Subramaniam S. 3D imaging of mammalian cells with ion-abrasion scanning electron microscopy. J Struct Biol 2008; 166:1-7. [PMID: 19116171 DOI: 10.1016/j.jsb.2008.11.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 10/18/2008] [Accepted: 11/17/2008] [Indexed: 12/20/2022]
Abstract
Understanding the hierarchical organization of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. We are using ion-abrasion scanning electron microscopy (IA-SEM) to visualize this hierarchical organization in an approach that combines focused ion-beam milling with scanning electron microscopy. Here, we extend our previous studies on imaging yeast cells to image subcellular architecture in human melanoma cells and melanocytes at resolutions as high as approximately 6 and approximately 20 nm in the directions parallel and perpendicular, respectively, to the direction of ion-beam milling. The 3D images demonstrate the striking spatial relationships between specific organelles such as mitochondria and membranes of the endoplasmic reticulum, and the distribution of unique cellular components such as melanosomes. We also show that 10nm-sized gold particles and quantum dot particles with 7 nm-sized cores can be detected in single cross-sectional images. IA-SEM is thus a useful tool for imaging large mammalian cells in their entirety at resolutions in the nanometer range.
Collapse
Affiliation(s)
- Jurgen A W Heymann
- Laboratory of Cell Biology, Center for Cancer Research National Cancer Institute, NIH, Building 50, Room 4306, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
BACKGROUND The fawn-hooded hypertensive (FHH) rat has a mutation in the Rab38 gene that is associated with a platelet dense granule storage pool disease. OBJECTIVE To better characterize the expression and function of Rab38 in FHH rat and human megakaryocytes and platelets. PATIENTS AND METHODS Rab38 expression in FHH rat and normal tissues was demonstrated by western blotting. Platelet and megakaryocyte morphology and Rab38 expression were examined by transmission electron microscopy and by immunofluorescence confocal microscopy. Platelet surface glycoprotein and P-selectin expression and total serotonin content were assessed by flow cytometry. RESULTS Rab38 was not expressed in FHH rat tissues, and FHH rat platelets and megakaryocytes lacked dense granules. FHH rat platelets had normal expression of surface glycoproteins and of surface P-selectin in response to thrombin. The total serotonin content in FHH rat platelets was similar to that in Brown Norway rat platelets. In a megakaryocyte cell line, Rab38 was expressed in a granular perinuclear and cytoplasmic pattern. There was partial colocalization with serotonin, and minimal colocalization with von Willebrand factor and lysosomal proteins. CONCLUSIONS The lack of Rab38 expression in the FHH rat results in the absence of normal dense granules in the megakaryocytes and platelets, which have otherwise normal structure and function. Rab38 may play a role in the development of dense granules in the megakaryocytes and platelets.
Collapse
Affiliation(s)
- I Ninkovic
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
99
|
Contopoulos-Ioannidis D, Evangeliou A, ter Laak H, de Vries B, Pfundt R, Scheffer H, Smeitink J, Tzoufi M, Makis A, Marinos E, Hess R, Adams D, Huizing M, Morava E. Recurrent rhabdomyolysis in a patient with oculocutaneous albinism type 1 and platelet storage-pool deficiency. Am J Med Genet A 2008; 146A:3100-3. [PMID: 19006216 DOI: 10.1002/ajmg.a.32569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
100
|
Osanai K, Oikawa R, Higuchi J, Kobayashi M, Tsuchihara K, Iguchi M, Jongsu H, Toga H, Voelker DR. A mutation in Rab38 small GTPase causes abnormal lung surfactant homeostasis and aberrant alveolar structure in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1265-74. [PMID: 18832574 DOI: 10.2353/ajpath.2008.080056] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chocolate mutation, which is associated with oculocutaneous albinism in mice, has been attributed to a G146T transversion in the conserved GTP/GDP-interacting domain of Rab38, a small GTPase that regulates intracellular vesicular trafficking. Rab38 displays a unique tissue-specific expression pattern with highest levels present in the lung. The purpose of this study was to characterize the effects of Rab38-G146T on lung phenotype and to investigate the molecular basis of the mutant gene product (Rab38(cht) protein). Chocolate lungs exhibited a uniform enlargement of the distal airspaces with mild alveolar destruction as well as a slight increase in lung compliance. Alveolar type II cells were engorged with lamellar bodies of increased size and number. Hydrophobic surfactant constituents (ie, phosphatidylcholine and surfactant protein B) were increased in lung tissues but decreased in alveolar spaces, consistent with a malfunction in lamellar body secretion and the subsequent cellular accumulation of these organelles. In contrast to wild-type Rab38, native Rab38(cht) proteins were found to be hydrophilic and not bound to intracellular membranes. Unexpectedly, recombinant Rab38(cht) proteins retained GTP-binding activity but failed to undergo prenyl modification that is required for membrane-binding activity. These results suggest that the genetic abnormality of Rab38 affects multiple lysosome-related organelles, resulting in lung disease in addition to oculocutaneous albinism.
Collapse
Affiliation(s)
- Kazuhiro Osanai
- Department of Respiratory Medicine, Kanazawa Medical University, Kahokugun, Ishikawa 920-0293, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|