51
|
Motiani RK, Zhang X, Harmon KE, Keller RS, Matrougui K, Bennett JA, Trebak M. Orai3 is an estrogen receptor α-regulated Ca²⁺ channel that promotes tumorigenesis. FASEB J 2012; 27:63-75. [PMID: 22993197 DOI: 10.1096/fj.12-213801] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) encoded by Orai1 proteins is a ubiquitous Ca(2+)-selective conductance involved in cellular proliferation and migration. We recently described up-regulation of Orai3 channels that selectively mediate SOCE in estrogen receptor α-expressing (ERα(+)) breast cancer cells. However, the connection between ERα and Orai3 and the role of Orai3 in tumorigenesis remain unknown. Here, we show that ERα knockdown decreases Orai3 mRNA (by ∼63%) and protein (by ∼44%) with no effect on Orai1. ERα knockdown decreases Orai3-mediated SOCE (by ∼43%) and the corresponding Ca(2+) release-activated Ca(2+) (CRAC) current (by ∼42%) in ERα(+) MCF7 cells. The abrogation of SOCE in MCF7 cells on ERα knockdown can be rescued by ectopic expression of Orai3. ERα activation increased Orai3 expression and SOCE in MCF7 cells. Epidermal growth factor (EGF) and thrombin stimulate Ca(2+) influx into MCF7 cells through Orai3. Orai3 knockdown inhibited SOCE-dependent phosphorylation of extracellular signal-regulated kinase (ERK1/2; by ∼44%) and focal adhesion kinase (FAK; by ∼46%) as well as transcriptional activity of nuclear factor for activated T cells (NFAT; by ∼49%). Significantly, Orai3 knockdown selectively decreased anchorage-independent growth (by ∼58%) and Matrigel invasion (by ∼44%) of ERα(+) MCF7 cells with no effect on ERα(-) MDA-MB231 cells. Moreover, Orai3 knockdown inhibited ERα(+) cell tumorigenesis in immunodeficient mice (∼66% reduction in tumor volume). These data establish Orai3 as an ERα-regulated channel and a potential selective therapeutic target for ERα(+) breast cancers.
Collapse
Affiliation(s)
- Rajender K Motiani
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
Organisms exposed to altered salinity must be able to perceive osmolality change because metabolism has evolved to function optimally at specific intracellular ionic strength and composition. Such osmosensing comprises a complex physiological process involving many elements at organismal and cellular levels of organization. Input from numerous osmosensors is integrated to encode magnitude, direction, and ionic basis of osmolality change. This combinatorial nature of osmosensing is discussed with emphasis on fishes.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Science, Physiological Genomics Group, University of California, Davis, Davis, California
| |
Collapse
|
53
|
Berna-Erro A, Galan C, Dionisio N, Gomez LJ, Salido GM, Rosado JA. Capacitative and non-capacitative signaling complexes in human platelets. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1242-51. [DOI: 10.1016/j.bbamcr.2012.05.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 11/25/2022]
|
54
|
Trebak M. PLC: Johnny-come-lately to ORAI and the ups and downs of calcium signalling. J Physiol 2012; 589:5337-8. [PMID: 22086246 DOI: 10.1113/jphysiol.2011.220517] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mohamed Trebak
- The Centre for Cardiovascular Sciences, AlbanyMedical College, Albany, NY 12208, USA.
| |
Collapse
|
55
|
Fukushima M, Tomita T, Janoshazi A, Putney JW. Alternative translation initiation gives rise to two isoforms of Orai1 with distinct plasma membrane mobilities. J Cell Sci 2012; 125:4354-61. [PMID: 22641696 DOI: 10.1242/jcs.104919] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Store-operated calcium entry is an almost ubiquitous signaling pathway in eukaryotic cells. The plasma membrane store-operated channels are comprised of subunits of the recently discovered Orai proteins, the major one being Orai1.We have discovered that native Orai1, as well as expressed Orai1, exists in two forms in similar quantities: a longer form (Orai1α) of approximately 33 kDa, and a shorter form (Orai1β) of approximately 23 kDa. The Orai1β form arises from alternative translation initiation from a methionine at position 64, and possibly also 71, in the longer Orai1α form. In the sequence upstream of the initiation site of Orai1β, there is a poly-arginine sequence previously suggested to be involved in interaction of Orai1 with plasma membrane phosphatidylinositol-4,5-bisphosphate. The loss of this phospholipid binding domain would be expected to influence the mobility of Orai1 protein in the plasma membrane. Indeed, experiments utilizing fluorescence recovery after photobleaching (FRAP) revealed that the recovery half-time for Orai1β was significantly faster than for Orai1α. Since Orai1 must diffuse to sites of interaction with the Ca(2+) sensor, STIM1, these two mobilities might provide for efficient recruitment of Orai1 subunits to sites of store-operated Ca(2+) entry during agonist-induced Ca(2+) signaling.
Collapse
Affiliation(s)
- Miwako Fukushima
- National Institute of Environmental Health Sciences-NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
56
|
Abstract
Stromal interaction molecules (STIM1 and STIM2) are single pass transmembrane proteins located mainly in the endoplasmic reticulum (ER). STIM proteins contain an EF-hand in their N-termini that faces the lumen side of the ER allowing them to act as ER calcium (Ca(2+)) sensors. STIM1 has been recognized as central to the activation of the highly Ca(2+) selective store-operated Ca(2+) (SOC) entry current mediated by the Ca(2+) release-activated Ca(2+) (CRAC) channel; CRAC channels are formed by tetramers of the plasma membrane (PM) protein Orai1. Physiologically, the production of inositol 1,4,5-trisphosphate (IP(3)) upon stimulation of phospholipase C-coupled receptors and the subsequent emptying of IP(3)-sensitive ER Ca(2+) stores are sensed by STIM1 molecules which aggregate and move closer to the PM to interact physically with Orai1 channels and activate Ca(2+) entry. Orai1 has two homologous proteins encoded by separate genes, Orai2 and Orai3. Other modes of receptor-regulated Ca(2+) entry into cells are store-independent; for example, arachidonic acid activates a highly Ca(2+) selective store-independent channel formed by heteropentamers of Orai1 and Orai3 and regulated by the PM pool of STIM1. Here, I will discuss results pertaining to the roles of STIM and Orai proteins in smooth muscle Ca(2+) entry pathways and their role in vascular remodelling.
Collapse
Affiliation(s)
- Mohamed Trebak
- The Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
57
|
Are TRP channels involved in sperm development and function? Cell Tissue Res 2012; 349:749-64. [DOI: 10.1007/s00441-012-1397-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/05/2012] [Indexed: 11/25/2022]
|
58
|
Dramane G, Abdoul-Azize S, Hichami A, Vögtle T, Akpona S, Chouabe C, Sadou H, Nieswandt B, Besnard P, Khan NA. STIM1 regulates calcium signaling in taste bud cells and preference for fat in mice. J Clin Invest 2012; 122:2267-82. [PMID: 22546859 DOI: 10.1172/jci59953] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 03/07/2012] [Indexed: 11/17/2022] Open
Abstract
Understanding the mechanisms underlying oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. The lipid-binding glycoprotein CD36, which is expressed by circumvallate papillae (CVP) of the mouse tongue, has been implicated in oro-gustatory perception of dietary lipids. Here, we demonstrate that stromal interaction molecule 1 (STIM1), a sensor of Ca(2+) depletion in the endoplasmic reticulum, mediates fatty acid-induced Ca(2+) signaling in the mouse tongue and fat preference. We showed that linoleic acid (LA) induced the production of arachidonic acid (AA) and lysophosphatidylcholine (Lyso-PC) by activating multiple phospholipase A2 isoforms via CD36. This activation triggered Ca(2+) influx in CD36-positive taste bud cells (TBCs) purified from mouse CVP. LA also induced the production of Ca(2+) influx factor (CIF). STIM1 was found to regulate LA-induced CIF production and the opening of multiple store-operated Ca(2+) (SOC) channels. Furthermore, CD36-positive TBCs from Stim1-/- mice failed to release serotonin, and Stim1-/- mice lost the spontaneous preference for fat that was observed in wild-type animals. Our results suggest that fatty acid-induced Ca(2+) signaling, regulated by STIM1 via CD36, might be implicated in oro-gustatory perception of dietary lipids and the spontaneous preference for fat.
Collapse
Affiliation(s)
- Gado Dramane
- Unité Propre de L’Enseignement Supérieure Lipides and Signalisation Cellulaire Equipe d’Accueil 4183, Faculté des sciences de la vie, terre et environnement, Dijon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Orai1 calcium channels in the vasculature. Pflugers Arch 2012; 463:635-47. [PMID: 22402985 PMCID: PMC3323825 DOI: 10.1007/s00424-012-1090-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
Orai1 was discovered in T cells as a calcium-selective channel that is activated by store depletion. Recent studies suggest that it is expressed and functionally important also in blood vessels, not only because haematopoietic cells can incorporate in the vascular wall but also because Orai1 is expressed and functional in vascular smooth muscle cells and endothelial cells. This article summarises the arising observations in this new area of vascular research and debates underlying issues and challenges for future investigations. The primary focus is on vascular smooth muscle cells and endothelial cells. Specific topics include Orai1 expression; Orai1 roles in store-operated calcium entry and ionic currents of store-depleted cells; blockade of Orai1-related signals by Synta 66 and other pharmacology; activation or regulation of Orai1-related signals by physiological substances and compartments; stromal interaction molecules and the relationship of Orai1 to other ion channels, transporters and pumps; transient receptor potential canonical channels and their contribution to store-operated calcium entry; roles of Orai1 in vascular tone, remodelling, thrombus formation and inflammation; and Orai2 and Orai3. Overall, the observations suggest the existence of an additional, previously unrecognised, calcium channel of the vascular wall that is functionally important particularly in remodelling but probably also in certain vasoconstrictor contexts.
Collapse
|
60
|
A calcium-permeable non-selective cation channel in the thick ascending limb apical membrane of the mouse kidney. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1135-41. [PMID: 22230350 DOI: 10.1016/j.bbamem.2011.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 11/21/2022]
Abstract
Non-selective cation channels have been described in the basolateral membrane of the renal tubule, but little is known about functional channels on the apical side. Apical membranes of microdissected fragments of mouse cortical thick ascending limbs were searched for ion channels using the cell-free configuration of the patch-clamp technique. A cation channel with a linear current-voltage relationship (19pS) that was permeable both to monovalent cations [P(NH4)(1.7)>P(Na) (1.0)=P(K) (1.0)] and to Ca(2+) (P(Ca)/P(Na)≈0.3) was detected. Unlike the basolateral TRPM4 Ca(2+)-impermeable non-selective cation channel, this non-selective cation channel was insensitive to internal Ca(2+), pH and ATP. The channel was already active after patch excision, and its activity increased after reduced pressure was applied via the pipette. External gadolinium (10(-5)M) decreased the channel-open probability by 70% in outside-out patches, whereas external amiloride (10(-4)M) had no effect. Internal flufenamic acid (10(-4)M) inhibited the channel in inside-out patches. Its properties suggest that the current might be supported by the TRPM7 protein that is expressed in the loop of Henle. The conduction properties of the channel suggest that it could be involved in Ca(2+) signaling.
Collapse
|
61
|
Lewis RS. Store-operated calcium channels: new perspectives on mechanism and function. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003970. [PMID: 21791698 DOI: 10.1101/cshperspect.a003970] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Store-operated calcium channels (SOCs) are a nearly ubiquitous Ca(2+) entry pathway stimulated by numerous cell surface receptors via the reduction of Ca(2+) concentration in the ER. The discovery of STIM proteins as ER Ca(2+) sensors and Orai proteins as structural components of the Ca(2+) release-activated Ca(2+) (CRAC) channel, a prototypic SOC, opened the floodgates for exploring the molecular mechanism of this pathway and its functions. This review focuses on recent advances made possible by the use of STIM and Orai as molecular tools. I will describe our current understanding of the store-operated Ca(2+) entry mechanism and its emerging roles in physiology and disease, areas of uncertainty in which further progress is needed, and recent findings that are opening new directions for research in this rapidly growing field.
Collapse
Affiliation(s)
- Richard S Lewis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, California 94305, USA.
| |
Collapse
|
62
|
Ehrlich LS, Medina GN, Carter CA. ESCRT machinery potentiates HIV-1 utilization of the PI(4,5)P(2)-PLC-IP3R-Ca(2+) signaling cascade. J Mol Biol 2011; 413:347-58. [PMID: 21875593 PMCID: PMC3193579 DOI: 10.1016/j.jmb.2011.08.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/05/2011] [Accepted: 08/16/2011] [Indexed: 01/09/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) release efficiency is directed by late (L) domain motifs in the viral structural precursor polyprotein Gag, which serve as links to the ESCRT (endosomal sorting complex required for transport) machinery. Linkage is normally through binding of Tsg101, an ESCRT-1 component, to the P(7)TAP motif in the p6 region of Gag. In its absence, budding is directed by binding of Alix, an ESCRT adaptor protein, to the LY(36)PX(n)L motif in Gag. We recently showed that budding requires activation of the inositol 1,4,5-triphosphate receptor (IP3R), a protein that "gates" Ca(2+) release from intracellular stores, triggers Ca(2+) cell influx and thereby functions as a major regulator of Ca(2+) signaling. In the present study, we determined whether the L domain links Gag to Ca(2+) signaling machinery. Depletion of IP3R and inactivation of phospholipase C (PLC) inhibited budding whether or not Tsg101 was bound to Gag. PLC hydrolysis of phosphatidylinositol-(4,5)-bisphosphate generates inositol (1,4,5)-triphosphate, the ligand that activates IP3R. However, with Tsg101 bound, Gag release was independent of Gq-mediated activation of PLC, and budding was readily enhanced by pharmacological stimulation of PLC. Moreover, IP3R was redistributed to the cell periphery and cytosolic Ca(2+) was elevated, events indicative of induction of Ca(2+) signaling. The results suggest that L domain function, ESCRT machinery and Ca(2+) signaling are linked events in Gag release.
Collapse
Affiliation(s)
- Lorna S. Ehrlich
- Dept. of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Gisselle N. Medina
- Dept. of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Carol A. Carter
- Dept. of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| |
Collapse
|
63
|
Abstract
Eukaryotic organelles can interact with each other through stable junctions where the two membranes are kept in close apposition. The junction that connects the endoplasmic reticulum to the plasma membrane (ER-PM junction) is unique in providing a direct communication link between the ER and the PM. In a recently discovered signaling process, STIM (stromal-interacting molecule) proteins sense a drop in ER Ca(2+) levels and directly activate Orai PM Ca(2+) channels across the junction space. In an inverse process, a voltage-gated PM Ca(2+) channel can directly open ER ryanodine-receptor Ca(2+) channels in striated-muscle cells. Although ER-PM junctions were first described 50 years ago, their broad importance in Ca(2+) signaling, as well as in the regulation of cholesterol and phosphatidylinositol lipid transfer, has only recently been realized. Here, we discuss research from different fields to provide a broad perspective on the structures and unique roles of ER-PM junctions in controlling signaling and metabolic processes.
Collapse
Affiliation(s)
- Silvia Carrasco
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
64
|
Abstract
In most cases, metastasis, not the primary tumour per se, is the main cause of mortality in cancer patients. In order to effectively escape the tumour, enter the circulation and establish secondary growth in distant organs cancer cells must develop an enhanced propensity to migrate. The ubiquitous second messenger Ca²⁺ is a crucial regulator of cell migration. Recently, a number of known molecular players in cellular Ca²⁺ homeostasis, including calcium release-activated calcium channel protein 1 (ORAI1), stromal interaction molecule 1 (STIM1) and transient receptor potential (TRP) channels, have been implicated in tumour cell migration and the metastatic cell phenotype. We discuss how these developments have increased our understanding of the Ca²⁺ dependence of pro-metastatic behaviours.
Collapse
Affiliation(s)
- Natalia Prevarskaya
- INSERM, U1003, Laboratoire de Physiologie Cellulaire, Equipe labellise par la Ligue contre le cancer, Villeneuve dAscq, F59650, France.
| | | | | |
Collapse
|
65
|
Zhang W, Halligan KE, Zhang X, Bisaillon JM, Gonzalez-Cobos JC, Motiani RK, Hu G, Vincent PA, Zhou J, Barroso M, Singer HA, Matrougui K, Trebak M. Orai1-mediated I (CRAC) is essential for neointima formation after vascular injury. Circ Res 2011; 109:534-42. [PMID: 21737791 DOI: 10.1161/circresaha.111.246777] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE The molecular correlate of the calcium release-activated calcium current (I(CRAC)), the channel protein Orai1, is upregulated in proliferative vascular smooth muscle cells (VSMC). However, the role of Orai1 in vascular disease remains largely unknown. OBJECTIVE The goal of this study was to determine the role of Orai1 in neointima formation after balloon injury of rat carotid arteries and its potential upregulation in a mouse model of VSMC remodeling. METHODS AND RESULTS Lentiviral particles encoding short-hairpin RNA (shRNA) targeting either Orai1 (shOrai1) or STIM1 (shSTIM1) caused knockdown of their respective target mRNA and proteins and abrogated store-operated calcium entry and I(CRAC) in VSMC; control shRNA was targeted to luciferase (shLuciferase). Balloon injury of rat carotid arteries upregulated protein expression of Orai1, STIM1, and calcium-calmodulin kinase IIdelta2 (CamKIIδ2); increased proliferation assessed by Ki67 and PCNA and decreased protein expression of myosin heavy chain in medial and neointimal VSMC. Incubation of the injured vessel with shOrai1 prevented Orai1, STIM1, and CamKIIδ2 upregulation in the media and neointima; inhibited cell proliferation and markedly reduced neointima formation 14 days post injury; similar results were obtained with shSTIM1. VSMC Orai1 and STIM1 knockdown inhibited nuclear factor for activated T-cell (NFAT) nuclear translocation and activity. Furthermore, Orai1 and STIM1 were upregulated in mice carotid arteries subjected to ligation. CONCLUSIONS Orai1 is upregulated in VSMC during vascular injury and is required for NFAT activity, VSMC proliferation, and neointima formation following balloon injury of rat carotids. Orai1 provides a novel target for control of VSMC remodeling during vascular injury or disease.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Cardiovascular Sciences, Albany Medical College, Mail Code 8, 47 New Scotland Ave, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Kukkonen JP. A ménage à trois made in heaven: G-protein-coupled receptors, lipids and TRP channels. Cell Calcium 2011; 50:9-26. [DOI: 10.1016/j.ceca.2011.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
|
67
|
Putney JW. Origins of the concept of store-operated calcium entry. Front Biosci (Schol Ed) 2011; 3:980-4. [PMID: 21622247 DOI: 10.2741/202] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The concept of capacitative or store-operated calcium entry, a process by which the release of stored calcium signals the opening of plasma membrane calcium channels, has its roots in the late 1970's, and was formalized in 1986. This short introduction to the current volume of Frontiers in Bioscience briefly summarizes the early experimental work that led to the idea of store-operated calcium entry, and provided the initial proofs for it.
Collapse
Affiliation(s)
- James W Putney
- National Institute of Environmental Health Sciences-NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
68
|
Munaron L. Shuffling the cards in signal transduction: Calcium, arachidonic acid and mechanosensitivity. World J Biol Chem 2011; 2:59-66. [PMID: 21537474 PMCID: PMC3083947 DOI: 10.4331/wjbc.v2.i4.59] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/12/2011] [Accepted: 04/19/2011] [Indexed: 02/05/2023] Open
Abstract
Cell signaling is a very complex network of biochemical reactions triggered by a huge number of stimuli coming from the external medium. The function of any single signaling component depends not only on its own structure but also on its connections with other biomolecules. During prokaryotic-eukaryotic transition, the rearrangement of cell organization in terms of diffusional compartmentalization exerts a deep change in cell signaling functional potentiality. In this review I briefly introduce an intriguing ancient relationship between pathways involved in cell responses to chemical agonists (growth factors, nutrients, hormones) as well as to mechanical forces (stretch, osmotic changes). Some biomolecules (ion channels and enzymes) act as “hubs”, thanks to their ability to be directly or indirectly chemically/mechanically co-regulated. In particular calcium signaling machinery and arachidonic acid metabolism are very ancient networks, already present before eukaryotic appearance. A number of molecular “hubs”, including phospholipase A2 and some calcium channels, appear tightly interconnected in a cross regulation leading to the cellular response to chemical and mechanical stimulations.
Collapse
Affiliation(s)
- Luca Munaron
- Luca Munaron, Department of Animal and Human Biology, Nanostructured Interfaces and Surfaces Centre of Excellence, Center for Complex Systems in Molecular Biology and Medicine, University of Torino, 10123 Torino, Italy
| |
Collapse
|
69
|
Collins SR, Meyer T. Evolutionary origins of STIM1 and STIM2 within ancient Ca2+ signaling systems. Trends Cell Biol 2011; 21:202-11. [PMID: 21288721 PMCID: PMC3175768 DOI: 10.1016/j.tcb.2011.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/17/2010] [Accepted: 01/04/2011] [Indexed: 11/26/2022]
Abstract
Human stromal interaction molecule (STIM) proteins are parts of elaborate eukaryotic Ca(2+) signaling systems that include numerous plasma membrane (PM), endoplasmic reticulum (ER), and mitochondrial Ca(2+) transporters, channels and regulators. STIM2 and STIM1 function as Ca(2+) sensors with different sensitivities for ER Ca(2+). They translocate to ER-PM junctions and open PM Orai Ca(2+) influx channels when receptor-mediated Ca(2+) release lowers ER Ca(2+) levels. The resulting increase in cytosolic Ca(2+) leads to the activation of numerous Ca(2+) effector proteins that in turn regulate differentiation, cell contraction, secretion and other cell functions. In this review, we use an evolutionary perspective to survey molecular activation mechanisms in the Ca(2+) signaling system, with a particular focus on regulatory motifs and functions of the two STIM proteins. We discuss the presence and absence of STIM genes in different species, the order of appearance of STIM versus Orai, and the evolutionary addition of new signaling domains to STIM proteins.
Collapse
Affiliation(s)
- Sean R Collins
- Department of Chemical and Systems Biology, Stanford University, 318 Campus Drive, Clark Building W2.1, Stanford, CA 94305-5174, USA
| | | |
Collapse
|
70
|
Eylenstein A, Gehring EM, Heise N, Shumilina E, Schmidt S, Szteyn K, Münzer P, Nurbaeva MK, Eichenmüller M, Tyan L, Regel I, Föller M, Kuhl D, Soboloff J, Penner R, Lang F. Stimulation of Ca2+-channel Orai1/STIM1 by serum- and glucocorticoid-inducible kinase 1 (SGK1). FASEB J 2011; 25:2012-21. [PMID: 21385992 DOI: 10.1096/fj.10-178210] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ca(2+) signaling includes store-operated Ca(2+) entry (SOCE) following depletion of endoplasmic reticulum (ER) Ca(2+) stores. On store depletion, the ER Ca(2+) sensor STIM1 activates Orai1, the pore-forming unit of Ca(2+)-release-activated Ca(2+) (CRAC) channels. Here, we show that Orai1 is regulated by serum- and glucocorticoid-inducible kinase 1 (SGK1), a growth factor-regulated kinase. Membrane Orai1 protein abundance, I(CRAC), and SOCE in human embryonic kidney (HEK293) cells stably expressing Orai1 and transfected with STIM1 were each significantly enhanced by coexpression of constitutively active (S422D)SGK1 (by+81, +378, and+136%, respectively) but not by inactive (K127N)SGK1. Coexpression of the ubiquitin ligase Nedd4-2, an established negatively regulated SGK1 target, down-regulated SOCE (by -48%) and I(CRAC) (by -60%), an effect reversed by expression of (S422D)SGK1 (by +175 and +173%, respectively). Orai1 protein abundance and SOCE were significantly lower in mast cells from SGK1-knockout (sgk1(-/-)) mice (by -37% and -52%, respectively) than in mast cells from wild-type (sgk1(+/+)) littermates. Activation of SOCE by sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase-inhibitor thapsigargin (2 μM) stimulated migration, an effect significantly higher (by +306%) in (S422D)SGK1-expressing than in (K127N)SGK1-expressing HEK293 cells, and also significantly higher (by +108%) in sgk1(+/+) than in sgk1(-/-) mast cells. SGK1 is thus a novel key player in the regulation of SOCE.
Collapse
Affiliation(s)
- Anja Eylenstein
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Pannexin channels in ATP release and beyond: an unexpected rendezvous at the endoplasmic reticulum. Cell Signal 2010; 23:305-16. [PMID: 20688156 DOI: 10.1016/j.cellsig.2010.07.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 07/22/2010] [Indexed: 01/13/2023]
Abstract
The pannexin (Panx) family of proteins, which is co-expressed with connexins (Cxs) in vertebrates, was found to be a new GJ-forming protein family related to invertebrate innexins. During the past ten years, different studies showed that Panxs mainly form hemichannels in the plasma membrane and mediate paracrine signalling by providing a flux pathway for ions such as Ca²(+), for ATP and perhaps for other compounds, in response to physiological and pathological stimuli. Although the physiological role of Panxs as a hemichannel was questioned, there is increasing evidence that Panx play a role in vasodilatation, initiation of inflammatory responses, ischemic death of neurons, epilepsy and in tumor suppression. Moreover, it is intriguing that Panxs may also function at the endoplasmic reticulum (ER) as intracellular Ca²(+)-leak channel and may be involved in ER-related functions. Although the physiological significance and meaning of such Panx-regulated intracellular Ca²(+) leak requires further exploration, this functional property places Panx at the centre of many physiological and pathophysiological processes, given the fundamental role of intracellular Ca²(+) homeostasis and dynamics in a plethora of physiological processes. In this review, we therefore want to focus on Panx as channels at the plasma membrane and at the ER membranes with a particular emphasis on the potential implications of the latter in intracellular Ca²(+) signalling.
Collapse
|
72
|
Gonzalez-Cobos JC, Trebak M. TRPC channels in smooth muscle cells. Front Biosci (Landmark Ed) 2010; 15:1023-39. [PMID: 20515740 DOI: 10.2741/3660] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transient receptor potential canonical (TRPC) proteins constitute a family of seven (TRPC1-7) nonselective cation channels within the wider TRP superfamily. TRPC1, TRPC3, TRPC4, TRPC5 and TRPC6 channels are expressed in vascular smooth muscle cells from human vessels of all calibers and in smooth muscle from organs such as the uterus and the gastrointestinal tract. TRPC channels have recently emerged as important players in the control of smooth muscle function. This review will focus on the retrospective analysis of studies proposing contributions of TRPC channels to native calcium entry pathways in smooth muscle and to physiological and pathophysiological responses with emphasis on the vascular system.
Collapse
|
73
|
Kirkby B, Roman N, Kobe B, Kellie S, Forwood JK. Functional and structural properties of mammalian acyl-coenzyme A thioesterases. Prog Lipid Res 2010; 49:366-77. [PMID: 20470824 DOI: 10.1016/j.plipres.2010.04.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
Abstract
Acyl-coenzyme A thioesterases (Acots) play important cellular roles in mammalian fatty acid metabolism through modulation of cellular concentrations of activated fatty acyl-CoAs. Acots catalyse the hydrolysis of the thioester bond present within acyl-CoA ester molecules to yield coenzyme A (CoASH) and the corresponding non-esterified fatty acid. Acyl-CoA thioesterases are expressed ubiquitously in both prokaryotes and eukaryotes and, in higher order organisms, the enzymes are expressed and localised in a tissue-dependent manner within the cytosol, mitochondria, peroxisomes and endoplasmic reticulum. Recent studies have led to advances in the functional and structural characterization of many mammalian Acot family members. These include the structure determination of both type-I and type-II Acot family members, structural elucidation of the START domain of ACOT11, identification of roles in arachidonic acid and inflammatory prostaglandin production by Acot7, and inclusion of a 13th Acot family member. Here, we review and analyse the current literature on mammalian Acots with respect to their characterization and summarize the current knowledge on the structure, function and regulation of this enzyme family.
Collapse
Affiliation(s)
- Brenda Kirkby
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | | | | | | | | |
Collapse
|
74
|
El Boustany C, Katsogiannou M, Delcourt P, Dewailly E, Prevarskaya N, Borowiec AS, Capiod T. Differential roles of STIM1, STIM2 and Orai1 in the control of cell proliferation and SOCE amplitude in HEK293 cells. Cell Calcium 2010; 47:350-9. [DOI: 10.1016/j.ceca.2010.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/18/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
|
75
|
Stathopulos PB, Ikura M. Structurally delineating stromal interaction molecules as the endoplasmic reticulum calcium sensors and regulators of calcium release-activated calcium entry. Immunol Rev 2009; 231:113-31. [PMID: 19754893 DOI: 10.1111/j.1600-065x.2009.00814.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endoplasmic reticulum (ER) lumen stores a crucial source of calcium (Ca2+) maintained orders of magnitude higher than the cytosol for the activation of a plethora of cellular responses transmitted in health and disease by a mutually efficient and communicative exchange of Ca2+ between compartments. A coordination of the Ca2+ signal is evident in the development of Ca2+ release-activated Ca2+ (CRAC) entry, vital to lymphocyte activation and replenishing of the ER Ca2+ stores, where modest decreases in ER luminal Ca2+ induce sustained increases in cytosolic Ca2+ sourced from steadfast extracellular Ca2+ supplies. While protein sensors that transduce Ca2+ signals in the cytosol such as calmodulin are succinctly understood, comparative data on the ER luminal Ca2+ sensors is only recently coming to light with the discovery that stromal interaction molecules (STIMs) sense variations in ER stored Ca2+ levels in the functional regulation of plasma membrane Orai proteins, the major component of CRAC channel pores. Drawing from data on the role of STIMs in the modulation of CRAC entry, this review illustrates the structural features that delimit the functional characteristics of ER Ca2+ sensors relative to well known cytoplasmic Ca2+ sensors.
Collapse
Affiliation(s)
- Peter B Stathopulos
- Division of Signaling Biology and Department of Medical Biophysics, Ontario Cancer Institute and University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|