51
|
Simon S, Aissat A, Degrugillier F, Simonneau B, Fanen P, Arrigo AP. Small Hsps as Therapeutic Targets of Cystic Fibrosis Transmembrane Conductance Regulator Protein. Int J Mol Sci 2021; 22:ijms22084252. [PMID: 33923911 PMCID: PMC8072646 DOI: 10.3390/ijms22084252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Human small heat shock proteins are molecular chaperones that regulate fundamental cellular processes in normal and pathological cells. Here, we have reviewed the role played by HspB1, HspB4 and HspB5 in the context of Cystic Fibrosis (CF), a severe monogenic autosomal recessive disease linked to mutations in Cystic Fibrosis Transmembrane conductance Regulator protein (CFTR) some of which trigger its misfolding and rapid degradation, particularly the most frequent one, F508del-CFTR. While HspB1 and HspB4 favor the degradation of CFTR mutants, HspB5 and particularly one of its phosphorylated forms positively enhance the transport at the plasma membrane, stability and function of the CFTR mutant. Moreover, HspB5 molecules stimulate the cellular efficiency of currently used CF therapeutic molecules. Different strategies are suggested to modulate the level of expression or the activity of these small heat shock proteins in view of potential in vivo therapeutic approaches. We then conclude with other small heat shock proteins that should be tested or further studied to improve our knowledge of CFTR processing.
Collapse
Affiliation(s)
- Stéphanie Simon
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France; (A.A.); (F.D.); (B.S.); (P.F.)
- Correspondence:
| | - Abdel Aissat
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France; (A.A.); (F.D.); (B.S.); (P.F.)
- Département de Génétique, AP-HP, Henri Mondor Hospital, F-94010 Creteil, France
| | - Fanny Degrugillier
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France; (A.A.); (F.D.); (B.S.); (P.F.)
| | - Benjamin Simonneau
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France; (A.A.); (F.D.); (B.S.); (P.F.)
| | - Pascale Fanen
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France; (A.A.); (F.D.); (B.S.); (P.F.)
- Département de Génétique, AP-HP, Henri Mondor Hospital, F-94010 Creteil, France
| | - André-Patrick Arrigo
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Claude Bernard University Lyon 1, Centre Léon Bérard, F-69008 Lyon, France;
| |
Collapse
|
52
|
He L, Kennedy AS, Houck S, Aleksandrov A, Quinney NL, Cyr-Scully A, Cholon DM, Gentzsch M, Randell SH, Ren HY, Cyr DM. DNAJB12 and Hsp70 triage arrested intermediates of N1303K-CFTR for endoplasmic reticulum-associated autophagy. Mol Biol Cell 2021; 32:538-553. [PMID: 33534640 PMCID: PMC8101465 DOI: 10.1091/mbc.e20-11-0688] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 11/11/2022] Open
Abstract
The transmembrane Hsp40 DNAJB12 and cytosolic Hsp70 cooperate on the endoplasmic reticulum's (ER) cytoplasmic face to facilitate the triage of nascent polytopic membrane proteins for folding versus degradation. N1303K is a common mutation that causes misfolding of the ion channel CFTR, but unlike F508del-CFTR, biogenic and functional defects in N1303K-CFTR are resistant to correction by folding modulators. N1303K is reported to arrest CFTR folding at a late stage after partial assembly of its N-terminal domains. N1303K-CFTR intermediates are clients of JB12-Hsp70 complexes, maintained in a detergent-soluble state, and have a relatively long 3-h half-life. ER-associated degradation (ERAD)-resistant pools of N1303K-CFTR are concentrated in ER tubules that associate with autophagy initiation sites containing WIPI1, FlP200, and LC3. Destabilization of N1303K-CFTR or depletion of JB12 prevents entry of N1303K-CFTR into the membranes of ER-connected phagophores and traffic to autolysosomes. In contrast, the stabilization of intermediates with the modulator VX-809 promotes the association of N1303K-CFTR with autophagy initiation machinery. N1303K-CFTR is excluded from the ER-exit sites, and its passage from the ER to autolysosomes does not require ER-phagy receptors. DNAJB12 operates in biosynthetically active ER microdomains to triage membrane protein intermediates in a conformation-specific manner for secretion versus degradation via ERAD or selective-ER-associated autophagy.
Collapse
Affiliation(s)
- Lihua He
- Department of Cell Biology and Physiology and the Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew S. Kennedy
- Department of Cell Biology and Physiology and the Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Scott Houck
- Department of Cell Biology and Physiology and the Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrei Aleksandrov
- Department of Cell Biology and Physiology and the Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nancy L. Quinney
- Department of Cell Biology and Physiology and the Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Alexandra Cyr-Scully
- Department of Cell Biology and Physiology and the Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Deborah M. Cholon
- Department of Cell Biology and Physiology and the Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Martina Gentzsch
- Department of Cell Biology and Physiology and the Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Scott H. Randell
- Department of Cell Biology and Physiology and the Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Hong Yu Ren
- Department of Cell Biology and Physiology and the Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Douglas M. Cyr
- Department of Cell Biology and Physiology and the Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
53
|
JMJD6 negatively regulates cytosolic RNA induced antiviral signaling by recruiting RNF5 to promote activated IRF3 K48 ubiquitination. PLoS Pathog 2021; 17:e1009366. [PMID: 33684176 PMCID: PMC7971890 DOI: 10.1371/journal.ppat.1009366] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/18/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
The negative regulation of antiviral immune responses is essential for the host to maintain homeostasis. Jumonji domain-containing protein 6 (JMJD6) was previously identified with a number of functions during RNA virus infection. Upon viral RNA recognition, retinoic acid-inducible gene-I-like receptors (RLRs) physically interact with the mitochondrial antiviral signaling protein (MAVS) and activate TANK-binding kinase 1 (TBK1) to induce type-I interferon (IFN-I) production. Here, JMJD6 was demonstrated to reduce type-I interferon (IFN-I) production in response to cytosolic poly (I:C) and RNA virus infections, including Sendai virus (SeV) and Vesicular stomatitis virus (VSV). Genetic inactivation of JMJD6 enhanced IFN-I production and impaired viral replication. Our unbiased proteomic screen demonstrated JMJD6 contributes to IRF3 K48 ubiquitination degradation in an RNF5-dependent manner. Mice with gene deletion of JMJD6 through piggyBac transposon-mediated gene transfer showed increased VSV-triggered IFN-I production and reduced susceptibility to the virus. These findings classify JMJD6 as a negative regulator of the host’s innate immune responses to cytosolic viral RNA. RLRs-mediated signaling needs to be terminated in order to prevent persistent immune responses and adverse effects to the host once the virus has been cleared. In this study, we provide rigorous evidence that JMJD6 negatively regulates RLRs-mediated innate immune responses. We found that JMJD6 recruits RNF5 to induce the K48-linked polyubiquitination and proteasomal degradation of activated IRF3. Genetic inactivation of JMJD6 in cells increases IFN-I production to suppress viral infection. Consistently, in vivo studies show that, compared with WT mice, JMJD6-deficient mice are more resistant to VSV infection with more IFN-I production and reduced viral load in livers. Our findings reveal a novel mechanism to downregulate innate immune responses mediated by RNA viral infection, which allows the host to prevent undue immune responses and sustain homeostasis.
Collapse
|
54
|
Kang JA, Jeon YJ. How Is the Fidelity of Proteins Ensured in Terms of Both Quality and Quantity at the Endoplasmic Reticulum? Mechanistic Insights into E3 Ubiquitin Ligases. Int J Mol Sci 2021; 22:ijms22042078. [PMID: 33669844 PMCID: PMC7923238 DOI: 10.3390/ijms22042078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is an interconnected organelle that plays fundamental roles in the biosynthesis, folding, stabilization, maturation, and trafficking of secretory and transmembrane proteins. It is the largest organelle and critically modulates nearly all aspects of life. Therefore, in the endoplasmic reticulum, an enormous investment of resources, including chaperones and protein folding facilitators, is dedicated to adequate protein maturation and delivery to final destinations. Unfortunately, the folding and assembly of proteins can be quite error-prone, which leads to the generation of misfolded proteins. Notably, protein homeostasis, referred to as proteostasis, is constantly exposed to danger by flows of misfolded proteins and subsequent protein aggregates. To maintain proteostasis, the ER triages and eliminates terminally misfolded proteins by delivering substrates to the ubiquitin–proteasome system (UPS) or to the lysosome, which is termed ER-associated degradation (ERAD) or ER-phagy, respectively. ERAD not only eliminates misfolded or unassembled proteins via protein quality control but also fine-tunes correctly folded proteins via protein quantity control. Intriguingly, the diversity and distinctive nature of E3 ubiquitin ligases determine efficiency, complexity, and specificity of ubiquitination during ERAD. ER-phagy utilizes the core autophagy machinery and eliminates ERAD-resistant misfolded proteins. Here, we conceptually outline not only ubiquitination machinery but also catalytic mechanisms of E3 ubiquitin ligases. Further, we discuss the mechanistic insights into E3 ubiquitin ligases involved in the two guardian pathways in the ER, ERAD and ER-phagy. Finally, we provide the molecular mechanisms by which ERAD and ER-phagy conduct not only protein quality control but also protein quantity control to ensure proteostasis and subsequent organismal homeostasis.
Collapse
Affiliation(s)
- Ji An Kang
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Young Joo Jeon
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence:
| |
Collapse
|
55
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
56
|
Adir O, Bening-Abu-Shach U, Arbib S, Henis-Korenblit S, Broday L. Inactivation of the Caenorhabditis elegans RNF-5 E3 ligase promotes IRE-1-independent ER functions. Autophagy 2020; 17:2401-2414. [DOI: 10.1080/15548627.2020.1827778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Orit Adir
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ulrike Bening-Abu-Shach
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shir Arbib
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
57
|
van de Weijer ML, Krshnan L, Liberatori S, Guerrero EN, Robson-Tull J, Hahn L, Lebbink RJ, Wiertz EJHJ, Fischer R, Ebner D, Carvalho P. Quality Control of ER Membrane Proteins by the RNF185/Membralin Ubiquitin Ligase Complex. Mol Cell 2020; 79:768-781.e7. [PMID: 32738194 PMCID: PMC7482433 DOI: 10.1016/j.molcel.2020.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/06/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) are degraded by ER-associated degradation (ERAD). Although ERAD components involved in degradation of luminal substrates are well characterized, much less is known about quality control of membrane proteins. Here, we analyzed the degradation pathways of two short-lived ER membrane model proteins in mammalian cells. Using a CRISPR-Cas9 genome-wide library screen, we identified an ERAD branch required for quality control of a subset of membrane proteins. Using biochemical and mass spectrometry approaches, we showed that this ERAD branch is defined by an ER membrane complex consisting of the ubiquitin ligase RNF185, the ubiquitin-like domain containing proteins TMUB1/2 and TMEM259/Membralin, a poorly characterized protein. This complex cooperates with cytosolic ubiquitin ligase UBE3C and p97 ATPase in degrading their membrane substrates. Our data reveal that ERAD branches have remarkable specificity for their membrane substrates, suggesting that multiple, perhaps combinatorial, determinants are involved in substrate selection. The RNF185 ubiquitin ligase, Membralin, and TMUB1/2 assemble into an ERAD complex RNF185/Membralin complex targets membrane proteins, including CYP51A1 and TMUB2 RNF185/Membralin and TEB4 ERAD complexes recognize distinct substrate features TEB4 ERAD complex recognizes substrates through their transmembrane domain
Collapse
Affiliation(s)
- Michael L van de Weijer
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Logesvaran Krshnan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sabrina Liberatori
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Elena Navarro Guerrero
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Jacob Robson-Tull
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Lilli Hahn
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Robert Jan Lebbink
- Medical Microbiology, University Medical Center Utrecht, 3584 Utrecht, the Netherlands
| | - Emmanuel J H J Wiertz
- Medical Microbiology, University Medical Center Utrecht, 3584 Utrecht, the Netherlands
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Daniel Ebner
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
58
|
Lopata A, Kniss A, Löhr F, Rogov VV, Dötsch V. Ubiquitination in the ERAD Process. Int J Mol Sci 2020; 21:ijms21155369. [PMID: 32731622 PMCID: PMC7432864 DOI: 10.3390/ijms21155369] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
In this review, we focus on the ubiquitination process within the endoplasmic reticulum associated protein degradation (ERAD) pathway. Approximately one third of all synthesized proteins in a cell are channeled into the endoplasmic reticulum (ER) lumen or are incorporated into the ER membrane. Since all newly synthesized proteins enter the ER in an unfolded manner, folding must occur within the ER lumen or co-translationally, rendering misfolding events a serious threat. To prevent the accumulation of misfolded protein in the ER, proteins that fail the quality control undergo retrotranslocation into the cytosol where they proceed with ubiquitination and degradation. The wide variety of misfolded targets requires on the one hand a promiscuity of the ubiquitination process and on the other hand a fast and highly processive mechanism. We present the various ERAD components involved in the ubiquitination process including the different E2 conjugating enzymes, E3 ligases, and E4 factors. The resulting K48-linked and K11-linked ubiquitin chains do not only represent a signal for degradation by the proteasome but are also recognized by the AAA+ ATPase Cdc48 and get in the process of retrotranslocation modified by enzymes bound to Cdc48. Lastly we discuss the conformations adopted in particular by K48-linked ubiquitin chains and their importance for degradation.
Collapse
|
59
|
Qin X, Denton WD, Huiting LN, Smith KS, Feng H. Unraveling the regulatory role of endoplasmic-reticulum-associated degradation in tumor immunity. Crit Rev Biochem Mol Biol 2020; 55:322-353. [PMID: 32633575 DOI: 10.1080/10409238.2020.1784085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During malignant transformation and cancer progression, tumor cells face both intrinsic and extrinsic stress, endoplasmic reticulum (ER) stress in particular. To survive and proliferate, tumor cells use multiple stress response pathways to mitigate ER stress, promoting disease aggression and treatment resistance. Among the stress response pathways is ER-associated degradation (ERAD), which consists of multiple components and steps working together to ensure protein quality and quantity. In addition to its established role in stress responses and tumor cell survival, ERAD has recently been shown to regulate tumor immunity. Here we summarize current knowledge on how ERAD promotes protein degradation, regulates immune cell development and function, participates in antigen presentation, exerts paradoxical roles on tumorigenesis and immunity, and thus impacts current cancer therapy. Collectively, ERAD is a critical protein homeostasis pathway intertwined with cancer development and tumor immunity. Of particular importance is the need to further unveil ERAD's enigmatic roles in tumor immunity to develop effective targeted and combination therapy for successful treatment of cancer.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - William D Denton
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Leah N Huiting
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Kaylee S Smith
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
60
|
Tang D, Sandoval W, Lam C, Haley B, Liu P, Xue D, Roy D, Patapoff T, Louie S, Snedecor B, Misaghi S. UBR E3 ligases and the PDIA3 protease control degradation of unfolded antibody heavy chain by ERAD. J Cell Biol 2020; 219:151862. [PMID: 32558906 PMCID: PMC7337499 DOI: 10.1083/jcb.201908087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/03/2020] [Accepted: 04/06/2020] [Indexed: 12/01/2022] Open
Abstract
Accumulation of unfolded antibody chains in the ER triggers ER stress that may lead to reduced productivity in therapeutic antibody manufacturing processes. We identified UBR4 and UBR5 as ubiquitin E3 ligases involved in HC ER-associated degradation. Knockdown of UBR4 and UBR5 resulted in intracellular accumulation, enhanced secretion, and reduced ubiquitination of HC. In concert with these E3 ligases, PDIA3 was shown to cleave ubiquitinated HC molecules to accelerate HC dislocation. Interestingly, UBR5, and to a lesser degree UBR4, were down-regulated as cellular demand for antibody expression increased in CHO cells during the production phase, or in plasma B cells. Reducing UBR4/UBR5 expression before the production phase increased antibody productivity in CHO cells, possibly by redirecting antibody molecules from degradation to secretion. Altogether we have characterized a novel proteolysis/proteasome-dependent pathway involved in degradation of unfolded antibody HC. Proteins characterized in this pathway may be novel targets for CHO cell engineering.
Collapse
Affiliation(s)
- Danming Tang
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA
| | - Cynthia Lam
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA
| | - Peter Liu
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA
| | - Di Xue
- Department of Research Biology, Genentech Inc., South San Francisco, CA
| | - Deepankar Roy
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Tom Patapoff
- Department of Early Stage Pharmaceutical Development, Genentech Inc., South San Francisco, CA
| | - Salina Louie
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Brad Snedecor
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Shahram Misaghi
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| |
Collapse
|
61
|
Ubiquitination of disease-causing CFTR variants in a microsome-based assay. Anal Biochem 2020; 604:113829. [PMID: 32621804 DOI: 10.1016/j.ab.2020.113829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
Soluble secreted proteins and membrane proteins are subjected to protein quality control pathways during their synthesis in the endoplasmic reticulum (ER) and delivery to other destinations. Foremost among these quality control pathways is the selection of misfolded proteins for ER-associated degradation (ERAD). A growing number of diseases, including Cystic Fibrosis, are linked to the ERAD pathway. In most cases, a membrane protein known as the Cystic Fibrosis Transmembrane Conductance Regulator, or CFTR, is prematurely degraded by ERAD. Cell-based assays and in vitro studies have elucidated factors required for the recognition and degradation of CFTR, yet mechanistic details on how these factors target specific disease-causing variants is limited. Given the possibility that variants might exhibit unique susceptibilities to ubiquitin modification, which is required for proteasome-mediated degradation, we devised an assay that recapitulates this event. Here, we demonstrate that ER-enriched membranes from transfected human cells support CFTR ubiquitination when combined with radiolabeled ubiquitin and isolated enzymes in the ubiquitination cascade. We also show that select disease-causing variants are ubiquitinated more extensively than wild-type channels and to varying degrees. Our system provides a platform to examine how other purified factors impact CFTR ubiquitination and the ubiquitination of additional disease-associated membrane proteins.
Collapse
|
62
|
Strub MD, McCray, Jr. PB. Transcriptomic and Proteostasis Networks of CFTR and the Development of Small Molecule Modulators for the Treatment of Cystic Fibrosis Lung Disease. Genes (Basel) 2020; 11:genes11050546. [PMID: 32414011 PMCID: PMC7288469 DOI: 10.3390/genes11050546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The diversity of mutations and the multiple ways by which the protein is affected present challenges for therapeutic development. The observation that the Phe508del-CFTR mutant protein is temperature sensitive provided proof of principle that mutant CFTR could escape proteosomal degradation and retain partial function. Several specific protein interactors and quality control checkpoints encountered by CFTR during its proteostasis have been investigated for therapeutic purposes, but remain incompletely understood. Furthermore, pharmacological manipulation of many CFTR interactors has not been thoroughly investigated for the rescue of Phe508del-CFTR. However, high-throughput screening technologies helped identify several small molecule modulators that rescue CFTR from proteosomal degradation and restore partial function to the protein. Here, we discuss the current state of CFTR transcriptomic and biogenesis research and small molecule therapy development. We also review recent progress in CFTR proteostasis modulators and discuss how such treatments could complement current FDA-approved small molecules.
Collapse
Affiliation(s)
- Matthew D. Strub
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA;
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| | - Paul B. McCray, Jr.
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA;
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-(319)-335-6844
| |
Collapse
|
63
|
Fukuda R, Okiyoneda T. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Ubiquitylation as a Novel Pharmaceutical Target for Cystic Fibrosis. Pharmaceuticals (Basel) 2020; 13:ph13040075. [PMID: 32331485 PMCID: PMC7243099 DOI: 10.3390/ph13040075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022] Open
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene decrease the structural stability and function of the CFTR protein, resulting in cystic fibrosis. Recently, the effect of CFTR-targeting combination therapy has dramatically increased, and it is expected that add-on drugs that modulate the CFTR surrounding environment will further enhance their effectiveness. Various interacting proteins have been implicated in the structural stability of CFTR and, among them, molecules involved in CFTR ubiquitylation are promising therapeutic targets as regulators of CFTR degradation. This review focuses on the ubiquitylation mechanism that contributes to the stability of mutant CFTR at the endoplasmic reticulum (ER) and post-ER compartments and discusses the possibility as a pharmacological target for cystic fibrosis (CF).
Collapse
|
64
|
Kuan YC, Takahashi Y, Maruyama T, Shimizu M, Yamauchi Y, Sato R. Ring finger protein 5 activates sterol regulatory element-binding protein 2 (SREBP2) to promote cholesterol biosynthesis via inducing polyubiquitination of SREBP chaperone SCAP. J Biol Chem 2020; 295:3918-3928. [PMID: 32054686 DOI: 10.1074/jbc.ra119.011849] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Sterol regulatory element-binding protein 2 (SREBP2) is the master transcription factor that regulates cholesterol metabolism. SREBP2 activation is regulated by SREBP chaperone SCAP. Here we show that ring finger protein 5 (RNF5), an endoplasmic reticulum-anchored E3 ubiquitin ligase, mediates the Lys-29-linked polyubiquitination of SCAP and thereby activates SREBP2. RNF5 knockdown inhibited SREBP2 activation and reduced cholesterol biosynthesis in human hepatoma cells, and RNF5 overexpression activated SREBP2. Mechanistic studies revealed that RNF5 binds to the transmembrane domain of SCAP and ubiquitinates the Lys-305 located in cytosolic loop 2 of SCAP. Moreover, the RNF5-mediated ubiquitination enhanced an interaction between SCAP luminal loop 1 and loop 7, a crucial event for SREBP2 activation. Notably, an overexpressed K305R SCAP variant failed to restore the SREBP2 pathway in SCAP-deficient cell lines. These findings define a new mechanism by which an ubiquitination-induced SCAP conformational change regulates cholesterol biosynthesis.
Collapse
Affiliation(s)
- Yen-Chou Kuan
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yu Takahashi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Maruyama
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Makoto Shimizu
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yoshio Yamauchi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Ryuichiro Sato
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan .,Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
65
|
Pedemonte N, Bertozzi F, Caci E, Sorana F, Di Fruscia P, Tomati V, Ferrera L, Rodríguez-Gimeno A, Berti F, Pesce E, Sondo E, Gianotti A, Scudieri P, Bandiera T, Galietta LJV. Discovery of a picomolar potency pharmacological corrector of the mutant CFTR chloride channel. SCIENCE ADVANCES 2020; 6:eaay9669. [PMID: 32128418 PMCID: PMC7034990 DOI: 10.1126/sciadv.aay9669] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
F508del, the most frequent mutation causing cystic fibrosis (CF), results in mistrafficking and premature degradation of the CFTR chloride channel. Small molecules named correctors may rescue F508del-CFTR and therefore represent promising drugs to target the basic defect in CF. We screened a carefully designed chemical library to find F508del-CFTR correctors. The initial active compound resulting from the primary screening underwent extensive chemical optimization. The final compound, ARN23765, showed an extremely high potency in bronchial epithelial cells from F508del homozygous patients, with an EC50 of 38 picomolar, which is more than 5000-fold lower compared to presently available corrector drugs. ARN23765 also showed high efficacy, synergy with other types of correctors, and compatibility with chronic VX-770 potentiator. Besides being a promising drug, particularly suited for drug combinations, ARN23765 represents a high-affinity probe for CFTR structure-function studies.
Collapse
Affiliation(s)
| | - Fabio Bertozzi
- D3 PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Emanuela Caci
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Federico Sorana
- D3 PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Paolo Di Fruscia
- D3 PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Loretta Ferrera
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | | | - Francesco Berti
- D3 PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Ambra Gianotti
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Paolo Scudieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Luis J. V. Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy
| |
Collapse
|
66
|
Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modulators. Int J Mol Sci 2020; 21:ijms21020452. [PMID: 31936842 PMCID: PMC7013518 DOI: 10.3390/ijms21020452] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians in North America and a significant portion of Europe. The disease arises from one of many mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator, or CFTR. The most common disease-associated allele, F508del, along with several other mutations affect the folding, transport, and stability of CFTR as it transits from the endoplasmic reticulum (ER) to the plasma membrane, where it functions primarily as a chloride channel. Early data demonstrated that F508del CFTR is selected for ER associated degradation (ERAD), a pathway in which misfolded proteins are recognized by ER-associated molecular chaperones, ubiquitinated, and delivered to the proteasome for degradation. Later studies showed that F508del CFTR that is rescued from ERAD and folds can alternatively be selected for enhanced endocytosis and lysosomal degradation. A number of other disease-causing mutations in CFTR also undergo these events. Fortunately, pharmacological modulators of CFTR biogenesis can repair CFTR, permitting its folding, escape from ERAD, and function at the cell surface. In this article, we review the many cellular checkpoints that monitor CFTR biogenesis, discuss the emergence of effective treatments for CF, and highlight future areas of research on the proteostatic control of CFTR.
Collapse
|
67
|
Singh AK, Fan Y, Balut C, Alani S, Manelli AM, Swensen AM, Jia Y, Neelands TR, Vortherms TA, Liu B, Searle XB, Wang X, Gao W, Hwang TC, Ren HY, Cyr D, Kym PR, Conrath K, Tse C. Biological Characterization of F508delCFTR Protein Processing by the CFTR Corrector ABBV-2222/GLPG2222. J Pharmacol Exp Ther 2020; 372:107-118. [PMID: 31732698 PMCID: PMC11047061 DOI: 10.1124/jpet.119.261800] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic autosomal recessive disease in Caucasians caused by pathogenic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (CFTR). Significant small molecule therapeutic advances over the past two decades have been made to target the defective CFTR protein and enhance its function. To address the most prevalent defect of the defective CFTR protein (i.e., F508del mutation) in CF, two biomolecular activities are required, namely, correctors to increase the amount of properly folded F508delCFTR levels at the cell surface and potentiators to allow the effective opening, i.e., function of the F508delCFTR channel. Combined, these activities enhance chloride ion transport yielding improved hydration of the lung surface and subsequent restoration of mucociliary clearance. To enhance clinical benefits to CF patients, a complementary triple combination therapy consisting of two corrector molecules, type 1 (C1) and type 2, with additive mechanisms along with a potentiator are being investigated in the clinic for maximum restoration of mutated CFTR function. We report the identification and in vitro biologic characterization of ABBV-2222/GLPG2222 (4-[(2R,4R)-4-({[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl}amino)-7-(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl]benzoic acid),-a novel, potent, and orally bioavailable C1 corrector developed by AbbVie-Galapagos and currently in clinical trials-which exhibits substantial improvements over the existing C1 correctors. This includes improvements in potency and drug-drug interaction (DDI) compared with 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid (VX-809, Lumacaftor) and improvements in potency and efficacy compared with 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-[1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)indol-5-yl]cyclopropane-1-carboxamide (VX-661, Tezacaftor). ABBV-2222/GLPG2222 exhibits potent in vitro functional activity in primary patient cells harboring F508del/F508del CFTR with an EC50 value <10 nM. SIGNIFICANCE STATEMENT: To address the most prevalent defect of the defective CFTR protein (i.e., F508del mutation) in cystic fibrosis, AbbVie-Galapagos has developed ABBV-2222/GLPG2222, a novel, potent, and orally bioavailable C1 corrector of this protein. ABBV-2222/GLPG2222, which is currently in clinical trials, exhibits potent in vitro functional activity in primary patient cells harboring F508del/F508del CFTR and substantial improvements over the existing C1 correctors.
Collapse
Affiliation(s)
- Ashvani K Singh
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Yihong Fan
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Corina Balut
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Sara Alani
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Arlene M Manelli
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Andrew M Swensen
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Ying Jia
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Torben R Neelands
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Timothy A Vortherms
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Bo Liu
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Xenia B Searle
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Xueqing Wang
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Wenqing Gao
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Tzyh-Chang Hwang
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Hong Y Ren
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Douglas Cyr
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Philip R Kym
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Katja Conrath
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Chris Tse
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| |
Collapse
|
68
|
Fujita Y, Khateb A, Li Y, Tinoco R, Zhang T, Bar-Yoseph H, Tam MA, Chowers Y, Sabo E, Gerassy-Vainberg S, Starosvetsky E, James B, Brown K, Shen-Orr SS, Bradley LM, Tessier PA, Ronai ZA. Regulation of S100A8 Stability by RNF5 in Intestinal Epithelial Cells Determines Intestinal Inflammation and Severity of Colitis. Cell Rep 2019; 24:3296-3311.e6. [PMID: 30232010 PMCID: PMC6185744 DOI: 10.1016/j.celrep.2018.08.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/29/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is prevalent, but the mechanisms underlying disease development remain elusive. We identify a role for the E3 ubiquitin ligase RNF5 in IBD. Intestinal epithelial cells (IECs) express a high level of RNF5, while the colon of Rnf5−/− mice exhibits activated dendritic cells and intrinsic inflammation. Rnf5−/− mice exhibit severe acute colitis following dextran sodium sulfate (DSS) treatment. S100A8 is identified as an RNF5 substrate, resulting in S100A8 ubiquitination and proteasomal-dependent degradation that is attenuated upon inflammatory stimuli. Loss of RNF5 from IECs leads to enhanced S100A8 secretion, which induces mucosal CD4+ T cells, resulting in Th1 pro-inflammatory responses. Administration of S100A8-neutralizing antibodies to DSS-treated Rnf5−/− mice attenuates acute colitis development and increases survival. An inverse correlation between RNF5 and S100A8 protein expression in IECs of IBD patients coincides with disease severity. Collectively, RNF5-mediated regulation of S100A8 stability in IECs is required for the maintenance of intestinal homeostasis. Fujita et al. show that RNF5 regulation of S100A8 stability in intestinal epithelial cells defines the degree of pro-inflammatory response, culminating in severe intestinal inflammation following DSS treatment to Rnf5−/− mice. Neutralizing S100A8 antibodies attenuates acute colitis phenotypes, and inverse RNF5/S100A8 expression coincides with clinical severity in IBD patients.
Collapse
Affiliation(s)
- Yu Fujita
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ali Khateb
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 31096, Israel
| | - Yan Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Roberto Tinoco
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Haggai Bar-Yoseph
- Rambam Health Care Campus, Gastroenterology Institute, Haifa, 31096, Israel
| | | | - Yehuda Chowers
- Rambam Health Care Campus, Gastroenterology Institute, Haifa, 31096, Israel
| | - Edmond Sabo
- Pathology Division, Carmel Medical Center, Haifa, 34362, Israel
| | - Shiran Gerassy-Vainberg
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 31096, Israel
| | - Elina Starosvetsky
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 31096, Israel
| | - Brian James
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kevin Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shai S Shen-Orr
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 31096, Israel
| | - Linda M Bradley
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Philippe A Tessier
- Centre de Recherche du Centre Hospitalier de l'Université Laval, Sainte-Foy, Quebec, QC G1V 4G2, Canada
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Technion Integrated Cancer Center, Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
69
|
Bhattacharya A, Qi L. ER-associated degradation in health and disease - from substrate to organism. J Cell Sci 2019; 132:132/23/jcs232850. [PMID: 31792042 DOI: 10.1242/jcs.232850] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The recent literature has revolutionized our view on the vital importance of endoplasmic reticulum (ER)-associated degradation (ERAD) in health and disease. Suppressor/enhancer of Lin-12-like (Sel1L)-HMG-coA reductase degradation protein 1 (Hrd1)-mediated ERAD has emerged as a crucial determinant of normal physiology and as a sentinel against disease pathogenesis in the body, in a largely substrate- and cell type-specific manner. In this Review, we highlight three features of ERAD, constitutive versus inducible ERAD, quality versus quantity control of ERAD and ERAD-mediated regulation of nuclear gene transcription, through which ERAD exerts a profound impact on a number of physiological processes.
Collapse
Affiliation(s)
- Asmita Bhattacharya
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA.,Graduate Program of Genetics, Genomics and Development, Cornell University, Ithaca, NY 14853, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA .,Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
70
|
Hou X, Wu Q, Rajagopalan C, Zhang C, Bouhamdan M, Wei H, Chen X, Zaman K, Li C, Sun X, Chen S, Frizzell RA, Sun F. CK19 stabilizes CFTR at the cell surface by limiting its endocytic pathway degradation. FASEB J 2019; 33:12602-12615. [PMID: 31450978 PMCID: PMC9292138 DOI: 10.1096/fj.201901050r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/30/2019] [Indexed: 01/07/2023]
Abstract
Protein interactions that stabilize the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) at the apical membranes of epithelial cells have not yet been fully elucidated. We identified keratin 19 (CK19 or K19) as a novel CFTR-interacting protein. CK19 overexpression stabilized both wild-type (WT)-CFTR and Lumacaftor (VX-809)-rescued F508del-CFTR (where F508del is the deletion of the phenylalanine residue at position 508) at the plasma membrane (PM), promoting Cl- secretion across human bronchial epithelial (HBE) cells. CK19 prevention of Rab7A-mediated lysosomal degradation was a key mechanism in apical CFTR stabilization. Unexpectedly, CK19 expression was decreased by ∼40% in primary HBE cells from homogenous F508del patients with CF relative to non-CF controls. CK19 also positively regulated multidrug resistance-associated protein 4 expression at the PM, suggesting that this keratin may regulate the apical expression of other ATP-binding cassette proteins as well as CFTR.-Hou, X., Wu, Q., Rajagopalan, C., Zhang, C., Bouhamdan, M., Wei, H., Chen, X., Zaman, K., Li, C., Sun, X., Chen, S., Frizzell, R. A., Sun, F. CK19 stabilizes CFTR at the cell surface by limiting its endocytic pathway degradation.
Collapse
Affiliation(s)
- Xia Hou
- Department of PhysiologyWayne State University School of MedicineDetroitMichiganUSA
- Department of Biochemistry and Molecular BiologyJiamusi University School of Basic MedicineJiamusiChina
| | - Qingtian Wu
- Department of PhysiologyWayne State University School of MedicineDetroitMichiganUSA
- Department of Biochemistry and Molecular BiologyJiamusi University School of Basic MedicineJiamusiChina
| | - Carthic Rajagopalan
- Department of PhysiologyWayne State University School of MedicineDetroitMichiganUSA
| | - Chunbing Zhang
- Department of Biochemistry and Molecular BiologyJiamusi University School of Basic MedicineJiamusiChina
| | - Mohamad Bouhamdan
- Department of PhysiologyWayne State University School of MedicineDetroitMichiganUSA
| | - Hongguang Wei
- Department of PhysiologyWayne State University School of MedicineDetroitMichiganUSA
| | - Xuequn Chen
- Department of PhysiologyWayne State University School of MedicineDetroitMichiganUSA
| | - Khalequz Zaman
- Department of Pediatric Respiratory MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State UniversityAtlantaGeorgiaUSA
| | - Xiaonan Sun
- Center for Molecular and Translational Medicine, Georgia State UniversityAtlantaGeorgiaUSA
| | - Song Chen
- Institute of Medical Biotechnology, Jiangsu College of NursingHuai'anChina
| | - Raymond A. Frizzell
- Department of Pediatrics
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Fei Sun
- Department of PhysiologyWayne State University School of MedicineDetroitMichiganUSA
| |
Collapse
|
71
|
Amaral MD, Hutt DM, Tomati V, Botelho HM, Pedemonte N. CFTR processing, trafficking and interactions. J Cyst Fibros 2019; 19 Suppl 1:S33-S36. [PMID: 31680043 DOI: 10.1016/j.jcf.2019.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 01/04/2023]
Abstract
Mutations associated with cystic fibrosis (CF) have complex effects on the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The most common CF mutation, F508del, disrupts the processing to and stability at the plasma membrane and function as a Cl- channel. CFTR is surrounded by a dynamic network of interacting components, referred to as the CFTR Functional Landscape, that impact its synthesis, folding, stability, trafficking and function. CFTR interacting proteins can be manipulated by functional genomic approaches to rescue the trafficking and functional defects characteristic of CF. Here we review recent efforts to elucidate the impact of genetic variation on the ability of the nascent CFTR polypeptide to interact with the proteostatic environment. We also provide an overview of how specific components of this protein network can be modulated to rescue the trafficking and functional defects associated with the F508del variant of CFTR. The identification of novel proteins playing key roles in the processing of CFTR could pave the way for their use as novel therapeutic targets to provide synergistic correction of mutant CFTR for the greater benefit of individuals with CF.
Collapse
Affiliation(s)
- Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Portugal
| | - Darren M Hutt
- Department of Molecular Medicine, Scripps Research, La Jolla CA, USA
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, Genova 16147, Italy
| | - Hugo M Botelho
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Portugal
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, Genova 16147, Italy.
| |
Collapse
|
72
|
Gao Y, Xuan C, Jin M, An Q, Zhuo B, Chen X, Wang L, Wang Y, Sun Q, Shi Y. Ubiquitin ligase RNF5 serves an important role in the development of human glioma. Oncol Lett 2019; 18:4659-4666. [PMID: 31611975 PMCID: PMC6781729 DOI: 10.3892/ol.2019.10801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/06/2019] [Indexed: 11/05/2022] Open
Abstract
The ubiquitin ligase ring finger protein 5 (RNF5) has previously been associated with the development of breast cancer. Patients with breast cancer and high RNF5 expression have been demonstrated to have a shorter survival time compared with patients with low RNF5 expression. However, the role of RNF5 in human glioma has not been determined. The present study analyzed the role of RNF5 in gliomas using bioinformatics analysis. The results revealed that RNF5 was differentially expressed in non-cancerous brain tissues and different grades of glioma. Furthermore, a high RNF5 expression in patients with glioma was associated with an improved prognosis compared with patients with low expression. Gene Set Enrichment Analysis revealed that RNF5 was particularly associated with 'Wnt signaling pathway', 'apoptosis', 'focal adhesion' and 'cytokine-cytokine receptor interaction' in patients with glioma. Additionally, 4 potential ubiquitination substrates for RNF5 were predicted, including sorting nexin 10, proprotein convertase subtilisin/kexin type 1, leucine rich glioma inactivated 1 and solute carrier family 39 member 12. These findings provided the basis for further investigation on the role of RNF5 in tumors.
Collapse
Affiliation(s)
- Yong Gao
- Department of Orthopedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Chengmin Xuan
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Mingwei Jin
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Qi An
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Baobiao Zhuo
- Department of Orthopedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Xincheng Chen
- Department of Neurosurgery, Xinyi People's Hospital, Xinyi, Jiangsu 221400, P.R. China
| | - Lei Wang
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Yuan Wang
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Qingzeng Sun
- Department of Orthopedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Yingchun Shi
- Department of Orthopedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| |
Collapse
|
73
|
Fu W, Sun H, Zhao Y, Chen M, Yang X, Liu Y, Jin W. BCAP31 drives TNBC development by modulating ligand-independent EGFR trafficking and spontaneous EGFR phosphorylation. Theranostics 2019; 9:6468-6484. [PMID: 31588230 PMCID: PMC6771250 DOI: 10.7150/thno.35383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/27/2019] [Indexed: 12/14/2022] Open
Abstract
Identification of novel targets for triple-negative breast cancer (TNBC) is an urgent task as targeted therapies have increased the lifespans of Oestrogen Receptor +/ Progesterone Receptor + and HER2+ cancer patients. Methods: genes involved in protein processing in the endoplasmic reticulum, which have been reported to be key players in cancer, were used in loss-of-function screening to evaluate the oncogenic roles of these genes to identify candidate target genes in TNBC. In vitro and in vivo function assays as well as clinical prognostic analysis were used to study the oncogenic role of the gene. Molecular and cell based assays were further employed to investigate the mechanisms. Results: B Cell Receptor Associated Protein 31 (BCAP31), the expression of which is correlated with early recurrence and poor survival among patients, was identified an oncogene in our assay. In vitro studies further suggested that BCAP31 acts as a key oncogene by promoting TNBC development. We also showed that BCAP31 interacts with epidermal growth factor receptor (EGFR) and serves as an inhibitor of ligand-independent EGFR recycling, sustaining EGFR autophosphorylation and activation of downstream signalling. Conclusion: These findings reveal the functional role of BCAP31, an ER-related protein, in EGFR dysregulation and TNBC development.
Collapse
Affiliation(s)
- Wenyan Fu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hefen Sun
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mengting Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xueli Yang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Jin
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
74
|
Kim Chiaw P, Hantouche C, Wong MJH, Matthes E, Robert R, Hanrahan JW, Shrier A, Young JC. Hsp70 and DNAJA2 limit CFTR levels through degradation. PLoS One 2019; 14:e0220984. [PMID: 31408507 PMCID: PMC6692068 DOI: 10.1371/journal.pone.0220984] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/26/2019] [Indexed: 11/18/2022] Open
Abstract
Cystic Fibrosis is caused by mutations in the CFTR anion channel, many of which cause its misfolding and degradation. CFTR folding depends on the Hsc70 and Hsp70 chaperones and their co-chaperone DNAJA1, but Hsc70/Hsp70 is also involved in CFTR degradation. Here, we address how these opposing functions are balanced. DNAJA2 and DNAJA1 were both important for CFTR folding, however overexpressing DNAJA2 but not DNAJA1 enhanced CFTR degradation at the endoplasmic reticulum by Hsc70/Hsp70 and the E3 ubiquitin ligase CHIP. Excess Hsp70 also promoted CFTR degradation, but this occurred through the lysosomal pathway and required CHIP but not complex formation with HOP and Hsp90. Notably, the Hsp70 inhibitor MKT077 enhanced levels of mature CFTR and the most common disease variant ΔF508-CFTR, by slowing turnover and allowing delayed maturation, respectively. MKT077 also boosted the channel activity of ΔF508-CFTR when combined with the corrector compound VX809. Thus, the Hsp70 system is the major determinant of CFTR degradation, and its modulation can partially relieve the misfolding phenotype.
Collapse
Affiliation(s)
- Patrick Kim Chiaw
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Christine Hantouche
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Michael J. H. Wong
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Elizabeth Matthes
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Renaud Robert
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - John W. Hanrahan
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Alvin Shrier
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Jason C. Young
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
75
|
Bioactive Thymosin Alpha-1 Does Not Influence F508del-CFTR Maturation and Activity. Sci Rep 2019; 9:10310. [PMID: 31311979 PMCID: PMC6635361 DOI: 10.1038/s41598-019-46639-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is the most frequent mutation causing cystic fibrosis (CF). F508del-CFTR is misfolded and prematurely degraded. Recently thymosin a-1 (Tα-1) was proposed as a single molecule-based therapy for CF, improving both F508del-CFTR maturation and function by restoring defective autophagy. However, three independent laboratories failed to reproduce these results. Lack of reproducibility has been ascribed by the authors of the original paper to the use of DMSO and to improper handling. Here, we address these potential issues by demonstrating that Tα-1 changes induced by DMSO are fully reversible and that Tα-1 peptides prepared from different stock solutions have equivalent biological activity. Considering the negative results here reported, six independent laboratories failed to demonstrate F508del-CFTR correction by Tα-1. This study also calls into question the autophagy modulator cysteamine, since no rescue of mutant CFTR function was detected following treatment with cysteamine, while deleterious effects were observed when bronchial epithelia were exposed to cysteamine plus the antioxidant food supplement EGCG. Although these studies do not exclude the possibility of beneficial immunomodulatory effects of thymosin α-1, they do not support its utility as a corrector of F508del-CFTR.
Collapse
|
76
|
Spanò V, Montalbano A, Carbone A, Scudieri P, Galietta LJV, Barraja P. An overview on chemical structures as ΔF508-CFTR correctors. Eur J Med Chem 2019; 180:430-448. [PMID: 31326599 DOI: 10.1016/j.ejmech.2019.07.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
Abstract
Deletion of phenylalanine at position 508 (F508del) in the CFTR protein, is the most common mutation causing cystic fibrosis (CF). F508del causes misfolding and rapid degradation of CFTR protein a defect that can be targeted with pharmacological agents termed "correctors". Correctors belong to various chemical classes but are generally small molecules based on nitrogen sulfur or oxygen heterocycles. The mechanism of action of correctors is generally unknown but there is experimental evidence that some of them can directly act on mutant CFTR improving folding and stability. Here we overview the characteristics of the various F508del correctors described so far to obtain indications on key chemical structures and modifications that are required for mutant protein rescue.
Collapse
Affiliation(s)
- Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Anna Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Paolo Scudieri
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078, Pozzuoli, NA, Italy; Department of Translational Medical Sciences (DISMET), University of Naples, "Federico II", 80131, Naples, Italy
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
77
|
Hanrahan JW, Sato Y, Carlile GW, Jansen G, Young JC, Thomas DY. Cystic Fibrosis: Proteostatic correctors of CFTR trafficking and alternative therapeutic targets. Expert Opin Ther Targets 2019; 23:711-724. [PMID: 31169041 DOI: 10.1080/14728222.2019.1628948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cystic fibrosis (CF) is the most frequent lethal orphan disease and is caused by mutations in the CFTR gene. The most frequent mutation F508del-CFTR affects multiple organs; infections and subsequent infections and complications in the lung lead to death. Areas covered: This review focuses on new targets and mechanisms that are attracting interest for the development of CF therapies. The F508del-CFTR protein is retained in the endoplasmic reticulum (ER) but has some function if it can traffic to the plasma membrane. Cell-based assays have been used to screen chemical libraries for small molecule correctors that restore its trafficking. Pharmacological chaperones are correctors that bind directly to the F508del-CFTR mutant and promote its folding and trafficking. Other correctors fall into a heterogeneous class of proteostasis modulators that act indirectly by altering cellular homeostasis. Expert opinion: Pharmacological chaperones have so far been the most successful correctors of F508del-CFTR trafficking, but their level of correction means that more than one corrector is required. Proteostasis modulators have low levels of correction but hold promise because some can correct several different CFTR mutations. Identification of their cellular targets and the potential for development may lead to new therapies for CF.
Collapse
Affiliation(s)
- John W Hanrahan
- a Department of Physiology , McGill University , Montréal , QC , Canada.,c Research Institute of the McGill University Health Centre , McGill University , Montréal , QC , Canada
| | - Yukiko Sato
- a Department of Physiology , McGill University , Montréal , QC , Canada.,b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada
| | - Graeme W Carlile
- b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada.,d Department of Biochemistry , McGill University , Montréal , QC , Canada
| | - Gregor Jansen
- d Department of Biochemistry , McGill University , Montréal , QC , Canada
| | - Jason C Young
- b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada.,d Department of Biochemistry , McGill University , Montréal , QC , Canada
| | - David Y Thomas
- b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada.,d Department of Biochemistry , McGill University , Montréal , QC , Canada.,e Department of Human Genetics , McGill University , Montréal , QC , Canada
| |
Collapse
|
78
|
Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5 -/- mice. Nat Commun 2019; 10:1492. [PMID: 30940817 PMCID: PMC6445090 DOI: 10.1038/s41467-019-09525-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence points to an important role for the gut microbiome in anti-tumor immunity. Here, we show that altered intestinal microbiota contributes to anti-tumor immunity, limiting tumor expansion. Mice lacking the ubiquitin ligase RNF5 exhibit attenuated activation of the unfolded protein response (UPR) components, which coincides with increased expression of inflammasome components, recruitment and activation of dendritic cells and reduced expression of antimicrobial peptides in intestinal epithelial cells. Reduced UPR expression is also seen in murine and human melanoma tumor specimens that responded to immune checkpoint therapy. Co-housing of Rnf5−/− and WT mice abolishes the anti-tumor immunity and tumor inhibition phenotype, whereas transfer of 11 bacterial strains, including B. rodentium, enriched in Rnf5−/− mice, establishes anti-tumor immunity and restricts melanoma growth in germ-free WT mice. Altered UPR signaling, exemplified in Rnf5−/− mice, coincides with altered gut microbiota composition and anti-tumor immunity to control melanoma growth. RNF5 is a ubiquitin ligase regulating ER stress response. Here the authors show that Rnf5 deficiency potentiates immune response against melanoma via altered microbiota, and isolate bacterial strains that confer the same phenotype to wild type mice.
Collapse
|
79
|
Differential Scanning Fluorimetry and Hydrogen Deuterium Exchange Mass Spectrometry to Monitor the Conformational Dynamics of NBD1 in Cystic Fibrosis. Methods Mol Biol 2019; 1873:53-67. [PMID: 30341603 DOI: 10.1007/978-1-4939-8820-4_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is one of the most common, lethal autosomal recessive diseases in Caucasians with a life expectancy of 37-47 years. The CF transmembrane conductance regulator (CFTR) is a plasma membrane ion channel, confined to apical membrane of epithelia, and ensures transepithelial water and solute movement across secretory epithelia in several organs. Numerous CF mutations, including the most prevalent deletion of F508 (ΔF508) in the nucleotide binding domain 1 (NBD1) leads to CFTR global misfolding and premature intracellular degradation at the endoplasmic reticulum (ER). To better understand the misfolding mechanism caused by CF-causing point mutations in the NBD1, which is poorly understood, differential scanning fluorimetry (DSF) and hydrogen deuterium exchange coupled with mass spectrometry (HDX-MS) are the choice of techniques. These established methods can measure the conformational dynamics of the NBD1 globally and at peptide resolution level by monitoring backbone amide HDX, respectively, and will be instrumental to evaluate the mechanism of action of CF mutations and folding correctors that rescue CFTR folding defects via stabilizing the mutant NBD1.
Collapse
|
80
|
Pesce E, Sondo E, Ferrera L, Tomati V, Caci E, Scudieri P, Musante I, Renda M, Baatallah N, Servel N, Hinzpeter A, di Bernardo D, Pedemonte N, Galietta LJV. The Autophagy Inhibitor Spautin-1 Antagonizes Rescue of Mutant CFTR Through an Autophagy-Independent and USP13-Mediated Mechanism. Front Pharmacol 2018; 9:1464. [PMID: 30618756 PMCID: PMC6300570 DOI: 10.3389/fphar.2018.01464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
The mutation F508del, responsible for a majority of cystic fibrosis cases, provokes the instability and misfolding of the CFTR chloride channel. Pharmacological recovery of F508del-CFTR may be obtained with small molecules called correctors. However, treatment with a single corrector in vivo and in vitro only leads to a partial rescue, a consequence of cell quality control systems that still detect F508del-CFTR as a defective protein causing its degradation. We tested the effect of spautin-1 on F508del-CFTR since it is an inhibitor of USP10 deubiquitinase and of autophagy, a target and a biological process that have been associated with cystic fibrosis and mutant CFTR. We found that short-term treatment of cells with spautin-1 downregulates the function and expression of F508del-CFTR despite the presence of corrector VX-809, a finding obtained in multiple cell models and assays. In contrast, spautin-1 was ineffective on wild type CFTR. Silencing and upregulation of USP13 (another target of spautin-1) but not of USP10, had opposite effects on F508del-CFTR expression/function. In contrast, modulation of autophagy with known activators or inhibitors did not affect F508del-CFTR. Our results identify spautin-1 as a novel chemical probe to investigate the molecular mechanisms that prevent full rescue of mutant CFTR.
Collapse
Affiliation(s)
- Emanuela Pesce
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elvira Sondo
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Loretta Ferrera
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Valeria Tomati
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Emanuela Caci
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Scudieri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Ilaria Musante
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Mario Renda
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Nesrine Baatallah
- INSERM, U1151, Institut Necker Enfants Malades, Paris, France.,Université Paris Descartes, Paris, France
| | - Nathalie Servel
- INSERM, U1151, Institut Necker Enfants Malades, Paris, France.,Université Paris Descartes, Paris, France
| | - Alexandre Hinzpeter
- INSERM, U1151, Institut Necker Enfants Malades, Paris, France.,Université Paris Descartes, Paris, France
| | | | | | | |
Collapse
|
81
|
Gong X, Liao Y, Ahner A, Larsen MB, Wang X, Bertrand CA, Frizzell RA. Different SUMO paralogues determine the fate of wild-type and mutant CFTRs: biogenesis versus degradation. Mol Biol Cell 2018; 30:4-16. [PMID: 30403549 PMCID: PMC6337916 DOI: 10.1091/mbc.e18-04-0252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A pathway for cystic fibrosis transmembrane conductance regulator (CFTR) degradation is initiated by Hsp27, which cooperates with Ubc9 and binds to the common F508del mutant to modify it with SUMO-2/3. These SUMO paralogues form polychains, which are recognized by the ubiquitin ligase, RNF4, for proteosomal degradation. Here, protein array analysis identified the SUMO E3, protein inhibitor of activated STAT 4 (PIAS4), which increased wild-type (WT) and F508del CFTR biogenesis in CFBE airway cells. PIAS4 increased immature CFTR threefold and doubled expression of mature CFTR, detected by biochemical and functional assays. In cycloheximide chase assays, PIAS4 slowed immature F508del degradation threefold and stabilized mature WT CFTR at the plasma membrance. PIAS4 knockdown reduced WT and F508del CFTR expression by 40–50%, suggesting a physiological role in CFTR biogenesis. PIAS4 modified F508del CFTR with SUMO-1 in vivo and reduced its conjugation to SUMO-2/3. These SUMO paralogue-specific effects of PIAS4 were reproduced in vitro using purified F508del nucleotide-binding domain 1 and SUMOylation reaction components. PIAS4 reduced endogenous ubiquitin conjugation to F508del CFTR by ∼50% and blocked the impact of RNF4 on mutant CFTR disposal. These findings indicate that different SUMO paralogues determine the fates of WT and mutant CFTRs, and they suggest that a paralogue switch during biogenesis can direct these proteins to different outcomes: biogenesis versus degradation.
Collapse
Affiliation(s)
- Xiaoyan Gong
- Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Yong Liao
- Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Annette Ahner
- Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Mads Breum Larsen
- Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Xiaohui Wang
- Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Carol A Bertrand
- Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Raymond A Frizzell
- Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| |
Collapse
|
82
|
Roder K, Kabakov A, Moshal KS, Murphy KR, Xie A, Dudley S, Turan NN, Lu Y, MacRae CA, Koren G. Trafficking of the human ether-a-go-go-related gene (hERG) potassium channel is regulated by the ubiquitin ligase rififylin (RFFL). J Biol Chem 2018; 294:351-360. [PMID: 30401747 DOI: 10.1074/jbc.ra118.003852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/17/2018] [Indexed: 11/06/2022] Open
Abstract
The QT interval is an important diagnostic feature on surface electrocardiograms because it reflects the duration of the ventricular action potential. A previous genome-wide association study has reported a significant linkage between a single-nucleotide polymorphism ∼11.7 kb downstream of the gene encoding the RING finger ubiquitin ligase rififylin (RFFL) and variability in the QT interval. This, along with results in animal studies, suggests that RFFL may have effects on cardiac repolarization. Here, we sought to determine the role of RFFL in cardiac electrophysiology. Adult rabbit cardiomyocytes with adenovirus-expressed RFFL exhibited reduced rapid delayed rectifier current (I Kr). Neonatal rabbit cardiomyocytes transduced with RFFL-expressing adenovirus exhibited reduced total expression of the potassium channel ether-a-go-go-related gene (rbERG). Using transfections of 293A cells and Western blotting experiments, we observed that RFFL and the core-glycosylated form of the human ether-a-go-go-related gene (hERG) potassium channel interact. Furthermore, RFFL overexpression led to increased polyubiquitination and proteasomal degradation of hERG protein and to an almost complete disappearance of I Kr, which depended on the intact RING domain of RFFL. Blocking the ER-associated degradation (ERAD) pathway with a dominant-negative form of the ERAD core component, valosin-containing protein (VCP), in 293A cells partially abolished RFFL-mediated hERG degradation. We further substantiated the link between RFFL and ERAD by showing an interaction between RFFL and VCP in vitro We conclude that RFFL is an important regulator of voltage-gated hERG potassium channel activity and therefore cardiac repolarization and that this ubiquitination-mediated regulation requires parts of the ERAD pathway.
Collapse
Affiliation(s)
- Karim Roder
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - Anatoli Kabakov
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - Karni S Moshal
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - Kevin R Murphy
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - An Xie
- Department of Medicine, University of Minnesota, Cardiovascular Division, Minneapolis, Minnesota 55455
| | - Samuel Dudley
- Department of Medicine, University of Minnesota, Cardiovascular Division, Minneapolis, Minnesota 55455
| | - Nilüfer N Turan
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - Yichun Lu
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - Calum A MacRae
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Gideon Koren
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903.
| |
Collapse
|
83
|
Mehrtash AB, Hochstrasser M. Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope. Semin Cell Dev Biol 2018; 93:111-124. [PMID: 30278225 DOI: 10.1016/j.semcdb.2018.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/01/2023]
Abstract
Numerous nascent proteins undergo folding and maturation within the luminal and membrane compartments of the endoplasmic reticulum (ER). Despite the presence of various factors in the ER that promote protein folding, many proteins fail to properly fold and assemble and are subsequently degraded. Regulatory proteins in the ER also undergo degradation in a way that is responsive to stimuli or the changing needs of the cell. As in most cellular compartments, the ubiquitin-proteasome system (UPS) is responsible for the majority of the degradation at the ER-in a process termed ER-associated degradation (ERAD). Autophagic processes utilizing ubiquitin-like protein-conjugating systems also play roles in protein degradation at the ER. The ER is continuous with the nuclear envelope (NE), which consists of the outer nuclear membrane (ONM) and inner nuclear membrane (INM). While ERAD is known also to occur at the NE, only some of the ERAD ubiquitin-ligation pathways function at the INM. Protein degradation machineries in the ER/NE target a wide variety of substrates in multiple cellular compartments, including the cytoplasm, nucleoplasm, ER lumen, ER membrane, and the NE. Here, we review the protein degradation machineries of the ER and NE and the underlying mechanisms dictating recognition and processing of substrates by these machineries.
Collapse
Affiliation(s)
- Adrian B Mehrtash
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520, CT, USA.
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA; Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520, CT, USA.
| |
Collapse
|
84
|
Moon HW, Han HG, Jeon YJ. Protein Quality Control in the Endoplasmic Reticulum and Cancer. Int J Mol Sci 2018; 19:E3020. [PMID: 30282948 PMCID: PMC6213883 DOI: 10.3390/ijms19103020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 09/22/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is an essential compartment of the biosynthesis, folding, assembly, and trafficking of secretory and transmembrane proteins, and consequently, eukaryotic cells possess specialized machineries to ensure that the ER enables the proteins to acquire adequate folding and maturation for maintaining protein homeostasis, a process which is termed proteostasis. However, a large variety of physiological and pathological perturbations lead to the accumulation of misfolded proteins in the ER, which is referred to as ER stress. To resolve ER stress and restore proteostasis, cells have evolutionary conserved protein quality-control machineries of the ER, consisting of the unfolded protein response (UPR) of the ER, ER-associated degradation (ERAD), and autophagy. Furthermore, protein quality-control machineries of the ER play pivotal roles in the control of differentiation, progression of cell cycle, inflammation, immunity, and aging. Therefore, severe and non-resolvable ER stress is closely associated with tumor development, aggressiveness, and response to therapies for cancer. In this review, we highlight current knowledge in the molecular understanding and physiological relevance of protein quality control of the ER and discuss new insights into how protein quality control of the ER is implicated in the pathogenesis of cancer, which could contribute to therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Hye Won Moon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Hye Gyeong Han
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| |
Collapse
|
85
|
Fukuda R, Okiyoneda T. Peripheral Protein Quality Control as a Novel Drug Target for CFTR Stabilizer. Front Pharmacol 2018; 9:1100. [PMID: 30319426 PMCID: PMC6170605 DOI: 10.3389/fphar.2018.01100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Conformationally defective cystic fibrosis transmembrane conductance regulator (CFTR) including rescued ΔF508-CFTR is rapidly eliminated from the plasma membrane (PM) even in the presence of a CFTR corrector and potentiator, limiting the therapeutic effort of the combination therapy. CFTR elimination from the PM is determined by the conformation-dependent ubiquitination as a part of the peripheral quality control (PQC) mechanism. Recently, the molecular machineries responsible for the CFTR PQC mechanism which includes molecular chaperones and ubiquitination enzymes have been revealed. This review summarizes the molecular mechanism of the CFTR PQC and discusses the possibility that the peripheral ubiquitination mechanism becomes a novel drug target to develop the CFTR stabilizer as a novel class of CFTR modulator.
Collapse
Affiliation(s)
- Ryosuke Fukuda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Nishinomiya, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Nishinomiya, Japan
| |
Collapse
|
86
|
Hwang J, Qi L. Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem Sci 2018; 43:593-605. [PMID: 30056836 PMCID: PMC6327314 DOI: 10.1016/j.tibs.2018.06.005] [Citation(s) in RCA: 393] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) and the unfolded protein response (UPR) are two key quality-control machineries in the cell. ERAD is responsible for the clearance of misfolded proteins in the ER for cytosolic proteasomal degradation, while UPR is activated in response to the accumulation of misfolded proteins. It has long been thought that ERAD is an integral part of UPR because expression of many ERAD genes is controlled by UPR; however, recent studies have suggested that ERAD has a direct role in controlling the protein turnover and abundance of IRE1α, the most conserved UPR sensor. Here, we review recent advances in our understanding of IRE1α activation and propose that UPR and ERAD engage in an intimate crosstalk to define folding capacity and maintain homeostasis in the ER.
Collapse
Affiliation(s)
- Jiwon Hwang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| |
Collapse
|
87
|
Magnani ND, Dada LA, Sznajder JI. Ubiquitin-proteasome signaling in lung injury. Transl Res 2018; 198:29-39. [PMID: 29752900 PMCID: PMC6986356 DOI: 10.1016/j.trsl.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 12/21/2022]
Abstract
Cell homeostasis requires precise coordination of cellular proteins function. Ubiquitination is a post-translational modification that modulates protein half-life and function and is tightly regulated by ubiquitin E3 ligases and deubiquitinating enzymes. Lung injury can progress to acute respiratory distress syndrome that is characterized by an inflammatory response and disruption of the alveolocapillary barrier resulting in alveolar edema accumulation and hypoxemia. Ubiquitination plays an important role in the pathobiology of acute lung injury as it regulates the proteins modulating the alveolocapillary barrier and the inflammatory response. Better understanding of the signaling pathways regulated by ubiquitination may lead to novel therapeutic approaches by targeting specific elements of the ubiquitination pathways.
Collapse
Affiliation(s)
- Natalia D Magnani
- Pulmonary and Critical Care Division, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Laura A Dada
- Pulmonary and Critical Care Division, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Jacob I Sznajder
- Pulmonary and Critical Care Division, Northwestern Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
88
|
Pharmacological Inhibition of the Ubiquitin Ligase RNF5 Rescues F508del-CFTR in Cystic Fibrosis Airway Epithelia. Cell Chem Biol 2018; 25:891-905.e8. [PMID: 29754957 DOI: 10.1016/j.chembiol.2018.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/22/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
Abstract
In cystic fibrosis (CF), deletion of phenylalanine 508 (F508del) in the CFTR channel is associated with misfolding and premature degradation of the mutant protein. Among the known proteins associated with F508del-CFTR processing, the ubiquitin ligase RNF5/RMA1 is particularly interesting. We previously demonstrated that genetic suppression of RNF5 in vivo leads to an attenuation of intestinal pathological phenotypes in CF mice, validating the relevance of RNF5 as a drug target for CF. Here, we used a computational approach, based on ligand docking and virtual screening, to discover inh-02, a drug-like small molecule that inhibits RNF5. In in vitro experiments, treatment with inh-02 modulated ATG4B and paxillin, both known RNF5 targets. In immortalized and primary bronchial epithelial cells derived from CF patients homozygous for the F508del mutation, long-term incubation with inh-02 caused significant F508del-CFTR rescue. This work validates RNF5 as a drug target for CF, providing evidence to support its druggability.
Collapse
|
89
|
Molecular mechanism of ER stress-induced pre-emptive quality control involving association of the translocon, Derlin-1, and HRD1. Sci Rep 2018; 8:7317. [PMID: 29743537 PMCID: PMC5943263 DOI: 10.1038/s41598-018-25724-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/27/2018] [Indexed: 12/19/2022] Open
Abstract
The maintenance of endoplasmic reticulum (ER) homeostasis is essential for cell function. ER stress-induced pre-emptive quality control (ERpQC) helps alleviate the burden to a stressed ER by limiting further protein loading. We have previously reported the mechanisms of ERpQC, which includes a rerouting step and a degradation step. Under ER stress conditions, Derlin family proteins (Derlins), which are components of ER-associated degradation, reroute specific ER-targeting proteins to the cytosol. Newly synthesized rerouted polypeptides are degraded via the cytosolic chaperone Bag6 and the AAA-ATPase p97 in the ubiquitin-proteasome system. However, the mechanisms by which ER-targeting proteins are rerouted from the ER translocation pathway to the cytosolic degradation pathway and how the E3 ligase ubiquitinates ERpQC substrates remain unclear. Here, we show that ERpQC substrates are captured by the carboxyl-terminus region of Derlin-1 and ubiquitinated by the HRD1 E3 ubiquitin ligase prior to degradation. Moreover, HRD1 forms a large ERpQC-related complex composed of Sec61α and Derlin-1 during ER stress. These findings indicate that the association of the degradation factor HRD1 with the translocon and the rerouting factor Derlin-1 may be necessary for the smooth and effective clearance of ERpQC substrates.
Collapse
|
90
|
Stefanovic-Barrett S, Dickson AS, Burr SP, Williamson JC, Lobb IT, van den Boomen DJ, Lehner PJ, Nathan JA. MARCH6 and TRC8 facilitate the quality control of cytosolic and tail-anchored proteins. EMBO Rep 2018; 19:e45603. [PMID: 29519897 PMCID: PMC5934766 DOI: 10.15252/embr.201745603] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022] Open
Abstract
Misfolded or damaged proteins are typically targeted for destruction by proteasome-mediated degradation, but the mammalian ubiquitin machinery involved is incompletely understood. Here, using forward genetic screens in human cells, we find that the proteasome-mediated degradation of the soluble misfolded reporter, mCherry-CL1, involves two ER-resident E3 ligases, MARCH6 and TRC8. mCherry-CL1 degradation is routed via the ER membrane and dependent on the hydrophobicity of the substrate, with complete stabilisation only observed in double knockout MARCH6/TRC8 cells. To identify a more physiological correlate, we used quantitative mass spectrometry and found that TRC8 and MARCH6 depletion altered the turnover of the tail-anchored protein heme oxygenase-1 (HO-1). These E3 ligases associate with the intramembrane cleaving signal peptide peptidase (SPP) and facilitate the degradation of HO-1 following intramembrane proteolysis. Our results highlight how ER-resident ligases may target the same substrates, but work independently of each other, to optimise the protein quality control of selected soluble and tail-anchored proteins.
Collapse
Affiliation(s)
- Sandra Stefanovic-Barrett
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Anna S Dickson
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Stephen P Burr
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - James C Williamson
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Ian T Lobb
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Dick Jh van den Boomen
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Paul J Lehner
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - James A Nathan
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
91
|
Cigarette Smoke-Induced Acquired Dysfunction of Cystic Fibrosis Transmembrane Conductance Regulator in the Pathogenesis of Chronic Obstructive Pulmonary Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6567578. [PMID: 29849907 PMCID: PMC5937428 DOI: 10.1155/2018/6567578] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/11/2018] [Indexed: 12/27/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease state characterized by airflow limitation that is not fully reversible. Cigarette smoke and oxidative stress are main etiological risks in COPD. Interestingly, recent studies suggest a considerable overlap between chronic bronchitis (CB) phenotypic COPD and cystic fibrosis (CF), a common fatal hereditary lung disease caused by genetic mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Phenotypically, CF and COPD are associated with an impaired mucociliary clearance and mucus hypersecretion, although they are two distinct entities of unrelated origin. Mechanistically, the cigarette smoke-increased oxidative stress-induced CFTR dysfunction is implicated in COPD. This underscores CFTR in understanding and improving therapies for COPD by altering CFTR function with antioxidant agents and CFTR modulators as a great promising strategy for COPD treatments. Indeed, treatments that restore CFTR function, including mucolytic therapy, antioxidant ROS scavenger, CFTR stimulator (roflumilast), and CFTR potentiator (ivacaftor), have been tested in COPD. This review article is aimed at summarizing the molecular, cellular, and clinical evidence of oxidative stress, particularly the cigarette smoke-increased oxidative stress-impaired CFTR function, as well as signaling pathways of CFTR involved in the pathogenesis of COPD, with a highlight on the therapeutic potential of targeting CFTR for COPD treatment.
Collapse
|
92
|
Huang EY, To M, Tran E, Dionisio LTA, Cho HJ, Baney KLM, Pataki CI, Olzmann JA. A VCP inhibitor substrate trapping approach (VISTA) enables proteomic profiling of endogenous ERAD substrates. Mol Biol Cell 2018. [PMID: 29514927 PMCID: PMC5921570 DOI: 10.1091/mbc.e17-08-0514] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new substrate trapping strategy that couples VCP inhibition and quantitative ubiquitin proteomics identifies endogenous ERAD substrates, expanding the available toolbox of strategies for global analysis of the ERAD substrate landscape. Endoplasmic reticulum (ER)–associated degradation (ERAD) mediates the proteasomal clearance of proteins from the early secretory pathway. In this process, ubiquitinated substrates are extracted from membrane-embedded dislocation complexes by the AAA ATPase VCP and targeted to the cytosolic 26S proteasome. In addition to its well-established role in the degradation of misfolded proteins, ERAD also regulates the abundance of key proteins such as enzymes involved in cholesterol synthesis. However, due to the lack of generalizable methods, our understanding of the scope of proteins targeted by ERAD remains limited. To overcome this obstacle, we developed a VCP inhibitor substrate trapping approach (VISTA) to identify endogenous ERAD substrates. VISTA exploits the small-molecule VCP inhibitor CB5083 to trap ERAD substrates in a membrane-associated, ubiquitinated form. This strategy, coupled with quantitative ubiquitin proteomics, identified previously validated (e.g., ApoB100, Insig2, and DHCR7) and novel (e.g., SCD1 and RNF5) ERAD substrates in cultured human hepatocellular carcinoma cells. Moreover, our results indicate that RNF5 autoubiquitination on multiple lysine residues targets it for ubiquitin and VCP-dependent clearance. Thus, VISTA provides a generalizable discovery method that expands the available toolbox of strategies to elucidate the ERAD substrate landscape.
Collapse
Affiliation(s)
- Edmond Y Huang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Milton To
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Erica Tran
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Lorraine T Ador Dionisio
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Hyejin J Cho
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Katherine L M Baney
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Camille I Pataki
- Biomedical Informatics Program, Stanford University, Stanford, CA 94305
| | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
93
|
Hou X, Wei H, Rajagopalan C, Jiang H, Wu Q, Zaman K, Xie Y, Sun F. Dissection of the Role of VIMP in Endoplasmic Reticulum-Associated Degradation of CFTRΔF508. Sci Rep 2018; 8:4764. [PMID: 29555962 PMCID: PMC5859151 DOI: 10.1038/s41598-018-23284-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/06/2018] [Indexed: 12/05/2022] Open
Abstract
Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is an important quality control mechanism that eliminates misfolded proteins from the ER. The Derlin-1/VCP/VIMP protein complex plays an essential role in ERAD. Although the roles of Derlin-1 and VCP are relatively clear, the functional activity of VIMP in ERAD remains to be understood. Here we investigate the role of VIMP in the degradation of CFTRΔF508, a cystic fibrosis transmembrane conductance regulator (CFTR) mutant known to be a substrate of ERAD. Overexpression of VIMP markedly enhances the degradation of CFTRΔF508, whereas knockdown of VIMP increases its half-life. We demonstrate that VIMP is associated with CFTRΔF508 and the RNF5 E3 ubiquitin ligase (also known as RMA1). Thus, VIMP not only forms a complex with Derlin-1 and VCP, but may also participate in recruiting substrates and E3 ubiquitin ligases. We further show that blocking CFTRΔF508 degradation by knockdown of VIMP substantially augments the effect of VX809, a drug that allows a fraction of CFTRΔF508 to fold properly and mobilize from ER to cell surface for normal functioning. This study provides insight into the role of VIMP in ERAD and presents a potential target for the treatment of cystic fibrosis patients carrying the CFTRΔF508 mutation.
Collapse
Affiliation(s)
- Xia Hou
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medicine, Jiamusi, Heilongjiang, 154007, China
| | - Hongguang Wei
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Carthic Rajagopalan
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hong Jiang
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Qingtian Wu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medicine, Jiamusi, Heilongjiang, 154007, China
| | - Khalequz Zaman
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Youming Xie
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
94
|
Li H, Pesce E, Sheppard DN, Singh AK, Pedemonte N. Therapeutic approaches to CFTR dysfunction: From discovery to drug development. J Cyst Fibros 2018; 17:S14-S21. [DOI: 10.1016/j.jcf.2017.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 11/29/2022]
|
95
|
Okiyoneda T, Veit G, Sakai R, Aki M, Fujihara T, Higashi M, Susuki-Miyata S, Miyata M, Fukuda N, Yoshida A, Xu H, Apaja PM, Lukacs GL. Chaperone-Independent Peripheral Quality Control of CFTR by RFFL E3 Ligase. Dev Cell 2018; 44:694-708.e7. [PMID: 29503157 DOI: 10.1016/j.devcel.2018.02.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/28/2017] [Accepted: 01/30/2018] [Indexed: 01/09/2023]
Abstract
The peripheral protein quality control (QC) system removes non-native membrane proteins, including ΔF508-CFTR, the most common CFTR mutant in cystic fibrosis (CF), from the plasma membrane (PM) for lysosomal degradation by ubiquitination. It remains unclear how unfolded membrane proteins are recognized and targeted for ubiquitination and how they are removed from the apical PM. Using comprehensive siRNA screens, we identified RFFL, an E3 ubiquitin (Ub) ligase that directly and selectively recognizes unfolded ΔF508-CFTR through its disordered regions. RFFL retrieves the unfolded CFTR from the PM for lysosomal degradation by chaperone-independent K63-linked poly-ubiquitination. RFFL ablation enhanced the functional expression of cell-surface ΔF508-CFTR in the presence of folding corrector molecules, and this effect was further improved by inhibiting the Hsc70-dependent ubiquitination machinery. We propose that multiple peripheral QC mechanisms evolved to dispose of non-native PM proteins and to preserve cellular proteostasis, even at the cost of eliminating partially functional polypeptides.
Collapse
Affiliation(s)
- Tsukasa Okiyoneda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan; Department of Physiology, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC H3G 1Y6, Canada.
| | - Guido Veit
- Department of Physiology, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC H3G 1Y6, Canada
| | - Ryohei Sakai
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Misaki Aki
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Takeshi Fujihara
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Momoko Higashi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Seiko Susuki-Miyata
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Masanori Miyata
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Norihito Fukuda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Akihiko Yoshida
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Haijin Xu
- Department of Physiology, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC H3G 1Y6, Canada
| | - Pirjo M Apaja
- Department of Physiology, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC H3G 1Y6, Canada
| | - Gergely L Lukacs
- Department of Physiology, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC H3G 1Y6, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Department of GRASP, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
96
|
Zhang S, Stoll G, Pedro JMBS, Sica V, Sauvat A, Obrist F, Kepp O, Li Y, Maiuri L, Zamzami N, Kroemer G. Evaluation of autophagy inducers in epithelial cells carrying the ΔF508 mutation of the cystic fibrosis transmembrane conductance regulator CFTR. Cell Death Dis 2018; 9:191. [PMID: 29415993 PMCID: PMC5833759 DOI: 10.1038/s41419-017-0235-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Cystic Fibrosis (CF) due to the ΔF508 mutation of cystic fibrosis transmembrane conductance regulator (CFTR) can be treated with a combination of cysteamine and Epigallocatechin gallate (EGCG). Since ECGC is not a clinically approved drug, we attempted to identify other compounds that might favourably interact with cysteamine to induce autophagy and thus rescuing the function of ΔF508 CFTR as a chloride channel in the plasma membrane. For this, we screened a compound library composed by chemically diverse autophagy inducers for their ability to enhance autophagic flux in the presence of cysteamine. We identified the antiarrhythmic Ca2+ channel blocker amiodarone, as an FDA-approved drug having the property to cooperate with cysteamine to stimulate autophagy in an additive manner. Amiodarone promoted the re-expression of ΔF508 CFTR protein in the plasma membrane of respiratory epithelial cells. Hence, amiodarone might be yet another compound for the etiological therapy of CF in patients bearing the ΔF508 CFTR mutation.
Collapse
Affiliation(s)
- Shaoyi Zhang
- Faculty of Medicine, University of Paris Sud-Saclay, Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale UMRS1138, Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Université Pierre et Marie Curie, Paris, France.,Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Gautier Stoll
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale UMRS1138, Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Université Pierre et Marie Curie, Paris, France
| | - José Manuel Bravo San Pedro
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale UMRS1138, Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Université Pierre et Marie Curie, Paris, France
| | - Valentina Sica
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale UMRS1138, Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Université Pierre et Marie Curie, Paris, France
| | - Allan Sauvat
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale UMRS1138, Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Université Pierre et Marie Curie, Paris, France
| | - Florine Obrist
- Faculty of Medicine, University of Paris Sud-Saclay, Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale UMRS1138, Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Université Pierre et Marie Curie, Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale UMRS1138, Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Université Pierre et Marie Curie, Paris, France
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,SCDU of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Naoufal Zamzami
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Institut National de la Santé et de la Recherche Médicale UMRS1138, Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France. .,Sorbonne Paris Cité, Université Paris Descartes, Paris, France. .,Gustave Roussy Comprehensive Cancer Center, Villejuif, France. .,Université Pierre et Marie Curie, Paris, France.
| | - Guido Kroemer
- Faculty of Medicine, University of Paris Sud-Saclay, Kremlin-Bicêtre, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Institut National de la Santé et de la Recherche Médicale UMRS1138, Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France. .,Sorbonne Paris Cité, Université Paris Descartes, Paris, France. .,Gustave Roussy Comprehensive Cancer Center, Villejuif, France. .,Université Pierre et Marie Curie, Paris, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, APsupp-HP, Paris, France. .,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
97
|
Powles J, Ko K. Alternative splice variants of rhomboid proteins: Comparative analysis of database entries for select model organisms and validation of functional potential. F1000Res 2018; 7:139. [PMID: 32201561 PMCID: PMC7065720 DOI: 10.12688/f1000research.13383.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Rhomboid serine proteases are present across many species and are often encoded in each species by more than one predicted gene. Based on protein sequence comparisons, rhomboids can be differentiated into groups - secretases, presenilin-like associated rhomboid-like (PARL) proteases, iRhoms, and "inactive" rhomboid proteins. Although these rhomboid groups are distinct, the different types can operate simultaneously. Studies in Arabidopsis showed that the number of rhomboid proteins working simultaneously can be further diversified by alternative splicing. This phenomenon was confirmed for the Arabidopsis plastid rhomboid proteins At1g25290 and At1g74130. Although alternative splicing was determined to be a significant mechanism for diversifying these two Arabidopsis plastid rhomboids, there has yet to be an assessment as to whether this mechanism extends to other rhomboids and to other species. Methods: We thus conducted a comparative analysis of select databases to determine if the alternative splicing mechanism observed for the two Arabidopsis plastid rhomboids was utilized in other species to expand the repertoire of rhomboid proteins. To help verify the in silico observations, select splice variants from different groups were tested for activity using transgenic- and additive-based assays. These assays aimed to uncover evidence that the selected splice variants display capacities to influence processes like antimicrobial sensitivity. Results: A comparison of database entries of six widely used eukaryotic experimental models (human, mouse, Arabidopsis, Drosophila, nematode, and yeast) revealed robust usage of alternative splicing to diversify rhomboid protein structure across the various motifs or regions, especially in human, mouse and Arabidopsis. Subsequent validation studies uncover evidence that the splice variants selected for testing displayed functionality in the different activity assays. Conclusions: The combined results support the hypothesis that alternative splicing is likely used to diversify and expand rhomboid protein functionality, and this potentially occurred across the various motifs or regions of the protein.
Collapse
Affiliation(s)
- Joshua Powles
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kenton Ko
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
98
|
Yoo YS, Han HG, Jeon YJ. Unfolded Protein Response of the Endoplasmic Reticulum in Tumor Progression and Immunogenicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2969271. [PMID: 29430279 PMCID: PMC5752989 DOI: 10.1155/2017/2969271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a pivotal regulator of folding, quality control, trafficking, and targeting of secreted and transmembrane proteins, and accordingly, eukaryotic cells have evolved specialized machinery to ensure that the ER enables these proteins to acquire adequate folding and maturation in the presence of intrinsic and extrinsic insults. This adaptive capacity of the ER to intrinsic and extrinsic perturbations is important for maintaining protein homeostasis, which is termed proteostasis. Failure in adaptation to these perturbations leads to accumulation of misfolded or unassembled proteins in the ER, which is termed ER stress, resulting in the activation of unfolded protein response (UPR) of the ER and the execution of ER-associated degradation (ERAD) to restore homeostasis. Furthermore, both of the two axes play key roles in the control of tumor progression, inflammation, immunity, and aging. Therefore, understanding UPR of the ER and subsequent ERAD will provide new insights into the pathogenesis of many human diseases and contribute to therapeutic intervention in these diseases.
Collapse
Affiliation(s)
- Yoon Seon Yoo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Hye Gyeong Han
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| |
Collapse
|
99
|
Luo WW, Li S, Li C, Zheng ZQ, Cao P, Tong Z, Lian H, Wang SY, Shu HB, Wang YY. iRhom2 is essential for innate immunity to RNA virus by antagonizing ER- and mitochondria-associated degradation of VISA. PLoS Pathog 2017; 13:e1006693. [PMID: 29155878 PMCID: PMC5722342 DOI: 10.1371/journal.ppat.1006693] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 12/08/2017] [Accepted: 10/13/2017] [Indexed: 11/30/2022] Open
Abstract
VISA (also known as MAVS, IPS-1 and Cardif) is an essential adaptor protein in innate immune response to RNA virus. The protein level of VISA is delicately regulated before and after viral infection to ensure the optimal activation and timely termination of innate antiviral response. It has been reported that several E3 ubiquitin ligases can mediate the degradation of VISA, but how the stability of VISA is maintained before and after viral infection remains enigmatic. In this study, we found that the ER-associated inactive rhomboid protein 2 (iRhom2) plays an essential role in mounting an efficient innate immune response to RNA virus by maintaining the stability of VISA through distinct mechanisms. In un-infected and early infected cells, iRhom2 mediates auto-ubiquitination and degradation of the E3 ubiquitin ligase RNF5 and impairs the assembly of VISA-RNF5-GP78 complexes, thereby antagonizes ER-associated degradation (ERAD) of VISA. In the late phase of viral infection, iRhom2 mediates proteasome-dependent degradation of the E3 ubiquitin ligase MARCH5 and impairs mitochondria-associated degradation (MAD) of VISA. Maintenance of VISA stability by iRhom2 ensures efficient innate antiviral response at the early phase of viral infection and ready for next round of response. Our findings suggest that iRhom2 acts as a checkpoint for the ERAD/MAD of VISA, which ensures proper innate immune response to RNA virus. VISA is a central adaptor in innate immune response to RNA virus, which is down-regulated by multiple ubiquitination-dependent mechanisms. In this study, we found that the ER-associated protein iRhom2 promotes VISA stability by suppressing ER- and mitochondria-associated degradation pathways in early- and late-infected cells respectively, thereby plays an essential role in efficient innate immune response to RNA virus.
Collapse
Affiliation(s)
- Wei-Wei Luo
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Medical Research Institute, State Key Laboratory of Virology, School of Medicine, Wuhan University, Wuhan, China
| | - Shu Li
- Medical Research Institute, State Key Laboratory of Virology, School of Medicine, Wuhan University, Wuhan, China
| | - Chen Li
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhou-Qin Zheng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Pan Cao
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen Tong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Lian
- Medical Research Institute, State Key Laboratory of Virology, School of Medicine, Wuhan University, Wuhan, China
| | - Su-Yun Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hong-Bing Shu
- Medical Research Institute, State Key Laboratory of Virology, School of Medicine, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan-Yi Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
100
|
Kopp Y, Lang WH, Schuster TB, Martínez-Limón A, Hofbauer HF, Ernst R, Calloni G, Vabulas RM. CHIP as a membrane-shuttling proteostasis sensor. eLife 2017; 6:e29388. [PMID: 29091030 PMCID: PMC5665643 DOI: 10.7554/elife.29388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022] Open
Abstract
Cells respond to protein misfolding and aggregation in the cytosol by adjusting gene transcription and a number of post-transcriptional processes. In parallel to functional reactions, cellular structure changes as well; however, the mechanisms underlying the early adaptation of cellular compartments to cytosolic protein misfolding are less clear. Here we show that the mammalian ubiquitin ligase C-terminal Hsp70-interacting protein (CHIP), if freed from chaperones during acute stress, can dock on cellular membranes thus performing a proteostasis sensor function. We reconstituted this process in vitro and found that mainly phosphatidic acid and phosphatidylinositol-4-phosphate enhance association of chaperone-free CHIP with liposomes. HSP70 and membranes compete for mutually exclusive binding to the tetratricopeptide repeat domain of CHIP. At new cellular locations, access to compartment-specific substrates would enable CHIP to participate in the reorganization of the respective organelles, as exemplified by the fragmentation of the Golgi apparatus (effector function).
Collapse
Affiliation(s)
- Yannick Kopp
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Wei-Han Lang
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Tobias B Schuster
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Adrián Martínez-Limón
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Harald F Hofbauer
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of BiochemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Robert Ernst
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of BiochemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Giulia Calloni
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - R Martin Vabulas
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| |
Collapse
|