51
|
Trinquier A, Durand S, Braun F, Condon C. Regulation of RNA processing and degradation in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194505. [PMID: 32061882 DOI: 10.1016/j.bbagrm.2020.194505] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022]
Abstract
Messenger RNA processing and decay is a key mechanism to control gene expression at the post-transcriptional level in response to ever-changing environmental conditions. In this review chapter, we discuss the main ribonucleases involved in these processes in bacteria, with a particular but non-exclusive emphasis on the two best-studied paradigms of Gram-negative and Gram-positive bacteria, E. coli and B. subtilis, respectively. We provide examples of how the activity and specificity of these enzymes can be modulated at the protein level, by co-factor binding and by post-translational modifications, and how they can be influenced by specific properties of their mRNA substrates, such as 5' protective 'caps', nucleotide modifications, secondary structures and translation. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Aude Trinquier
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sylvain Durand
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Frédérique Braun
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Ciarán Condon
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
52
|
Plant Ribonuclease J: An Essential Player in Maintaining Chloroplast RNA Quality Control for Gene Expression. PLANTS 2020; 9:plants9030334. [PMID: 32151111 PMCID: PMC7154860 DOI: 10.3390/plants9030334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022]
Abstract
RNA quality control is an indispensable but poorly understood process that enables organisms to distinguish functional RNAs from nonfunctional or inhibitory ones. In chloroplasts, whose gene expression activities are required for photosynthesis, retrograde signaling, and plant development, RNA quality control is of paramount importance, as transcription is relatively unregulated. The functional RNA population is distilled from this initial transcriptome by a combination of RNA-binding proteins and ribonucleases. One of the key enzymes is RNase J, a 5′→3′ exoribonuclease and an endoribonuclease that has been shown to trim 5′ RNA termini and eliminate deleterious antisense RNA. In the absence of RNase J, embryo development cannot be completed. Land plant RNase J contains a highly conserved C-terminal domain that is found in GT-1 DNA-binding transcription factors and is not present in its bacterial, archaeal, and algal counterparts. The GT-1 domain may confer specificity through DNA and/or RNA binding and/or protein–protein interactions and thus be an element in the mechanisms that identify target transcripts among diverse RNA populations. Further understanding of chloroplast RNA quality control relies on discovering how RNase J is regulated and how its specificity is imparted.
Collapse
|
53
|
Planson AG, Sauveplane V, Dervyn E, Jules M. Bacterial growth physiology and RNA metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194502. [PMID: 32044462 DOI: 10.1016/j.bbagrm.2020.194502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
Bacteria are sophisticated systems with high capacity and flexibility to adapt to various environmental conditions. Each prokaryote however possesses a defined metabolic network, which sets its overall metabolic capacity, and therefore the maximal growth rate that can be reached. To achieve optimal growth, bacteria adopt various molecular strategies to optimally adjust gene expression and optimize resource allocation according to the nutrient availability. The resulting physiological changes are often accompanied by changes in the growth rate, and by global regulation of gene expression. The growth-rate-dependent variation of the abundances in the cellular machineries, together with condition-specific regulatory mechanisms, affect RNA metabolism and fate and pose a challenge for rational gene expression reengineering of synthetic circuits. This article is part of a Special Issue entitled: RNA and gene control in bacteria, edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Anne-Gaëlle Planson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
54
|
Šiková M, Wiedermannová J, Převorovský M, Barvík I, Sudzinová P, Kofroňová O, Benada O, Šanderová H, Condon C, Krásný L. The torpedo effect in Bacillus subtilis: RNase J1 resolves stalled transcription complexes. EMBO J 2020; 39:e102500. [PMID: 31840842 PMCID: PMC6996504 DOI: 10.15252/embj.2019102500] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022] Open
Abstract
RNase J1 is the major 5'-to-3' bacterial exoribonuclease. We demonstrate that in its absence, RNA polymerases (RNAPs) are redistributed on DNA, with increased RNAP occupancy on some genes without a parallel increase in transcriptional output. This suggests that some of these RNAPs represent stalled, non-transcribing complexes. We show that RNase J1 is able to resolve these stalled RNAP complexes by a "torpedo" mechanism, whereby RNase J1 degrades the nascent RNA and causes the transcription complex to disassemble upon collision with RNAP. A heterologous enzyme, yeast Xrn1 (5'-to-3' exonuclease), is less efficient than RNase J1 in resolving stalled Bacillus subtilis RNAP, suggesting that the effect is RNase-specific. Our results thus reveal a novel general principle, whereby an RNase can participate in genome-wide surveillance of stalled RNAP complexes, preventing potentially deleterious transcription-replication collisions.
Collapse
Affiliation(s)
- Michaela Šiková
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Jana Wiedermannová
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Martin Převorovský
- Department of Cell BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Ivan Barvík
- Division of Biomolecular PhysicsInstitute of PhysicsCharles UniversityPrague 2Czech Republic
| | - Petra Sudzinová
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Olga Kofroňová
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Oldřich Benada
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Hana Šanderová
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Ciarán Condon
- UMR8261CNRSUniversité de ParisInstitut de Biologie Physico‐ChimiqueParisFrance
| | - Libor Krásný
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| |
Collapse
|
55
|
Iost I, Chabas S, Darfeuille F. Maturation of atypical ribosomal RNA precursors in Helicobacter pylori. Nucleic Acids Res 2019; 47:5906-5921. [PMID: 31006803 PMCID: PMC6582327 DOI: 10.1093/nar/gkz258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
In most bacteria, ribosomal RNA is transcribed as a single polycistronic precursor that is first processed by RNase III. This double-stranded specific RNase cleaves two large stems flanking the 23S and 16S rRNA mature sequences, liberating three 16S, 23S and 5S rRNA precursors, which are further processed by other ribonucleases. Here, we investigate the rRNA maturation pathway of the human gastric pathogen Helicobacter pylori. This bacterium has an unusual arrangement of its rRNA genes, the 16S rRNA gene being separated from a 23S-5S rRNA cluster. We show that RNase III also initiates processing in this organism, by cleaving two typical stem structures encompassing 16S and 23S rRNAs and an atypical stem–loop located upstream of the 5S rRNA. Deletion of RNase III leads to the accumulation of a large 23S-5S precursor that is found in polysomes, suggesting that it can function in translation. Finally, we characterize a cis-encoded antisense RNA overlapping the leader of the 23S-5S rRNA precursor. We present evidence that this antisense RNA interacts with this precursor, forming an intermolecular complex that is cleaved by RNase III. This pairing induces additional specific cleavages of the rRNA precursor coupled with a rapid degradation of the antisense RNA.
Collapse
Affiliation(s)
- Isabelle Iost
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| | - Sandrine Chabas
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| | - Fabien Darfeuille
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| |
Collapse
|
56
|
Frindert J, Zhang Y, Nübel G, Kahloon M, Kolmar L, Hotz-Wagenblatt A, Burhenne J, Haefeli WE, Jäschke A. Identification, Biosynthesis, and Decapping of NAD-Capped RNAs in B. subtilis. Cell Rep 2019; 24:1890-1901.e8. [PMID: 30110644 DOI: 10.1016/j.celrep.2018.07.047] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/02/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022] Open
Abstract
The ubiquitous coenzyme nicotinamide adenine dinucleotide (NAD) decorates various RNAs in different organisms. In the proteobacterium Escherichia coli, the NAD-cap confers stability against RNA degradation. To date, NAD-RNAs have not been identified in any other bacterial microorganism. Here, we report the identification of NAD-RNA in the firmicute Bacillus subtilis. In the late exponential growth phase, predominantly mRNAs are NAD modified. NAD is incorporated de novo into RNA by the cellular RNA polymerase using non-canonical transcription initiation. The incorporation efficiency depends on the -1 position of the promoter but is independent of sigma factors or mutations in the rifampicin binding pocket. RNA pyrophosphohydrolase BsRppH is found to decap NAD-RNA. In vitro, the decapping activity is facilitated by manganese ions and single-stranded RNA 5' ends. Depletion of BsRppH influences the gene expression of ∼13% of transcripts in B. subtilis. The NAD-cap stabilizes RNA against 5'-to-3'-exonucleolytic decay by RNase J1.
Collapse
Affiliation(s)
- Jens Frindert
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany
| | - Yaqing Zhang
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany
| | - Gabriele Nübel
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany
| | - Masroor Kahloon
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany
| | - Leonie Kolmar
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Group, Core Facility Genomics and Proteomics, German Cancer Research Center (DKFZ), DKFZ-Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, 69120 Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
57
|
Frindert J, Kahloon MA, Zhang Y, Ahmed YL, Sinning I, Jäschke A. YvcI from Bacillus subtilis has in vitro RNA pyrophosphohydrolase activity. J Biol Chem 2019; 294:19967-19977. [PMID: 31740579 DOI: 10.1074/jbc.ra119.011485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/15/2019] [Indexed: 12/23/2022] Open
Abstract
RNA degradation is one of several ways for organisms to regulate gene expression. In bacteria, the removal of two terminal phosphate moieties as orthophosphate (Bacillus subtilis) or pyrophosphate (Escherichia coli) triggers ribonucleolytic decay of primary transcripts by 5'-monophosphate-dependent ribonucleases. In the soil-dwelling firmicute species B. subtilis, the RNA pyrophosphohydrolase BsRppH, a member of the Nudix family, triggers RNA turnover by converting primary transcripts to 5'-monophospate RNA. In addition to BsRppH, a source of redundant activity in B. subtilis has been proposed. Here, using recombinant protein expression and in vitro enzyme assays, we provide evidence for several additional RNA pyrophosphohydrolases, among them MutT, NudF, YmaB, and YvcI in B. subtilis We found that in vitro, YvcI converts RNA 5'-di- and triphosphates into monophosphates in the presence of manganese at neutral to slightly acidic pH. It preferred G-initiating RNAs and required at least one unpaired nucleotide at the 5'-end of its substrates, with the 5'-terminal nucleotide determining whether primarily ortho- or pyrophosphate is released. Exchanges of catalytically important glutamate residues in the Nudix motif impaired or abolished the enzymatic activity of YvcI. In summary, the results of our extensive in vitro biochemical characterization raise the possibility that YvcI is an additional RNA pyrophosphohydrolase in B. subtilis.
Collapse
Affiliation(s)
- Jens Frindert
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, D-69120 Heidelberg, Germany
| | - Masroor Ahmad Kahloon
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, D-69120 Heidelberg, Germany
| | - Yaqing Zhang
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, D-69120 Heidelberg, Germany
| | - Yasar Luqman Ahmed
- Heidelberg University Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
58
|
Dendooven T, Lavigne R. Dip-a-Dee-Doo-Dah: Bacteriophage-Mediated Rescoring of a Harmoniously Orchestrated RNA Metabolism. Annu Rev Virol 2019; 6:199-213. [DOI: 10.1146/annurev-virology-092818-015644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA turnover and processing in bacteria are governed by the structurally divergent but functionally convergent RNA degradosome, and the mechanisms have been researched extensively in Gram-positive and Gram-negative bacteria. An emerging research field focuses on how bacterial viruses hijack all aspects of the bacterial metabolism, including the host machinery of RNA metabolism. This review addresses research on phage-based influence on RNA turnover, which can act either indirectly or via dedicated effector molecules that target degradosome assemblies. The structural divergence of host RNA turnover mechanisms likely explains the limited number of phage proteins directly targeting these specialized, host-specific complexes. The unique and nonconserved structure of DIP, a phage-encoded inhibitor of the Pseudomonas degradosome, illustrates this hypothesis. However, the natural occurrence of phage-encoded mechanisms regulating RNA turnover indicates a clear evolutionary benefit for this mode of host manipulation. Further exploration of the viral dark matter of unknown phage proteins may reveal more structurally novel interference strategies that, in turn, could be exploited for biotechnological applications.
Collapse
Affiliation(s)
- T. Dendooven
- Department of Biochemistry, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - R. Lavigne
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
59
|
Xie J, Peng J, Yi Z, Zhao X, Li S, Zhang T, Quan M, Yang S, Lu J, Zhou P, Xia L, Ding X. Role of hsp20 in the Production of Spores and Insecticidal Crystal Proteins in Bacillus thuringiensis. Front Microbiol 2019; 10:2059. [PMID: 31551991 PMCID: PMC6737285 DOI: 10.3389/fmicb.2019.02059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 08/20/2019] [Indexed: 01/04/2023] Open
Abstract
The small heat shock protein plays an important role in response to stresses. We wanted to investigate how Hsp20 affects sporulation and production of insecticidal crystal proteins (ICPs) in Bacillus thuringiensis (Bt) at the stationary growth phase when cells are starved. The hsp20 gene was knocked out in Bt4.0718 (wide type), which is a B. thuringiensis strain screened in our laboratory, using endonuclease I-SceI mediated unmarked gene replacement method. Deletion of Hsp20 resulted in a decrease in both sporulation and ICPs production. Bt4-Δhsp20 cells and its ICP did not have a significant difference in shape and size but entered the decline phase 2 h earlier than the Bt4.0718. In order to find the mechanism that underlies these phenotypes, we completed a proteomic study of differentially expressed proteins (DEPs). In Bt4-Δhsp20 cells, 11 DEPs were upregulated and 184 DEPs downregulated. These affected DEPs are involved in multiple metabolic pathways: (1) six DEPs (two upregulated and four downregulated) are directly related to the sporulation and ICPs synthesis; (2) supply of amino acids including amino acid synthesis and protein recycling; (3) the energy supplementation (the tricarboxylic acid cycle and glycolysis); (4) purine metabolism and mRNA stability. These results suggest that hsp20 may be critical in maintaining the homeostasis of B. thuringiensis during the production of spores and ICPs, and could provide new sight into the sporulation and ICPs formation in B. thuringiensis.
Collapse
Affiliation(s)
- Junyan Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Jinli Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Zixian Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Xiaoli Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuiming Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Tong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Meifang Quan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuqing Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Jiaoyang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Pengji Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Xuezhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
60
|
Baumgardt K, Gilet L, Figaro S, Condon C. The essential nature of YqfG, a YbeY homologue required for 3' maturation of Bacillus subtilis 16S ribosomal RNA is suppressed by deletion of RNase R. Nucleic Acids Res 2019; 46:8605-8615. [PMID: 29873764 PMCID: PMC6144821 DOI: 10.1093/nar/gky488] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/18/2018] [Indexed: 11/13/2022] Open
Abstract
Ribosomal RNAs are processed from primary transcripts containing 16S, 23S and 5S rRNAs in most bacteria. Maturation generally occurs in a two-step process, consisting of a first crude separation of the major species by RNase III during transcription, followed by precise trimming of 5′ and 3′ extensions on each species upon accurate completion of subunit assembly. The various endo- and exoribonucleases involved in the final processing reactions are strikingly different in Escherichia coli and Bacillus subtilis, the two best studied representatives of Gram-negative and Gram-positive bacteria, respectively. Here, we show that the one exception to this rule is the protein involved in the maturation of the 3′ end of 16S rRNA. Cells depleted for the essential B. subtilis YqfG protein, a homologue of E. coli YbeY, specifically accumulate 16S rRNA precursors bearing 3′ extensions. Remarkably, the essential nature of YqfG can be suppressed by deleting the ribosomal RNA degrading enzyme RNase R, i.e. a ΔyqfG Δrnr mutant is viable. Our data suggest that 70S ribosomes containing 30S subunits with 3′ extensions of 16S rRNA are functional to a degree, but become substrates for degradation by RNase R and are eliminated.
Collapse
Affiliation(s)
- Kathrin Baumgardt
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Laetitia Gilet
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sabine Figaro
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ciarán Condon
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
61
|
Toxin-mediated ribosome stalling reprograms the Mycobacterium tuberculosis proteome. Nat Commun 2019; 10:3035. [PMID: 31292443 PMCID: PMC6620280 DOI: 10.1038/s41467-019-10869-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/31/2019] [Indexed: 12/03/2022] Open
Abstract
Mycobacterium tuberculosis readily adapts to survive a wide range of assaults by modifying its physiology and establishing a latent tuberculosis (TB) infection. Here we report a sophisticated mode of regulation by a tRNA-cleaving toxin that enlists highly selective ribosome stalling to recalibrate the transcriptome and remodel the proteome. This toxin, MazF-mt9, exclusively inactivates one isoacceptor tRNA, tRNALys43-UUU, through cleavage at a single site within its anticodon (UU↓U). Because wobble rules preclude compensation for loss of tRNALys43-UUU by the second M. tuberculosis lysine tRNA, tRNALys19-CUU, ribosome stalling occurs at in-frame cognate AAA Lys codons. Consequently, the transcripts harboring these stalled ribosomes are selectively cleaved by specific RNases, leading to their preferential deletion. This surgically altered transcriptome generates concomitant changes to the proteome, skewing synthesis of newly synthesized proteins away from those rich in AAA Lys codons toward those harboring few or no AAA codons. This toxin-mediated proteome reprogramming may work in tandem with other pathways to facilitate M. tuberculosis stress survival. MazF endoribonucleases are thought to arrest growth of Mycobacterium tuberculosis by global translation inhibition. Here, Barth et al. show that MazF-mt9 cleaves a specific tRNA, leading to ribosome stalling at AAA codons and thus selective mRNA degradation and changes in transcriptome and proteome.
Collapse
|
62
|
Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol 2019; 54:242-300. [PMID: 31464530 PMCID: PMC6776250 DOI: 10.1080/10409238.2019.1651816] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleases (RNases) are mediators in most reactions of RNA metabolism. In recent years, there has been a surge of new information about RNases and the roles they play in cell physiology. In this review, a detailed description of bacterial RNases is presented, focusing primarily on those from Escherichia coli and Bacillus subtilis, the model Gram-negative and Gram-positive organisms, from which most of our current knowledge has been derived. Information from other organisms is also included, where relevant. In an extensive catalog of the known bacterial RNases, their structure, mechanism of action, physiological roles, genetics, and possible regulation are described. The RNase complement of E. coli and B. subtilis is compared, emphasizing the similarities, but especially the differences, between the two. Included are figures showing the three major RNA metabolic pathways in E. coli and B. subtilis and highlighting specific steps in each of the pathways catalyzed by the different RNases. This compilation of the currently available knowledge about bacterial RNases will be a useful tool for workers in the RNA field and for others interested in learning about this area.
Collapse
Affiliation(s)
- David H. Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
63
|
Trinquier A, Ulmer JE, Gilet L, Figaro S, Hammann P, Kuhn L, Braun F, Condon C. tRNA Maturation Defects Lead to Inhibition of rRNA Processing via Synthesis of pppGpp. Mol Cell 2019; 74:1227-1238.e3. [PMID: 31003868 DOI: 10.1016/j.molcel.2019.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 03/24/2019] [Indexed: 02/03/2023]
Abstract
rRNAs and tRNAs universally require processing from longer primary transcripts to become functional for translation. Here, we describe an unsuspected link between tRNA maturation and the 3' processing of 16S rRNA, a key step in preparing the small ribosomal subunit for interaction with the Shine-Dalgarno sequence in prokaryotic translation initiation. We show that an accumulation of either 5' or 3' immature tRNAs triggers RelA-dependent production of the stringent response alarmone (p)ppGpp in the Gram-positive model organism Bacillus subtilis. The accumulation of (p)ppGpp and accompanying decrease in GTP levels specifically inhibit 16S rRNA 3' maturation. We suggest that cells can exploit this mechanism to sense potential slowdowns in tRNA maturation and adjust rRNA processing accordingly to maintain the appropriate functional balance between these two major components of the translation apparatus.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Base Sequence
- Gene Expression Regulation, Bacterial
- Guanosine Pentaphosphate/biosynthesis
- Guanosine Pentaphosphate/genetics
- Guanosine Triphosphate/metabolism
- Ligases/genetics
- Ligases/metabolism
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosome Subunits, Large, Bacterial/genetics
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
Collapse
Affiliation(s)
- Aude Trinquier
- UMR8261 (CNRS-Université Paris Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Jonathan E Ulmer
- UMR8261 (CNRS-Université Paris Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Laetitia Gilet
- UMR8261 (CNRS-Université Paris Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sabine Figaro
- UMR8261 (CNRS-Université Paris Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS FR1589, 15 rue Descartes, 67084 Strasbourg Cedex, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS FR1589, 15 rue Descartes, 67084 Strasbourg Cedex, France
| | - Frédérique Braun
- UMR8261 (CNRS-Université Paris Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Ciarán Condon
- UMR8261 (CNRS-Université Paris Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
64
|
Chou-Zheng L, Hatoum-Aslan A. A type III-A CRISPR-Cas system employs degradosome nucleases to ensure robust immunity. eLife 2019; 8:e45393. [PMID: 30942690 PMCID: PMC6447361 DOI: 10.7554/elife.45393] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
CRISPR-Cas systems provide sequence-specific immunity against phages and mobile genetic elements using CRISPR-associated nucleases guided by short CRISPR RNAs (crRNAs). Type III systems exhibit a robust immune response that can lead to the extinction of a phage population, a feat coordinated by a multi-subunit effector complex that destroys invading DNA and RNA. Here, we demonstrate that a model type III system in Staphylococcus epidermidis relies upon the activities of two degradosome-associated nucleases, PNPase and RNase J2, to mount a successful defense. Genetic, molecular, and biochemical analyses reveal that PNPase promotes crRNA maturation, and both nucleases are required for efficient clearance of phage-derived nucleic acids. Furthermore, functional assays show that RNase J2 is essential for immunity against diverse mobile genetic elements originating from plasmid and phage. Altogether, our observations reveal the evolution of a critical collaboration between two nucleic acid degrading machines which ensures cell survival when faced with phage attack.
Collapse
Affiliation(s)
- Lucy Chou-Zheng
- Department of Biological SciencesThe University of AlabamaTuscaloosaUnited States
| | - Asma Hatoum-Aslan
- Department of Biological SciencesThe University of AlabamaTuscaloosaUnited States
| |
Collapse
|
65
|
Vasilyev N, Gao A, Serganov A. Noncanonical features and modifications on the 5'-end of bacterial sRNAs and mRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1509. [PMID: 30276982 PMCID: PMC6657780 DOI: 10.1002/wrna.1509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
Abstract
Although many eukaryotic transcripts contain cap structures, it has been long thought that bacterial RNAs do not carry any special modifications on their 5'-ends. In bacteria, primary transcripts are produced by transcription initiated with a nucleoside triphosphate and are therefore triphosphorylated on 5'-ends. Some transcripts are then processed by nucleases that yield monophosphorylated RNAs for specific cellular activities. Many primary transcripts are also converted to monophosphorylated species by removal of the terminal pyrophosphate for 5'-end-dependent degradation. Recent studies surprisingly revealed an expanded repertoire of chemical groups on 5'-ends of bacterial RNAs. In addition to mono- and triphosphorylated moieties, some mRNAs and sRNAs contain cap-like structures and diphosphates on their 5'-ends. Although incorporation and removal of these groups have become better understood in recent years, the physiological significance of these modifications remain obscure. This review highlights recent studies aimed at identification and elucidation of novel modifications on the 5'-ends of bacterial RNAs and discusses possible physiological applications of the modified RNAs. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ang Gao
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
66
|
Adalat R, Saleem F, Bashir A, Ahmad M, Zulfiqar S, Shakoori AR. Multiple upstream start codons (AUG) in 5' untranslated region enhance translation efficiency of cry2Ac11 without helper protein. J Cell Biochem 2019; 120:2236-2250. [PMID: 30242865 DOI: 10.1002/jcb.27534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/01/2018] [Indexed: 01/24/2023]
Abstract
Cry2Ac11, a 65 kDa insecticidal protein produced by Bacillus thuringiensis, shows toxicity against dipteran and lepidopteran larvae. It is encoded by cry2Ac11 gene ( orf3), which is part of an operon comprising orf1, orf2, and orf3. Orf2, a helper protein, helps in proper folding and prevents aberrant aggregation of newly produced molecules. In this study, we have elucidated the effect of different mutations in translation initiation region (TIR), particularly the ribosomal binding site and the start codon (RBS-ATG) on cry2Ac11 gene expression without helper protein. All recombinant constructs were expressed in acrystalliferous B. thuringiensis subsp israelensis 4Q7 under the control of strong chimeric promoter cyt1AP/STAB. Of all the mutants, mut/RBS2, with two consecutive AUGs after the spacer region in TIR, exhibited 89- and 2246-fold higher transcript levels compared with 4Q7-operSalI/RBS ( cry2Ac11 operon) and 4Q7-w-RBS ( cry2Ac11 gene), respectively. The analysis of mut/RBS2 messenger RNA (mRNA) structure in the RBS-AUG region showed the presence of RBS in the single-stranded part of the moderately stable hairpin loop. The high expression efficiency of Cry2Ac11 mutant without helper protein is a cumulative and cooperative result of chimeric promoter cyt1AP/STAB-SD with the optimal context of RBS-AUG region provided by multiple AUGs and stabilizer sequence at 3' ends.
Collapse
Affiliation(s)
- Rooma Adalat
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faiza Saleem
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Aftab Bashir
- Department of Biological Sciences, Forman Christian College, Lahore, Pakistan
| | - Munir Ahmad
- School of Biological Sciences, Quaid-i-Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Soumble Zulfiqar
- School of Biological Sciences, Quaid-i-Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Abdul Rauf Shakoori
- School of Biological Sciences, Quaid-i-Azam Campus, University of the Punjab, Lahore, Pakistan.,Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
67
|
Halpert M, Liveanu V, Glaser F, Schuster G. The Arabidopsis chloroplast RNase J displays both exo- and robust endonucleolytic activities. PLANT MOLECULAR BIOLOGY 2019; 99:17-29. [PMID: 30511330 DOI: 10.1007/s11103-018-0799-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/22/2018] [Indexed: 05/17/2023]
Abstract
Arabidopsis chloroplast RNase J displaces both exo- and endo-ribonucleolytic activities and contains a unique GT-1 DNA binding domain. Control of chloroplast gene expression is predominantly at the post-transcriptional level via the coordinated action of nuclear encoded ribonucleases and RNA-binding proteins. The 5' end maturation of mRNAs ascribed to the combined action of 5'→3' exoribonuclease and gene-specific RNA-binding proteins of the pentatricopeptide repeat family and others that impede the progression of this nuclease. The exo- and endoribonuclease RNase J, the only prokaryotic 5'→3' ribonuclease that is commonly present in bacteria, Archaea, as well as in the chloroplasts of higher plants and green algae, has been implicated in this process. Interestingly, in addition to the metalo-β-lactamase and β-CASP domains, RNase J of plants contains a conserved GT-1 domain that was previously characterized in transcription factors that function in light and stress responding genes. Here, we show that the Arabidopsis RNase J (AtRNase J), when analyzed in vitro with synthetic RNAs, displays both 5'→3' exonucleolytic activity, as well as robust endonucleolytic activity as compared to its bacterial homolog RNase J1 of Bacillus subtilis. AtRNase J degraded single-stranded RNA and DNA molecules but displays limited activity on double stranded RNA. The addition of three guanosines at the 5' end of the substrate significantly inhibited the degradation activity, indicating that the sequence and structure of the RNA substrate modulate the ribonucleolytic activity. Mutation of three amino acid in the catalytic reaction center significantly inhibited both the endonucleolytic and exonucleolytic degradation activities, while deletion of the carboxyl GT-1 domain that is unique to the plant RNAse J proteins, had a little or no significant effect. The robust endonucleolytic activity of AtRNase J suggests its involvement in the processing and degradation of RNA in the chloroplast.
Collapse
Affiliation(s)
- Michal Halpert
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Varda Liveanu
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Fabian Glaser
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
- Bioinformatics Knowledge Unit, The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Gadi Schuster
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
68
|
Orr MW, Weiss CA, Severin GB, Turdiev H, Kim SK, Turdiev A, Liu K, Tu BP, Waters CM, Winkler WC, Lee VT. A Subset of Exoribonucleases Serve as Degradative Enzymes for pGpG in c-di-GMP Signaling. J Bacteriol 2018; 200:e00300-18. [PMID: 30249708 PMCID: PMC6256023 DOI: 10.1128/jb.00300-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/10/2018] [Indexed: 11/21/2022] Open
Abstract
Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that regulates processes, such as biofilm formation and virulence. During degradation, c-di-GMP is first linearized to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG) and subsequently hydrolyzed to two GMPs by a previously unknown enzyme, which was recently identified in Pseudomonas aeruginosa as the 3'-to-5' exoribonuclease oligoribonuclease (Orn). Mutants of orn accumulated pGpG, which inhibited the linearization of c-di-GMP. This product inhibition led to elevated c-di-GMP levels, resulting in increased aggregate and biofilm formation. Thus, the hydrolysis of pGpG is crucial to the maintenance of c-di-GMP homeostasis. How species that utilize c-di-GMP signaling but lack an orn ortholog hydrolyze pGpG remains unknown. Because Orn is an exoribonuclease, we asked whether pGpG hydrolysis can be carried out by genes that encode protein domains found in exoribonucleases. From a screen of these genes from Vibrio cholerae and Bacillus anthracis, we found that only enzymes known to cleave oligoribonucleotides (orn and nrnA) rescued the P. aeruginosa Δorn mutant phenotypes to the wild type. Thus, we tested additional RNases with demonstrated activity against short oligoribonucleotides. These experiments show that only exoribonucleases previously reported to degrade short RNAs (nrnA, nrnB, nrnC, and orn) can also hydrolyze pGpG. A B. subtilisnrnA nrnB mutant had elevated c-di-GMP, suggesting that these two genes serve as the primary enzymes to degrade pGpG. These results indicate that the requirement for pGpG hydrolysis to complete c-di-GMP signaling is conserved across species. The final steps of RNA turnover and c-di-GMP turnover appear to converge at a subset of RNases specific for short oligoribonucleotides.IMPORTANCE The bacterial bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) signaling molecule regulates complex processes, such as biofilm formation. c-di-GMP is degraded in two-steps, linearization into pGpG and subsequent cleavage to two GMPs. The 3'-to-5' exonuclease oligoribonuclease (Orn) serves as the enzyme that degrades pGpG in Pseudomonas aeruginosa Many phyla contain species that utilize c-di-GMP signaling but lack an Orn homolog, and the protein that functions to degrade pGpG remains uncharacterized. Here, systematic screening of genes encoding proteins containing domains found in exoribonucleases revealed a subset of genes encoded within the genomes of Bacillus anthracis and Vibrio cholerae that degrade pGpG to GMP and are functionally analogous to Orn. Feedback inhibition by pGpG is a conserved process, as strains lacking these genes accumulate c-di-GMP.
Collapse
Affiliation(s)
- Mona W Orr
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Cordelia A Weiss
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Geoffrey B Severin
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Husan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Asan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Kuanqing Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher M Waters
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Wade C Winkler
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
69
|
Dressaire C, Pobre V, Laguerre S, Girbal L, Arraiano CM, Cocaign-Bousquet M. PNPase is involved in the coordination of mRNA degradation and expression in stationary phase cells of Escherichia coli. BMC Genomics 2018; 19:848. [PMID: 30486791 PMCID: PMC6264599 DOI: 10.1186/s12864-018-5259-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/16/2018] [Indexed: 12/02/2022] Open
Abstract
Background Exoribonucleases are crucial for RNA degradation in Escherichia coli but the roles of RNase R and PNPase and their potential overlap in stationary phase are not well characterized. Here, we used a genome-wide approach to determine how RNase R and PNPase affect the mRNA half-lives in the stationary phase. The genome-wide mRNA half-lives were determined by a dynamic analysis of transcriptomes after transcription arrest. We have combined the analysis of mRNA half-lives with the steady-state concentrations (transcriptome) to provide an integrated overview of the in vivo activity of these exoribonucleases at the genome-scale. Results The values of mRNA half-lives demonstrated that the mRNAs are very stable in the stationary phase and that the deletion of RNase R or PNPase caused only a limited mRNA stabilization. Intriguingly the absence of PNPase provoked also the destabilization of many mRNAs. These changes in mRNA half-lives in the PNPase deletion strain were associated with a massive reorganization of mRNA levels and also variation in several ncRNA concentrations. Finally, the in vivo activity of the degradation machinery was found frequently saturated by mRNAs in the PNPase mutant unlike in the RNase R mutant, suggesting that the degradation activity is limited by the deletion of PNPase but not by the deletion of RNase R. Conclusions This work had identified PNPase as a central player associated with mRNA degradation in stationary phase. Electronic supplementary material The online version of this article (10.1186/s12864-018-5259-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clémentine Dressaire
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | | | - Laurence Girbal
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - Cecilia Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | | |
Collapse
|
70
|
Mora L, Ngo S, Laalami S, Putzer H. In Vitro Study of the Major Bacillus subtilis Ribonucleases Y and J. Methods Enzymol 2018; 612:343-359. [PMID: 30502948 DOI: 10.1016/bs.mie.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The metabolic instability of mRNA is fundamental to the adaptation of gene expression. In bacteria, mRNA decay follows first-order kinetics and is primarily controlled at the steps initiating degradation. In the model Gram-positive organism Bacillus subtilis, the major mRNA decay pathway initiates with an endonucleolytic cleavage by the membrane-associated RNase Y. High-throughput sequencing has identified a large number of potential mRNA substrates but our understanding of what parameters affect cleavage in vivo is still quite limited. In vitro reconstitution of the cleavage event is thus instrumental in defining the mechanistic details, substrate recognition, the role of auxiliary factors, and of membrane localization in cleavage. In this chapter, we describe not only the purification and assay of RNase Y but also RNase J1/J2 which shares a similar low-specificity endoribonucleolytic activity with RNase Y. We highlight potential problems in the set-up of these assays and include methods that allow purification of full-length RNase Y and its incorporation in multilamellar vesicles created from native B. subtilis lipids that might best mimic in vivo conditions.
Collapse
Affiliation(s)
- Liliana Mora
- CNRS UMR8261-Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Saravuth Ngo
- CNRS UMR8261-Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Soumaya Laalami
- CNRS UMR8261-Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Harald Putzer
- CNRS UMR8261-Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France.
| |
Collapse
|
71
|
Luciano DJ, Vasilyev N, Richards J, Serganov A, Belasco JG. Importance of a diphosphorylated intermediate for RppH-dependent RNA degradation. RNA Biol 2018; 15:703-706. [PMID: 29619898 DOI: 10.1080/15476286.2018.1460995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Deprotection of the 5' end appears to be a universal mechanism for triggering the degradation of mRNA in bacteria and eukaryotes. In Escherichia coli, for example, converting the 5' triphosphate of primary transcripts to a monophosphate accelerates cleavage at internal sites by the endonuclease RNase E. Previous studies have shown that the RNA pyrophosphohydrolase RppH catalyzes this transformation in vitro and generates monophosphorylated decay intermediates in vivo. Recently, we reported that purified E. coli RppH unexpectedly reacts faster with diphosphorylated than with triphosphorylated substrates. By using a novel assay, it was also determined that diphosphorylated mRNA decay intermediates are abundant in wild-type E. coli and that their fractional level increases to almost 100% for representative mRNAs in mutant cells lacking RppH. These findings indicate that the conversion of triphosphorylated to monophosphorylated RNA in E. coli is a stepwise process involving sequential phosphate removal and the transient formation of a diphosphorylated intermediate. The latter RNA phosphorylation state, which was previously unknown in bacteria, now appears to define the preferred biological substrates of E. coli RppH. The enzyme responsible for generating it remains to be identified.
Collapse
Affiliation(s)
- Daniel J Luciano
- a Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine , New York , NY , USA.,b Department of Microbiology , New York University School of Medicine , New York , NY , USA
| | - Nikita Vasilyev
- c Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| | - Jamie Richards
- a Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine , New York , NY , USA.,b Department of Microbiology , New York University School of Medicine , New York , NY , USA
| | - Alexander Serganov
- c Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| | - Joel G Belasco
- a Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine , New York , NY , USA.,b Department of Microbiology , New York University School of Medicine , New York , NY , USA
| |
Collapse
|
72
|
Durand S, Condon C. RNases and Helicases in Gram-Positive Bacteria. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0003-2017. [PMID: 29651979 PMCID: PMC11633581 DOI: 10.1128/microbiolspec.rwr-0003-2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Indexed: 01/18/2023] Open
Abstract
RNases are key enzymes involved in RNA maturation and degradation. Although they play a crucial role in all domains of life, bacteria, archaea, and eukaryotes have evolved with their own sets of RNases and proteins modulating their activities. In bacteria, these enzymes allow modulation of gene expression to adapt to rapidly changing environments. Today, >20 RNases have been identified in both Escherichia coli and Bacillus subtilis, the paradigms of the Gram-negative and Gram-positive bacteria, respectively. However, only a handful of these enzymes are common to these two organisms and some of them are essential to only one. Moreover, although sets of RNases can be very similar in closely related bacteria such as the Firmicutes Staphylococcus aureus and B. subtilis, the relative importance of individual enzymes in posttranscriptional regulation in these organisms varies. In this review, we detail the role of the main RNases involved in RNA maturation and degradation in Gram-positive bacteria, with an emphasis on the roles of RNase J1, RNase III, and RNase Y. We also discuss how other proteins such as helicases can modulate the RNA-degradation activities of these enzymes.
Collapse
Affiliation(s)
- Sylvain Durand
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Ciaran Condon
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
73
|
Liponska A, Jamalli A, Kuras R, Suay L, Garbe E, Wollman FA, Laalami S, Putzer H. Tracking the elusive 5' exonuclease activity of Chlamydomonas reinhardtii RNase J. PLANT MOLECULAR BIOLOGY 2018; 96:641-653. [PMID: 29600502 DOI: 10.1007/s11103-018-0720-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Chlamydomonas RNase J is the first member of this enzyme family that has endo- but no intrinsic 5' exoribonucleolytic activity. This questions its proposed role in chloroplast mRNA maturation. RNA maturation and stability in the chloroplast are controlled by nuclear-encoded ribonucleases and RNA binding proteins. Notably, mRNA 5' end maturation is thought to be achieved by the combined action of a 5' exoribonuclease and specific pentatricopeptide repeat proteins (PPR) that block the progression of the nuclease. In Arabidopsis the 5' exo- and endoribonuclease RNase J has been implicated in this process. Here, we verified the chloroplast localization of the orthologous Chlamydomonas (Cr) RNase J and studied its activity, both in vitro and in vivo in a heterologous B. subtilis system. Our data show that Cr RNase J has endo- but no significant intrinsic 5' exonuclease activity that would be compatible with its proposed role in mRNA maturation. This is the first example of an RNase J ortholog that does not possess a 5' exonuclease activity. A yeast two-hybrid screen revealed a number of potential interaction partners but three of the most promising candidates tested, failed to induce the latent exonuclease activity of Cr RNase J. We still favor the hypothesis that Cr RNase J plays an important role in RNA metabolism, but our findings suggest that it rather acts as an endoribonuclease in the chloroplast.
Collapse
Affiliation(s)
- Anna Liponska
- CNRS UMR8261 - Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Ailar Jamalli
- CNRS UMR8261 - Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
- Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Richard Kuras
- CNRS UMR7141 (Associated with Université Pierre et Marie Curie), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Loreto Suay
- CNRS UMR7141 (Associated with Université Pierre et Marie Curie), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Enrico Garbe
- CNRS UMR8261 - Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Francis-André Wollman
- CNRS UMR7141 (Associated with Université Pierre et Marie Curie), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Soumaya Laalami
- CNRS UMR8261 - Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Harald Putzer
- CNRS UMR8261 - Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
74
|
The Sole DEAD-Box RNA Helicase of the Gastric Pathogen Helicobacter pylori Is Essential for Colonization. mBio 2018; 9:mBio.02071-17. [PMID: 29588407 PMCID: PMC5874925 DOI: 10.1128/mbio.02071-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Present in every kingdom of life, generally in multiple copies, DEAD-box RNA helicases are specialized enzymes that unwind RNA secondary structures. They play major roles in mRNA decay, ribosome biogenesis, and adaptation to cold temperatures. Most bacteria have multiple DEAD-box helicases that present both specialized and partially redundant functions. By using phylogenomics, we revealed that the Helicobacter genus, including the major gastric pathogen H. pylori, is among the exceptions, as it encodes a sole DEAD-box RNA helicase. In H. pylori, this helicase, designated RhpA, forms a minimal RNA degradosome together with the essential RNase, RNase J, a major player in the control of RNA decay. Here, we used H. pylori as a model organism with a sole DEAD-box helicase and investigated the role of this helicase in H. pylori physiology, ribosome assembly, and during in vivo colonization. Our data showed that RhpA is dispensable for growth at 37°C but crucial at 33°C, suggesting an essential role of the helicase in cold adaptation. Moreover, we found that a ΔrhpA mutant was impaired in motility and deficient in colonization of the mouse model. RhpA is involved in the maturation of 16S rRNA at 37°C and is associated with translating ribosomes. At 33°C, RhpA is, in addition, recruited to individual ribosomal subunits. Finally, via its role in the RNA degradosome, RhpA directs the regulation of the expression of its partner, RNase J. RhpA is thus a multifunctional enzyme that, in H. pylori, plays a central role in gene regulation and in the control of virulence.IMPORTANCE We present the results of our study on the role of RhpA, the sole DEAD-box RNA helicase encoded by the major gastric pathogen Helicobacter pylori We observed that all the Helicobacter species possess such a sole helicase, in contrast to most free-living bacteria. RhpA is not essential for growth of H. pylori under normal conditions. However, deletion of rhpA leads to a motility defect and to total inhibition of the ability of H. pylori to colonize a mouse model. We also demonstrated that this helicase encompasses most of the functions of its specialized orthologs described so far. We found that RhpA is a key element of the bacterial adaptation to colder temperatures and plays a minor role in ribosome biogenesis. Finally, RhpA regulates transcription of the rnj gene encoding RNase J, its essential partner in the minimal H. pylori RNA degradosome, and thus plays a crucial role in the control of RNA decay.
Collapse
|
75
|
Impact of RNA Degradation on Viral Diagnosis: An Understated but Essential Step for the Successful Establishment of a Diagnosis Network. Vet Sci 2018; 5:vetsci5010019. [PMID: 29415432 PMCID: PMC5876574 DOI: 10.3390/vetsci5010019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 02/07/2023] Open
Abstract
The current global conditions, which include intensive globalization, climate changes, and viral evolution among other factors, have led to an increased emergence of viruses and new viral diseases; RNA viruses are key drivers of this evolution. Laboratory networks that are linked to central reference laboratories are required to conduct both active and passive environmental surveillance of this complicated global viral environment. These tasks require a continuous exchange of strains or field samples between different diagnostic laboratories. The shipment of these samples on dry ice represents both a biological hazard and a general health risk. Moreover, the requirement to ship on dry ice could be hampered by high costs, particularly in underdeveloped countries or regions located far from each other. To solve these issues, the shipment of RNA isolated from viral suspensions or directly from field samples could be a useful way to share viral genetic material. However, extracted RNA stored in aqueous solutions, even at -70 °C, is highly prone to degradation. The current study evaluated different RNA storage conditions for safety and feasibility for future use in molecular diagnostics. The in vitro RNA-transcripts obtained from an inactivated highly pathogenic avian influenza (HPAI) H5N1 virus was used as a model. The role of secondary structures in the protection of the RNA was also explored. Of the conditions evaluated, the dry pellet matrix was best able to protect viral RNA under extreme storage conditions. This method is safe, cost-effective and assures the integrity of RNA samples for reliable molecular diagnosis. This study aligns with the globally significant "Global One Health" paradigm, especially with respect to the diagnosis of emerging diseases that require confirmation by reference laboratories.
Collapse
|
76
|
Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs. Nat Commun 2018; 9:119. [PMID: 29317714 PMCID: PMC5760640 DOI: 10.1038/s41467-017-02604-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/12/2017] [Indexed: 01/21/2023] Open
Abstract
Flaviviruses such as Yellow fever, Dengue, West Nile, and Zika generate disease-linked viral noncoding RNAs called subgenomic flavivirus RNAs. Subgenomic flavivirus RNAs result when the 5'-3' progression of cellular exoribonuclease Xrn1 is blocked by RNA elements called Xrn1-resistant RNAs located within the viral genome's 3'-untranslated region that operate without protein co-factors. Here, we show that Xrn1-resistant RNAs can halt diverse exoribonucleases, revealing a mechanism in which they act as general mechanical blocks that 'brace' against an enzyme's surface, presenting an unfolding problem that confounds further enzyme progression. Further, we directly demonstrate that Xrn1-resistant RNAs exist in a diverse set of flaviviruses, including some specific to insects or with no known arthropod vector. These Xrn1-resistant RNAs comprise two secondary structural classes that mirror previously reported phylogenic analysis. Our discoveries have implications for the evolution of exoribonuclease resistance, the use of Xrn1-resistant RNAs in synthetic biology, and the development of new therapies.
Collapse
|
77
|
Braun F, Durand S, Condon C. Initiating ribosomes and a 5'/3'-UTR interaction control ribonuclease action to tightly couple B. subtilis hbs mRNA stability with translation. Nucleic Acids Res 2017; 45:11386-11400. [PMID: 28977557 PMCID: PMC5737220 DOI: 10.1093/nar/gkx793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/29/2017] [Indexed: 12/19/2022] Open
Abstract
We previously showed that ribosomes initiating translation of the B. subtilis hbs mRNA at a strong Shine–Dalgarno sequence block the 5′ exoribonuclease RNase J1 from degrading into the coding sequence. Here, we identify new and previously unsuspected features of this mRNA. First, we identify RNase Y as the endoribonuclease that cleaves the highly structured 5′-UTR to give access to RNase J1. Cleavage by RNase Y at this site is modulated by a 14-bp long-range interaction between the 5′- and 3-UTRs that partially overlaps the cleavage site. In addition to this maturation/degradation pathway, we discovered a new and ultimately more important RNase Y cleavage site in the very early coding sequence, masked by the initiating ribosome. Thus, two independent pathways compete with ribosomes to tightly link hbs mRNA stability to translation initiation; in one case the initiating ribosome competes directly with RNase J1 and in the other with RNase Y. This is in contrast to prevailing models in Escherichia coli where ribosome traffic over the ORF is the main source of protection from RNases. Indeed, a second RNase Y cleavage site later in the hbs ORF plays no role in its turnover, confirming that for this mRNA at least, initiation is key.
Collapse
Affiliation(s)
- Frédérique Braun
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sylvain Durand
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ciarán Condon
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
78
|
Barvík I, Rejman D, Panova N, Šanderová H, Krásný L. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates. FEMS Microbiol Rev 2017; 41:131-138. [PMID: 27799279 DOI: 10.1093/femsre/fuw041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2016] [Indexed: 11/13/2022] Open
Abstract
RNA polymerase (RNAP) is the central enzyme of transcription of the genetic information from DNA into RNA. RNAP recognizes four main substrates: ATP, CTP, GTP and UTP. Experimental evidence from the past several years suggests that, besides these four NTPs, other molecules can be used to initiate transcription: (i) ribooligonucleotides (nanoRNAs) and (ii) coenzymes such as NAD+, NADH, dephospho-CoA and FAD. The presence of these molecules at the 5΄ ends of RNAs affects the properties of the RNA. Here, we discuss the expanding portfolio of molecules that can initiate transcription, their mechanism of incorporation, effects on RNA and cellular processes, and we present an outlook toward other possible initiation substrates.
Collapse
Affiliation(s)
- Ivan Barvík
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v. v. i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Natalya Panova
- Institute of Microbiology, Czech Academy of Sciences v. v. i., Vídenská 1083, 142 20 Prague 4, Czech Republic
| | - Hana Šanderová
- Institute of Microbiology, Czech Academy of Sciences v. v. i., Vídenská 1083, 142 20 Prague 4, Czech Republic
| | - Libor Krásný
- Institute of Microbiology, Czech Academy of Sciences v. v. i., Vídenská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
79
|
|
80
|
Zheng X, Feng N, Li D, Dong X, Li J. New molecular insights into an archaeal RNase J reveal a conserved processive exoribonucleolysis mechanism of the RNase J family. Mol Microbiol 2017; 106:351-366. [PMID: 28795788 DOI: 10.1111/mmi.13769] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/26/2022]
Abstract
RNase J, a prokaryotic 5'-3' exo/endoribonuclease, contributes to mRNA decay, rRNA maturation and post-transcriptional regulation. Yet the processive-exoribonucleolysis mechanism remains obscure. Here, we solved the first RNA-free and RNA-bound structures of an archaeal RNase J, and through intensive biochemical studies provided detailed mechanistic insights into the catalysis and processivity. Distinct dimerization/tetramerization patterns were observed for archaeal and bacterial RNase Js, and unique archaeal Loops I and II were found involved in RNA interaction. A hydrogen-bond-network was identified for the first time that assists catalysis by facilitating efficient proton transfer in the catalytic center. A conserved 5'-monophosphate-binding pocket that coordinates the RNA 5'-end ensures the 5'-monophosphate preferential exoribonucleolysis. To achieve exoribonucleolytic processivity, the 5'-monophosphate-binding pocket and nucleotide +4 binding site anchor RNA within the catalytic track; the 5'-capping residue Leu37 of the sandwich pocket coupled with the 5'-monophosphate-binding pocket are dedicated to translocating and controlling the RNA orientation for each exoribonucleolytic cycle. The processive-exoribonucleolysis mechanism was verified as conserved in bacterial RNase J and also exposes striking parallels with the non-homologous eukaryotic 5'-3' exoribonuclease, Xrn1. The findings in this work shed light on not only the molecular mechanism of the RNase J family, but also the evolutionary convergence of divergent exoribonucleases.
Collapse
Affiliation(s)
- Xin Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China.,Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
| | - Na Feng
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Defeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
81
|
Burke JM, Kincaid RP, Nottingham RM, Lambowitz AM, Sullivan CS. DUSP11 activity on triphosphorylated transcripts promotes Argonaute association with noncanonical viral microRNAs and regulates steady-state levels of cellular noncoding RNAs. Genes Dev 2017; 30:2076-2092. [PMID: 27798849 PMCID: PMC5066614 DOI: 10.1101/gad.282616.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/02/2016] [Indexed: 12/22/2022]
Abstract
Here, Burke et al. delineate a new pathway for mammalian small RNAs to enter the RNAi gene silencing machinery. They show that DUSP11 directly dephosphorylates viral triphosphate ncRNA transcripts and that this is required for efficient silencing by RISC, suggesting that mammalian viral pathogens can use DUSP11 to generate atypical microRNAs. RNA silencing is a conserved eukaryotic gene expression regulatory mechanism mediated by small RNAs. In Caenorhabditis elegans, the accumulation of a distinct class of siRNAs synthesized by an RNA-dependent RNA polymerase (RdRP) requires the PIR-1 phosphatase. However, the function of PIR-1 in RNAi has remained unclear. Since mammals lack an analogous siRNA biogenesis pathway, an RNA silencing role for the mammalian PIR-1 homolog (dual specificity phosphatase 11 [DUSP11]) was unexpected. Here, we show that the RNA triphosphatase activity of DUSP11 promotes the RNA silencing activity of viral microRNAs (miRNAs) derived from RNA polymerase III (RNAP III) transcribed precursors. Our results demonstrate that DUSP11 converts the 5′ triphosphate of miRNA precursors to a 5′ monophosphate, promoting loading of derivative 5p miRNAs into Argonaute proteins via a Dicer-coupled 5′ monophosphate-dependent strand selection mechanism. This mechanistic insight supports a likely shared function for PIR-1 in C. elegans. Furthermore, we show that DUSP11 modulates the 5′ end phosphate group and/or steady-state level of several host RNAP III transcripts, including vault RNAs and Alu transcripts. This study shows that steady-state levels of select noncoding RNAs are regulated by DUSP11 and defines a previously unknown portal for small RNA-mediated silencing in mammals, revealing that DUSP11-dependent RNA silencing activities are shared among diverse metazoans.
Collapse
Affiliation(s)
- James M Burke
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,John Ring LaMontagne Center for Infectious Disease, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Rodney P Kincaid
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,John Ring LaMontagne Center for Infectious Disease, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Ryan M Nottingham
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Christopher S Sullivan
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,John Ring LaMontagne Center for Infectious Disease, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
82
|
Enzymatic activity necessary to restore the lethality due to Escherichia coli RNase E deficiency is distributed among bacteria lacking RNase E homologues. PLoS One 2017; 12:e0177915. [PMID: 28542621 PMCID: PMC5436854 DOI: 10.1371/journal.pone.0177915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli RNase E (Eco-RNase E), encoded by rne (Eco-rne), is considered the global RNA decay initiator. Although Eco-RNase E is an essential gene product in E. coli, some bacterial species, such as Bacillus subtilis, do not possess Eco-RNase E sequence homologues. B. subtilis instead possesses RNase J1/J2 (Bsu-RNase J1/J2) and RNase Y (Bsu-RNase Y) to execute RNA decay. Here we found that E. coli lacking the Eco-rne gene (Δrne E. coli) was viable conditional on M9 minimal media by introducing Bsu-RNase J1/J2 or Bsu-RNase Y. We also cloned an extremely short Eco-RNase E homologue (Wpi-RNase E) and a canonical sized Bsu-RNase J1/J2 homologue (Wpi-RNase J) from Wolbachia pipientis, an α-proteobacterial endosymbiont of arthropods. We found that Wpi-RNase J restored the colony-forming ability (CFA) of Δrne E. coli, whereas Wpi-RNase E did not. Unexpectedly, Wpi-RNase E restored defective CFA due to lack of Eco-RNase G, a paralogue of Eco-RNase E. Our results indicate that bacterial species that lack Eco-RNase E homologues or bacterial species that possess Eco-RNase E homologues which lack Eco-RNase E-like activities have a modest Eco-RNase E-like function using RNase J and/or RNase Y. These results suggest that Eco-RNase E-like activities might distribute among a wide array of bacteria and that functions of RNases may have changed dynamically during evolutionary divergence of bacterial lineages.
Collapse
|
83
|
Baumgardt K, Melior H, Madhugiri R, Thalmann S, Schikora A, McIntosh M, Becker A, Evguenieva-Hackenberg E. RNase E and RNase J are needed for S-adenosylmethionine homeostasis in Sinorhizobium meliloti. MICROBIOLOGY-SGM 2017; 163:570-583. [PMID: 28141492 DOI: 10.1099/mic.0.000442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ribonucleases (RNases) E and J play major roles in E. coli and Bacillus subtilis, respectively, and co-exist in Sinorhizobium meliloti. We analysed S. meliloti 2011 mutants with mini-Tn5 insertions in the corresponding genes rne and rnj and found many overlapping effects. We observed similar changes in mRNA levels, including lower mRNA levels of the motility and chemotaxis related genes flaA, flgB and cheR and higher levels of ndvA (important for glucan export). The acyl-homoserine lactone (AHL) levels were also higher during exponential growth in both RNase mutants, despite no increase in the expression of the sinI AHL synthase gene. Furthermore, several RNAs from both mutants migrated aberrantly in denaturing gels at 300 V but not under stronger denaturing conditions at 1300 V. The similarities between the two mutants could be explained by increased levels of the key methyl donor S-adenosylmethionine (SAM), since this may result in faster AHL synthesis leading to higher AHL accumulation as well as in uncontrolled methylation of macromolecules including RNA, which may strengthen RNA secondary structures. Indeed, we found that in both mutants the N6-methyladenosine content was increased almost threefold and the SAM level was increased at least sevenfold. Complementation by induced ectopic expression of the respective RNase restored the AHL and SAM levels in each of the mutants. In summary, our data show that both RNase E and RNase J are needed for SAM homeostasis in S. meliloti.
Collapse
Affiliation(s)
- Kathrin Baumgardt
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.,Present address: CNRS, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Hendrik Melior
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Ramakanth Madhugiri
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.,Present address: Institute of Medical Virology, Biomedical Research Center, Justus Liebig University, Schubertstr. 81, D 35392 Giessen, Germany
| | - Sebastian Thalmann
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Adam Schikora
- Institute of Phytopathology and Applied Zoology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.,Present address: Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Brunswick, Germany
| | - Matthew McIntosh
- Centre of Synthetic Microbiology, Hans-Meerwein-Straße 6, D-35043 Marburg, Germany
| | - Anke Becker
- Centre of Synthetic Microbiology, Hans-Meerwein-Straße 6, D-35043 Marburg, Germany
| | | |
Collapse
|
84
|
Durand S, Braun F, Helfer AC, Romby P, Condon C. sRNA-mediated activation of gene expression by inhibition of 5'-3' exonucleolytic mRNA degradation. eLife 2017; 6. [PMID: 28436820 PMCID: PMC5419742 DOI: 10.7554/elife.23602] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/23/2017] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional control by small regulatory RNA (sRNA) is critical for rapid adaptive processes. sRNAs can directly modulate mRNA degradation in Proteobacteria without interfering with translation. However, Firmicutes have a fundamentally different set of ribonucleases for mRNA degradation and whether sRNAs can regulate the activity of these enzymes is an open question. We show that Bacillus subtilis RoxS, a major trans-acting sRNA shared with Staphylococus aureus, prevents degradation of the yflS mRNA, encoding a malate transporter. In the presence of malate, RoxS transiently escapes from repression by the NADH-sensitive transcription factor Rex and binds to the extreme 5'-end of yflS mRNA. This impairs the 5'-3' exoribonuclease activity of RNase J1, increasing the half-life of the primary transcript and concomitantly enhancing ribosome binding to increase expression of the transporter. Globally, the different targets regulated by RoxS suggest that it helps readjust the cellular NAD+/NADH balance when perturbed by different stimuli.
Collapse
Affiliation(s)
- Sylvain Durand
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Frédérique Braun
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Anne-Catherine Helfer
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Pascale Romby
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France.,Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Ciarán Condon
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
85
|
Gao P, Pinkston KL, Bourgogne A, Murray BE, van Hoof A, Harvey BR. Functional studies of E. faecalis RNase J2 and its role in virulence and fitness. PLoS One 2017; 12:e0175212. [PMID: 28384222 PMCID: PMC5383250 DOI: 10.1371/journal.pone.0175212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/22/2017] [Indexed: 11/30/2022] Open
Abstract
Post-transcriptional control provides bacterial pathogens a method by which they can rapidly adapt to environmental change. Dual exo- and endonucleolytic activities of RNase J enzymes contribute to Gram-positive RNA processing and decay. First discovered in Bacillus subtilis, RNase J1 plays a key role in mRNA maturation and degradation, while the function of the paralogue RNase J2 is largely unknown. Previously, we discovered that deletion of the Enterococcus faecalis rnjB gene significantly attenuates expression of a major virulence factor involved in enterococcal pathogenesis, the Ebp pili. In this work, we demonstrate that E. faecalis rnjB encodes an active RNase J2, and that the ribonuclease activity of RNase J2 is required for regulation of Ebp pili. To further investigate how rnjB affects E. faecalis gene expression on a global scale, we compared transcriptomes of the E. faecalis strain OG1RF with its isogenic rnjB deletion mutant (ΔrnjB). In addition to Ebp pili regulation, previously demonstrated to have a profound effect on the ability of E. faecalis to form biofilm or establish infection, we identified that rnjB regulates the expression of several other genes involved in bacterial virulence and fitness, including gls24 (a virulence factor important in stress response). We further demonstrated that the E. faecalis RNase J2 deletion mutant is more sensitive to bile salt and greatly attenuated in in vivo organ infection as determined by an IV-sublethal challenge infection mouse model, indicating that E. faecalis RNase J2 plays an important role in E. faecalis virulence.
Collapse
Affiliation(s)
- Peng Gao
- Center for Molecular Imaging, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Kenneth L. Pinkston
- Center for Molecular Imaging, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Agathe Bourgogne
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Barbara E. Murray
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, United States
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Barrett R. Harvey
- Center for Molecular Imaging, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, Texas, United States
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, United States
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, United States
| |
Collapse
|
86
|
Leroy M, Piton J, Gilet L, Pellegrini O, Proux C, Coppée JY, Figaro S, Condon C. Rae1/YacP, a new endoribonuclease involved in ribosome-dependent mRNA decay in Bacillus subtilis. EMBO J 2017; 36:1167-1181. [PMID: 28363943 DOI: 10.15252/embj.201796540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 11/09/2022] Open
Abstract
The PIN domain plays a central role in cellular RNA biology and is involved in processes as diverse as rRNA maturation, mRNA decay and telomerase function. Here, we solve the crystal structure of the Rae1 (YacP) protein of Bacillus subtilis, a founding member of the NYN (Nedd4-BP1/YacP nuclease) subfamily of PIN domain proteins, and identify potential substrates in vivo Unexpectedly, degradation of a characterised target mRNA was completely dependent on both its translation and reading frame. We provide evidence that Rae1 associates with the B. subtilis ribosome and cleaves between specific codons of this mRNA in vivo Critically, we also demonstrate translation-dependent Rae1 cleavage of this substrate in a purified translation assay in vitro Multiple lines of evidence converge to suggest that Rae1 is an A-site endoribonuclease. We present a docking model of Rae1 bound to the B. subtilis ribosomal A-site that is consistent with this hypothesis and show that Rae1 cleaves optimally immediately upstream of a lysine codon (AAA or AAG) in vivo.
Collapse
Affiliation(s)
- Magali Leroy
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Jérémie Piton
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Laetitia Gilet
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Olivier Pellegrini
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Caroline Proux
- Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research Institut Pasteur, Paris, France
| | - Sabine Figaro
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Ciarán Condon
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
87
|
Adalat R, Saleem F, Crickmore N, Naz S, Shakoori AR. In Vivo Crystallization of Three-Domain Cry Toxins. Toxins (Basel) 2017; 9:toxins9030080. [PMID: 28282927 PMCID: PMC5371835 DOI: 10.3390/toxins9030080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/10/2017] [Accepted: 02/23/2017] [Indexed: 12/13/2022] Open
Abstract
Bacillus thuringiensis (Bt) is the most successful, environmentally-friendly, and intensively studied microbial insecticide. The major characteristic of Bt is the production of proteinaceous crystals containing toxins with specific activity against many pests including dipteran, lepidopteran, and coleopteran insects, as well as nematodes, protozoa, flukes, and mites. These crystals allow large quantities of the protein toxins to remain stable in the environment until ingested by a susceptible host. It has been previously established that 135 kDa Cry proteins have a crystallization domain at their C-terminal end. In the absence of this domain, Cry proteins often need helper proteins or other factors for crystallization. In this review, we classify the Cry proteins based on their requirements for crystallization.
Collapse
Affiliation(s)
- Rooma Adalat
- Department of Biotechnology, Lahore College for Women University, Lahore 54590, Pakistan.
| | - Faiza Saleem
- Department of Biotechnology, Lahore College for Women University, Lahore 54590, Pakistan.
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK.
| | - Shagufta Naz
- Department of Biotechnology, Lahore College for Women University, Lahore 54590, Pakistan.
| | - Abdul Rauf Shakoori
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
88
|
Naghdi MR, Smail K, Wang JX, Wade F, Breaker RR, Perreault J. Search for 5'-leader regulatory RNA structures based on gene annotation aided by the RiboGap database. Methods 2017; 117:3-13. [PMID: 28279853 DOI: 10.1016/j.ymeth.2017.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 01/20/2023] Open
Abstract
The discovery of noncoding RNAs (ncRNAs) and their importance for gene regulation led us to develop bioinformatics tools to pursue the discovery of novel ncRNAs. Finding ncRNAs de novo is challenging, first due to the difficulty of retrieving large numbers of sequences for given gene activities, and second due to exponential demands on calculation needed for comparative genomics on a large scale. Recently, several tools for the prediction of conserved RNA secondary structure were developed, but many of them are not designed to uncover new ncRNAs, or are too slow for conducting analyses on a large scale. Here we present various approaches using the database RiboGap as a primary tool for finding known ncRNAs and for uncovering simple sequence motifs with regulatory roles. This database also can be used to easily extract intergenic sequences of eubacteria and archaea to find conserved RNA structures upstream of given genes. We also show how to extend analysis further to choose the best candidate ncRNAs for experimental validation.
Collapse
Affiliation(s)
- Mohammad Reza Naghdi
- INRS - Institut Armand-Frappier, 531 boul des Prairies, Laval (Québec) H7V1B7, Canada
| | - Katia Smail
- INRS - Institut Armand-Frappier, 531 boul des Prairies, Laval (Québec) H7V1B7, Canada
| | - Joy X Wang
- Department of Molecular, Cellular and Developmental Biology and the Howard Hughes Medical Institute, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, United States
| | - Fallou Wade
- INRS - Institut Armand-Frappier, 531 boul des Prairies, Laval (Québec) H7V1B7, Canada
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology and the Howard Hughes Medical Institute, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, United States
| | - Jonathan Perreault
- INRS - Institut Armand-Frappier, 531 boul des Prairies, Laval (Québec) H7V1B7, Canada.
| |
Collapse
|
89
|
Hausmann S, Guimarães VA, Garcin D, Baumann N, Linder P, Redder P. Both exo- and endo-nucleolytic activities of RNase J1 from Staphylococcus aureus are manganese dependent and active on triphosphorylated 5'-ends. RNA Biol 2017; 14:1431-1443. [PMID: 28277929 DOI: 10.1080/15476286.2017.1300223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
RNA decay and RNA maturation are important steps in the regulation of bacterial gene expression. RNase J, which is present in about half of bacterial species, has been shown to possess both endo- and 5' to 3' exo-ribonuclease activities. The exonucleolytic activity is clearly involved in the degradation of mRNA and in the maturation of at least the 5' end of 16S rRNA in the 2 Firmicutes Staphylococcus aureus and Bacillus subtilis. The endoribonuclease activity of RNase J from several species has been shown to be weak in vitro and 3-D structural data of different RNase J orthologs have not provided a clear explanation for the molecular basis of this activity. Here, we show that S. aureus RNase J1 is a manganese dependent homodimeric enzyme with strong 5' to 3' exo-ribonuclease as well as endo-ribonuclease activity. In addition, we demonstrated that SauJ1 can efficiently degrade 5' triphosphorylated RNA. Our results highlight RNase J1 as an important player in RNA turnover in S. aureus.
Collapse
Affiliation(s)
- Stéphane Hausmann
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Vanessa Andrade Guimarães
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Dominique Garcin
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Natalia Baumann
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Patrick Linder
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Peter Redder
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland.,b Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse III Toulouse , France
| |
Collapse
|
90
|
Cho KH. The Structure and Function of the Gram-Positive Bacterial RNA Degradosome. Front Microbiol 2017; 8:154. [PMID: 28217125 PMCID: PMC5289998 DOI: 10.3389/fmicb.2017.00154] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/20/2017] [Indexed: 11/24/2022] Open
Abstract
The RNA degradosome is a highly structured protein complex responsible for bulk RNA decay in bacteria. The main components of the complex, ribonucleases, an RNA helicase, and glycolytic enzymes are well-conserved in bacteria. Some components of the degradosome are essential for growth and the disruption of degradosome formation causes slower growth, indicating that this complex is required for proper cellular function. The study of the Escherichia coli degradosome has been performed extensively for the last several decades and has revealed detailed information on its structure and function. On the contrary, the Gram-positive bacterial degradosome, which contains ribonucleases different from the E. coli one, has been studied only recently. Studies on the Gram-positive degradosome revealed that its major component RNase Y was necessary for the full virulence of medically important Gram-positive bacterial pathogens, suggesting that it could be a target of antimicrobial therapy. This review describes the structures and function of Gram-positive bacterial RNA degradosomes, especially those of a Gram-positive model organism Bacillus subtilis, and two important Gram-positive pathogens, Staphylococcus aureus and Streptococcus pyogenes.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Biology, Indiana State University Terre Haute, IN, USA
| |
Collapse
|
91
|
Role of RNase Y in Clostridium perfringens mRNA Decay and Processing. J Bacteriol 2016; 199:JB.00703-16. [PMID: 27821608 DOI: 10.1128/jb.00703-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/27/2016] [Indexed: 11/20/2022] Open
Abstract
RNase Y is a major endoribonuclease that plays a crucial role in mRNA degradation and processing. We study the role of RNase Y in the Gram-positive anaerobic pathogen Clostridium perfringens, which until now has not been well understood. Our study implies an important role for RNase Y-mediated RNA degradation and processing in virulence gene expression and the physiological development of the organism. We began by constructing an RNase Y conditional knockdown strain in order to observe the importance of RNase Y on growth and virulence. Our resulting transcriptome analysis shows that RNase Y affects the expression of many genes, including toxin-producing genes. We provide data to show that RNase Y depletion repressed several toxin genes in C. perfringens and involved the virR-virS two-component system. We also observe evidence that RNase Y is indispensable for processing and stabilizing the transcripts of colA (encoding a major toxin collagenase) and pilA2 (encoding a major pilin component of the type IV pili). Posttranscriptional regulation of colA is known to be mediated by cleavage in the 5' untranslated region (5'UTR), and we observe that RNase Y depletion diminishes colA 5'UTR processing. We show that RNase Y is also involved in the posttranscriptional stabilization of pilA2 mRNA, which is thought to be important for host cell adherence and biofilm formation. IMPORTANCE RNases have important roles in RNA degradation and turnover in all organisms. C. perfringens is a Gram-positive anaerobic spore-forming bacterial pathogen that produces numerous extracellular enzymes and toxins, and it is linked to digestive disorders and disease. A highly conserved endoribonuclease, RNase Y, affects the expression of hundreds of genes, including toxin genes, and studying these effects is useful for understanding C. perfringens specifically and RNases generally. Moreover, RNase Y is involved in processing specific transcripts, and we observed that this processing in C. perfringens results in the stabilization of mRNAs encoding a toxin and bacterial extracellular apparatus pili. Our study shows that RNase activity is associated with gene expression, helping to determine the growth, proliferation, and virulence of C. perfringens.
Collapse
|
92
|
Bischler T, Hsieh PK, Resch M, Liu Q, Tan HS, Foley PL, Hartleib A, Sharma CM, Belasco JG. Identification of the RNA Pyrophosphohydrolase RppH of Helicobacter pylori and Global Analysis of Its RNA Targets. J Biol Chem 2016; 292:1934-1950. [PMID: 27974459 DOI: 10.1074/jbc.m116.761171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/02/2016] [Indexed: 12/20/2022] Open
Abstract
RNA degradation is crucial for regulating gene expression in all organisms. Like the decapping of eukaryotic mRNAs, the conversion of the 5'-terminal triphosphate of bacterial transcripts to a monophosphate can trigger RNA decay by exposing the transcript to attack by 5'-monophosphate-dependent ribonucleases. In both biological realms, this deprotection step is catalyzed by members of the Nudix hydrolase family. The genome of the gastric pathogen Helicobacter pylori, a Gram-negative epsilonproteobacterium, encodes two proteins resembling Nudix enzymes. Here we present evidence that one of them, HP1228 (renamed HpRppH), is an RNA pyrophosphohydrolase that triggers RNA degradation in H. pylori, whereas the other, HP0507, lacks such activity. In vitro, HpRppH converts RNA 5'-triphosphates and diphosphates to monophosphates. It requires at least two unpaired nucleotides at the 5' end of its substrates and prefers three or more but has only modest sequence preferences. The influence of HpRppH on RNA degradation in vivo was examined by using RNA-seq to search the H. pylori transcriptome for RNAs whose 5'-phosphorylation state and cellular concentration are governed by this enzyme. Analysis of cDNA libraries specific for transcripts bearing a 5'-triphosphate and/or monophosphate revealed at least 63 potential HpRppH targets. These included mRNAs and sRNAs, several of which were validated individually by half-life measurements and quantification of their 5'-terminal phosphorylation state in wild-type and mutant cells. These findings demonstrate an important role for RppH in post-transcriptional gene regulation in pathogenic Epsilonproteobacteria and suggest a possible basis for the phenotypes of H. pylori mutants lacking this enzyme.
Collapse
Affiliation(s)
- Thorsten Bischler
- From the Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany; the Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany and
| | - Ping-Kun Hsieh
- the Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Marcus Resch
- From the Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany; the Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany and
| | - Quansheng Liu
- the Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Hock Siew Tan
- the Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany and
| | - Patricia L Foley
- the Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Anika Hartleib
- From the Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany; the Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany and
| | - Cynthia M Sharma
- From the Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany; the Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany and.
| | - Joel G Belasco
- the Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, New York 10016.
| |
Collapse
|
93
|
Redko Y, Galtier E, Arnion H, Darfeuille F, Sismeiro O, Coppée JY, Médigue C, Weiman M, Cruveiller S, De Reuse H. RNase J depletion leads to massive changes in mRNA abundance in Helicobacter pylori. RNA Biol 2016; 13:243-53. [PMID: 26726773 DOI: 10.1080/15476286.2015.1132141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Degradation of RNA as an intermediate message between genes and corresponding proteins is important for rapid attenuation of gene expression and maintenance of cellular homeostasis. This process is controlled by ribonucleases that have different target specificities. In the bacterial pathogen Helicobacter pylori, an exo- and endoribonuclease RNase J is essential for growth. To explore the role of RNase J in H. pylori, we identified its putative targets at a global scale using next generation RNA sequencing. We found that strong depletion for RNase J led to a massive increase in the steady-state levels of non-rRNAs. mRNAs and RNAs antisense to open reading frames were most affected with over 80% increased more than 2-fold. Non-coding RNAs expressed in the intergenic regions were much less affected by RNase J depletion. Northern blotting of selected messenger and non-coding RNAs validated these results. Globally, our data suggest that RNase J of H. pylori is a major RNase involved in degradation of most cellular RNAs.
Collapse
Affiliation(s)
- Yulia Redko
- a Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter , ERL CNRS 3526
| | - Eloïse Galtier
- a Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter , ERL CNRS 3526
| | - Hélène Arnion
- b INSERM U869, University of Bordeaux , 146 rue Léo Saignat, 33076 Bordeaux , France
| | - Fabien Darfeuille
- b INSERM U869, University of Bordeaux , 146 rue Léo Saignat, 33076 Bordeaux , France
| | - Odile Sismeiro
- c Institut Pasteur, Plate-Forme 2 - Transcriptome et Epigénome
| | | | - Claudine Médigue
- d CNRS-UMR 8030 and Commissariat à l'Energie Atomique et aux Energies Alternatives CEA/DSV/IG/Genoscope LABGeM , Evry , France
| | - Marion Weiman
- d CNRS-UMR 8030 and Commissariat à l'Energie Atomique et aux Energies Alternatives CEA/DSV/IG/Genoscope LABGeM , Evry , France
| | - Stéphane Cruveiller
- d CNRS-UMR 8030 and Commissariat à l'Energie Atomique et aux Energies Alternatives CEA/DSV/IG/Genoscope LABGeM , Evry , France
| | - Hilde De Reuse
- a Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter , ERL CNRS 3526
| |
Collapse
|
94
|
Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression. Microbiol Mol Biol Rev 2016; 80:1029-1057. [PMID: 27784798 DOI: 10.1128/mmbr.00026-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5' untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5' ends of mRNA molecules. These can include 5' secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis.
Collapse
|
95
|
Abstract
Gram-negative and gram-positive bacteria use a variety of enzymatic pathways to degrade mRNAs. Although several recent reviews have outlined these pathways, much less attention has been paid to the regulation of mRNA decay. The functional half-life of a particular mRNA, which affects how much protein is synthesized from it, is determined by a combination of multiple factors. These include, but are not necessarily limited to, (a) stability elements at either the 5' or the 3' terminus, (b) posttranscriptional modifications, (c) ribosome density on individual mRNAs, (d) small regulatory RNA (sRNA) interactions with mRNAs, (e) regulatory proteins that alter ribonuclease binding affinities, (f) the presence or absence of endonucleolytic cleavage sites, (g) control of intracellular ribonuclease levels, and (h) physical location within the cell. Changes in physiological conditions associated with environmental alterations can significantly alter the impact of these factors in the decay of a particular mRNA.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, Georgia 30602;
| | - Sidney R Kushner
- Department of Genetics, University of Georgia, Athens, Georgia 30602;
| |
Collapse
|
96
|
DiChiara JM, Liu B, Figaro S, Condon C, Bechhofer DH. Mapping of internal monophosphate 5' ends of Bacillus subtilis messenger RNAs and ribosomal RNAs in wild-type and ribonuclease-mutant strains. Nucleic Acids Res 2016; 44:3373-89. [PMID: 26883633 PMCID: PMC4838370 DOI: 10.1093/nar/gkw073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 01/29/2016] [Indexed: 11/14/2022] Open
Abstract
The recent findings that the narrow-specificity endoribonuclease RNase III and the 5′ exonuclease RNase J1 are not essential in the Gram-positive model organism, Bacillus subtilis, facilitated a global analysis of internal 5′ ends that are generated or acted upon by these enzymes. An RNA-Seq protocol known as PARE (Parallel Analysis of RNA Ends) was used to capture 5′ monophosphorylated RNA ends in ribonuclease wild-type and mutant strains. Comparison of PARE peaks in strains with RNase III present or absent showed that, in addition to its well-known role in ribosomal (rRNA) processing, many coding sequences and intergenic regions appeared to be direct targets of RNase III. These target sites were, in most cases, not associated with a known antisense RNA. The PARE analysis also revealed an accumulation of 3′-proximal peaks that correlated with the absence of RNase J1, confirming the importance of RNase J1 in degrading RNA fragments that contain the transcription terminator structure. A significant result from the PARE analysis was the discovery of an endonuclease cleavage just 2 nts downstream of the 16S rRNA 3′ end. This latter observation begins to answer, at least for B. subtilis, a long-standing question on the exonucleolytic versus endonucleolytic nature of 16S rRNA maturation.
Collapse
Affiliation(s)
- Jeanne M DiChiara
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Bo Liu
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Sabine Figaro
- CNRS UMR8261 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ciarán Condon
- CNRS UMR8261 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - David H Bechhofer
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
97
|
Levy S, Allerston CK, Liveanu V, Habib MR, Gileadi O, Schuster G. Identification of LACTB2, a metallo-β-lactamase protein, as a human mitochondrial endoribonuclease. Nucleic Acids Res 2016; 44:1813-32. [PMID: 26826708 PMCID: PMC4770246 DOI: 10.1093/nar/gkw050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/19/2016] [Indexed: 11/23/2022] Open
Abstract
Post-transcriptional control of mitochondrial gene expression, including the
processing and generation of mature transcripts as well as their degradation, is a
key regulatory step in gene expression in human mitochondria. Consequently,
identification of the proteins responsible for RNA processing and degradation in this
organelle is of great importance. The metallo-β-lactamase (MBL) is a candidate
protein family that includes ribo- and deoxyribonucleases. In this study, we
discovered a function for LACTB2, an orphan MBL protein found in mammalian
mitochondria. Solving its crystal structure revealed almost perfect alignment of the
MBL domain with CPSF73, as well as to other ribonucleases of the MBL superfamily.
Recombinant human LACTB2 displayed robust endoribonuclease activity on ssRNA with a
preference for cleavage after purine-pyrimidine sequences. Mutational analysis
identified an extended RNA-binding site. Knockdown of LACTB2 in cultured cells caused
a moderate but significant accumulation of many mitochondrial transcripts, and its
overexpression led to the opposite effect. Furthermore, manipulation of LACTB2
expression resulted in cellular morphological deformation and cell death. Together,
this study discovered that LACTB2 is an endoribonuclease that is involved in the
turnover of mitochondrial RNA, and is essential for mitochondrial function in human
cells.
Collapse
Affiliation(s)
- Shiri Levy
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Charles K Allerston
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Varda Liveanu
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Mouna R Habib
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Opher Gileadi
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Gadi Schuster
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
98
|
Clouet-d’Orval B, Phung DK, Langendijk-Genevaux PS, Quentin Y. Universal RNA-degrading enzymes in Archaea: Prevalence, activities and functions of β-CASP ribonucleases. Biochimie 2015; 118:278-85. [DOI: 10.1016/j.biochi.2015.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/28/2015] [Indexed: 12/13/2022]
|
99
|
Stazic D, Voß B. The complexity of bacterial transcriptomes. J Biotechnol 2015; 232:69-78. [PMID: 26450562 DOI: 10.1016/j.jbiotec.2015.09.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/07/2015] [Accepted: 09/29/2015] [Indexed: 01/09/2023]
Abstract
For eukaryotes there seems to be no doubt that differences on the trancriptomic level substantially contribute to the process of species diversification, whereas for bacteria this is thought to be less important. Recent years saw a significant increase in full transcriptome studies for bacteria, which provided deep insight into the architecture of bacterial transcriptomes. Most notably, it became evident that, in contrast to previous scientific consensus, bacterial transcriptomes are quite complex. There exist a large number of cis-antisense RNAs, non-coding RNAs, overlapping transcripts and RNA elements that regulate transcription, such as riboswitches. Furthermore, processing and degradation of RNA has gained interest, because it has a significant impact on the composition of the transcriptome. In this review, we summarize recent findings and put them into a broader context with respect to the complexity of bacterial transcriptomes and its putative biological meanings.
Collapse
Affiliation(s)
- D Stazic
- University of Freiburg, Faculty of Biology, Computational Transcriptomics, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - B Voß
- University of Freiburg, Faculty of Biology, Computational Transcriptomics, Schänzlestr. 1, 79104 Freiburg, Germany.
| |
Collapse
|
100
|
Cameron JC, Gordon GC, Pfleger BF. Genetic and genomic analysis of RNases in model cyanobacteria. PHOTOSYNTHESIS RESEARCH 2015; 126:171-83. [PMID: 25595545 PMCID: PMC4506261 DOI: 10.1007/s11120-015-0076-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 01/02/2015] [Indexed: 05/20/2023]
Abstract
Cyanobacteria are diverse photosynthetic microbes with the ability to convert CO2 into useful products. However, metabolic engineering of cyanobacteria remains challenging because of the limited resources for modifying the expression of endogenous and exogenous biochemical pathways. Fine-tuned control of protein production will be critical to optimize the biological conversion of CO2 into desirable molecules. Messenger RNAs (mRNAs) are labile intermediates that play critical roles in determining the translation rate and steady-state protein concentrations in the cell. The majority of studies on mRNA turnover have focused on the model heterotrophic bacteria Escherichia coli and Bacillus subtilis. These studies have elucidated many RNA modifying and processing enzymes and have highlighted the differences between these Gram-negative and Gram-positive bacteria, respectively. In contrast, much less is known about mRNA turnover in cyanobacteria. We generated a compendium of the major ribonucleases (RNases) and provide an in-depth analysis of RNase III-like enzymes in commonly studied and diverse cyanobacteria. Furthermore, using targeted gene deletion, we genetically dissected the RNases in Synechococcus sp. PCC 7002, one of the fastest growing and industrially attractive cyanobacterial strains. We found that all three cyanobacterial homologs of RNase III and a member of the RNase II/R family are not essential under standard laboratory conditions, while homologs of RNase E/G, RNase J1/J2, PNPase, and a different member of the RNase II/R family appear to be essential for growth. This work will enhance our understanding of native control of gene expression and will facilitate the development of an RNA-based toolkit for metabolic engineering in cyanobacteria.
Collapse
Affiliation(s)
- Jeffrey C Cameron
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3629 Engineering Hall, 1415 Engineering Dr., Madison, WI, 53706, USA
| | - Gina C Gordon
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3629 Engineering Hall, 1415 Engineering Dr., Madison, WI, 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3629 Engineering Hall, 1415 Engineering Dr., Madison, WI, 53706, USA.
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, USA.
| |
Collapse
|