51
|
Lapin D, Johanndrees O, Wu Z, Li X, Parker JE. Molecular innovations in plant TIR-based immunity signaling. THE PLANT CELL 2022; 34:1479-1496. [PMID: 35143666 PMCID: PMC9153377 DOI: 10.1093/plcell/koac035] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/27/2022] [Indexed: 05/19/2023]
Abstract
A protein domain (Toll and Interleukin-1 receptor [TIR]-like) with homology to animal TIRs mediates immune signaling in prokaryotes and eukaryotes. Here, we present an overview of TIR evolution and the molecular versatility of TIR domains in different protein architectures for host protection against microbial attack. Plant TIR-based signaling emerges as being central to the potentiation and effectiveness of host defenses triggered by intracellular and cell-surface immune receptors. Equally relevant for plant fitness are mechanisms that limit potent TIR signaling in healthy tissues but maintain preparedness for infection. We propose that seed plants evolved a specialized protein module to selectively translate TIR enzymatic activities to defense outputs, overlaying a more general function of TIRs.
Collapse
Affiliation(s)
- Dmitry Lapin
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Oliver Johanndrees
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Zhongshou Wu
- Michael Smith Labs and Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Labs and Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Duesseldorf 40225, Germany
| |
Collapse
|
52
|
Melonek J, Small I. Triticeae genome sequences reveal huge expansions of gene families implicated in fertility restoration. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102166. [PMID: 35021148 DOI: 10.1016/j.pbi.2021.102166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Breakthroughs in assembly of whole-genome sequencing and targeted sequence capture data have accelerated comparative genomics analyses in cereals with big and complex genomes such as wheat. This newly acquired information has revealed unexpected expansions in two large gene families linked to restoration of fertility in species that exhibit cytoplasmic male sterility. Extreme levels of copy-number and structural variation detected within and between species illustrate the genetic diversity among the family members and reveal the evolutionary mechanisms at work. This new knowledge will greatly facilitate the development of hybrid production strategies in wheat and related species.
Collapse
Affiliation(s)
- Joanna Melonek
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
53
|
Liu W, Zhang Y, He H, He G, Deng XW. From hybrid genomes to heterotic trait output: Challenges and opportunities. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102193. [PMID: 35219140 DOI: 10.1016/j.pbi.2022.102193] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/19/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Heterosis (or hybrid vigor) has been widely used in crop seed breeding to improve many key economic traits. Nevertheless, the genetic and molecular basis of this important phenomenon has long remained elusive, constraining its flexible and effective exploitation. Advanced genomic approaches are efficient in characterizing the mechanism of heterosis. Here, we review how the omics approaches, including genomic, transcriptomic, and population genetics methods such as genome-wide association studies, can reveal how hybrid genomes outperform parental genomes in plants. This information opens up opportunities for genomic exploration and manipulation of heterosis in crop breeding.
Collapse
Affiliation(s)
- Wenwen Liu
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yilin Zhang
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, 699 Binhu Road, Xiashan Ecological and Economic Development Zone, Weifang, Shandong, 261325, China
| | - Guangming He
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xing Wang Deng
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China; Peking University Institute of Advanced Agricultural Sciences, 699 Binhu Road, Xiashan Ecological and Economic Development Zone, Weifang, Shandong, 261325, China.
| |
Collapse
|
54
|
Kubo T, Yoshimura A, Kurata N. Loss of OsEAF6, a Subunit of the Histone Acetyltransferase Complex, Causes Hybrid Breakdown in Intersubspecific Rice Crosses. FRONTIERS IN PLANT SCIENCE 2022; 13:866404. [PMID: 35350298 PMCID: PMC8957887 DOI: 10.3389/fpls.2022.866404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Gene duplication plays an important role in genetic diversification, adaptive evolution, and speciation. Understanding the mechanisms and effects of postzygotic isolation genes is important for further studies of speciation and crop breeding. The duplicate recessive genes hwe1 and hwe2 cause hybrid breakdown, characterized by poor vegetative growth and reproductive dysgenesis in intersubspecific crosses between Oryza sativa ssp. indica and japonica. Using a map-based cloning strategy, we found that HWE1 and HWE2 encode the Esa1-associated factor 6 (EAF6) protein, a component of histone acetyltransferase complexes. The indica hwe1 and japonica hwe2 alleles lacked functional EAF6, demonstrating that the double recessive homozygote causes hybrid breakdown. Morphological and physiological observations showed that weak plants with double recessive homozygotes had serious morphological defects with a wide range of effects on development and organs, leading to leaves with reduced chlorophyll content, flower and pistil malformation, and anomalies of gametogenesis. These findings suggest that EAF6 plays a pivotal role in the transcriptional regulation of essential genes during the vegetative and reproductive development of rice.
Collapse
Affiliation(s)
- Takahiko Kubo
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Atsushi Yoshimura
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Nori Kurata
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
55
|
Castillo-Bravo R, Fort A, Cashell R, Brychkova G, McKeown PC, Spillane C. Parent-of-Origin Effects on Seed Size Modify Heterosis Responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:835219. [PMID: 35330872 PMCID: PMC8940307 DOI: 10.3389/fpls.2022.835219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 05/05/2023]
Abstract
Parent-of-origin effects arise when a phenotype depends on whether it is inherited maternally or paternally. Parent-of-origin effects can exert a strong influence on F1 seed size in flowering plants, an important agronomic and life-history trait that can contribute to biomass heterosis. Here we investigate the natural variation in the relative contributions of the maternal and paternal genomes to F1 seed size across 71 reciprocal pairs of F1 hybrid diploids and the parental effect on F1 seed size heterosis. We demonstrate that the paternally derived genome influences F1 seed size more significantly than previously appreciated. We further demonstrate (by disruption of parental genome dosage balance in F1 triploid seeds) that hybridity acts as an enhancer of genome dosage effects on F1 seed size, beyond that observed from hybridity or genome dosage effects on their own. Our findings indicate that interactions between genetic hybridity and parental genome dosage can enhance heterosis effects in plants, opening new avenues for boosting heterosis breeding in crop plants.
Collapse
|
56
|
Langdon QK, Powell DL, Kim B, Banerjee SM, Payne C, Dodge TO, Moran B, Fascinetto-Zago P, Schumer M. Predictability and parallelism in the contemporary evolution of hybrid genomes. PLoS Genet 2022; 18:e1009914. [PMID: 35085234 PMCID: PMC8794199 DOI: 10.1371/journal.pgen.1009914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
Hybridization between species is widespread across the tree of life. As a result, many species, including our own, harbor regions of their genome derived from hybridization. Despite the recognition that this process is widespread, we understand little about how the genome stabilizes following hybridization, and whether the mechanisms driving this stabilization tend to be shared across species. Here, we dissect the drivers of variation in local ancestry across the genome in replicated hybridization events between two species pairs of swordtail fish: Xiphophorus birchmanni × X. cortezi and X. birchmanni × X. malinche. We find unexpectedly high levels of repeatability in local ancestry across the two types of hybrid populations. This repeatability is attributable in part to the fact that the recombination landscape and locations of functionally important elements play a major role in driving variation in local ancestry in both types of hybrid populations. Beyond these broad scale patterns, we identify dozens of regions of the genome where minor parent ancestry is unusually low or high across species pairs. Analysis of these regions points to shared sites under selection across species pairs, and in some cases, shared mechanisms of selection. We show that one such region is a previously unknown hybrid incompatibility that is shared across X. birchmanni × X. cortezi and X. birchmanni × X. malinche hybrid populations.
Collapse
Affiliation(s)
- Quinn K. Langdon
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Daniel L. Powell
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Bernard Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Shreya M. Banerjee
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Cheyenne Payne
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Tristram O. Dodge
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Ben Moran
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Paola Fascinetto-Zago
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institutes, Chevy Chase, Maryland, United States of America
| |
Collapse
|
57
|
Thompson KA, Peichel CL, Rennison DJ, McGee MD, Albert AYK, Vines TH, Greenwood AK, Wark AR, Brandvain Y, Schumer M, Schluter D. Analysis of ancestry heterozygosity suggests that hybrid incompatibilities in threespine stickleback are environment dependent. PLoS Biol 2022; 20:e3001469. [PMID: 35007278 PMCID: PMC8746713 DOI: 10.1371/journal.pbio.3001469] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
Hybrid incompatibilities occur when interactions between opposite ancestry alleles at different loci reduce the fitness of hybrids. Most work on incompatibilities has focused on those that are "intrinsic," meaning they affect viability and sterility in the laboratory. Theory predicts that ecological selection can also underlie hybrid incompatibilities, but tests of this hypothesis using sequence data are scarce. In this article, we compiled genetic data for F2 hybrid crosses between divergent populations of threespine stickleback fish (Gasterosteus aculeatus L.) that were born and raised in either the field (seminatural experimental ponds) or the laboratory (aquaria). Because selection against incompatibilities results in elevated ancestry heterozygosity, we tested the prediction that ancestry heterozygosity will be higher in pond-raised fish compared to those raised in aquaria. We found that ancestry heterozygosity was elevated by approximately 3% in crosses raised in ponds compared to those raised in aquaria. Additional analyses support a phenotypic basis for incompatibility and suggest that environment-specific single-locus heterozygote advantage is not the cause of selection on ancestry heterozygosity. Our study provides evidence that, in stickleback, a coarse-albeit indirect-signal of environment-dependent hybrid incompatibility is reliably detectable and suggests that extrinsic incompatibilities can evolve before intrinsic incompatibilities.
Collapse
Affiliation(s)
- Ken A. Thompson
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Canada
| | - Catherine L. Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Diana J. Rennison
- Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Matthew D. McGee
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | | | - Timothy H. Vines
- DataSeer Research Data Services, Vancouver, British Columbia, Canada
| | | | - Abigail R. Wark
- Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Maryland, United States of America
| | - Dolph Schluter
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Canada
| |
Collapse
|
58
|
Cantó-Pastor A, Mason GA, Brady SM, Provart NJ. Arabidopsis bioinformatics: tools and strategies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1585-1596. [PMID: 34695270 DOI: 10.1111/tpj.15547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The sequencing of the Arabidopsis thaliana genome 21 years ago ushered in the genomics era for plant research. Since then, an incredible variety of bioinformatic tools permit easy access to large repositories of genomic, transcriptomic, proteomic, epigenomic and other '-omic' data. In this review, we cover some more recent tools (and highlight the 'classics') for exploring such data in order to help formulate quality, testable hypotheses, often without having to generate new experimental data. We cover tools for examining gene expression and co-expression patterns, undertaking promoter analyses and gene set enrichment analyses, and exploring protein-protein and protein-DNA interactions. We will touch on tools that integrate different data sets at the end of the article.
Collapse
Affiliation(s)
- Alex Cantó-Pastor
- Department of Plant Biology and Genome Center, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - G Alex Mason
- Department of Plant Biology and Genome Center, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
59
|
De la Concepcion JC, Vega Benjumea J, Bialas A, Terauchi R, Kamoun S, Banfield MJ. Functional diversification gave rise to allelic specialization in a rice NLR immune receptor pair. eLife 2021; 10:e71662. [PMID: 34783652 PMCID: PMC8631799 DOI: 10.7554/elife.71662] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Cooperation between receptors from the nucleotide-binding, leucine-rich repeats (NLR) superfamily is important for intracellular activation of immune responses. NLRs can function in pairs that, upon pathogen recognition, trigger hypersensitive cell death and stop pathogen invasion. Natural selection drives specialization of host immune receptors towards an optimal response, whilst keeping a tight regulation of immunity in the absence of pathogens. However, the molecular basis of co-adaptation and specialization between paired NLRs remains largely unknown. Here, we describe functional specialization in alleles of the rice NLR pair Pik that confers resistance to strains of the blast fungus Magnaporthe oryzae harbouring AVR-Pik effectors. We revealed that matching pairs of allelic Pik NLRs mount effective immune responses, whereas mismatched pairs lead to autoimmune phenotypes, a hallmark of hybrid necrosis in both natural and domesticated plant populations. We further showed that allelic specialization is largely underpinned by a single amino acid polymorphism that determines preferential association between matching pairs of Pik NLRs. These results provide a framework for how functionally linked immune receptors undergo co-adaptation to provide an effective and regulated immune response against pathogens. Understanding the molecular constraints that shape paired NLR evolution has implications beyond plant immunity given that hybrid necrosis can drive reproductive isolation.
Collapse
Affiliation(s)
- Juan Carlos De la Concepcion
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of SciencesViennaAustria
- Department of Biological Chemistry and Metabolism, John Innes CentreNorwichUnited Kingdom
| | - Javier Vega Benjumea
- Department of Biological Chemistry and Metabolism, John Innes CentreNorwichUnited Kingdom
- Servicio de Bioquímica-Análisis clínicos, Hospital Universitario Puerta de HierroMadridSpain
| | - Aleksandra Bialas
- The Sainsbury Laboratory, University of East AngliaNorwichUnited Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research CenterIwateJapan
- Laboratory of Crop Evolution, Graduate School of AgricultureKyotoJapan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East AngliaNorwichUnited Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry and Metabolism, John Innes CentreNorwichUnited Kingdom
| |
Collapse
|
60
|
Shiragaki K, Furukawa H, Yokoi S, Tezuka T. Temperature-dependent sugar accumulation in interspecific Capsicum F 1 plants showing hybrid weakness. JOURNAL OF PLANT RESEARCH 2021; 134:1199-1211. [PMID: 34468920 DOI: 10.1007/s10265-021-01340-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
In plants, F1 hybrids showing hybrid weakness exhibit weaker growth than their parents. The phenotypes of hybrid weakness are often suppressed at certain temperatures. However, it is unclear whether hybrid weakness in Capsicum annuum × C. chinense is temperature-dependent or not. Our study showed that Capsicum hybrid weakness was suppressed at 30 and 35 °C and was induced at 15, 20, and 25 °C. Moreover, we investigated the time course of hybrid weakness in cell death, metabolite content, and gene expression in leaves of plants transferred to 20 °C after growing at 30 °C for 21 days. The expression of pathogen defense-related genes was upregulated at 1 day after transfer to 20 °C (DAT). Cell death was detected at 7 DAT, plant growth had almost stopped since 14 DAT, and sugars were accumulated at 42 DAT in hybrid plants. The study revealed that some sugar transporter genes, which had been upregulated since 7 DAT, were involved in sugar accumulation in Capsicum hybrid weakness. Thus, our results demonstrated that gene expression changes occur first, followed by physiological and morphological changes after induction of hybrid weakness. These responses observed in this study in Capsicum hybrid weakness are likely to be owed to plant defense responses-like reactions.
Collapse
Affiliation(s)
- Kumpei Shiragaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Hajime Furukawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Shuji Yokoi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Bioeconomy Research Institute, Research Center for the 21st Century, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
61
|
Kourelis J, Sakai T, Adachi H, Kamoun S. RefPlantNLR is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. PLoS Biol 2021; 19:e3001124. [PMID: 34669691 PMCID: PMC8559963 DOI: 10.1371/journal.pbio.3001124] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 11/01/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
Reference datasets are critical in computational biology. They help define canonical biological features and are essential for benchmarking studies. Here, we describe a comprehensive reference dataset of experimentally validated plant nucleotide-binding leucine-rich repeat (NLR) immune receptors. RefPlantNLR consists of 481 NLRs from 31 genera belonging to 11 orders of flowering plants. This reference dataset has several applications. We used RefPlantNLR to determine the canonical features of functionally validated plant NLRs and to benchmark 5 NLR annotation tools. This revealed that although NLR annotation tools tend to retrieve the majority of NLRs, they frequently produce domain architectures that are inconsistent with the RefPlantNLR annotation. Guided by this analysis, we developed a new pipeline, NLRtracker, which extracts and annotates NLRs from protein or transcript files based on the core features found in the RefPlantNLR dataset. The RefPlantNLR dataset should also prove useful for guiding comparative analyses of NLRs across the wide spectrum of plant diversity and identifying understudied taxa. We hope that the RefPlantNLR resource will contribute to moving the field beyond a uniform view of NLR structure and function.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
62
|
Si Y, Zheng S, Niu J, Tian S, Gu M, Lu Q, He Y, Zhang J, Shi X, Li Y, Ling HQ. Ne2, a typical CC-NBS-LRR-type gene, is responsible for hybrid necrosis in wheat. THE NEW PHYTOLOGIST 2021; 232:279-289. [PMID: 34160845 DOI: 10.1111/nph.17575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Hybrid necrosis, caused by complementary genes Ne1 and Ne2, is a serious barrier for combining desirable traits from different genotypes of wheat, affecting the full utilisation of heterosis. To date, both Ne1 and Ne2 are still not isolated although they were documented decades ago. We report here the map-based cloning and functional characterisation of Ne2, encoding a coiled coil-nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR) protein. Homozygous frameshift mutations generated using the CRISPR/Cas9 approach confirmed the Ne2-inducing hybrid necrosis in wheat. Upregulated expression of Ne2 induced by Ne1 and excess hydrogen peroxide accumulation are associated with the necrosis formation. Genetic analyses of a Ne2 allele (Ne2m ) and leaf rust resistance gene LrLC10/Lr13 revealed that they might be the same gene. Furthermore, we demonstrated that the frequency of the Ne2 allele was much lower in landraces (2.00%) compared with that in modern cultivars (13.62%), suggesting that Ne2 allele has been partially applied in wheat genetic improvement. Our findings open opportunities of thoroughly investigating the molecular mechanism of hybrid necrosis, selecting Lr13 and simultaneously avoiding hybrid necrosis in wheat breeding through marker-assisted selection.
Collapse
Affiliation(s)
- Yaoqi Si
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shusong Zheng
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqing Niu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuiquan Tian
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengjun Gu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiao Lu
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilin He
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Zhang
- Shi Jia Zhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, 050041, China
| | - Xiaoli Shi
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiwen Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
63
|
Leonetti P, Stuttmann J, Pantaleo V. Regulation of plant antiviral defense genes via host RNA-silencing mechanisms. Virol J 2021; 18:194. [PMID: 34565394 PMCID: PMC8474839 DOI: 10.1186/s12985-021-01664-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Background Plants in nature or crops in the field interact with a multitude of beneficial or parasitic organisms, including bacteria, fungi and viruses. Viruses are highly specialized to infect a limited range of host plants, leading in extreme cases to the full invasion of the host and a diseased phenotype. Resistance to viruses can be mediated by various passive or active mechanisms, including the RNA-silencing machinery and the innate immune system. Main text RNA-silencing mechanisms may inhibit viral replication, while viral components can elicit the innate immune system. Viruses that successfully enter the plant cell can elicit pattern-triggered immunity (PTI), albeit by yet unknown mechanisms. As a counter defense, viruses suppress PTI. Furthermore, viral Avirulence proteins (Avr) may be detected by intracellular immune receptors (Resistance proteins) to elicit effector-triggered immunity (ETI). ETI often culminates in a localized programmed cell death reaction, the hypersensitive response (HR), and is accompanied by a potent systemic defense response. In a dichotomous view, RNA silencing and innate immunity are seen as two separate mechanisms of resistance. Here, we review the intricate connections and similarities between these two regulatory systems, which are collectively required to ensure plant fitness and resilience. Conclusions The detailed understanding of immune regulation at the transcriptional level provides novel opportunities for enhancing plant resistance to viruses by RNA-based technologies. However, extensive use of RNA technologies requires a thorough understanding of the molecular mechanisms of RNA gene regulation. We describe the main examples of host RNA-mediated regulation of virus resistance.
Collapse
Affiliation(s)
- Paola Leonetti
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, Research Unit of Bari, CNR, 70126, Bari, Italy
| | - Johannes Stuttmann
- Institute of Biology, Department of Plant Genetics, Martin Luther University, Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Vitantonio Pantaleo
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, Research Unit of Bari, CNR, 70126, Bari, Italy. .,Institute of Biochemistry and Biotechnology, Martin Luther University, Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
64
|
Morimoto T, Kitamura Y, Numaguchi K, Itai A. Characterization of transcriptomic response in ovules derived from inter-subgeneric hybridization in Prunus (Rosaceae) species. PLANT REPRODUCTION 2021; 34:255-266. [PMID: 34165636 DOI: 10.1007/s00497-021-00423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Characterization of hybrid seed failure in Prunus provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in plant species. Postzygotic hybrid incompatibility resulting from a cross between different species involves complex mechanisms occurring at various developmental stages. Embryo arrest, followed by seed abortion, is the first stage of such incompatibility reactions and inhibits hybrid seed development. In Prunus, a rosaceous woody species, some interspecific crosses result in fruit drop during the early stage of fruit development, in which inferior seed development may be accounted for the observed hybrid incompatibility. In this study, we investigated ovule development and the transcriptomes of developing ovules in inter-subgeneric crosses of Prunus. We conducted a cross of Prunus mume (subgenus Prunus), pollinated by P. persica (subgenus Amygdalus), and found that ovule and seed coat degeneration occurs before fruit drop. Transcriptome analysis identified differentially expressed genes enriched in several GO pathways, including organelle development, stimulus response, and signaling. Among these pathways, the organelle-related genes were actively regulated during ovule development, as they showed higher expression in the early stage of interspecific crosses and declined in the later stage, suggesting that the differential regulation of organelle function may induce the degeneration of hybrid ovules. Additionally, genes related to ovule and seed coat development, such as genes encoding AGL-like and auxin response, were differentially regulated in Prunus interspecific crosses. Our results provide histological and molecular information on hybrid seed abortion in Prunus that could be utilized to develop new hybrid crops. Additionally, we compared and discussed transcriptome responses to hybrid seed failure in Prunus and other plant species, which provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in some plant species.
Collapse
Affiliation(s)
- Takuya Morimoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 619-0244, Japan.
| | - Yuto Kitamura
- Japanese Apricot Laboratory, Wakayama Fruit Tree Experiment Station, Wakayama, 645-0021, Japan
- Faculty of Agriculture, Setsunan University, Osaka, 573-0101, Japan
| | - Koji Numaguchi
- Japanese Apricot Laboratory, Wakayama Fruit Tree Experiment Station, Wakayama, 645-0021, Japan
| | - Akihiro Itai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 619-0244, Japan
| |
Collapse
|
65
|
Li L, Weigel D. One Hundred Years of Hybrid Necrosis: Hybrid Autoimmunity as a Window into the Mechanisms and Evolution of Plant-Pathogen Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:213-237. [PMID: 33945695 DOI: 10.1146/annurev-phyto-020620-114826] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Hybrid necrosis in plants refers to a genetic autoimmunity syndrome in the progeny of interspecific or intraspecific crosses. Although the phenomenon was first documented in 1920, it has been unequivocally linked to autoimmunity only recently, with the discovery of the underlying genetic and biochemical mechanisms. The most common causal loci encode immune receptors, which are known to differ within and between species. One mechanism can be explained by the guard hypothesis, in which a guard protein, often a nucleotide-binding site-leucine-rich repeat protein, is activated by interaction with a plant protein that mimics standard guardees modified by pathogen effector proteins. Another surprising mechanism is the formation of inappropriately active immune receptor complexes. In this review, we summarize our current knowledge of hybrid necrosis and discuss how its study is not only informing the understanding of immune gene evolution but also revealing new aspects of plant immune signaling.
Collapse
Affiliation(s)
- Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; ,
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; ,
| |
Collapse
|
66
|
Moran BM, Payne C, Langdon Q, Powell DL, Brandvain Y, Schumer M. The genomic consequences of hybridization. eLife 2021; 10:e69016. [PMID: 34346866 PMCID: PMC8337078 DOI: 10.7554/elife.69016] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/29/2022] Open
Abstract
In the past decade, advances in genome sequencing have allowed researchers to uncover the history of hybridization in diverse groups of species, including our own. Although the field has made impressive progress in documenting the extent of natural hybridization, both historical and recent, there are still many unanswered questions about its genetic and evolutionary consequences. Recent work has suggested that the outcomes of hybridization in the genome may be in part predictable, but many open questions about the nature of selection on hybrids and the biological variables that shape such selection have hampered progress in this area. We synthesize what is known about the mechanisms that drive changes in ancestry in the genome after hybridization, highlight major unresolved questions, and discuss their implications for the predictability of genome evolution after hybridization.
Collapse
Affiliation(s)
- Benjamin M Moran
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Cheyenne Payne
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Quinn Langdon
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Daniel L Powell
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Yaniv Brandvain
- Department of Ecology, Evolution & Behavior and Plant and Microbial Biology, University of MinnesotaMinneapolisUnited States
| | - Molly Schumer
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
- Hanna H. Gray Fellow, Howard Hughes Medical InstituteStanfordUnited States
| |
Collapse
|
67
|
Chae HB, Kim MG, Kang CH, Park JH, Lee ES, Lee SU, Chi YH, Paeng SK, Bae SB, Wi SD, Yun BW, Kim WY, Yun DJ, Mackey D, Lee SY. Redox sensor QSOX1 regulates plant immunity by targeting GSNOR to modulate ROS generation. MOLECULAR PLANT 2021; 14:1312-1327. [PMID: 33962063 DOI: 10.1016/j.molp.2021.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/25/2021] [Accepted: 05/03/2021] [Indexed: 05/22/2023]
Abstract
Reactive oxygen signaling regulates numerous biological processes, including stress responses in plants. Redox sensors transduce reactive oxygen signals into cellular responses. Here, we present biochemical evidence that a plant quiescin sulfhydryl oxidase homolog (QSOX1) is a redox sensor that negatively regulates plant immunity against a bacterial pathogen. The expression level of QSOX1 is inversely correlated with pathogen-induced reactive oxygen species (ROS) accumulation. Interestingly, QSOX1 both senses and regulates ROS levels by interactingn with and mediating redox regulation of S-nitrosoglutathione reductase, which, consistent with previous findings, influences reactive nitrogen-mediated regulation of ROS generation. Collectively, our data indicate that QSOX1 is a redox sensor that negatively regulates plant immunity by linking reactive oxygen and reactive nitrogen signaling to limit ROS production.
Collapse
Affiliation(s)
- Ho Byoung Chae
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Min Gab Kim
- College of Pharmacy, Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju 52828, Korea
| | - Chang Ho Kang
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Joung Hun Park
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Eun Seon Lee
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Sang-Uk Lee
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Yong Hun Chi
- Plant Propagation Team, Plant Production Division, Sejong National Arboretum, Sejong 30106, Korea
| | - Seol Ki Paeng
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Su Bin Bae
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Seong Dong Wi
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Woe-Yeon Kim
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - David Mackey
- Department of Horticulture and Crop Science, Department of Molecular Genetics, and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea; College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, P.R. China.
| |
Collapse
|
68
|
Białas A, Langner T, Harant A, Contreras MP, Stevenson CE, Lawson DM, Sklenar J, Kellner R, Moscou MJ, Terauchi R, Banfield MJ, Kamoun S. Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain. eLife 2021; 10:e66961. [PMID: 34288868 PMCID: PMC8294853 DOI: 10.7554/elife.66961] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
A subset of plant NLR immune receptors carry unconventional integrated domains in addition to their canonical domain architecture. One example is rice Pik-1 that comprises an integrated heavy metal-associated (HMA) domain. Here, we reconstructed the evolutionary history of Pik-1 and its NLR partner, Pik-2, and tested hypotheses about adaptive evolution of the HMA domain. Phylogenetic analyses revealed that the HMA domain integrated into Pik-1 before Oryzinae speciation over 15 million years ago and has been under diversifying selection. Ancestral sequence reconstruction coupled with functional studies showed that two Pik-1 allelic variants independently evolved from a weakly binding ancestral state to high-affinity binding of the blast fungus effector AVR-PikD. We conclude that for most of its evolutionary history the Pik-1 HMA domain did not sense AVR-PikD, and that different Pik-1 receptors have recently evolved through distinct biochemical paths to produce similar phenotypic outcomes. These findings highlight the dynamic nature of the evolutionary mechanisms underpinning NLR adaptation to plant pathogens.
Collapse
Affiliation(s)
- Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Clare Em Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ronny Kellner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
69
|
Białas A, Langner T, Harant A, Contreras MP, Stevenson CE, Lawson DM, Sklenar J, Kellner R, Moscou MJ, Terauchi R, Banfield MJ, Kamoun S. Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain. eLife 2021; 10:66961. [PMID: 34288868 DOI: 10.1101/2021.01.26.428286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/01/2021] [Indexed: 05/21/2023] Open
Abstract
A subset of plant NLR immune receptors carry unconventional integrated domains in addition to their canonical domain architecture. One example is rice Pik-1 that comprises an integrated heavy metal-associated (HMA) domain. Here, we reconstructed the evolutionary history of Pik-1 and its NLR partner, Pik-2, and tested hypotheses about adaptive evolution of the HMA domain. Phylogenetic analyses revealed that the HMA domain integrated into Pik-1 before Oryzinae speciation over 15 million years ago and has been under diversifying selection. Ancestral sequence reconstruction coupled with functional studies showed that two Pik-1 allelic variants independently evolved from a weakly binding ancestral state to high-affinity binding of the blast fungus effector AVR-PikD. We conclude that for most of its evolutionary history the Pik-1 HMA domain did not sense AVR-PikD, and that different Pik-1 receptors have recently evolved through distinct biochemical paths to produce similar phenotypic outcomes. These findings highlight the dynamic nature of the evolutionary mechanisms underpinning NLR adaptation to plant pathogens.
Collapse
Affiliation(s)
- Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Clare Em Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ronny Kellner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
70
|
Duxbury Z, Wu CH, Ding P. A Comparative Overview of the Intracellular Guardians of Plants and Animals: NLRs in Innate Immunity and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:155-184. [PMID: 33689400 DOI: 10.1146/annurev-arplant-080620-104948] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleotide-binding domain leucine-rich repeat receptors (NLRs) play important roles in the innate immune systems of both plants and animals. Recent breakthroughs in NLR biochemistry and biophysics have revolutionized our understanding of how NLR proteins function in plant immunity. In this review, we summarize the latest findings in plant NLR biology and draw direct comparisons to NLRs of animals. We discuss different mechanisms by which NLRs recognize their ligands in plants and animals. The discovery of plant NLR resistosomes that assemble in a comparable way to animal inflammasomes reinforces the striking similarities between the formation of plant and animal NLR complexes. Furthermore, we discuss the mechanisms by which plant NLRs mediate immune responses and draw comparisons to similar mechanisms identified in animals. Finally, we summarize the current knowledge of the complex genetic architecture formed by NLRs in plants and animals and the roles of NLRs beyond pathogen detection.
Collapse
Affiliation(s)
- Zane Duxbury
- Jealott's Hill International Research Centre, Syngenta, Bracknell RG42 6EY, United Kingdom;
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
- Current affiliation: Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands;
| |
Collapse
|
71
|
Quezada-Martinez D, Addo Nyarko CP, Schiessl SV, Mason AS. Using wild relatives and related species to build climate resilience in Brassica crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1711-1728. [PMID: 33730183 PMCID: PMC8205867 DOI: 10.1007/s00122-021-03793-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/12/2021] [Indexed: 05/18/2023]
Abstract
Climate change will have major impacts on crop production: not just increasing drought and heat stress, but also increasing insect and disease loads and the chance of extreme weather events and further adverse conditions. Often, wild relatives show increased tolerances to biotic and abiotic stresses, due to reduced stringency of selection for yield and yield-related traits under optimum conditions. One possible strategy to improve resilience in our modern-day crop cultivars is to utilize wild relative germplasm in breeding, and attempt to introgress genetic factors contributing to greater environmental tolerances from these wild relatives into elite crop types. However, this approach can be difficult, as it relies on factors such as ease of hybridization and genetic distance between the source and target, crossover frequencies and distributions in the hybrid, and ability to select for desirable introgressions while minimizing linkage drag. In this review, we outline the possible effects that climate change may have on crop production, introduce the Brassica crop species and their wild relatives, and provide an index of useful traits that are known to be present in each of these species that may be exploitable through interspecific hybridization-based approaches. Subsequently, we outline how introgression breeding works, what factors affect the success of this approach, and how this approach can be optimized so as to increase the chance of recovering the desired introgression lines. Our review provides a working guide to the use of wild relatives and related crop germplasm to improve biotic and abiotic resistances in Brassica crop species.
Collapse
Affiliation(s)
- Daniela Quezada-Martinez
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Charles P Addo Nyarko
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Sarah V Schiessl
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany.
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| |
Collapse
|
72
|
Quezada-Martinez D, Addo Nyarko CP, Schiessl SV, Mason AS. Using wild relatives and related species to build climate resilience in Brassica crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1711-1728. [PMID: 33730183 DOI: 10.1007/s00122-021-03793-3.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/12/2021] [Indexed: 05/24/2023]
Abstract
Climate change will have major impacts on crop production: not just increasing drought and heat stress, but also increasing insect and disease loads and the chance of extreme weather events and further adverse conditions. Often, wild relatives show increased tolerances to biotic and abiotic stresses, due to reduced stringency of selection for yield and yield-related traits under optimum conditions. One possible strategy to improve resilience in our modern-day crop cultivars is to utilize wild relative germplasm in breeding, and attempt to introgress genetic factors contributing to greater environmental tolerances from these wild relatives into elite crop types. However, this approach can be difficult, as it relies on factors such as ease of hybridization and genetic distance between the source and target, crossover frequencies and distributions in the hybrid, and ability to select for desirable introgressions while minimizing linkage drag. In this review, we outline the possible effects that climate change may have on crop production, introduce the Brassica crop species and their wild relatives, and provide an index of useful traits that are known to be present in each of these species that may be exploitable through interspecific hybridization-based approaches. Subsequently, we outline how introgression breeding works, what factors affect the success of this approach, and how this approach can be optimized so as to increase the chance of recovering the desired introgression lines. Our review provides a working guide to the use of wild relatives and related crop germplasm to improve biotic and abiotic resistances in Brassica crop species.
Collapse
Affiliation(s)
- Daniela Quezada-Martinez
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Charles P Addo Nyarko
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Sarah V Schiessl
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany.
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| |
Collapse
|
73
|
Barragan AC, Weigel D. Plant NLR diversity: the known unknowns of pan-NLRomes. THE PLANT CELL 2021; 33:814-831. [PMID: 33793812 PMCID: PMC8226294 DOI: 10.1093/plcell/koaa002] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/23/2020] [Indexed: 05/20/2023]
Abstract
Plants and pathogens constantly adapt to each other. As a consequence, many members of the plant immune system, and especially the intracellular nucleotide-binding site leucine-rich repeat receptors, also known as NOD-like receptors (NLRs), are highly diversified, both among family members in the same genome, and between individuals in the same species. While this diversity has long been appreciated, its true extent has remained unknown. With pan-genome and pan-NLRome studies becoming more and more comprehensive, our knowledge of NLR sequence diversity is growing rapidly, and pan-NLRomes provide powerful platforms for assigning function to NLRs. These efforts are an important step toward the goal of comprehensively predicting from sequence alone whether an NLR provides disease resistance, and if so, to which pathogens.
Collapse
Affiliation(s)
- A Cristina Barragan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
74
|
Prigozhin DM, Krasileva KV. Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites. THE PLANT CELL 2021; 33:998-1015. [PMID: 33561286 PMCID: PMC8226289 DOI: 10.1093/plcell/koab013] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/28/2020] [Indexed: 05/21/2023]
Abstract
The evolution of recognition specificities by the immune system depends on the generation of receptor diversity and on connecting the binding of new antigens with the initiation of downstream signaling. In plant immunity, the innate Nucleotide-Binding Leucine-Rich Repeat (NLR) receptor family enables antigen binding and immune signaling. In this study, we surveyed the NLR complements of 62 ecotypes of Arabidopsis thaliana and 54 lines of Brachypodium distachyon and identified a limited number of NLR subfamilies that show high allelic diversity. We show that the predicted specificity-determining residues cluster on the surfaces of Leucine-Rich Repeat domains, but the locations of the clusters vary among NLR subfamilies. By comparing NLR phylogeny, allelic diversity, and known functions of the Arabidopsis NLRs, we formulate a hypothesis for the emergence of direct and indirect pathogen-sensing receptors and of the autoimmune NLRs. These findings reveal the recurring patterns of evolution of innate immunity and can inform NLR engineering efforts.
Collapse
|
75
|
Jia H, Xue S, Lei L, Fan M, Peng S, Li T, Nagarajan R, Carver B, Ma Z, Deng J, Yan L. A semi-dominant NLR allele causes whole-seedling necrosis in wheat. PLANT PHYSIOLOGY 2021; 186:483-496. [PMID: 33576803 PMCID: PMC8154059 DOI: 10.1093/plphys/kiab058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/26/2021] [Indexed: 05/26/2023]
Abstract
Programmed cell death (PCD) and apoptosis have key functions in development and disease resistance in diverse organisms; however, the induction of necrosis remains poorly understood. Here, we identified a semi-dominant mutant allele that causes the necrotic death of the entire seedling (DES) of wheat (Triticum aestivum L.) in the absence of any pathogen or external stimulus. Positional cloning of the lethal allele mDES1 revealed that this premature death via necrosis was caused by a point mutation from Asp to Asn at amino acid 441 in a nucleotide-binding leucine-rich repeat protein containing nucleotide-binding domain and leucine-rich repeats. The overexpression of mDES1 triggered necrosis and PCD in transgenic plants. However, transgenic wheat harboring truncated wild-type DES1 proteins produced through gene editing that exhibited no significant developmental defects. The point mutation in mDES1 did not cause changes in this protein in the oligomeric state, but mDES1 failed to interact with replication protein A leading to abnormal mitotic cell division. DES1 is an ortholog of Sr35, which recognizes a Puccinia graminis f. sp. tritici stem rust disease effector in wheat, but mDES1 gained function as a direct inducer of plant death. These findings shed light on the intersection of necrosis, apoptosis, and autoimmunity in plants.
Collapse
Affiliation(s)
- Haiyan Jia
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, Nanjing 210095, China
| | - Shulin Xue
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, Nanjing 210095, China
| | - Lei Lei
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Min Fan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, Nanjing 210095, China
| | - Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Tian Li
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ragupathi Nagarajan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Brett Carver
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, Nanjing 210095, China
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
76
|
Ordon J, Martin P, Erickson JL, Ferik F, Balcke G, Bonas U, Stuttmann J. Disentangling cause and consequence: genetic dissection of the DANGEROUS MIX2 risk locus, and activation of the DM2h NLR in autoimmunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1008-1023. [PMID: 33629456 DOI: 10.1111/tpj.15215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Nucleotide-binding domain-leucine-rich repeat-type immune receptors (NLRs) protect plants against pathogenic microbes through intracellular detection of effector proteins. However, this comes at a cost, as NLRs can also induce detrimental autoimmunity in genetic interactions with foreign alleles. This may occur when independently evolved genomes are combined in inter- or intraspecific crosses, or when foreign alleles are introduced by mutagenesis or transgenesis. Most autoimmunity-inducing NLRs are encoded within highly variable NLR gene clusters with no known immune functions, which were termed autoimmune risk loci. Whether risk NLRs differ from sensor NLRs operating in natural pathogen resistance and how risk NLRs are activated in autoimmunity is unknown. Here, we analyzed the DANGEROUS MIX2 risk locus, a major autoimmunity hotspot in Arabidopsis thaliana. By gene editing and heterologous expression, we show that a single gene, DM2h, is necessary and sufficient for autoimmune induction in three independent cases of autoimmunity in accession Landsberg erecta. We focus on autoimmunity provoked by an EDS1-yellow fluorescent protein (YFP)NLS fusion protein to characterize DM2h functionally and determine features of EDS1-YFPNLS activating the immune receptor. Our data suggest that risk NLRs function in a manner reminiscent of sensor NLRs, while autoimmunity-inducing properties of EDS1-YFPNLS in this context are unrelated to the protein's functions as an immune regulator. We propose that autoimmunity, at least in some cases, may be caused by spurious, stochastic interactions of foreign alleles with coincidentally matching risk NLRs.
Collapse
Affiliation(s)
- Jana Ordon
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Patrick Martin
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Jessica Lee Erickson
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Filiz Ferik
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Gerd Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Ulla Bonas
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Johannes Stuttmann
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| |
Collapse
|
77
|
Parker MT, Knop K, Zacharaki V, Sherwood AV, Tomé D, Yu X, Martin PGP, Beynon J, Michaels SD, Barton GJ, Simpson GG. Widespread premature transcription termination of Arabidopsis thaliana NLR genes by the spen protein FPA. eLife 2021; 10:e65537. [PMID: 33904405 PMCID: PMC8116057 DOI: 10.7554/elife.65537] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Genes involved in disease resistance are some of the fastest evolving and most diverse components of genomes. Large numbers of nucleotide-binding, leucine-rich repeat (NLR) genes are found in plant genomes and are required for disease resistance. However, NLRs can trigger autoimmunity, disrupt beneficial microbiota or reduce fitness. It is therefore crucial to understand how NLRs are controlled. Here, we show that the RNA-binding protein FPA mediates widespread premature cleavage and polyadenylation of NLR transcripts, thereby controlling their functional expression and impacting immunity. Using long-read Nanopore direct RNA sequencing, we resolved the complexity of NLR transcript processing and gene annotation. Our results uncover a co-transcriptional layer of NLR control with implications for understanding the regulatory and evolutionary dynamics of NLRs in the immune responses of plants.
Collapse
Affiliation(s)
- Matthew T Parker
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Katarzyna Knop
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | | | - Anna V Sherwood
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Daniel Tomé
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | - Xuhong Yu
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Pascal GP Martin
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Jim Beynon
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | - Scott D Michaels
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | | | - Gordon G Simpson
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
- The James Hutton InstituteInvergowrieUnited Kingdom
| |
Collapse
|
78
|
Katsuyama Y, Doi M, Shioya S, Hane S, Yoshioka M, Date S, Miyahara C, Ogawa T, Takada R, Okumura H, Ikusawa R, Kitajima S, Oda K, Sato K, Tanaka Y, Tezuka T, Mino M. The role of chaperone complex HSP90-SGT1-RAR1 as the associated machinery for hybrid inviability between Nicotiana gossei Domin and N. tabacum L. Gene 2021; 776:145443. [PMID: 33484759 DOI: 10.1016/j.gene.2021.145443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/01/2021] [Accepted: 01/13/2021] [Indexed: 12/18/2022]
Abstract
Two cultured cell lines (GTH4 and GTH4S) of a Nicotiana interspecific F1 hybrid (N. gossei × N. tabacum) were comparatively analyzed to find genetic factors related to hybrid inviability. Both cell lines proliferated at 37 °C, but after shifting to 26 °C, GTH4 started to die similar to the F1 hybrid seedlings, whereas GTH4S survived. As cell death requires de novo expression of genes and proteins, we compared expressed protein profiles between the two cell lines, and found that NgSGT1, a cochaperone of the chaperone complex (HSP90-SGT1-RAR1), was expressed in GTH4 but not in GTH4S. Agrobacterium-mediated transient expression of NgSGT1, but not NtSGT1, induced cell death in leaves of N. tabacum, suggesting its possible role in hybrid inviability. Cell death in N. tabacum was also induced by transient expression of NgRAR1, but not NtRAR1. In contrast, transient expression of any parental combinations of three components revealed that NgRAR1 promoted cell death, whereas NtRAR1 suppressed it in N. tabacum. A specific inhibitor of HSP90, geldanamycin, inhibited the progression of hypersensitive response-like cell death in GTH4 and leaf tissue after agroinfiltration. The present study suggested that components of the chaperone complex are involved in the inviability of Nicotiana interspecific hybrid.
Collapse
Affiliation(s)
- Yushi Katsuyama
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Mizuho Doi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Sachi Shioya
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Sanae Hane
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Momoko Yoshioka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Shuichi Date
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Chika Miyahara
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Tomomichi Ogawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Ryo Takada
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Hanako Okumura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Rie Ikusawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Sakihito Kitajima
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kenji Oda
- Research Institute for Biological Sciences, Okayama, 7549-1 Yoshikawa, Kibi Chuou-chou, Kaga-gun, Okayama 716-1241, Japan
| | - Kenji Sato
- Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshikazu Tanaka
- Biotechnology Division Research & Development Department, The Wakasa Wan Energy Research Center, 64-52-1 Ngatani, Tsuruga, Fukui 914-0135, Japan
| | - Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Masanobu Mino
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| |
Collapse
|
79
|
Göktay M, Fulgione A, Hancock AM. A New Catalog of Structural Variants in 1,301 A. thaliana Lines from Africa, Eurasia, and North America Reveals a Signature of Balancing Selection at Defense Response Genes. Mol Biol Evol 2021; 38:1498-1511. [PMID: 33247723 PMCID: PMC8042739 DOI: 10.1093/molbev/msaa309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genomic variation in the model plant Arabidopsis thaliana has been extensively used to understand evolutionary processes in natural populations, mainly focusing on single-nucleotide polymorphisms. Conversely, structural variation has been largely ignored in spite of its potential to dramatically affect phenotype. Here, we identify 155,440 indels and structural variants ranging in size from 1 bp to 10 kb, including presence/absence variants (PAVs), inversions, and tandem duplications in 1,301 A. thaliana natural accessions from Morocco, Madeira, Europe, Asia, and North America. We show evidence for strong purifying selection on PAVs in genes, in particular for housekeeping genes and homeobox genes, and we find that PAVs are concentrated in defense-related genes (R-genes, secondary metabolites) and F-box genes. This implies the presence of a "core" genome underlying basic cellular processes and a "flexible" genome that includes genes that may be important in spatially or temporally varying selection. Further, we find an excess of intermediate frequency PAVs in defense response genes in nearly all populations studied, consistent with a history of balancing selection on this class of genes. Finally, we find that PAVs in genes involved in the cold requirement for flowering (vernalization) and drought response are strongly associated with temperature at the sites of origin.
Collapse
Affiliation(s)
- Mehmet Göktay
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Fulgione
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela M Hancock
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
80
|
Xiao Z, Liu X, Fang Z, Yang L, Zhang Y, Wang Y, Zhuang M, Lv H. Transcriptome and plant hormone analyses provide new insight into the molecular regulatory networks underlying hybrid lethality in cabbage (Brassica oleracea). PLANTA 2021; 253:96. [PMID: 33839925 DOI: 10.1007/s00425-021-03608-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Comparative morphological, transcriptomic and phytohormone analyses reveal a defence network leading to PCD involved in cabbage hybrid lethality. Hybrid lethality (HL) plays an essential role in the stability of a population by blocking gene exchange between species, but the molecular mechanism remains largely undetermined. In this study, we performed phenotype, transcriptome and plant hormone analyses of HL in cabbage. Phenotype analysis confirmed that HL is characterised by a typical programmed cell death (PCD) process. A time-resolved RNA-Seq identified 2724 differentially expressed genes (DEGs), and functional annotations analyses revealed that HL was closely associated with the defence response. A defence regulation network was constructed based on the plant-pathogen interaction pathway and MAPK signalling pathway, which comprised DEGs related to Ca2+ and hydrogen peroxide (H2O2) leading to PCD. Moreover, important DEGs involved in hormone signal transduction pathways including salicylic acid (SA) and jasmonic acid (JA) were identified, which were further confirmed by endogenous and exogenous SA and JA measurements. Our results identified key genes and pathways in the regulating network of HL in cabbage, and might open the gate for revealing the molecular mechanism of HL in plants.
Collapse
Affiliation(s)
- Zhiliang Xiao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Xing Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China.
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China.
| |
Collapse
|
81
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
82
|
Yang W, Wang D, Li Y, Zhang Z, Tong S, Li M, Zhang X, Zhang L, Ren L, Ma X, Zhou R, Sanderson BJ, Keefover-Ring K, Yin T, Smart LB, Liu J, DiFazio SP, Olson M, Ma T. A General Model to Explain Repeated Turnovers of Sex Determination in the Salicaceae. Mol Biol Evol 2021; 38:968-980. [PMID: 33027519 PMCID: PMC7947767 DOI: 10.1093/molbev/msaa261] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dioecy, the presence of separate sexes on distinct individuals, has evolved repeatedly in multiple plant lineages. However, the specific mechanisms by which sex systems evolve and their commonalities among plant species remain poorly understood. With both XY and ZW sex systems, the family Salicaceae provides a system to uncover the evolutionary forces driving sex chromosome turnovers. In this study, we performed a genome-wide association study to characterize sex determination in two Populus species, P. euphratica and P. alba. Our results reveal an XY system of sex determination on chromosome 14 of P. euphratica, and a ZW system on chromosome 19 of P. alba. We further assembled the corresponding sex-determination regions, and found that their sex chromosome turnovers may be driven by the repeated translocations of a Helitron-like transposon. During the translocation, this factor may have captured partial or intact sequences that are orthologous to a type-A cytokinin response regulator gene. Based on results from this and other recently published studies, we hypothesize that this gene may act as a master regulator of sex determination for the entire family. We propose a general model to explain how the XY and ZW sex systems in this family can be determined by the same RR gene. Our study provides new insights into the diversification of incipient sex chromosomes in flowering plants by showing how transposition and rearrangement of a single gene can control sex in both XY and ZW systems.
Collapse
Affiliation(s)
- Wenlu Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Deyan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiling Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhiyang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shaofei Tong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengmeng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Liwen Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinzhi Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ran Zhou
- Department of Biology, West Virginia University, Morgantown, WV
| | - Brian J Sanderson
- Department of Biology, West Virginia University, Morgantown, WV
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin—Madison, Madison, WI
| | - Tongming Yin
- The Key Laboratory of Tree Genetics and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, Nanjing, China
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, China
| | | | - Matthew Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
83
|
Roudaire T, Héloir MC, Wendehenne D, Zadoroznyj A, Dubrez L, Poinssot B. Cross Kingdom Immunity: The Role of Immune Receptors and Downstream Signaling in Animal and Plant Cell Death. Front Immunol 2021; 11:612452. [PMID: 33763054 PMCID: PMC7982415 DOI: 10.3389/fimmu.2020.612452] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Both plants and animals are endowed with sophisticated innate immune systems to combat microbial attack. In these multicellular eukaryotes, innate immunity implies the presence of cell surface receptors and intracellular receptors able to detect danger signal referred as damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). Membrane-associated pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), C-type lectin receptors (CLRs), receptor-like kinases (RLKs), and receptor-like proteins (RLPs) are employed by these organisms for sensing different invasion patterns before triggering antimicrobial defenses that can be associated with a form of regulated cell death. Intracellularly, animals nucleotide-binding and oligomerization domain (NOD)-like receptors or plants nucleotide-binding domain (NBD)-containing leucine rich repeats (NLRs) immune receptors likely detect effectors injected into the host cell by the pathogen to hijack the immune signaling cascade. Interestingly, during the co-evolution between the hosts and their invaders, key cross-kingdom cell death-signaling macromolecular NLR-complexes have been selected, such as the inflammasome in mammals and the recently discovered resistosome in plants. In both cases, a regulated cell death located at the site of infection constitutes a very effective mean for blocking the pathogen spread and protecting the whole organism from invasion. This review aims to describe the immune mechanisms in animals and plants, mainly focusing on cell death signaling pathways, in order to highlight recent advances that could be used on one side or the other to identify the missing signaling elements between the perception of the invasion pattern by immune receptors, the induction of defenses or the transmission of danger signals to other cells. Although knowledge of plant immunity is less advanced, these organisms have certain advantages allowing easier identification of signaling events, regulators and executors of cell death, which could then be exploited directly for crop protection purposes or by analogy for medical research.
Collapse
Affiliation(s)
- Thibault Roudaire
- Agroécologie, Agrosup Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Marie-Claire Héloir
- Agroécologie, Agrosup Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - David Wendehenne
- Agroécologie, Agrosup Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Aymeric Zadoroznyj
- Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France.,LNC UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurence Dubrez
- Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France.,LNC UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Benoit Poinssot
- Agroécologie, Agrosup Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
84
|
Calvo-Baltanás V, Wang J, Chae E. Hybrid Incompatibility of the Plant Immune System: An Opposite Force to Heterosis Equilibrating Hybrid Performances. FRONTIERS IN PLANT SCIENCE 2021; 11:576796. [PMID: 33717206 PMCID: PMC7953517 DOI: 10.3389/fpls.2020.576796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Hybridization is a core element in modern rice breeding as beneficial combinations of two parental genomes often result in the expression of heterosis. On the contrary, genetic incompatibility between parents can manifest as hybrid necrosis, which leads to tissue necrosis accompanied by compromised growth and/or reduced reproductive success. Genetic and molecular studies of hybrid necrosis in numerous plant species revealed that such self-destructing symptoms in most cases are attributed to autoimmunity: plant immune responses are inadvertently activated in the absence of pathogenic invasion. Autoimmunity in hybrids predominantly occurs due to a conflict involving a member of the major plant immune receptor family, the nucleotide-binding domain and leucine-rich repeat containing protein (NLR; formerly known as NBS-LRR). NLR genes are associated with disease resistance traits, and recent population datasets reveal tremendous diversity in this class of immune receptors. Cases of hybrid necrosis involving highly polymorphic NLRs as major causes suggest that diversified R gene repertoires found in different lineages would require a compatible immune match for hybridization, which is a prerequisite to ensure increased fitness in the resulting hybrids. In this review, we overview recent genetic and molecular findings on hybrid necrosis in multiple plant species to provide an insight on how the trade-off between growth and immunity is equilibrated to affect hybrid performances. We also revisit the cases of hybrid weakness in which immune system components are found or implicated to play a causative role. Based on our understanding on the trade-off, we propose that the immune system incompatibility in plants might play an opposite force to restrict the expression of heterosis in hybrids. The antagonism is illustrated under the plant fitness equilibrium, in which the two extremes lead to either hybrid necrosis or heterosis. Practical proposition from the equilibrium model is that breeding efforts for combining enhanced disease resistance and high yield shall be achieved by balancing the two forces. Reverse breeding toward utilizing genomic data centered on immune components is proposed as a strategy to generate elite hybrids with balanced immunity and growth.
Collapse
|
85
|
Huang CY, Rangel DS, Qin X, Bui C, Li R, Jia Z, Cui X, Jin H. The chromatin-remodeling protein BAF60/SWP73A regulates the plant immune receptor NLRs. Cell Host Microbe 2021; 29:425-434.e4. [PMID: 33548199 DOI: 10.1016/j.chom.2021.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
In both plant and animal innate immune responses, surveillance of pathogen infection is mediated by membrane-associated receptors and intracellular nucleotide-binding domain and leucine-rich-repeat receptors (NLRs). Homeostasis of NLRs is under tight multilayered regulation to avoid over-accumulation or over-activation, which often leads to autoimmune responses that have detrimental effects on growth and development. How NLRs are regulated epigenetically at the chromatin level remains unclear. Here, we report that SWP73A, an ortholog of the mammalian switch/sucrose nonfermentable (SWI/SNF) chromatin-remodeling protein BAF60, suppresses the expression of NLRs either directly by binding to the NLR promoters or indirectly by affecting the alternative splicing of some NLRs through the suppression of cell division cycle 5 (CDC5), a key regulator of RNA splicing. Upon infection, bacteria-induced small RNAs silence SWP73A to activate a group of NLRs and trigger robust immune responses. SWP73A may function as a H3K9me2 reader to enhance transcription suppression.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Department of Microbiology & Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, USA
| | - Diana Sánchez Rangel
- Department of Microbiology & Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, USA; Cátedra CONACyT en la red de Estudios Moleculares Avanzados del Instituto de Ecología A.C. (INECOL), Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91070, México
| | - Xiaobo Qin
- Department of Microbiology & Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, USA
| | - Christine Bui
- Department of Microbiology & Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, USA
| | - Ruidong Li
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Xinping Cui
- Department of Statistics, University of California, Riverside, CA 92521, USA
| | - Hailing Jin
- Department of Microbiology & Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, USA.
| |
Collapse
|
86
|
Wan WL, Kim ST, Castel B, Charoennit N, Chae E. Genetics of autoimmunity in plants: an evolutionary genetics perspective. THE NEW PHYTOLOGIST 2021; 229:1215-1233. [PMID: 32970825 DOI: 10.1111/nph.16947] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/12/2020] [Indexed: 05/14/2023]
Abstract
Autoimmunity in plants has been found in numerous hybrids as a form of hybrid necrosis and mutant panels. Uncontrolled cell death is a main cellular outcome of autoimmunity, which negatively impacts growth. Its occurrence highlights the vulnerable nature of the plant immune system. Genetic investigation of autoimmunity in hybrid plants revealed that extreme variation in the immune receptor repertoire is a major contributor, reflecting an evolutionary conundrum that plants face in nature. In this review, we discuss natural variation in the plant immune system and its contribution to fitness. The value of autoimmunity genetics lies in its ability to identify combinations of a natural immune receptor and its partner that are predisposed to triggering autoimmunity. The network of immune components for autoimmunity becomes instrumental in revealing mechanistic details of how immune receptors recognize cellular invasion and activate signaling. The list of autoimmunity-risk variants also allows us to infer evolutionary processes contributing to their maintenance in the natural population. Our approach to autoimmunity, which integrates mechanistic understanding and evolutionary genetics, has the potential to serve as a prognosis tool to optimize immunity in crops.
Collapse
Affiliation(s)
- Wei-Lin Wan
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Sang-Tae Kim
- Department of Life Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Baptiste Castel
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Nuri Charoennit
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| |
Collapse
|
87
|
Barragan AC, Collenberg M, Wang J, Lee RRQ, Cher WY, Rabanal FA, Ashkenazy H, Weigel D, Chae E. A Truncated Singleton NLR Causes Hybrid Necrosis in Arabidopsis thaliana. Mol Biol Evol 2021; 38:557-574. [PMID: 32966577 PMCID: PMC7826191 DOI: 10.1093/molbev/msaa245] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hybrid necrosis in plants arises from conflict between divergent alleles of immunity genes contributed by different parents, resulting in autoimmunity. We investigate a severe hybrid necrosis case in Arabidopsis thaliana, where the hybrid does not develop past the cotyledon stage and dies 3 weeks after sowing. Massive transcriptional changes take place in the hybrid, including the upregulation of most NLR (nucleotide-binding site leucine-rich repeat) disease-resistance genes. This is due to an incompatible interaction between the singleton TIR-NLR gene DANGEROUS MIX 10 (DM10), which was recently relocated from a larger NLR cluster, and an unlinked locus, DANGEROUS MIX 11 (DM11). There are multiple DM10 allelic variants in the global A. thaliana population, several of which have premature stop codons. One of these, which has a truncated LRR-PL (leucine-rich repeat [LRR]-post-LRR) region, corresponds to the DM10 risk allele. The DM10 locus and the adjacent genomic region in the risk allele carriers are highly differentiated from those in the nonrisk carriers in the global A. thaliana population, suggesting that this allele became geographically widespread only relatively recently. The DM11 risk allele is much rarer and found only in two accessions from southwestern Spain-a region from which the DM10 risk haplotype is absent-indicating that the ranges of DM10 and DM11 risk alleles may be nonoverlapping.
Collapse
Affiliation(s)
- Ana Cristina Barragan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maximilian Collenberg
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jinge Wang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Rachelle R Q Lee
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Wei Yuan Cher
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Fernando A Rabanal
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Haim Ashkenazy
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
88
|
Harris JM, Balint-Kurti P, Bede JC, Day B, Gold S, Goss EM, Grenville-Briggs LJ, Jones KM, Wang A, Wang Y, Mitra RM, Sohn KH, Alvarez ME. What are the Top 10 Unanswered Questions in Molecular Plant-Microbe Interactions? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1354-1365. [PMID: 33106084 DOI: 10.1094/mpmi-08-20-0229-cr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.The past few decades have seen major discoveries in the field of molecular plant-microbe interactions. As the result of technological and intellectual advances, we are now able to answer questions at a level of mechanistic detail that we could not have imagined possible 20 years ago. The MPMI Editorial Board felt it was time to take stock and reassess. What big questions remain unanswered? We knew that to identify the fundamental, overarching questions that drive our research, we needed to do this as a community. To reach a diverse audience of people with different backgrounds and perspectives, working in different areas of plant-microbe interactions, we queried the more than 1,400 participants at the 2019 International Congress on Molecular Plant-Microbe Interactions meeting in Glasgow. This group effort resulted in a list of ten, broad-reaching, fundamental questions that influence and inform our research. Here, we introduce these Top 10 unanswered questions, giving context and a brief description of the issues. Each of these questions will be the subject of a detailed review in the coming months. We hope that this process of reflecting on what is known and unknown and identifying the themes that underlie our research will provide a framework to use going forward, giving newcomers a sense of the mystery of the big questions and inspiring new avenues and novel insights.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Jeanne M Harris
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
| | - Peter Balint-Kurti
- USDA-ARS, Plant Science Research Unit, Raleigh NC, and Dept. of Entomology and Plant Pathology, NC State University, Raleigh, NC 27695-7613, U.S.A
| | - Jacqueline C Bede
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Scott Gold
- Plant Pathology Department, University of Georgia, USDA-ARS, Athens, GA 30605-2720, U.S.A
| | - Erica M Goss
- Plant Pathology Department and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, U.S.A
| | - Laura J Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| | - Kathryn M Jones
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, U.S.A
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Raka M Mitra
- Biology Department, Carleton College, Northfield, MN 55057, U.S.A
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Maria Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
89
|
Vaid N, Ishihara H, Plötner B, Sageman-Furnas K, Wiszniewski A, Laitinen RAE. Leaf chlorosis in Arabidopsis thaliana hybrids is associated with transgenerational decline and imbalanced ribosome number. THE NEW PHYTOLOGIST 2020; 228:989-1000. [PMID: 32557724 DOI: 10.1111/nph.16752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/05/2020] [Indexed: 05/09/2023]
Abstract
The interaction of two parental genomes can result in negative outcomes in offspring, also known as hybrid incompatibility. We have previously reported a case in which two recessively interacting alleles result in hybrid chlorosis in Arabidopsis thaliana. A DEAD-box RNA helicase 18 (AtRH18) was identified to be necessary for chlorosis. In this study, we use a sophisticated genetic approach to investigate genes underlying hybrid chlorosis. Sequence comparisons, DNA methylation inhibitor drug treatment and segregation analysis were used to investigate the epigenetic regulation of hybrid chlorosis. Relative rRNA numbers were quantified using real-time quantitative PCR. We confirmed the causality of AtRH18 and provided evidence for the involvement of the promoter region of AtRH18 in the hybrid chlorosis. Furthermore, AtMOM1 from the second parent was identified as the likely candidate gene on chromosome 1. Chlorotic hybrids displayed transgenerational decline in chlorosis, and DNA demethylation experiment restored chlorophyll levels in chlorotic hybrids. Quantification of rRNA indicated that hybrid chlorosis was associated with an imbalance in the ratio of cytosolic and plastid ribosomes. Our findings highlight that the epigenetic regulation of AtRH18 causes hybrid breakdown and provide novel information about the role of AtRH18 in plant development.
Collapse
Affiliation(s)
- Neha Vaid
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Hirofumi Ishihara
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Björn Plötner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Katelyn Sageman-Furnas
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Andrew Wiszniewski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Roosa A E Laitinen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
90
|
Wu C, Kannan S, Verma CS, Swaminathan K, Wong SM. Molecular modeling and interaction between Arabidopsis sulfite oxidase and the GW motif of Turnip crinkle virus coat protein. Virology 2020; 551:64-74. [PMID: 33038689 DOI: 10.1016/j.virol.2020.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022]
Abstract
Previous study has shown that Hibiscus sulfite oxidase (SO) interacts with Hibiscus chlorotic ringspot virus (HCRSV) coat protein (CP) and triggers sulfur enhanced defense (SED). In this study, we show the interaction of Arabidopsis SO (AtSO) and Turnip crinkle virus (TCV) CP in Arabidopsis thaliana plants. We identified the binding sites of TCV CP (W274) and AtSO (D223) using bioinformatics and confirmed it experimentally. Mutation of binding site W274 to A274 in TCV CP resulted in failure of TCV infection. TCV accumulation in SO over-expression (SO_OE) plants was lower than that in wild-type (WT) and SO knock-out (SO_KO) plants at 7 dpi but reached a level similar to that of WT and SO_KO plants at 10 dpi. AtSO competed with Argonaute 1 (AGO1) for TCV CP binding in vitro. AtSO may serve as an anti-viral factor through sequestering TCV CP for binding with AGO1 and confers virus resistance.
Collapse
Affiliation(s)
- Chao Wu
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | | | - Chandra S Verma
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis St, 07-01 Matrix, 138671, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore
| | - Kunchithapadam Swaminathan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore; Temasek Life Sciences Laboratory, 1 Research Link Road, 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, 215123, PR China.
| |
Collapse
|
91
|
Deng Y, Ning Y, Yang DL, Zhai K, Wang GL, He Z. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops. MOLECULAR PLANT 2020; 13:1402-1419. [PMID: 32979566 DOI: 10.1016/j.molp.2020.09.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/31/2020] [Accepted: 09/19/2020] [Indexed: 05/24/2023]
Abstract
Crop diseases are major factors responsible for substantial yield losses worldwide, which affects global food security. The use of resistance (R) genes is an effective and sustainable approach to controlling crop diseases. Here, we review recent advances on R gene studies in the major crops and related wild species. Current understanding of the molecular mechanisms underlying R gene activation and signaling, and susceptibility (S) gene-mediated resistance in crops are summarized and discussed. Furthermore, we propose some new strategies for R gene discovery, how to balance resistance and yield, and how to generate crops with broad-spectrum disease resistance. With the rapid development of new genome-editing technologies and the availability of increasing crop genome sequences, the goal of breeding next-generation crops with durable resistance to pathogens is achievable, and will be a key step toward increasing crop production in a sustainable way.
Collapse
Affiliation(s)
- Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Keran Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
92
|
Ma J, Hancock WG, Nifong JM, Kernodle SP, Lewis RS. Identification and editing of a hybrid lethality gene expands the range of interspecific hybridization potential in Nicotiana. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2915-2925. [PMID: 32613263 DOI: 10.1007/s00122-020-03641-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE Identification and inactivation of hybrid lethality genes can be used to expand the available gene pool for improvement of a cultivated crop species. Hybrid lethality is one genetic mechanism that contributes to reproductive isolation in plants and serves as a barrier to use of diverse germplasm for improvement of cultivated species. A classic example is the seedling lethality exhibited by progeny from the Nicotiana tabacum × N. africana interspecific cross. In order to increase the body of knowledge on mechanisms of hybrid lethality in plants, and to potentially develop tools to circumvent them, we utilized a transposon tagging strategy to identify a candidate gene involved in the control of this reaction. N. tabacum gene Nt6549g30 was identified to code for a class of coiled-coil nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR) proteins, the largest class of plant defense proteins. Gene editing, along with other experiments, was used to verify that Nt6549g30 is the gene at the N. tabacum Hybrid Lethality 1 (NtHL1) locus controlling the hybrid lethality reaction in crosses with N. africana. Gene editing of Nt6549g30 was also used to reverse interspecific seedling lethality in crosses between N. tabacum and eight of nine additional tested species from section Suaveolentes. Results further implicate the role of disease resistance-like genes in the evolution of plant species and demonstrate the possibility of expanding the gene pool for a crop species through gene editing.
Collapse
Affiliation(s)
- Justin Ma
- Department of Crop and Soil Sciences, North Carolina State University, Campus, Box 7620, Raleigh, NC, 27695, USA
| | - Wesley G Hancock
- Department of Crop and Soil Sciences, North Carolina State University, Campus, Box 7620, Raleigh, NC, 27695, USA
| | - Jessica M Nifong
- Department of Crop and Soil Sciences, North Carolina State University, Campus, Box 7620, Raleigh, NC, 27695, USA
| | - Sheri P Kernodle
- Department of Crop and Soil Sciences, North Carolina State University, Campus, Box 7620, Raleigh, NC, 27695, USA
| | - Ramsey S Lewis
- Department of Crop and Soil Sciences, North Carolina State University, Campus, Box 7620, Raleigh, NC, 27695, USA.
| |
Collapse
|
93
|
Soyk S, Benoit M, Lippman ZB. New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation. Annu Rev Genet 2020; 54:287-307. [PMID: 32870731 DOI: 10.1146/annurev-genet-050720-122916] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uncovering the genes, variants, and interactions underlying crop diversity is a frontier in plant genetics. Phenotypic variation often does not reflect the cumulative effect of individual gene mutations. This deviation is due to epistasis, in which interactions between alleles are often unpredictable and quantitative in effect. Recent advances in genomics and genome-editing technologies are elevating the study of epistasis in crops. Using the traits and developmental pathways that were major targets in domestication and breeding, we highlight how epistasis is central in guiding the behavior of the genetic variation that shapes quantitative trait variation. We outline new strategies that illuminate how quantitative epistasis from modified gene dosage defines background dependencies. Advancing our understanding of epistasis in crops can reveal new principles and approaches to engineering targeted improvements in agriculture.
Collapse
Affiliation(s)
- Sebastian Soyk
- Center for Integrative Genomics, University of Lausanne, CH-1005 Lausanne, Switzerland;
| | - Matthias Benoit
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
94
|
Satokangas I, Martin SH, Helanterä H, Saramäki J, Kulmuni J. Multi-locus interactions and the build-up of reproductive isolation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190543. [PMID: 32654649 PMCID: PMC7423273 DOI: 10.1098/rstb.2019.0543] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
All genes interact with other genes, and their additive effects and epistatic interactions affect an organism's phenotype and fitness. Recent theoretical and empirical work has advanced our understanding of the role of multi-locus interactions in speciation. However, relating different models to one another and to empirical observations is challenging. This review focuses on multi-locus interactions that lead to reproductive isolation (RI) through reduced hybrid fitness. We first review theoretical approaches and show how recent work incorporating a mechanistic understanding of multi-locus interactions recapitulates earlier models, but also makes novel predictions concerning the build-up of RI. These include high variance in the build-up rate of RI among taxa, the emergence of strong incompatibilities producing localized barriers to introgression, and an effect of population size on the build-up of RI. We then review recent experimental approaches to detect multi-locus interactions underlying RI using genomic data. We argue that future studies would benefit from overlapping methods like ancestry disequilibrium scans, genome scans of differentiation and analyses of hybrid gene expression. Finally, we highlight a need for further overlap between theoretical and empirical work, and approaches that predict what kind of patterns multi-locus interactions resulting in incompatibilities will leave in genome-wide polymorphism data. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- I. Satokangas
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1, PO Box 65, 00014 Helsinki, Finland
| | - S. H. Martin
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, UK
| | - H. Helanterä
- Ecology and Genetics research unit, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| | - J. Saramäki
- Department of Computer Science, Aalto University, PO Box 11000, 00076 Aalto, Espoo, Finland
| | - J. Kulmuni
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1, PO Box 65, 00014 Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, J. A. Palménin tie 260, 10900 Hanko, Finland
| |
Collapse
|
95
|
Karasov TL, Shirsekar G, Schwab R, Weigel D. What natural variation can teach us about resistance durability. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:89-98. [PMID: 32535454 DOI: 10.1016/j.pbi.2020.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/08/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Breeding a crop variety to be resistant to a pathogen usually takes years. This is problematic because pathogens, with short generation times and fluid genomes, adapt quickly to overcome resistance. The triumph of the pathogen is not inevitable, however, as there are numerous examples of durable resistance, particularly in wild plants. Which factors then contribute to such resistance stability over millennia? We review current knowledge of wild and agricultural pathosystems, detailing the importance of genetic, species and spatial heterogeneity in the prevention of pathogen outbreaks. We also highlight challenges associated with increasing resistance diversity in crops, both in light of pathogen (co-)evolution and breeding practices. Historically it has been difficult to incorporate heterogeneity into agriculture due to reduced efficiency in harvesting. Recent advances implementing computer vision and automation in agricultural production may improve our ability to harvest mixed genotype and mixed species plantings, thereby increasing resistance durability.
Collapse
Affiliation(s)
- Talia L Karasov
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gautam Shirsekar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
96
|
Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D. Plant pan-genomes are the new reference. NATURE PLANTS 2020; 6:914-920. [PMID: 32690893 DOI: 10.1038/s41477-020-0733-0] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/29/2020] [Indexed: 05/18/2023]
Abstract
Recent years have seen a surge in plant genome sequencing projects and the comparison of multiple related individuals. The high degree of genomic variation observed led to the realization that single reference genomes do not represent the diversity within a species, and led to the expansion of the pan-genome concept. Pan-genomes represent the genomic diversity of a species and includes core genes, found in all individuals, as well as variable genes, which are absent in some individuals. Variable gene annotations often show similarities across plant species, with genes for biotic and abiotic stress commonly enriched within variable gene groups. Here we review the growth of pan-genomics in plants, explore the origins of gene presence and absence variation, and show how pan-genomes can support plant breeding and evolution studies.
Collapse
Affiliation(s)
- Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | - Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
97
|
Lee RR, Chae E. Variation Patterns of NLR Clusters in Arabidopsis thaliana Genomes. PLANT COMMUNICATIONS 2020; 1:100089. [PMID: 33367252 PMCID: PMC7747988 DOI: 10.1016/j.xplc.2020.100089] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 05/04/2023]
Abstract
The nucleotide-binding domain and leucine-rich repeat (NLR) gene family is highly expanded in the plant lineage with extensive sequence and structure polymorphisms. To survey the landscape of NLR expansion, we mined the published long-read data generated by the resistance gene enrichment sequencing of 64 diverse Arabidopsis thaliana accessions. We found that the hot spots of massive multi-gene NLR cluster expansion did not typically span the whole cluster; instead, they were restricted to a handful of, or only one, dominant radiation(s). All sequences in such a radiation were distinct from other genes in the cluster but not from each other in the clade, making it difficult to assign trustworthy reference-based orthologies when multiple reference genes were present in the radiation. Consequently, NLR genes can be broadly divided into two types: radiating or high-fidelity, where high-fidelity genes are well conserved and well separated from other clades. A similar distinction could be made for NLR clusters, depending on whether cluster size was determined primarily by extensive radiation or the presence of numerous high-fidelity genes. We also identified groups of well-conserved NLR clades that were missing from the Columbia-0 reference genome. This suggests that the classification of NLRs using gene IDs from a single reference accession can rarely capture all major paralogs in a cluster accurately and representatively and that a reference-agnostic perspective is required to properly characterize these additional variations. Finally, we present a quantitative visualization method for differentiating these situations in a given clade of interest.
Collapse
Affiliation(s)
- Rachelle R.Q. Lee
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| |
Collapse
|
98
|
Coughlan JM, Matute DR. The importance of intrinsic postzygotic barriers throughout the speciation process. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190533. [PMID: 32654642 DOI: 10.1098/rstb.2019.0533] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrinsic postzygotic barriers can play an important and multifaceted role in speciation, but their contribution is often thought to be reserved to the final stages of the speciation process. Here, we review how intrinsic postzygotic barriers can contribute to speciation, and how this role may change through time. We outline three major contributions of intrinsic postzygotic barriers to speciation. (i) reduction of gene flow: intrinsic postzygotic barriers can effectively reduce gene exchange between sympatric species pairs. We discuss the factors that influence how effective incompatibilities are in limiting gene flow. (ii) early onset of species boundaries via rapid evolution: intrinsic postzygotic barriers can evolve between recently diverged populations or incipient species, thereby influencing speciation relatively early in the process. We discuss why the early origination of incompatibilities is expected under some biological models, and detail how other (and often less obvious) incompatibilities may also serve as important barriers early on in speciation. (iii) reinforcement: intrinsic postzygotic barriers can promote the evolution of subsequent reproductive isolation through processes such as reinforcement, even between relatively recently diverged species pairs. We incorporate classic and recent empirical and theoretical work to explore these three facets of intrinsic postzygotic barriers, and provide our thoughts on recent challenges and areas in the field in which progress can be made. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Department of Biology, University of North Carolina, 120 South Road, Coker Hall, Chapel Hill, NC 27599, USA
| | - Daniel R Matute
- Department of Biology, University of North Carolina, 120 South Road, Coker Hall, Chapel Hill, NC 27599, USA
| |
Collapse
|
99
|
A compendium of genome-wide sequence reads from NBS (nucleotide binding site) domains of resistance genes in the common potato. Sci Rep 2020; 10:11392. [PMID: 32647195 PMCID: PMC7347568 DOI: 10.1038/s41598-020-67848-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/09/2020] [Indexed: 12/02/2022] Open
Abstract
SolariX is a compendium of DNA sequence tags from the nucleotide binding site (NBS) domain of disease resistance genes of the common potato, Solanum tuberosum Group Tuberosum. The sequences, which we call NBS tags, for nearly all NBS domains from 91 genomes—representing a wide range of historical and contemporary potato cultivars, 24 breeding programs and 200 years—were generated using just 16 amplification primers and high-throughput sequencing. The NBS tags were mapped to 587 NBS domains on the draft potato genome DM, where we detected an average, over all the samples, of 26 nucleotide polymorphisms on each locus. The total number of NBS domains observed, differed between potato cultivars. However, both modern and old cultivars possessed comparable levels of variability, and neither the individual breeder or country nor the generation or time appeared to correlate with the NBS domain frequencies. Our attempts to detect haplotypes (i.e., sets of linked nucleotide polymorphisms) frequently yielded more than the possible 4 alleles per domain indicating potential locus intermixing during the mapping of NBS tags to the DM reference genome. Mapping inaccuracies were likely a consequence of the differences of each cultivar to the reference genome used, coupled with high levels of NBS domain sequence similarity. We illustrate that the SolariX database is useful to search for polymorphism linked with NBS-LRR R gene alleles conferring specific disease resistance and to develop molecular markers for selection.
Collapse
|
100
|
Abstract
Pathogen recognition by the plant immune system leads to defense responses that are often accompanied by a form of regulated cell death known as the hypersensitive response (HR). HR shares some features with regulated necrosis observed in animals. Genetically, HR can be uncoupled from local defense responses at the site of infection and its role in immunity may be to activate systemic responses in distal parts of the organism. Recent advances in the field reveal conserved cell death-specific signaling modules that are assembled by immune receptors in response to pathogen-derived effectors. The structural elucidation of the plant resistosome-an inflammasome-like structure that may attach to the plasma membrane on activation-opens the possibility that HR cell death is mediated by the formation of pores at the plasma membrane. Necrotrophic pathogens that feed on dead tissue have evolved strategies to trigger the HR cell death pathway as a survival strategy. Ectopic activation of immunomodulators during autoimmune reactions can also promote HR cell death. In this perspective, we discuss the role and regulation of HR in these different contexts.
Collapse
Affiliation(s)
- Eugenia Pitsili
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Barcelona, Spain
| | - Ujjal J Phukan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Barcelona, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|